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A general class of conformal Toda theories associated with integral grad-
ings of the simple Lie algebras is investigated. These generalized Toda theories
are obtained by reducing the Wess-Zumino-Novikov-Witten (WZNW) theory
by first class constraints, and thus they inherite extended conformal symme-
try algebras, generalized W-algebras, and current dependent Kac-Moody (KM)
symmetries from the WZNW theory, which are analysed in detail in a non-
degenerate case. We uncover an sl(2) structure underlying the generalized
W-algebras, which allows for identifying the primary fields, and give a sim-
ple algorithm for implementing the W-symmetries by current dependent KM
transformations, which can be used to compute the action of the W-algebra
on any quantity. We establish how the Lax pair of Toda theory arises in the
WZNW framework, and show that a recent result of Mansfield and Spence,
which interprets the WW-symmetry of the Toda theory by means of non-Abelian
form preserving gauge transformations of the Lax pair, arises immediately as a

consequence of the KM interpretation.
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I. Introduction

Conformally invariant and affine Toda type systems are important both
in the theory of integrable non-linear equations [1-7] and in two-dimensional
conformal field theory [8-17]. One of the key features of the conformal Toda
theories is that they possess [3, 4, 10, 11, 13-17] interesting non-linear symmetry
algebras, which are polynomial extensions of the Virasoro algebra by chiral
conformal primary fields. The theory of such extended conformal algebras,
called W-algebras following A. B. Zamolodchikov who initiated their study in
[18], is of great current interest, see [19] for a review, and, for example, refs.
[20-23].

The traditional approach to Toda systems is the formalism of the Lax pair
[1-8]. On the other hand, it has become clear recently [12-16, 24] that Toda
theories are really nothing but reduced Wess-Zumino-Novikov-Witten (WZNW)

theories.

In this paper we shall investigate a certain class of generalized conformal
Toda theories, given by equation (2.2), which is associated with the integral
gradings of the simple Lie algebras, see refs. [3, 4, 14-16] for earlier work on
generalized Toda theories. We shall treat these theories by using the WZNW
framework, which in our opinion is the natural setting for conformal Toda the-
ories. In fact, the results of [13] demonstrate that the WZNW setting amounts
to a linearization (in the sense that WZNW is a free theory) of the Toda theory
which at the same time resolves the apparent singularities. Moreover, it is also
clear from [13] that the WZNW setting is especially well suited for describing

the W-algebra symmetries of the conformal Toda theories.

It appears to us that the relationship between the WZNW and the Lax
pair formalisms of Toda theory has not yet been properly elucidated, and the
first purpose of the present paper is to clarify exactly this point. The second
purpose of the paper is to make use of this relationship and the advantages
of the WZNW approach for obtaining a description of the symmetries of the
conformal Toda systems in both settings. Our results and methods using the
WZNW formulation complement and generalize the ones given in [13], where
the special case of the standard Toda theory, given by equation (2.5), was

considered.

The outline of the paper is as follows. In Section II. we show how the
Lax pair formalism arises in a natural way in the WZNW framework. We then

analyse the W-algebra of the Toda models in Section III. From this section
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on, we consider a certain non-degenerate case, defined by equation (3.3). The
non-degeneracy condition ensures the existence of the Drinfeld-Sokolov gauges
[5, 13], which are very convenient for analysing the W-algebra. An important
result we obtain is that, in this non-degenerate case, the W-algebra of the
generalized Toda theory is isomorphic to one from the list of WW-algebras which
can be associated with the non-equivalent embeddings of sl(2) into the simple
Lie algebras [15, 25].

Section IV. is devoted to describing all the chiral, current dependent, lo-
cal Kac-Moody (KM) type symmetry transformations of the WZNW theory
surviving the reduction to Toda theory, and establishing an algorithm for im-
plementing the W-transformations by current dependent KM transformations.
We also make clear that the VW-transformations are only a subset of the former
transformations, namely the canonical ones.

In Section V. we relate our KM interpretation of the WW-symmetry to the
one given recently in [17], where the authors interprete the YW-symmetry of the
standard Toda theory in terms of the ‘non-Abelian form preserving gauge trans-
formations’ of the Lax pair. We show that this interpretation arises immediately
as a translation of the KM interpretation. This way we generalize the result of
[17] from the standard case to our general situation, and also obtain a certain
clarification. Namely, our results provide a general method for identifying the
W-transformations among the general ‘form preserving gauge transformations’
of the Lax pair.

We end the paper by giving our conclusions and commenting on some open

problems.

II. WZNW versus Lax pair

First we define the Toda system we are going to investigate. To this we
consider a real, maximally non-compact simple Lie algebra G together with
an integral grading defined by some element H of a splitting (diagonalizable)

Cartan subalgebra H. This means that we have

N
G=G;+Go+G_, Ge = Gin, (2.1)
n=1

where Gy and G4, are eigenspaces of ady with eigenvalues 0 and +n, respec-

tively. The generalized Toda equation we consider is an integrable non-linear
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equation for a field gy taking its values in Gy, the little group of H in the

connected real Lie group G' with Lie algebra G. It is given as

0_ (049095 ") = [M_, goM1gy '], (2.2)

where M4 are some arbitrary but non-zero generators chosen from Gy,. It is

easy to check that (2.2) is equivalent to the zero curvature condition
0y —Ap,0-—A_]=0 (2.3)
of the following ‘Lax potential’:
Ap =0490-95 +M_ A_=—goM,g;". (2.4)

A particular case of the above Toda system is obtained by considering an integral
embedding of the Lie algebra s/(2) into G and taking the standard generators of
this sl(2) subalgebra for H and M. This case has been investigated by using
the Lax pair formalism in [3, 4], and by using the WZNW formulation in [15,
16]. It is well known that, by substituting go = exp[), viH;], (2.2) reduces to
the standard Toda equation

l
0+0_p; + exp[>_ Kijpj] =0 (2.5)
j=1
in the case of the so called principal sl(2) subalgebra, which is characterized
[26] by the condition that
[H , E,| = FE, (2.6)

for any root « from some system of simple positive roots of G. Note that in
equation (2.5) Kj;; is the Cartan matrix of .

Another, more general, subclass of Toda systems was investigated by using
the WZNW picture in [14]. This class is obtained by assuming that (2.6) holds
for a subset of the simple roots and that H commutes with the step operators
associated to the rest of the simple roots.

Now we recall how the reduction of the WZNW theory, considered for the
group G, to the Toda theory (2.2) comes about [12, 14], by using a method which
brings out clearly the connection between the WZNW and Lax pair formalisms.

The left and right KM currents, J and .J, are given* as

J=049-97", J=—-g to_g, (2.7)
* The KM level k can be recovered by sustituting 04+ — k04 , kK = —ﬁ,

everywhere below. We have chosen x = 1 to simplify the notation.
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and the field equation can be written equivalently as

0o_J=0 or 8+J =0. (28)

We identify the phase space of the WZNW theory with the space of solutions,

given by the formula

g(a®,27) =gr(z") - gr(z) . (2.9)

To describe the constraints of the WZNW — Toda reduction we shall use
the projection operators m4 o projecting G onto G4 o, respectively, and the con-
nected subgroups G4+ of GG obtained by exponentiating G4. The constraints are
then given by

r_(J)=M_  and 7w (J)=-M, . (2.10)

The gauge group generated by this first class system of constraints is the direct
product of the left loop-group of G4 and the right loop-group of G_. Of course,
this gauge group acts on the WZNW phase space according to

g(a®,a7) — A(z) - g(2*,27) - C7H(z7) (2.11)

for any A(zt) € G4, C(z7) € G_, and the constraint surface (2.10) is left
invariant under this action. To see what is the gauge invariant content of the
constrained WZNW theory we consider the ‘sector’ where the generalized Gauss

decomposition

+ + +

g(.ﬁ? ,LE‘_) - g+(£l? ,LE‘_) : gO($+7$_) ' g_(.ﬁ? 733_) ) g+.,0 S G:l:,O (212)

is valid. By substituting this Gauss decomposition into (2.7) it is easy to see
that (2.10) is equivalent to

95 0-gy =goMygyt, and  dyg_ -9 =gy, M_go,  (2.13)

that is the constrained currents can be written as

J=9+[0+90- 95" + M_Jg7" + 0194 - 93" (2.14a)

and
J=—9"" g5 0-go+ Mylg- —g='0_g_ . (2.14b)

We see from (2.13) that the Gy valued gauge invariant field go represents the
full gauge invariant content of the constrained WZNW field g, since g4 can be

determined from (2.13) in terms of gg, up to gauge transformations

g+($+7$_) — A($+)-g+($+,$_), g—( +7$_) — g_(l'+,l'_)'0_1($_) :
(2.15)



To obtain the gauge invariant dynamics, we have to project the WZNW field
equation to the reduced theory. To this first we observe the obvious fact that

the WZNW field equation is a zero curvature condition, namely
[0y —J,0_—-0]=0. (2.16)

Conjugating this equation by the field g7 (zF,27) in (2.12) and using the
constraints expressed by (2.13) and (2.14), we see that (2.16) is equivalent to
the zero curvature condition of the following gauge invariant Lax pair:

Ay =97 Jgy + 0497 91 = 049095 +M_, 2.17)

A_=0_g7' gy = —goMyg; ",

which is nothing but the usual Lax pair of Toda theory (2.4). Plainly, the
Lax potential A4 is a pure gauge for solutions of the Toda field equation,
Ai = 04§+ g ! for some G valued field §. In terms of the WZNW variables we

have

tam) = gJ_rl(er,x_) ~gr(zt). (2.18)

9(
Naturally, ¢ is gauge invariant. For completeness we note that the above anal-
ysis could have been carried out by starting with the second equation in (2.8),
the result would be an alternative form of the Toda Lax pair.

In summary, we have shown that the usual Lax pair of Toda theory is
obtained by conjugation by a non-chiral, G';-valued field from the trivial, chiral
Lax ‘pair’ of the constrained WZNW theory. The Lax pair formalism provides
a very convenient tool for investigating the Toda theory [1, 3]. Nevertheless,
the WZNW formulation of Toda theory is the more fundamental one. The basic
reason is that the Gauss decomposition (2.12) is valid only locally on G. This
leads to the appearance of apparently singular but physically regular solutions
in the traditional setting of Toda theory [12, 13]. Another reason is that in
the WZNW framework the full power of the KM algebra becomes immediately
available for describing the Toda theory.



III. The W-algebra

The fundamental ingredient of the WZNW model is its KM symmetry,
therefore it is natural to ask what part of this symmetry survives the reduction
leading to Toda theory. This way we are led to searching for those chiral
quantities formed out of the KM currents which are constant along the gauge
orbits on the constraint surface (2.10). On general grounds, locally there should
exist dimg — 2dimG, = dim§, independent gauge invariant chiral quantities.
The special feature of our system is that here one can find a complete set of
gauge invariant objects which are globally well defined, finite polynomials in
the currents and their derivatives. The gauge invariant differential polynomials
form a closed algebra under the KM Poisson bracket. This polynomial Poisson
bracket algebra can be called a classical WW-algebra since it contains the Virasoro

subalgebra generated by the gauge invariant polynomial
1
Ly = §Tr(J2) —Tr(H-04J), (3.1)

which can be used to define a conformal automorphism of the Toda system
(2.2).

Concentrating on the left moving sector, now we analyse the reduced chiral
algebra. The gauge transformations act on the constrained current, .J, according

to
J—Adj, (J)=AJA T +0,A- A7, Axt) e Gy, (3.2)

and we are looking for differential polynomials W (.J) invariant under this ac-
tion. The existence of a complete set of such gauge invariant quantities can be
deduced from the existence of the so called Drinfeld-Sokolov (DS) gauges [5,

13]. The existence of the DS gauges is ensured by the non-degeneracy condition
Ker(adpy ) NGy = {0}, (3.3)

which we assume to be satisfied from now on.

One can always choose a system of simple roots in such a way that the
corresponding step operators have non-negative integral grades. If in this basis
there occurs a simple root § such that [H, Eg] = ngFEg with ng > 2 then
a non-degenerate M_ cannot exist. In fact, it is easily seen that in this case
[Eg, G_1] = 0. On the other hand, we conjecture that if the grades of the
step operators corresponding to some system of simple roots are all from the

set {0, 1} then there exists at least one non-degenerate M_. This was true in
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all the examples we considered so far [14], and, moreover, in these examples
the non-degenerate M_ was found to be unique up to conjugation by the little
group of H.

The construction of the DS gauges proceeds as follows. First we choose a

direct sum decomposition
g,:Iz-i—Vz for iZO,l,...,N, (34)

where

L = [M_, Gisi] (3.5)

and V; is some complementary subspace. Note that d; = dim (V;) can be zero

for some 7, and Zi\;o d; = dim(Gp). By considering the direct sums

N N
I=Y Ti=[M_,Gy, V=)V, (3.6)
=0 1=0
we have
G=G_+I+V. (3.7)

Thus an arbitrary KM current J can be written as
J=m_(J) +mz(J) +mv(J), (3.8)

where m_, w7 and 7y are the projection operators corresponding to (3.7). We
define the Drinfeld-Sokolov gauge corresponding to the subspace V by supple-

menting the first class constraints 7_(J) = M_ with the gauge condition
nz(J)=0. (3.9)

One has to investigate whether the general constrained current
N
J=M_+Y_Ji, Ji€G (3.10)
i=0
can be brought to the DS form
N
IS =M_+> JPs . IS ey, (3.11)
i=0

by a gauge transformation. To answer this question one inserts the above

expressions and
A=¢e" .. ... ax(zT) € Gy , k=1,2,...,N (3.12)
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into the equation

JPS = Adj, (J) (3.13)

and considers this equation grade by grade, starting from grade 0, in terms
of the decomposition (3.4). At every grade one tries to gauge away the Z;
component of J by choosing a;+1 appropriately. One sees that this is indeed
possible as a consequence of the nondegeneracy condition (3.3), which implies
that adys_ maps G;41 onto Z; in a one-to-one manner, for any ¢ > 0. Moreover,
one also sees from (3.13) that the components of the gauge representative JP5
and those of the ay are uniquely determined differential polynomials in terms of
the components of J. This property of the DS gauges guarantees the polynomial
character of the reduced chiral algebra.

Indeed, let us introduce some basis F; ,,, in V; and write the unique inter-
section point of the DS gauge section with the gauge orbit passing through J
as

Adjagyy (J) =M_+Y Wi (J)Fyp, . (3.14)

i,n;

It immediately follows from the above that the W#%"i(.J) are gauge invariant
differential polynomials, which can be used as coordinates in the chiral sector
of the reduced WZNW theory. In particular, the W%"i(.J) corresponding to
a DS gauge in the above manner always form a basis of the W-algebra. Note
that, of course, any unique gauge fixing can be used to define gauge invariant
quantities, but they are in general not polynomial, not even local in J.

Plainly, a differential polynomial W (J) reduces to a differential polynomial
of the components of the gauge fixed current in an arbitrary gauge defined by
putting a linear gauge fixing condition on the components of J. The Poisson
brackets of the W’s can then be computed in that gauge by using the Dirac
brackets of the current components surviving the gauge fixing.

From this point of view, the main advantage of the DS gauge is that in this

gauge the W™ become linear functions of the current. In fact, writing

() =Y U™ Fp, | (3.15)
we have
U™ g = W™ g - (3.16)

We call the current components U%™ DS currents. Their Dirac bracket algebra,

represents the basic Poisson brackets in the DS gauge. As a consequence of
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(3.16) and the gauge invariance of the W*™i the W-algebra can be interpreted
as the Dirac bracket algebra of the DS currents:

{Ui,ni : Uk,nk}*u)s — {Wz,m , Wk,nk}|DS . (317)

We shall use this interpretation to show that our W-algebra is isomorphic to
one from the set of VW-algebras associated to the inequivalent embeddings of
sl(2) into the simple Lie algebras [15, 25].

Let (I ,Iy,1;) be the standard generators of an sl(2) subalgebra, S, of
G. One can put a set of second class constraints on the KM phase space by

requiring the constrained current to be of the form
JS(x) =1_ +j%(z), 7°(z) € Ker (adr, ) , (3.18)

that is j°(z) is a linear combination of the highest weight states of S in the
adjoint representation of G. One can prove (see [15, 25]) that the components
of 5 (z) form a W-algebra, denoted as Wg, under Dirac bracket. The canonical
Virasoro subalgebra, is generated by the I -component of 5. The components
corresponding to the other highest weight states in Ker (ady, ) are conformal
primary fields with respect to this Virasoro algebra, their conformal weight is
(14 1), where [ is the sl(2) spin. This construction is motivated by our earlier
result [13] that in the usual Toda theory one finds the primary fields by going
to the highest weight DS gauge of the principal sl(2) subalgebra of G.

By the method described previously, we constructed a VW-algebra by start-
ing with the data (H, M_), where H is an integral grading operator of G and
M_ is a non-degenerate generator of grade —1. On the other hand, we have

the following mathematical result.

Lemma: Let G = Gy + 22[21 G4r be the decomposition of G defined by the
integral grading operator H, and let M_ be an element of G_;, which is non-
degenerate with respect to this grading in the sense of (3.3). Then there exists
an sl(2) subalgebra S of G with standard generators (I_, Iy, I;) satisfying

I_=M_ , I() S gO ) I_|_ S g+1 . (319)

The generator I here is always non-degenerate, that is Ker (adz, )NG_ = {0}.

The conjugacy class of the sl(2) subalgebra depends only on the conjugacy class
of M_ in G.

This result is an easy consequence of some powerful theorems by Morozov,

Jacobson and Kostant on s/(2) embeddings [27], as explained in detail in [25].

10



It follows from the lemma that we can construct a highest weight DS gauge by

choosing the complement of Z; in (3.4) according to
V; = G; N Ker (ad[+) . (320)

Let us remember that every DS gauge defines a basis of the W-algebra, and
that by using this basis the VW-algebra can be identified with the Dirac bracket
algebra of the DS currents. This fact and the existence of the highest weight
gauge imply that our W-algebra is isomorphic to Wg with S provided by the
lemma. We also see that the equivalence class of the W-algebra depends only
on the conjugacy class of the nilpotent element M_ in G.

The Virasoro generator associated to the I,-component of the highest
weight gauge can be identified with the gauge invariant differential polynomial

L, = %Tr(Jz) —Tr(ly-04J) . (3.21)

0
The generators of the W-algebra corresponding to the other highest weight
components are primary fields with respect to the conformal action generated
by this Virasoro density. It should be noted that the spectrum of I, and thus
the spectrum of conformal weights, is in general half-integral. We also remark
that in general there is no basis of the W-algebra consisting of the Virasoro
density Ly in (3.1) and primary fields with respect to the conformal action
generated by Ly [14].

Besides the highest weight gauge one has another particularly important
gauge, namely the ‘diagonal gauge’ for which the gauge fixed current is given

as
JUaE = M+ gy, jo € Go - (3.22)

The advantage of this gauge is that the Dirac brackets of the components of
Jo coincide with their original Poisson brackets, given by the Gy KM algebra.
We denote the differential polynomial representing an element, W (.J), of the
Wh-algebra in the diagonal gauge as Wy, Wy (jo) = W (J428), In the case of the
usual Toda theory Gy is the Cartan subalgebra and Wy is the Miura transform
of W.

In the WZNW framework, we identified the left moving chiral algebra of
the Toda system as the algebra of gauge invariant differential polynomials in
the current J. On the other hand, in the ‘Gauss decomposable sector’ of the
constrained WZNW theory a complete set of gauge invariant quantities is pro-

vided by the Toda field go. In particular, J can be expressed in terms of gy up
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to gauge transformations. It follows that for any W (.J) there exists a unique

function Wroga(go) such that
Wiroda(g90) = W(J) . (3.23)

To find the explicit form of the function Wryqa let us first point out that, by
construction, W (.J) is a differential polynomial whose form is invariant under

any change of variables of the form
J — Adj,(J), aeGy . (3.24)

The point is that here a can depend on the dynamical variables in an arbitrary
way and is not even restricted to be chiral. (Of course, (3.24) then does not
necessarily represent a gauge transformation in the sense of (3.2).) Equation
(2.17) tells us that J and the Lax potential A are related by a transformation
of the form (3.24), with a = g;1($+, x~). Therefore we see that W4, depends
on go only through A, and that Wroga( AL ) is obtained by simply substituting
A for the argument of the differential polynomial W. In other words, taking

also into account that the form of A, is the same as that of J42& we have

Wroda(g0) = W(AL) = Wo(jo — 0490 95 ) - (3.25)

Thus the chiral W’s depend on the non-chiral ‘Toda current’ d4go - g, Lin the
same way as on the chiral variable j5. We note that in their Lax pair approach
to Toda theory Leznov and Savaliev [3, 4] constructed the conserved currents

by directly solving the ‘characteristic equation’
8—WToda(90) =0 (3.26)

for Wroda. The above arguments, essentially due to Palla [28] who observed
(3.25) in the case of the usual Toda theory, provide the translation between the
Lax pair [4, 11, 17] and the constrained KM descriptions of the W-algebra of
the Toda system (2.2), for non-degenerate M.
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IV. Local symmetry transformations of KM type and VW-transformations

In this section we set up a scheme for describing all the local KM type
symmetry transformations of the WZNW theory surviving the reduction to
Toda theory. In particular, we shall give a natural generalization of the results
of [13] about the KM implementation of the W-symmetry.

In the WZNW theory, we call a transformation of the form

okg=K-g (4.1)

a (left, current dependent, local) KM transformation if the G-valued function
K is a differential polynomial in the components of J and their derivatives.
(For simplicity, we shall often refer to these transformations simply as KM
transformations. This is an abuse of terminology since the standard KM trans-
formations are current independent.) The KM transformations are symmetries,
i.e. they act on the space of solutions of the theory. Their action on the left

moving field gz (z) and on the current J(z) is given as
6K9L:K(J)'9L (42)

and
5KJ:DJK:(9+K+[K,J] . (43)

A KM type symmetry is an infinitesimal canonical transformation if and only

if it can be written as

5 2T
K = g , Q :/0 det q(J, J',...), (4.4)

where ¢ is some differential polynomial in the components of J, possibly de-
pending on some test functions too. Indeed, as follows easily from the form of
the KM Poisson bracket, we have dg = dx for K in (4.4), where, by definition,
dg acts on any quantity via Poisson bracket, ég(-) = —{@, - }.

We are looking for those KM transformations which preserve the constraint
surface and project to transformations on the space of gauge orbits in a well
defined way. Taking into account the form of the constrained current, denoted

from now on as J¢,
Jo=M_+j, i €Go+Gy), (4.5)
the first condition is equivalent to
m_(0gJ¢) =0. (4.6)
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The second condition requires dx to be invariant under gauge transformations,
up to infinitesimal gauge transformations, which projects to zero when going to
the space of gauge orbits. To see the meaning of this condition, let us observe
that under a gauge transformation, A(z) € G,, K transforms according to
the rule

K — K* | KAJ) = A-K(Adj,-.(J%))-A71, (4.7)

since dg(ge) is a vector field on the constraint surface. Thus 0 (se) projects to
a well defined vector field on the space of gauge orbits if and only if

<o KA —K)=0. (4.8)

Here we introduced the notation m<( for (7_ + ), operating according to the
decomposition (2.1).

Combining our previous equations, we conclude that the ‘residual’ KM
type symmetries, i.e. the ones surviving the reduction, can be determined as

the local solutions K (J€) of the following two conditions:
T (04K +[K,M_]+ K, j])=0, (4.9)
and
reo(K(J9) = meo(A- K(Adj 4 (J9) - A7), VA@*) € Gy . (4.10)

It is easy to see that K solves these equations if and only if its ‘lower triangular
part’ m<o(K) does, and that K and m<((K) give rise to the same transformation
on the space of gauge orbits. For this reason, without loss of generality, it is
enough to consider those solutions which are lower triangular, 7 (K) = 0, for
which (4.10) becomes

K(J¢) =m<o(A- K(Adj 41 (J9)) - A7), VA(zT) e G, . (4.11)

The canonical transformations generated by the elements of the W-algebra
are implemented by those residual current dependent KM transformations
which are given by means of equation (4.4), where ¢ is some extension of a
gauge invariant differential polynomial from the constraint surface to the KM
phase space. Note that if one takes the trivial extension for which ¢ depends
only on 7>¢(J) then K is lower triangular. It should be noted that not every
residual KM transformation is a WW-transformation, for the same reason that

not every current dependent KM transformation is canonical in WZNW theory.

14



Namely, a current dependent KM transformation is canonical in WZNW theory
provided K can be written as a gradient, eq. (4.4).

Every residual KM transformation K induces a transformation on the space
of gauge orbits. Representing the orbits by a gauge section, the induced trans-
formations become gauge preserving KM transformations. From this point of
view, as we shall see below, the advantage of the DS gauge is that there is
a one-to-one correspondence between local KM transformations preserving the
DS gauge and local KM transformations preserving the constraint surface and
satisfying (4.11). Moreover, we shall give an effective algorithm which allows for
finding all the KM transformations preserving the DS gauge, and for identifying
the subset of induced W-transformations.

In some fixed DS gauge, a gauge preserving KM transformation Kpg is a

local solution of the equation
0JP3 = 0, Kps + [Kps, M_]+ [Kps, j°5] . (4.12)

Here the condition is that this variation preserves the form of JPS = M_ + jP5,
that is one must have 6JP5 € V, where V is the complementary space in (3.7)
defining the DS gauge in question. Any residual KM transformation K (J°)

gives rise to a gauge preserving variation defined by
Kps(JP%) = K(JP5) + k(JP%) , keg,, (4.13)

where £ is a uniquely determined local infinitesimal gauge transformation com-
pensating for the fact that dx does not necessarily preserve the DS gauge. Con-
versely, any differential polynomial solution of (4.12) can be uniquely extended
to a differential polynomial K (J¢) defining a residual KM transformation on
the full constraint surface. To this it is enough to take (4.13) as the definition
of K(JPS) and then use (4.11).

We note that, of course, there is a natural one-to-one relationship between
gauge preserving KM transformations and solutions of (4.9), (4.11) for any
unique gauge fixing. The special feature of the DS gauge is that K (J¢) is local
in J¢ if and only if the corresponding Kps(JP®) is local in JP5. This follows
from (4.11) and (4.13) and the fact that J¢ can be brought to the DS gauge by
a gauge transformation which is local in J°.

Next we give a technical result about equations (4.9) and (4.12), which
plays a crucial role in our analysis. These linear equations determine the allowed
set of KM transformations K (J¢) and Kps(JP®), which define form preserving

variations of J¢ and JPS, respectively. Here we shall establish the structure of
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their general solution. We start by observing that the non-degeneracy condition

(3.3) is equivalent to the fact that the map
ady G, — G_; 1 , 1=0,1,....,.N, (414)

is always onto. This is easily proven by using the invariance of the Cartan-
Killing form and the fact that under this scalar product the dual space to G;
is G_;. Thus, by using the non-degeneracy assumption, we can choose a direct

sum decomposition
G_i=P_i+2_;, 1=0,1,...,N, (4.15)

in such a way that ady;  maps Z_; onto G_;_1 in a one-to-one manner. For
example, a possible, in some sense canonical, choice is to take P = Zi\io P_; to
be Ker(ady,_ ), and Z = Zi\io Z_; to be some complement to P in (G_ + Gp).
We remark that one always has Z_y = {0} for the lowest grade —N. It
turns out to be useful to decompose any lower triangular solution of (4.9) and,

respectively, any solution of (4.12) in the following manner:
K(J%) =p(J°) + 2(J°) peEP, z€Z, (4.16)
and
Kps(JP%) = p(JP5) 4+ 2(JP5) +k(JPS),  peP, z2€Z, keGy. (417)

Substituting (4.16) into (4.9), one can prove that the components of p(J¢) can
be arbitrarily given and then the components of z are uniquely determined in
terms of p and J¢ by this equation. Moreover, one sees by inspection that
the components of z are differential polynomials in J¢ and linear differential
polynomials in the components of p. Similarly, equation (4.12) determines z and
k as unique differential polynomaials linear in the arbitrarily given components
of p and in general non-linear in JPS.

To prove that the general solutions of (4.9) and (4.12) are parametrized
by arbitrary P-valued functions in the above manner one has to consider these
equations grade by grade, starting from the lowest grade, and at every grade
use the non-degeneracy condition and the decompositions (4.15), and also the
decomposition (3.4) when considering (4.12). The crucial property of these de-
compositions to be used in this analysis is that ada,_ maps Z_; onto G_;_1
and G; 11 onto Z; in a one-to-one manner, for any ¢ = 0,1,..., N. The iterative
procedure of solving (4.9) and (4.12) grade by grade provides one with an algo-
rithm for computing K and Kpg in terms of the parameters p(J¢) and p(JP%).
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This algorithm is very convenient, e.g. since one obtains 6 J¢ (resp. 6, JP5)
essentially by means of the same computation which produces K (resp. Kpg).

A particular consequence of the above result is that K (J¢) and Kpg(JP%)
are local functions if and only if the parameter functions p(J¢) and p(JP%)
are local. Equation (4.11) imposes a further condition on p(J¢) which is hard
to handle practically. On the other hand, any local p(JP%) defines a gauge
preserving KM transformation implementing a residual KM symmetry. In con-
clusion, we see that the set of residual, local, current dependent KM symmetry
transformations is parametrized, in a one-to-one manner, by dim(P) = dim(Gy)
arbitrary but local functions of JP5. (Note that the equality dim(P) = dim(Gy)
is a consequence of the non-degeneracy condition of M_, eq. (3.3).)

Now we establish the KM implementation of the induced W-transformation

27
55008 (1) = —{Q, IPSaM)) . Q= / dot g(Wom) | (4.18)
0

where ¢ is an arbitrary element of the VW-algebra, that is an arbitrary differential
polynomial in the WW-basis W™ associated with the DS gauge. We note that
under the Dirac bracket one can substitute the DS currents U»™ for W™ and
that we allow ¢ to depend on some test functions as well. Our purpose is to
find the function Kpg(JP®) for which

(SaJDS - 5KDS(JDS)JDS . (419)

By the meaning of the Dirac bracket, d¢, is nothing but the gauge preserving

KM transformation induced by the W-transformation
oo (x%) = —{Q, J(=z")}, (4.20a)

for which

g7 = Or()J (4.200)

with K (J) given by (4.4).

We have seen that any gauge preserving KM transformation can be com-
puted from (4.12) if its components in P are known, so our problem boils down
to establishing how the ‘parameter function’ p(JP5) of Kpg in (4.19) depends
on (). To formulate the solution of this problem, first we note that, as a conse-
quence of their definition, the space of parameters P C (G_ + Gp) is necessarily
dual with respect to the Cartan-Killing form to the space V C (Go+G ) defining
the DS gauge. (This is trivial to see in the special case of the highest weight
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gauge and P = Ker(adys_). The general case is conveniently treated as a mod-
ification of this situation.) This allows us to introduce a basis Fmmm in P in

such a way that
< Fmanm (. >=0monm (4.21)

where Fj ,,, is the basis of V', which we used to define the Weni and < , > is
the Cartan-Killing form. Furthermore, we choose the space Z C (G_ + Gy) to
be the annihilator of V with respect to the scalar product, that is Z consists of
all the elements z € (G_ + Go) satisfying

<z,v>=0, YoeV. (4.22)
We can now write the general solution of (4.12) as

Kps(JP%) = pin B2 +2(J°%) + K(JD5), (4.23)
where z(JPS) € Z and k(JPS) € G, are uniquely determined by the parameter

functions p; ,,,. Then we have the following

Theorem: The parameters of Kps(JP%) satisfying (4.19) are the functional
derivatives of QQ with respect to the W™ that is

0Q

— W(JDS) : (4.24)

pi7ni ('/L.+)
This is one of our main results. Before explaining how to prove this theo-
rem, we mention some of its consequences. An important special case is obtained

by taking @) to be a moment of the W™ that is by considering

2
Q= / Aot 3 g (@)W (2 | (4.25)
0 i,ni
for arbitrary test functions a; n,(x™). It follows from (4.24) that in this par-
ticular case the parameters are just the test functions themselves. Specializing
further, we denote by K"/ the solution of equation (4.12) belonging to the
y

following choice of parameters:
piyni ("E+) = 51;k5n17nk5(a"+ - y+) ? (4'26)

for any fixed k,nj and yT. By combining our previous results, it then follows
that

(URmH (), TP = K ) = K ), TS (42)
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where U® " is the DS current component introduced in (3.15). This gives us an
algorithm for computing the W-algebra itself by solving equation (4.12), which
is a simple linear problem. This is a direct generalization of the algorithm given
in [13]. This algorithm provides one with an effective tool for working out non-
trivial examples [13], and it is also useful for studying the qualitative features,
e.g. the sub-algebra structure [15], of the W-algebras.

To sketch the proof of the above theorem we first point out that it can
be reduced to (4.27) by using the Leibniz rule. On the other hand, (4.27)
can be obtained by considering the problem for (), with test functions chosen
as @jp, = Pin, in (4.26). The point then is that for @),, with arbitrary test
functions, (4.24) follows from (4.4) and (4.13) by taking into account that W™
becomes the current component U®™ in the DS gauge. Alternatively, the proofs
given in [13] for the special case of (4.25) in the context of the usual Toda theory

can also be easily adapted to our general situation.

V. On a Lax pair interpretation of the W-symmetry

In a recent paper Mansfield and Spence [17] proposed a new interpretation
of the W-symmetry of the Toda system (2.2). Their interpretation, developed
in [17] for the case of the standard Toda theory given by (2.5), is that the W-
symmetry corresponds to ‘non-Abelian gauge transformations’ preserving the
form of the Lax pair (2.4). More exactly, they consider variations of A4 of the
type

AL = 0L K+ [K, Ay, (5.1)

where K is a G-valued function. They find that, upon requiring the above
variation to respect the form of A4, this equation determines the allowed set
of K’s in terms of dim(Gy) independent chiral parameter functions. They are
then able to interpret these form preserving variations as the ones underlying
the W-symmetry, and also find some nice explicit formulae.

Our aim now is to understand how the above interpretation of the W-
symmetry relates to the KM interpretation, given in [13] for the case of the
standard Toda theory and generalized in this paper. In fact, originally this
question provided our motivation for investigating the relationship between the
WZNW and Lax pair descriptions of Toda theory.

Let us consider a residual KM type symmetry transformation dx of the
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constrained WZNW theory, given by some local solution K(.J¢) of equations
(4.9) and (4.11). We know that dx gives a well defined variation of any gauge
invariant quantity, because of (4.11). We would like to compute the variation
of the Lax pair. To this first we recall that a KM transformation acts on the
WZNW field g(z+,27) and on its chiral part gr(z+) according to (4.1) and
(4.2). Second, supposing that we are in the Gauss decomposable sector, the
action of dx on the upper triangular field g4 (x™,27) in (2.12) is also fixed in
principle by (4.1), since g4 is a unique function of g. Combining these, we get

that the variation of the gauge invariant field g defined by (2.18) reads as
okg=K-g, (5.2)

where, from (4.2),

1

K=g7" - K(J% 94— 97" 0kgy - (5.3)

It then follows from Ay = 04 G- f]jrl that the variation of the Lax pair under the
residual KM transformation is given by equation (5.1) with K determined by
formula (5.3). Since dx preserves the constraints reducing the WZNW theory
to Toda theory, it is obvious that any variation arising in the above manner
preserves the form of the Lax pair. Moreover, since we have seen that the
Wh-transformations are implemented by certain residual KM transformations,
namely by those which are local in J¢ and canonical, it follows that the V-
algebra indeed acts on the Lax pair by form preserving transformations of the
type (5.1). On the other hand, it is also clear that not every form preserving
variation of A4 is a W-transformation, simply because not all of them are even
canonical transformations. This is an obvious consequence of the fact that for
W-transformations one has a non-trivial gradient condition corresponding to
(4.24).

The function I given by (5.3) describes the transformation of the gauge
invariant objects ¢ and Ay under the residual KM symmetry, and therefore it
can be expressed as some function of the Toda field go(x™,27), K = Kroda(g0)-
Below we establish the functional form of Kroqa.

To this first we introduce the notation K for the restriction of K(.J¢)
to the diagonal gauge (3.22), Ko(jo) = K (J428). We assumed that K is lower
triangular and from this it follows that dx preserves the diagonal gauge. Indeed,
S J4138 has only grade zero components because of (4.3) and (4.9). This means
that the lower triangular matrix Ky implements the residual KM symmetry in

the diagonal gauge.
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The result we prove is that Krpoq, depends on gg only through A4, and that
KToda(A+) can be obtained by simply substituting A for the argument of K.

In other words, analogously to (3.25), we have

Kroda(go) = K(Ay) = Ko(jo — 9190 - 95 ") - (5.4)

For W-transformations this follows from (3.25) by taking into account that
J4238 and A, not only have the same form, but the form of the Poisson bracket
relations of their components is the same as well. This then implies (5.4) for
general residual KM transformations too, simply because (5.3) is an algebraic
formula.

In summary, we see that the Lax pair interpretation of the W-symmetry
proposed in [17] arises immediately as a translation of our KM interpretation.
This way we not only generalized the result of [17] to the case of the general
Toda system (2.2), but also obtained a certain clarification, namely we have a
general method allowing us to single out the W-transformations amongst the

general ‘form preserving gauge transformations’ of the Lax pair.

VI. Conclusions

In this paper we analysed the structure of the generalized conformal Toda
theories associated with the integral gradings of the simple Lie algebras. Our
main results are the following.

First, we established the relationship between the constrained WZNW and
the Lax pair descriptions of the Toda theories. Second, in the non-degenerate
case, we set up a general framework for analysing the extended conformal
symmetry algebras and the current dependent, residual KM type symmetries
present in these models as a consequence of their WZNW origin. In particular,
by exhibiting the highest weight gauge, we uncovered the sl(2) structure under-
lying the W-algebras considered and found their conformal primary field basis.
Furthermore, we have given an algorithm for finding the KM implementation of
the symmetry transformations generated by the W-algebra, which can be used,
for example, to compute the W-algebra itself. Our results on the W-algebra
generalize and complement the ones given in [13], where the special case of the
standard Toda theory was considered. Here we have also shown how to express

these results in terms of the Lax pair framework. In particular, we recovered
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the interpretation of the W-symmetry given in [17] as a consequence of our KM
interpretation.

This paper is a continuation of the series [12-14, 29], and most of the other
results obtained in those papers can be generalized to the case considered here.
This is also true for the case of the conformal Toda theories associated with the
half-integral embeddings of sl(2) into the simple Lie algebras [15, 25].

In addition to the outstanding problem of finding the quantum analogues
of our W-algebras, the following ‘classical’ problems would deserve further in-
vestigation. The conformal reductions of the KM phase space leading to chiral
algebras of polynomial nature should be classified. We think that the Wg alge-
bras mentioned in Section III. constitute an important class of W-algebras and
their structure should be analysed in detail. Furthermore, it would be impor-
tant to explore the KdV like hierarchies of integrable equations which should
correspond to the generalized W-algebras (see also [15, 16, 30]). Finally, the
(affine) WZNW framework [24] of describing affine Toda theories should also
be further developed. We hope to be able to report on some of these issues in

a future publication.
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