
News from Bosonization

Stefan Flörchinger (Heidelberg)

Work in collaboration with C. Wetterich

FOR 723 Workshop, ReisensbuRG 2009



Introduction

We want to describe a system of fermionic fields ψ.



Introduction

We want to describe a system of fermionic fields ψ.

At low temperature we expect some kind of order.



Introduction

We want to describe a system of fermionic fields ψ.

At low temperature we expect some kind of order.

Order parameter is a bosonic field ϕ.
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Fermions or bosons?

Purely fermionic description (1-PI)

most convenient in symmetric regime
many channels can be followed
becomes difficult in ordered regime
infrared properties (critical phenomena) complicated

Also purely bosonic description is possible (2-PI)

has advantages in ordered regime
infared properties well described
technically more complicated
formalism is nonlocal (bilocal)

Partial bosonization combines advantages of both
approaches.
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Notation

Fermion field ψα

Abstract index α labels continuous and discrete degrees
of freedom.

For example: Matsubara frequency ωn, momentum ~q and
spin i

α = (ωn, ~q, i)

α differentiates also between particles ψ and holes ψ∗ (or
antiparticles ψ̄).
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Microscopic model

S =
1

2
ψα Pαβ ψβ +

1

4!
λαβγδ ψαψβψγψδ

Inverse propagator P

Fermion-fermion interaction λ

Examples: Hubbard model, BCS-model, NJL-model,...
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Hubbard-Stratonovich transformation
Add Gaussian functional integral over boson field ϕ

∫

Dϕe−
1

2
(ϕ−χQ−1)Q(ϕ−Q−1χ)

Operator χ quadratic in fermion field

χǫ = Hǫαβ ψαψβ.

Choose H and Q such that λ-term is cancelled

1

4!
λαβγδ +

1

2
(HQ−1H)αβγδ = 0.

Arrive at theory for fermions and bosons

S =
1

2
ψPψ +

1

2
ϕQϕ− ϕHψψ.
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Hubbard-Stratonovich II

Fermion interaction is expressed as boson exchange.

Need boson field for every channel!

Divergence in λ corresponds to order parameter 〈ϕ〉 6= 0.
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Rebosonization

Fermion coupling λ is regenerated by renormalization
flow.

Gies & Wetterich (2001): Use scale dependent boson
fields ϕk[ψ] to have λ = 0 on all scales.

Related work: Pawlowski (2007).

We will present an exact and simple one-loop flow
equation for this task.
(S. Floerchinger and C. Wetterich, arXiv:0905.0915)
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Nonlinear field transformation

Consider flow equation (Wetterich 1993)

∂kΓk[ψ, ϕ]
∣

∣

ϕ
=

1

2
STr

{

(Γ
(2)
k +Rk)

−1∂kRk

}

with k-dependent change of variables ϕ = ϕ[ϕ̄]

∂kΓk
∣

∣

ϕ̄
= ∂kΓk

∣

∣

ϕ
−

∫

q

δΓk
δϕ̄

∂kϕ̄
∣

∣

ϕ
.

∂kϕ̄ ∼ ψψ allows for “rebosonization”.

Γ
(2)
k and Rk transform as tensors of rank two.

Connection terms ∼ δ2ϕ

δϕ̄δϕ̄
destroy one-loop structure.

Γk[ϕ̄] := Γk[ϕ[ϕ̄]] has different properties than Γk[ϕ].
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Scale-dependent bosonization

Hubbard-Stratonovich transformation with k-dependent
Q (“boson propagator”) and H (“Yukawa interaction”).

Scale-dependent Schwinger functional

eWk[η,j] =

∫

Dψ̃Dϕ̃ e−Sk[ψ̃,ϕ̃]+ηψ̃+jϕ̃

with

Sk[ψ̃, ϕ̃] = Sψ[ψ̃] +
1

2
ψ̃(Rψ

k )ψ̃ +
1

2
ϕ̃(Q+R

ϕ
k )ϕ̃

+
1

2
(ψ̃ψ̃H)Q−1(Hψ̃ψ̃) − ϕ̃(Hψ̃ψ̃).

k-dependent are: Rk, H and Q.
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Exact flow equation

∂kΓk =
1

2
STr

{

(Γ
(2)
k +Rk)

−1
(

∂kRk −Rk(∂kQ
−1)Rk

)

}

−
1

2
Γ

(1)
k

(

∂kQ
−1

)

Γ
(1)
k + γk

One-loop term is supplemented by “tree” term.

Q−1 has entries in ϕ, ϕ-block, only.

Field-independent term γk can often be dropped.

∂kΓk
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Properties of exaxt flow equation

Scale dependence of H was choosen such that

∂kHǫαβ = (∂k lnQ)ǫρHραβ.

Indepently choosen ∂kQ and ∂kH = (∂kF )H are
equivalent to linear change in ϕ.

Generalization to other composite operators are possible.

For Rϕ
k = 0 formalism is close to purely fermionic flow.



Flowing bosonization

∂kPϕ∂kPϕ

∂kh

∂kλ



Flowing bosonization

∂kPϕ∂kPϕ

∂kh

∂kλ

∂kQ
−1 can be choosen such that ∂kλ = 0.



Flowing bosonization

∂kPϕ∂kPϕ

∂kh

∂kλ

∂kQ
−1 can be choosen such that ∂kλ = 0.

This gives corrections to ∂kh and ∂kPϕ.



Proof of flow equation
Schwinger functional

eWk[η,j] =

∫

Dψ̃Dϕ̃ e−Sk[ψ̃,ϕ̃]+ηψ̃+jϕ̃ (1)

with

Sk[ψ̃, ϕ̃] = Sψ[ψ̃] +
1

2
ψ̃R

ψ
k ψ̃ +

1

2
ϕ̃(Q+R

ϕ
k )ϕ̃

+
1

2
χQ−1χ− ϕ̃χ. (2)

Shift in field ϕ̃

eWk[η,j] =

∫

Dψ̃ e−Sψ [ψ̃]− 1

2
ψ̃R

ψ
k
ψ̃+ηψ̃

×e
1

2
(j+χ)(Q+Rϕ

k
)−1(j+χ)− 1

2
χQ−1χ

×

∫

Dϕ̃ e−
1

2
ϕ̃(Q+Rϕ

k
)ϕ̃. (3)



Equivalence of both equations yields

〈χǫ〉 = Qǫρϕρ − lǫ (4)

with the modified source lǫ = jǫ − (Rϕ
k )ǫσϕσ. Similarly

〈χǫχσ〉 = [(Q+R
ϕ
k )(δjδjWk)(Q+R

ϕ
k )]ǫσ

+(Qϕ− l)ǫ(Qϕ− l)σ − (Q+R
ϕ
k )ǫσ, (5)

and

〈ϕ̃ǫχσ〉 = 〈ϕ̃ǫϕ̃τ 〉(Q+R
ϕ
k )τσ − ϕǫjσ − δǫσ

= ϕǫ(Qϕ)σ + [(δjδjWk)(Q+R
ϕ
k )]ǫσ − ϕǫlσ − δǫσ. (6)



We now turn to the scale-dependence of Wk[η, j]

∂kWk = −
1

2
〈ψ̃(∂kR

ψ
k )ψ̃〉 −

1

2
〈ϕ̃(∂kR

ϕ
k + ∂kQ)ϕ̃〉

+
1

2
〈χ

(

∂kQ
−1

)

χ〉

−〈ϕ̃Q(∂kQ
−1)χ〉. (7)

Use now (2), (3), (4)

∂kWk = −
1

2
ψ(∂kR

ψ
k )ψ −

1

2
ϕ(∂kR

ϕ
k )ϕ

−
1

2
STr

{

(∂kR
ψ
k )(δηδηWk)

}

−
1

2
Tr

{ [

∂kR
ϕ
k −R

ϕ
k (∂kQ

−1)Rϕ
k

]

(δjδjWk)
}

+
1

2
l(∂kQ

−1)l +
1

2
Tr{∂kQ

−1(Q−R
ϕ
k )}. (8)



The average action is defined as the modified Legendre
transform

Γk[ψ, ϕ] = ηψ + jϕ−Wk[η, j]

−
1

2
ψR

ψ
kψ −

1

2
ϕR

ϕ
kϕ. (9)

As usual, one has

δ

δψα
Γk = ±ηα − (Rψ

k )αβψβ, (10)

and

δ

δϕǫ
Γk = jǫ − (Rϕ

k )ǫσϕσ = lǫ. (11)



This yields our central result

∂kΓk =
1

2
STr

{

(Γ
(2)
k +Rk)

−1
(

∂kRk −Rk(∂kQ
−1)Rk

)

}

−
1

2
Γ

(1)
k

(

∂kQ
−1

)

Γ
(1)
k + γk (12)

with

γk = −
1

2
Tr

{

(∂kQ
−1)(Q−Rk)

}

. (13)
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This allows an implementation of “flowing bosonization”.

Details can be found in arXiv:0905.0915.

Thank you for your attention!


