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@ Order parameter is a bosonic field .
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@ Partial bosonization combines advantages of both
approaches.
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Notation

@ Fermion field v,
@ Abstract index « labels continuous and discrete degrees
of freedom.
@ For example: Matsubara frequency w,,, momentum ¢ and
spin %
Q= (wm q, Z)

o « differentiates also between particles ¢» and holes ¥* (or
antiparticles 1)).
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Microscopic model

= —wa ap 1/15 + )\aﬁfyé ¢a¢ﬁ¢'y¢5

@ Inverse propagator P

@ Fermion-fermion interaction A

@ Examples: Hubbard model, BCS-model, NJL-model,...
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Hubbard-Stratonovich transformation

@ Add Gaussian functional integral over boson field ¢

/ Dy e3P xQTNHQPp—Q )

@ Operator x quadratic in fermion field

Xe = Hsaﬁ wa¢ﬁ'

@ Choose H and () such that A-term is cancelled

1 1 _
@)\aﬁvé + §(HQ 1H)a575 = 0.

@ Arrive at theory for fermions and bosons

1 1
S = §¢P¢ + 590@90 — pHyp.
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Hubbard-Stratonovich 11

7N\

R
/O\

@ Fermion interaction is expressed as boson exchange.
@ Need boson field for every channel!

@ Divergence in \ corresponds to order parameter () # 0.
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Rebosonization

@ Fermion coupling A is regenerated by renormalization
flow.

o Gies & Wetterich (2001): Use scale dependent boson
fields ok[1)] to have A = 0 on all scales.

o Related work: Pawlowski (2007).
@ We will present an exact and simple one-loop flow

equation for this task.
(S. Floerchinger and C. Wetterich, arXiv:0905.0915)
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Nonlinear field transformation

Consider flow equation (Wetterich 1993)

1
OTkle, 71|, = 5STr { (0 + Ri) 'O}

with k-dependent change of variables ¢ = @[]

ol

akrk‘¢ = akrk‘w —/ 5% ak@‘

@ 0, ~ Y1) allows for “rebosonization”.

° F,(f) and R transform as tensors of rank two.

@ Connection terms ~ 5 5_ destroy one-loop structure.
o I'y[@] := T'x[p]@]] has different properties than T'x[p].
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Scale-dependent bosonization

@ Hubbard-Stratonovich transformation with k-dependent
@ ("boson propagator”) and H (“Yukawa interaction").

@ Scale-dependent Schwinger functional

Wilnd] _ / D Dp e-Silibdlniic

@ k-dependent are:

Sl + SO(RDD + 56(Q + RO
S (BOH)Q (HI) — GUHD).
Ry, H and Q.
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Ezact flow equation

1
Ol = 3STr {(r(z’ + Ry) ! (O Ry — Rk(ﬁkQ*l)Rk)}

—§r Y (0,7 TV 4

@ One-loop term is supplemented by “tree” term.
@ Q7! has entries in ¢, ¢-block, only.
o Field-independent term ~; can often be dropped.
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Properties of exaxt flow equation

@ Scale dependence of H was choosen such that

(9kH€aﬁ == (8k In Q)epHpaﬂ~

@ Indepently choosen 0@ and O, H = (OxF')H are
equivalent to linear change in ¢.

@ Generalization to other composite operators are possible.

@ For R = 0 formalism is close to purely fermionic flow.
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Flowing bosonization

0P, - @ b oeon

i (O ead
= (0] ¢ »e<

@ 0,Q~ "' can be choosen such that 9\ = 0.
@ This gives corrections to dyh and 0, P,.



Proof of flow equation

Schwinger functional
Wilmi] — / Di) D@ e~ Sklo@lmitic
with
S8 = Suld] + IR+ 2(Q + RO
k ¥ 9 7k 9 k
+%><Q‘1x — Px.
Shift in field @
Wilnil _ / D e Solil- 3R, i
% e3T0@Q+R]) T (+0-3xQ ™ 'x

" /D@ o~ SHQ+RDE



Equivalence of both equations yields

<X6> = er%pp - le (4)
with the modified source I, = j. — (R} )eopo- Similarly
(Xexo) = [(@Q+ RY)(6;0;Wi)(Q + R},

HQp —1D)(Qp — 1) — (Q + Rf)er,  (5)

and

<§56XU> = <95595T>(Q + Rf)m — Pejo — Oco
= 0 (Qp)s + [(5151'Wk)(@ + Rf)]w — Yels = beo- (6)



We now turn to the scale-dependence of Wy[n, j]

W = @R — 1 (BORE +0Q))
1
+5(x ( )
~(FQAQTX)- (7)
Use now (2), (3), (4)
Wi = —S (OB — Le(ORE)
— S STH(ORY) (6,0, 10)}

5Tl (RS — REOQ™RE] (556,70}

FIOQ )+ S THAQ Q- D). (8)



The average action is defined as the modified Legendre
transform

1 1
—5 R — SeRLe. (9)

As usual, one has

0
(Swa Fk - ina - (Rq]gp)aﬁwﬁv (10)
and
5 o
Fk = Je — (Rk)ecr(pcr - le‘ (1]-)

0pe



This yields our central result

0T, — 1STr {(F(z) + Ry) ™! (On Ry — Rk((?kQ’l)Rk)}
_-r N(0,Q7Y) T + (12)
with

= 5T {@BQ )@ - R} (13)



Conclusions

@ Simple but exact flow equation was derived.



Conclusions

@ Simple but exact flow equation was derived.

@ This allows an implementation of “flowing bosonization™.



Conclusions

@ Simple but exact flow equation was derived.
@ This allows an implementation of “flowing bosonization™.
@ Details can be found in arXiv:0905.0915.



Conclusions

@ Simple but exact flow equation was derived.

@ This allows an implementation of “flowing bosonization™.
@ Details can be found in arXiv:0905.0915.

@ Thank you for your attention!



