Loading...
 
Print

Quantum Field Theory



Many long-standing problems in fundamental physics require theoretical methods that can deal with strong interactions in a controlled manner. Prominent examples are the problem of confinemt and chiral symmetry breaking in Quantum Chromodynamics (the theory of the Strong Force), or condensate formation in fermionic particle systems.

We develop and apply new theoretical methods for facing the challenge posed by strongly interacting systems. We work with a variety of numerical as well as analytical tools such as lattice quantum field theory and functional renormalization methods. Our goal is to solve strong-coupling problems in particle physics and complex many-body systems.

Contact: Prof. Ammon, Prof. Gies, Prof. Wipf, PD Maas




Calendar


November 2014
Su Mo Tu We Th Fr Sa
26 27 28 29 30 31 01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 01 02 03 04 05 06