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Abstract

The N = 2 supersymmetric extension of the SCHRÖDINGER-
HAMILTONian with 1/r-potential in d dimension is constructed. The sys-
tem admits a supersymmetrized LAPLACE-RUNGE-LENZ vector which ex-
tends the rotational SO(d) symmetry to a hidden SO(d + 1) symmetry. It
is used to determine the discrete eigenvalues with their degeneracies and
the corresponding bound state wave functions.

1 Classical motion in Newton/Coulomb potential

For a closed system of two non-relativistic point masses interacting via a cen-
tral force the angular momentum

�
of the relative motion is conserved and the

motion is always in the plane perpendicular to
�

. If the force is derived from a
1/r-potential, there is an additional conserved quantity: the LAPLACE-RUNGE-
LENZ1 vector,

�
=

1

m
� × � − e2

r
� .

This vector is perpendicular to
�

and points in the direction of the semi-major
axis. For the hydrogen atom the corresponding Hermitian vector operator has
the form

�
=

1

2m
( � × � − � × � ) − e2

r
� (1)

with reduced mass m of the proton-electron system. By exploiting the existence
of this conserved vector operator, PAULI calculated the spectrum of the hydrogen

1A more suitable name for this constant of motion would be HERMANN-BERNOULLI-LAPLACE

vector, see [1].
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atom by purely algebraic means [2, 3]. He noticed that the angular momentum
�

together with the vector operator

�
=

√

−m
2H

�
, (2)

which is well-defined and Hermitian on bound states with negative energies,
generate a hidden SO(4) symmetry algebra,

[La, Lb] = iεabcLc ,
[La,Kb] = iεabcKc ,
[Ka,Kb] = iεabcLc , (3)

and that the HAMILTON-Operator can be expressed in terms of C(2) =
� 2 +

� 2,
one of the two second-order CASIMIR operators of this algebra, as follows

H = −me
4

2

1

C(2) + ~2
. (4)

One also notices that the second CASIMIR operator C̃(2) =
� · �

vanishes and
arrives at the bound state energies by purely group theoretical methods. The
existence of the conserved vector

�
also explains the accidental degeneracy of

the hydrogen spectrum.
We generalize the COULOMB-problem to d dimensions by keeping the 1/r-

potential. Distances are measured in units of the reduced COMPTON wavelength,
such that the SCHRÖDINGER-operator takes the form

H = p2 − η

r
, pa =

1

i
∂a , a = 1, . . . , d . (5)

η is twice the fine structure constant. Energies are measured in units of mc2/2.
The Hermitian generators Lab = xapb − xbpa of the rotation group satisfy

the familiar so(d) commutation relations

[Lab, Lcd] = i (δacLbd + δbdLac − δadLbc − δbcLad) . (6)

It is not very difficult to guess the generalization of the LAPLACE-RUNGE-LENZ

vector (1) in d dimensions [4],

Ca = Labpb + pbLab −
ηxa

r
. (7)

These operators commute with H in (5) and form a SO(d)-vector,

[Lab, Cc] = i(δacCb − δbcCa) . (8)

The commutator of Ca and Cb is proportional to the angular momentum,

[Ca, Cb] = −4iLabH . (9)
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Now one proceeds as in three dimensions and defines on the negative energy
subspace of L2( � d) the Hermitian operators

Ka =
1

2

Ca√
−H with [Ka,Kb] = iLab . (10)

The operators {Lab,Ka} form a closed symmetry algebra and can be combined
to form generators LAB of the orthogonal group1 SO(d+ 1),

LAB =

(

Lab Ka

−Kb 0

)

. (11)

They obey the commutation relations (6) with indices running from 1 to d+ 1.
One finds a relation similar to (4) by solving

CaCa = −4KaKaH = η2 +
(

2LabLab + (d− 1)2
)

H

for the Hamiltonian,

H = p2 − η

r
= − η2

(d− 1)2 + 4C(2)
. (12)

C(2) is the second-order CASIMIR operator of the dynamical symmetry group,

C(2) =
1

2
LABLAB =

1

2
LabLab +KaKa . (13)

It remains to find the admitted irreducible representations of SO(d+1). In three
dimensions they are fixed by the condition C̃(2) = 0 on the CASIMIR operator
not entering the relation (4). In d = 2n−1 and d = 2n dimensions there are
n CASIMIR operators of the dynamical symmetry group and we expect n − 1
conditions. The analysis in [5] lead to the following results:

• Only the completely symmetric representations of SO(d+1) are realized.

• As in three dimensions the energies, degeneracies and eigenfunctions are
determined by group-theoretic methods.

2 Susy Quantum Mechanics

The HILBERT-Space of a supersymmetric system is the sum of its bosonic and
fermionic subspaces, H = HB ⊕HF. Let A be a linear operator HF → HB. We
shall use a block notation such that the vectors in HB have upper and those in
HF lower components,

|ψ〉 =

(

|ψB〉
|ψF〉

)

.

1For scattering states (E > 0) a similar redefinition leads to generators of the Lorentz group
SO(d, 1). Here we are interested in bound states and will not further discuss this possibility.
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Then the nilpotent supercharge and its adjoint take the forms

Q =

(

0 A
0 0

)

, Q† =

(

0 0
A† 0

)

=⇒ {Q,Q} = 0. (14)

The block-diagonal super-HAMILTONian

H ≡ {Q,Q†} =

(

AA† 0
0 A†A

)

=

(

HB 0
0 HF

)

, (15)

commutes with the supercharge and the (fermion) number operator

N =

(

0 0
0 1

)

.

Bosonic states have N = 0 and fermionic states N = 1. The supercharge and its
adjoint decrease and increase this conserved number by one.

In most applications in quantum mechanics A is a first order differential
operator

A = i∂x + iW (x) (16)

and yields the isospectral partner-HAMILTONians

HB = p2 + VB , HF = p2 + VF, with VB/F = W 2 ±W ′. (17)

Such one-dimensional systems were introduced by NICOLAI and WITTEN some
time ago [6,7]. See the texts [8,9] for a discussion of such models and in partic-
ular their relation to isospectral deformations and integrable systems.

3 SQM in Higher Dimensions

Supersymmetric quantum mechanical systems also exist in higher dimensions
[7, 10]. The construction is motivated by the following rewriting of the super-
charge

Q = ψ ⊗A and Q† = ψ† ⊗A†

containing the fermionic operators

ψ =

(

0 1
0 0

)

and ψ† =

(

0 0
1 0

)

with anti-commutation relations

{ψ, ψ} = {ψ†, ψ†} = 0 and {ψ, ψ†} = � .

In [10] this construction has been generalized to d dimensions. Then one has d
fermionic annihilation operators ψk and d creation operators ψ†

k,

{ψk, ψ`} = {ψ†
k, ψ

†
`} = 0 and {ψk, ψ

†
`} = δk`, k, ` = 1, . . . , d. (18)
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For the supercharge one makes the ansatz

Q = i
∑

ψk (∂k +Wk( � )) .

It is nilpotent (i.e. Q2 = 0) if and only if ∂kW` −∂`Wk = 0 holds true. Locally
this integrability condition is equivalent to the existence of a potential χ(x) with
Wk = ∂kχ. Thus we are lead to the following nilpotent supercharge

Q = e−χQ0 e
χ with Q0 = i

∑

ψk∂k . (19)

It acts on elements of the HILBERT-space

H = L2( � d) ⊗ � 2d

,

which is graded by the ’fermion-number’ operator N =
∑

ψ†
aψa ,

H = H0 ⊕H1 ⊕ . . .⊕Hd, N
∣

∣

Hp
= p � . (20)

A state in Hp has the expansion

Ψ =
∑

fa1...ap
(x) |a1 . . . ap〉, |a1 . . . ap〉 = ψ†

a1
· · · ψ†

ap
|0〉 (21)

with antisymmetric fa1...ap
. Q decreases N by one and its adjoint increases it by

one. It follows that the super-HAMILTONian

H = {Q,Q†} = H0 ⊗ � 2d − 2
∑

ψ†
kψ` ∂k∂`χ

= Hd ⊗ � 2d + 2
∑

ψkψ
†
` ∂k∂`χ (22)

preserves the ’fermion-number’. The operators in the extreme sectors,

H0 ≡ H
∣

∣

H0

= −4 + (∇χ,∇χ) + 4χ
Hd ≡ H

∣

∣

Hd
= −4 + (∇χ,∇χ) −4χ. (23)

are ordinary SCHRÖDINGER-operators, whereas the restriction ofH to any other
sector is a matrix-SCHRÖDINGER-operator,

Hp ≡ H
∣

∣

Hp
: 2(d

p) × 2(d

p) − matrix.

Due to the nilpotency of Q and [Q,H ] = 0 one has a HODGE-type decomposi-
tion of the HILBERT-space [5],

H = QH⊕Q†H⊕ KerH . (24)

Actually, the graded HILBERT-space is a Q-complex of the following structure,

H0

Q†

Q
H1

Q†

Q
H2

Q†

Q
�������

Q†

Q
Hd
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Similarly as in the one-dimensional case one has a pairing of all H-eigenstates
with non-zero energy. Every excited state is degenerate and the eigenfunctions
are mapped into each other by Q and its adjoint. The situation is depicted in the
following figure,

E

H0

Q†

Q

H1

Q†

Q

H2

Q†

Q

H3
. . .

QH QH QHQ†H Q†H Q†H

pairing of states with E > 0

4 The supersymmetric H-Atom

We supersymmetrized the H-atom along these lines and showed that it admits su-
persymmetric generalizations of the angular momentum and LAPLACE-RUNGE-
LENZ vector [5]. As for the ordinary COULOMB problem the hidden SO(d+1)-
symmetry allows for a purely algebraic solution. Here we discuss the construc-
tion for the 3-dimensional system and sketch the generalization to arbitrary di-
mensions.

To construct the supersymmetrized H-atom in 3 dimensions we choose χ =
−λr in (19) and obtain the super-HAMILTONian [5]

H = (−4 + λ2) � 8 −
2λ

r
B, B = � − N + S†S, S = ˆ� ·ψ (25)

on the HILBERT-space

H = L2( � 3) × � 8 = H0 ⊕H1 ⊕H2 ⊕H3. (26)

We defined the triplet ψ containing the 3 annihilation operators ψ1, ψ2, ψ3.
States in H0 are annihilated by S and states in H3 by S†. With {S†, S} = � we
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find the following HAMILTON-operators in these extreme subspaces,

H0 = −4 + λ2 − 2λ

r
,

H3 = −4 + λ2 +
2λ

r
.

H0 describes the proton-electron and H3 the proton-positron system.
The conserved angular momentum contains a spin-type term,

�
=

�
+ � = � ∧ � − iψ† ∧ ψ. (27)

The operators � andψ are both vectors such that S andB in (25) commute with
this total angular momentum. To find the susy extension of the RUNGE-LENZ

vector is less simple. It reads [5]

�
= � ∧ � − � ∧ � − 2λ ˆ� B (28)

with
�

from (27) and B from (25). The properly normalized vector

�
=

1

2

�

√
λ2 −H

(29)

together with
�

form an SO(4) symmetry algebra on the subspace of bound
states for which H < λ2.

To solve for the spectrum we would like to find a relation similar to (4).
However, one soon realizes that there is no algebraic relation between the con-
served operators � ,N,

� 2,
� 2 and H . However, we can prove the equation

λ2C(2) =
� 2H +

( � 2 + (1 − N)2
)

QQ†

+
( � 2 + (2 − N)2

)

Q†Q , (30)

where C(2) is the second-order CASIMIR (4). This relation is sufficient to obtain
the energies since each of the three subspaces in the HODGE-decomposition
(24) is left invariant by H and thus we may diagonalize it on each subspace
separately. Since H |QH = QQ† and H |Q†H = Q†Q we can solve (30) for H
in both subspaces,

H
∣

∣

QH
= λ2 C(2)

(1 − N)2 + C(2)
,

H
∣

∣

Q†H
= λ2 C(2)

(2 − N)2 + C(2)
. (31)

States with zero energy are annihilated by both Q and Q†, and according to (30)
the second-order CASIMIR must vanish on these modes, such that

C(2)

∣

∣

KerH
= 0 .

We conclude that every supersymmetric ground state of H is an SO(4) singlet.
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In the figure below we have plotted the spectrum of the supersymmetric
H-atom in 3 dimensions. The bound states reside in the sectors with fermion
numbers 0 and 1. In the sectors with fermion numbers 2 and 3 there are only
scattering states. All bound states transform according to the symmetric rep-
resentations of SO(4). This is particular to 3 dimensions. The energies with
degeneracies and the wave functions for all bound states can be found in [5].

0

3

4

1

E/λ2

H0 H1 H2 H3

Q†

Q

realization of so(4) ⇒ all bound states

5 Higher dimensions

The super-HAMILTONian (22) with χ = −λr describes a supersymmetrized
COULOMB-problem in d dimensions. As in 3 dimensions it can be solved with
the help of a supersymmetrized angular momentum and RUNGE-LENZ vector
generating a dynamical symmetry SO(d+1). The supersymmetric extension of
the angular momenta reads

Jab = Lab + Sab with Sab =
1

i

(

ψ†
aψb − ψ†

bψa

)

. (32)

The supercharge, HAMILTONian and S = ˆ� · ψ are scalars with respect to the
rotations generated by the Jab. The supersymmetric extension of LAPLACE-
RUNGE-LENZ vector

Ca = Jabpb + pbJab − 2λx̂aB (33)

and the super-HAMILTONian

H = −4 + λ2 − 2λ

r
B (34)

both contain the scalar operator

B =
1

2
(d− 1) � − N + S†S. (35)
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Again the FOCK-BARGMANN symmetry group SO(d+ 1) is generated by

LAB =

(

Lab Ka

−Kb 0

)

, Ka =
Ca

√

4(λ2 −H)
,

and the second-order CASIMIR

C(2) =
1

2
JABJAB , (36)

together with λ, d,N enter the formulas for

H
∣

∣

QH
and H

∣

∣

Q†H
.

The analysis parallels the one in 3 dimensions. To find the allowed representa-
tions one uses the branching-rules from the dynamical symmetry SO(d + 1) to
the rotational symmetry SO(d) generated by the Jab. Only those representation
for which the YOUNG-diagram has exactly one row and exactly one column give
rise to normalizable states. The construction of the bound state wave function
uses the realization of the CARTAN- and step operators Hα, Eα as differential
operators. This way one finds the highest weight state in each representation [5].

6 Conclusions

We have succeeded in supersymmetrizing the celebrated construction of PAULI,
FOCK and BARGMANN. For the COULOMB-problem with extended N = 2
supersymmetry we have found the conserved angular momentum and conserved
RUNGE-LENZ vector. Together they generate the FOCK-BARGMANN symmetry
group SO(d + 1). A general relation of the type

QQ† = f1
(

λ, d,N, C(2)

)

and Q†Q = f2
(

λ, d,N, C(2)

)

(37)

has been derived which allows for an algebraic treatment of the supersym-
metrized hydrogen atom in d dimensions. The energies depend on the fine
structure constant, the dimension of space, the fermion number and the second
order CASIMIR-operator. The bound states transform according to particular ir-
reducible SO(d + 1)-representations. The allowed representations, the explicit
form of the bound states and their energies have been determined.

We have not discussed the scattering problem. It is well-known how to ex-
tend supersymmetric methods from bound to scattering states in supersymmet-
ric quantum mechanical systems [12]. Thus one may expect that the construc-
tion generalizes to the scattering problem, for which the non-compact dynamical
symmetry group will be SO(d, 1).

ITZYKSON and BANDER [13] distinguished between the infinitesimal and
the global method to solve the COULOMB problem. The former is based on
the LAPLACE-RUNGE-LENZ vector and is the method used here. In the second
method one performs a stereographic projection of the d-dimensional momen-
tum space to the unit sphere in d+1 dimensions which in turn implies a SO(d+1)
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symmetry group. It would be interesting to perform a similar global construction
for the supersymmetrized systems.

Every multiplet of the dynamical symmetry group appears several times [5]
and there is a new ’accidental’ degeneracy: in higher dimensions some eigenval-
ues of the Hamiltonian appear in many different particle-number sectors. It may
very well be, that the algebraic structures discussed in the present work have
a more natural setting in the language of superalgebras or the SO(d, 2)-setting
in [4]. We have not investigated this questions.

There exist earlier results on the supersymmetry of both the non-relativistic
and relativistic hydrogen atom. In [14] the RUNGE-LENZ vector or its rel-
ativistic generalization, the JOHNSON-LIPPMANN operator, enter the expres-
sions for the supercharges belonging to the ordinary SCHRÖDINGER- or DIRAC-
operators with 1/r potential. This should be contrasted with the present work,
where the COULOMB-problem is only a particular channel of a manifestly su-
persymmetric matrix-SCHRÖDINGER operator. Our HAMILTONians incorporate
both the proton-electron and the proton-positron systems as particular subsec-
tors.

The supercharge (19) and super-HAMILTONian (22) describe a wide class
of supersymmetric systems, ranging from the supersymmetric oscillator in d
dimensions to lattice WESS-ZUMINO-models with N = 1 or N = 2 super-
symmetries in 2 dimensions [11]. In passing we mention, that the supercharge
in d dimension is actually a dimensionally reduced DIRAC operator in 2d di-
mensions. During the reduction process the ABELian gauge potential Aµ in 2d
dimensions transforms into the potential χ in (19), see [11].

More generally, one may ask for which gauge- and gravitational background
field the DIRAC-operator admits an extended supersymmetry. This question has
been answered in full generality in [15]. For example, on a 4-dimensional hyper-
KÄHLER space with self-dual gauge field the DIRAC-operator admits an N = 4
supersymmetry. The extended supersymmetry may be used to construct possi-
ble zero-modes of the DIRAC-operator. Earlier results on the supersymmetries
of DIRAC-type operators can be found in [16], for example. COMTET and HOR-
VATHY investigated the solutions of the DIRAC-equation in the hyper-KÄHLER

TAUB-NUT gravitational instanton [17]. The spin 0 case can be solved with
the help of a KEPLER-type dynamical symmetry [18] and the fermion case by
relating it to the spin 0 problem with the help of supersymmetry.
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