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A general 
lass of 
onformal Toda theories asso
iated with integral grad-ings of the simple Lie algebras is investigated. These generalized Toda theoriesare obtained by redu
ing the Wess-Zumino-Novikov-Witten (WZNW) theoryby �rst 
lass 
onstraints, and thus they inherite extended 
onformal symme-try algebras, generalizedW-algebras, and 
urrent dependent Ka
-Moody (KM)symmetries from the WZNW theory, whi
h are analysed in detail in a non-degenerate 
ase. We un
over an sl(2) stru
ture underlying the generalizedW-algebras, whi
h allows for identifying the primary �elds, and give a sim-ple algorithm for implementing the W-symmetries by 
urrent dependent KMtransformations, whi
h 
an be used to 
ompute the a
tion of the W-algebraon any quantity. We establish how the Lax pair of Toda theory arises in theWZNW framework, and show that a re
ent result of Mans�eld and Spen
e,whi
h interprets the W-symmetry of the Toda theory by means of non-Abelianform preserving gauge transformations of the Lax pair, arises immediately as a
onsequen
e of the KM interpretation.* On leave from Bolyai Institute, Szeged, Hungary.1



I. Introdu
tionConformally invariant and aÆne Toda type systems are important bothin the theory of integrable non-linear equations [1-7℄ and in two-dimensional
onformal �eld theory [8-17℄. One of the key features of the 
onformal Todatheories is that they possess [3, 4, 10, 11, 13-17℄ interesting non-linear symmetryalgebras, whi
h are polynomial extensions of the Virasoro algebra by 
hiral
onformal primary �elds. The theory of su
h extended 
onformal algebras,
alled W-algebras following A. B. Zamolod
hikov who initiated their study in[18℄, is of great 
urrent interest, see [19℄ for a review, and, for example, refs.[20-23℄.The traditional approa
h to Toda systems is the formalism of the Lax pair[1-8℄. On the other hand, it has be
ome 
lear re
ently [12-16, 24℄ that Todatheories are really nothing but redu
ed Wess-Zumino-Novikov-Witten (WZNW)theories.In this paper we shall investigate a 
ertain 
lass of generalized 
onformalToda theories, given by equation (2.2), whi
h is asso
iated with the integralgradings of the simple Lie algebras, see refs. [3, 4, 14-16℄ for earlier work ongeneralized Toda theories. We shall treat these theories by using the WZNWframework, whi
h in our opinion is the natural setting for 
onformal Toda the-ories. In fa
t, the results of [13℄ demonstrate that the WZNW setting amountsto a linearization (in the sense that WZNW is a free theory) of the Toda theorywhi
h at the same time resolves the apparent singularities. Moreover, it is also
lear from [13℄ that the WZNW setting is espe
ially well suited for des
ribingthe W-algebra symmetries of the 
onformal Toda theories.It appears to us that the relationship between the WZNW and the Laxpair formalisms of Toda theory has not yet been properly elu
idated, and the�rst purpose of the present paper is to 
larify exa
tly this point. The se
ondpurpose of the paper is to make use of this relationship and the advantagesof the WZNW approa
h for obtaining a des
ription of the symmetries of the
onformal Toda systems in both settings. Our results and methods using theWZNW formulation 
omplement and generalize the ones given in [13℄, wherethe spe
ial 
ase of the standard Toda theory, given by equation (2.5), was
onsidered.The outline of the paper is as follows. In Se
tion II. we show how theLax pair formalism arises in a natural way in the WZNW framework. We thenanalyse the W-algebra of the Toda models in Se
tion III. From this se
tion2



on, we 
onsider a 
ertain non-degenerate 
ase, de�ned by equation (3.3). Thenon-degenera
y 
ondition ensures the existen
e of the Drinfeld-Sokolov gauges[5, 13℄, whi
h are very 
onvenient for analysing the W-algebra. An importantresult we obtain is that, in this non-degenerate 
ase, the W-algebra of thegeneralized Toda theory is isomorphi
 to one from the list of W-algebras whi
h
an be asso
iated with the non-equivalent embeddings of sl(2) into the simpleLie algebras [15, 25℄.Se
tion IV. is devoted to des
ribing all the 
hiral, 
urrent dependent, lo-
al Ka
-Moody (KM) type symmetry transformations of the WZNW theorysurviving the redu
tion to Toda theory, and establishing an algorithm for im-plementing the W-transformations by 
urrent dependent KM transformations.We also make 
lear that the W-transformations are only a subset of the formertransformations, namely the 
anoni
al ones.In Se
tion V. we relate our KM interpretation of the W-symmetry to theone given re
ently in [17℄, where the authors interprete the W-symmetry of thestandard Toda theory in terms of the `non-Abelian form preserving gauge trans-formations' of the Lax pair. We show that this interpretation arises immediatelyas a translation of the KM interpretation. This way we generalize the result of[17℄ from the standard 
ase to our general situation, and also obtain a 
ertain
lari�
ation. Namely, our results provide a general method for identifying theW-transformations among the general `form preserving gauge transformations'of the Lax pair.We end the paper by giving our 
on
lusions and 
ommenting on some openproblems.
II. WZNW versus Lax pairFirst we de�ne the Toda system we are going to investigate. To this we
onsider a real, maximally non-
ompa
t simple Lie algebra G together withan integral grading de�ned by some element H of a splitting (diagonalizable)Cartan subalgebra H. This means that we haveG = G+ + G0 + G� ; G� = NXn=1G�n ; (2:1)where G0 and G�n are eigenspa
es of adH with eigenvalues 0 and �n, respe
-tively. The generalized Toda equation we 
onsider is an integrable non-linear3



equation for a �eld g0 taking its values in G0, the little group of H in the
onne
ted real Lie group G with Lie algebra G. It is given as��(�+g0 � g�10 ) = [M� ; g0M+g�10 ℄ ; (2:2)where M� are some arbitrary but non-zero generators 
hosen from G�1. It iseasy to 
he
k that (2.2) is equivalent to the zero 
urvature 
ondition[�+ �A+ ; �� �A�℄ = 0 (2:3)of the following `Lax potential':A+ = �+g0 � g�10 +M� ; A� = �g0M+g�10 : (2:4)A parti
ular 
ase of the above Toda system is obtained by 
onsidering an integralembedding of the Lie algebra sl(2) into G and taking the standard generators ofthis sl(2) subalgebra for H and M�. This 
ase has been investigated by usingthe Lax pair formalism in [3, 4℄, and by using the WZNW formulation in [15,16℄. It is well known that, by substituting g0 = exp[Pi 'iHi℄, (2.2) redu
es tothe standard Toda equation�+��'i + exp[ lXj=1Kij'j ℄ = 0 (2:5)in the 
ase of the so 
alled prin
ipal sl(2) subalgebra, whi
h is 
hara
terized[26℄ by the 
ondition that [H ; E�℄ = E� (2:6)for any root � from some system of simple positive roots of G. Note that inequation (2.5) Kij is the Cartan matrix of G.Another, more general, sub
lass of Toda systems was investigated by usingthe WZNW pi
ture in [14℄. This 
lass is obtained by assuming that (2.6) holdsfor a subset of the simple roots and that H 
ommutes with the step operatorsasso
iated to the rest of the simple roots.Now we re
all how the redu
tion of the WZNW theory, 
onsidered for thegroupG, to the Toda theory (2.2) 
omes about [12, 14℄, by using a method whi
hbrings out 
learly the 
onne
tion between the WZNW and Lax pair formalisms.The left and right KM 
urrents, J and �J , are given* asJ = �+g � g�1 ; �J = �g�1��g ; (2:7)* The KM level k 
an be re
overed by sustituting �� �! ��� , � = � k4� ,everywhere below. We have 
hosen � = 1 to simplify the notation.4



and the �eld equation 
an be written equivalently as��J = 0 or �+ �J = 0 : (2:8)We identify the phase spa
e of the WZNW theory with the spa
e of solutions,given by the formula g(x+; x�) = gL(x+) � gR(x�) : (2:9)To des
ribe the 
onstraints of the WZNW �! Toda redu
tion we shall usethe proje
tion operators ��;0 proje
ting G onto G�;0, respe
tively, and the 
on-ne
ted subgroups G� of G obtained by exponentiating G�. The 
onstraints arethen given by ��(J) =M� and �+( �J) = �M+ : (2:10)The gauge group generated by this �rst 
lass system of 
onstraints is the dire
tprodu
t of the left loop-group of G+ and the right loop-group of G�. Of 
ourse,this gauge group a
ts on the WZNW phase spa
e a

ording tog(x+; x�) �! A(x+) � g(x+; x�) �C�1(x�) ; (2:11)for any A(x+) 2 G+, C(x�) 2 G�, and the 
onstraint surfa
e (2.10) is leftinvariant under this a
tion. To see what is the gauge invariant 
ontent of the
onstrained WZNW theory we 
onsider the `se
tor' where the generalized Gaussde
ompositiong(x+; x�) = g+(x+; x�) � g0(x+; x�) � g�(x+; x�) ; g�;0 2 G�;0 (2:12)is valid. By substituting this Gauss de
omposition into (2.7) it is easy to seethat (2.10) is equivalent tog�1+ � ��g+ = g0M+g�10 ; and �+g� � g�1� = g�10 M�g0 ; (2:13)that is the 
onstrained 
urrents 
an be written asJ = g+[�+g0 � g�10 +M�℄g�1+ + �+g+ � g�1+ (2:14a)and �J = �g�1� [g�10 ��g0 +M+℄g� � g�1� ��g� : (2:14b)We see from (2.13) that the G0 valued gauge invariant �eld g0 represents thefull gauge invariant 
ontent of the 
onstrained WZNW �eld g, sin
e g� 
an bedetermined from (2.13) in terms of g0, up to gauge transformationsg+(x+; x�) �! A(x+)�g+(x+; x�) ; g�(x+; x�) �! g�(x+; x�)�C�1(x�) :(2:15)5



To obtain the gauge invariant dynami
s, we have to proje
t the WZNW �eldequation to the redu
ed theory. To this �rst we observe the obvious fa
t thatthe WZNW �eld equation is a zero 
urvature 
ondition, namely[�+ � J ; �� � 0℄ = 0 : (2:16)Conjugating this equation by the �eld g�1+ (x+; x�) in (2.12) and using the
onstraints expressed by (2.13) and (2.14), we see that (2.16) is equivalent tothe zero 
urvature 
ondition of the following gauge invariant Lax pair:A+ = g�1+ Jg+ + �+g�1+ � g+ = �+g0 � g�10 +M� ;A� = ��g�1+ � g+ = �g0M+g�10 ; (2:17)whi
h is nothing but the usual Lax pair of Toda theory (2.4). Plainly, theLax potential A� is a pure gauge for solutions of the Toda �eld equation,A� = ��ĝ � ĝ�1 for some G valued �eld ĝ. In terms of the WZNW variables wehave ĝ(x+; x�) = g�1+ (x+; x�) � gL(x+) : (2:18)Naturally, ĝ is gauge invariant. For 
ompleteness we note that the above anal-ysis 
ould have been 
arried out by starting with the se
ond equation in (2.8),the result would be an alternative form of the Toda Lax pair.In summary, we have shown that the usual Lax pair of Toda theory isobtained by 
onjugation by a non-
hiral, G+-valued �eld from the trivial, 
hiralLax `pair' of the 
onstrained WZNW theory. The Lax pair formalism providesa very 
onvenient tool for investigating the Toda theory [1, 3℄. Nevertheless,the WZNW formulation of Toda theory is the more fundamental one. The basi
reason is that the Gauss de
omposition (2.12) is valid only lo
ally on G. Thisleads to the appearan
e of apparently singular but physi
ally regular solutionsin the traditional setting of Toda theory [12, 13℄. Another reason is that inthe WZNW framework the full power of the KM algebra be
omes immediatelyavailable for des
ribing the Toda theory.
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III. The W-algebraThe fundamental ingredient of the WZNW model is its KM symmetry,therefore it is natural to ask what part of this symmetry survives the redu
tionleading to Toda theory. This way we are led to sear
hing for those 
hiralquantities formed out of the KM 
urrents whi
h are 
onstant along the gaugeorbits on the 
onstraint surfa
e (2.10). On general grounds, lo
ally there shouldexist dimG � 2dimG+ = dimG0 independent gauge invariant 
hiral quantities.The spe
ial feature of our system is that here one 
an �nd a 
omplete set ofgauge invariant obje
ts whi
h are globally well de�ned, �nite polynomials inthe 
urrents and their derivatives. The gauge invariant di�erential polynomialsform a 
losed algebra under the KM Poisson bra
ket. This polynomial Poissonbra
ket algebra 
an be 
alled a 
lassi
alW-algebra sin
e it 
ontains the Virasorosubalgebra generated by the gauge invariant polynomialLH = 12Tr(J2)� Tr (H � �+J) ; (3:1)whi
h 
an be used to de�ne a 
onformal automorphism of the Toda system(2.2).Con
entrating on the left moving se
tor, now we analyse the redu
ed 
hiralalgebra. The gauge transformations a
t on the 
onstrained 
urrent, J , a

ordingto J �! AdjA (J) � AJA�1 + �+A �A�1 ; A(x+) 2 G+ ; (3:2)and we are looking for di�erential polynomials W (J) invariant under this a
-tion. The existen
e of a 
omplete set of su
h gauge invariant quantities 
an bededu
ed from the existen
e of the so 
alled Drinfeld-Sokolov (DS) gauges [5,13℄. The existen
e of the DS gauges is ensured by the non-degenera
y 
onditionKer(adM�) \ G+ = f0g ; (3:3)whi
h we assume to be satis�ed from now on.One 
an always 
hoose a system of simple roots in su
h a way that the
orresponding step operators have non-negative integral grades. If in this basisthere o

urs a simple root � su
h that [H ; E� ℄ = n�E� with n� � 2 thena non-degenerate M� 
annot exist. In fa
t, it is easily seen that in this 
ase[E� ; G�1℄ = 0. On the other hand, we 
onje
ture that if the grades of thestep operators 
orresponding to some system of simple roots are all from theset f0 ; 1g then there exists at least one non-degenerate M�. This was true in7



all the examples we 
onsidered so far [14℄, and, moreover, in these examplesthe non-degenerate M� was found to be unique up to 
onjugation by the littlegroup of H.The 
onstru
tion of the DS gauges pro
eeds as follows. First we 
hoose adire
t sum de
ompositionGi = Ii + Vi for i = 0; 1; : : : ; N ; (3:4)where Ii = [M� ; Gi+1℄ (3:5)and Vi is some 
omplementary subspa
e. Note that di = dim (Vi) 
an be zerofor some i, and PNi=0 di = dim(G0). By 
onsidering the dire
t sumsI = NXi=0 Ii = [M� ; G+℄ ; V = NXi=0 Vi ; (3:6)we have G = G� + I + V : (3:7)Thus an arbitrary KM 
urrent J 
an be written asJ = ��(J) + �I(J) + �V(J) ; (3:8)where ��, �I and �V are the proje
tion operators 
orresponding to (3.7). Wede�ne the Drinfeld-Sokolov gauge 
orresponding to the subspa
e V by supple-menting the �rst 
lass 
onstraints ��(J) =M� with the gauge 
ondition�I(J) = 0 : (3:9)One has to investigate whether the general 
onstrained 
urrentJ =M� + NXi=0 Ji ; Ji 2 Gi (3:10)
an be brought to the DS formJDS =M� + NXi=0 JDSi ; JDSi 2 Vi (3:11)by a gauge transformation. To answer this question one inserts the aboveexpressions andA = ea1 � ea2 � � � eaN ; ak(x+) 2 Gk ; k = 1; 2; : : : ; N (3:12)8



into the equation JDS = AdjA (J) ; (3:13)and 
onsiders this equation grade by grade, starting from grade 0, in termsof the de
omposition (3.4). At every grade one tries to gauge away the Ii
omponent of J by 
hoosing ai+1 appropriately. One sees that this is indeedpossible as a 
onsequen
e of the nondegenera
y 
ondition (3.3), whi
h impliesthat adM� maps Gi+1 onto Ii in a one-to-one manner, for any i � 0. Moreover,one also sees from (3.13) that the 
omponents of the gauge representative JDSand those of the ak are uniquely determined di�erential polynomials in terms ofthe 
omponents of J . This property of the DS gauges guarantees the polynomial
hara
ter of the redu
ed 
hiral algebra.Indeed, let us introdu
e some basis Fi;ni in Vi and write the unique inter-se
tion point of the DS gauge se
tion with the gauge orbit passing through Jas AdjA(J) (J) =M� +Xi;ni W i;ni(J)Fi;ni : (3:14)It immediately follows from the above that the W i;ni(J) are gauge invariantdi�erential polynomials, whi
h 
an be used as 
oordinates in the 
hiral se
torof the redu
ed WZNW theory. In parti
ular, the W i;ni(J) 
orresponding toa DS gauge in the above manner always form a basis of the W-algebra. Notethat, of 
ourse, any unique gauge �xing 
an be used to de�ne gauge invariantquantities, but they are in general not polynomial, not even lo
al in J .Plainly, a di�erential polynomialW (J) redu
es to a di�erential polynomialof the 
omponents of the gauge �xed 
urrent in an arbitrary gauge de�ned byputting a linear gauge �xing 
ondition on the 
omponents of J . The Poissonbra
kets of the W 's 
an then be 
omputed in that gauge by using the Dira
bra
kets of the 
urrent 
omponents surviving the gauge �xing.From this point of view, the main advantage of the DS gauge is that in thisgauge the W i;ni be
ome linear fun
tions of the 
urrent. In fa
t, writing�V(J) =Xi;ni U i;ni Fi;ni ; (3:15)we have U i;nijDS = W i;nijDS : (3:16)We 
all the 
urrent 
omponents U i;ni DS 
urrents. Their Dira
 bra
ket algebrarepresents the basi
 Poisson bra
kets in the DS gauge. As a 
onsequen
e of9



(3.16) and the gauge invarian
e of the W i;ni , the W-algebra 
an be interpretedas the Dira
 bra
ket algebra of the DS 
urrents:fU i;ni ; Uk;nkg�jDS = fW i;ni ; W k;nkgjDS : (3:17)We shall use this interpretation to show that our W-algebra is isomorphi
 toone from the set of W-algebras asso
iated to the inequivalent embeddings ofsl(2) into the simple Lie algebras [15, 25℄.Let (I� ; I0 ; I+ ) be the standard generators of an sl(2) subalgebra, S, ofG. One 
an put a set of se
ond 
lass 
onstraints on the KM phase spa
e byrequiring the 
onstrained 
urrent to be of the formJS(x) � I� + jS(x) ; jS(x) 2 Ker (adI+) ; (3:18)that is jS(x) is a linear 
ombination of the highest weight states of S in theadjoint representation of G. One 
an prove (see [15, 25℄) that the 
omponentsof jS(x) form aW-algebra, denoted asWGS , under Dira
 bra
ket. The 
anoni
alVirasoro subalgebra is generated by the I+-
omponent of jS . The 
omponents
orresponding to the other highest weight states in Ker (adI+) are 
onformalprimary �elds with respe
t to this Virasoro algebra, their 
onformal weight is(1 + l), where l is the sl(2) spin. This 
onstru
tion is motivated by our earlierresult [13℄ that in the usual Toda theory one �nds the primary �elds by goingto the highest weight DS gauge of the prin
ipal sl(2) subalgebra of G.By the method des
ribed previously, we 
onstru
ted aW-algebra by start-ing with the data (H ; M�), where H is an integral grading operator of G andM� is a non-degenerate generator of grade �1. On the other hand, we havethe following mathemati
al result.Lemma: Let G = G0 +PNn=1 G�n be the de
omposition of G de�ned by theintegral grading operator H, and let M� be an element of G�1, whi
h is non-degenerate with respe
t to this grading in the sense of (3.3). Then there existsan sl(2) subalgebra S of G with standard generators (I� ; I0 ; I+) satisfyingI� =M� ; I0 2 G0 ; I+ 2 G+1 : (3:19)The generator I+ here is always non-degenerate, that is Ker (adI+)\G� = f0g.The 
onjuga
y 
lass of the sl(2) subalgebra depends only on the 
onjuga
y 
lassof M� in G.This result is an easy 
onsequen
e of some powerful theorems by Morozov,Ja
obson and Kostant on sl(2) embeddings [27℄, as explained in detail in [25℄.10



It follows from the lemma that we 
an 
onstru
t a highest weight DS gauge by
hoosing the 
omplement of Ii in (3.4) a

ording toVi � Gi \Ker (adI+) : (3:20)Let us remember that every DS gauge de�nes a basis of the W-algebra, andthat by using this basis the W-algebra 
an be identi�ed with the Dira
 bra
ketalgebra of the DS 
urrents. This fa
t and the existen
e of the highest weightgauge imply that our W-algebra is isomorphi
 to WGS with S provided by thelemma. We also see that the equivalen
e 
lass of the W-algebra depends onlyon the 
onjuga
y 
lass of the nilpotent element M� in G.The Virasoro generator asso
iated to the I+-
omponent of the highestweight gauge 
an be identi�ed with the gauge invariant di�erential polynomialLI0 = 12Tr(J2)� Tr (I0 � �+J) : (3:21)The generators of the W-algebra 
orresponding to the other highest weight
omponents are primary �elds with respe
t to the 
onformal a
tion generatedby this Virasoro density. It should be noted that the spe
trum of I0, and thusthe spe
trum of 
onformal weights, is in general half-integral. We also remarkthat in general there is no basis of the W-algebra 
onsisting of the Virasorodensity LH in (3.1) and primary �elds with respe
t to the 
onformal a
tiongenerated by LH [14℄.Besides the highest weight gauge one has another parti
ularly importantgauge, namely the `diagonal gauge' for whi
h the gauge �xed 
urrent is givenas Jdiag = M� + j0 ; j0 2 G0 : (3:22)The advantage of this gauge is that the Dira
 bra
kets of the 
omponents ofj0 
oin
ide with their original Poisson bra
kets, given by the G0 KM algebra.We denote the di�erential polynomial representing an element, W (J), of theW-algebra in the diagonal gauge as W0, W0(j0) �W (Jdiag). In the 
ase of theusual Toda theory G0 is the Cartan subalgebra and W0 is the Miura transformof W .In the WZNW framework, we identi�ed the left moving 
hiral algebra ofthe Toda system as the algebra of gauge invariant di�erential polynomials inthe 
urrent J . On the other hand, in the `Gauss de
omposable se
tor' of the
onstrained WZNW theory a 
omplete set of gauge invariant quantities is pro-vided by the Toda �eld g0. In parti
ular, J 
an be expressed in terms of g0 up11



to gauge transformations. It follows that for any W (J) there exists a uniquefun
tion WToda(g0) su
h thatWToda(g0) =W (J) : (3:23)To �nd the expli
it form of the fun
tion WToda let us �rst point out that, by
onstru
tion, W (J) is a di�erential polynomial whose form is invariant underany 
hange of variables of the formJ �! Adj�(J) ; � 2 G+ : (3:24)The point is that here � 
an depend on the dynami
al variables in an arbitraryway and is not even restri
ted to be 
hiral. (Of 
ourse, (3.24) then does notne
essarily represent a gauge transformation in the sense of (3.2).) Equation(2.17) tells us that J and the Lax potential A+ are related by a transformationof the form (3.24), with � = g�1+ (x+; x�). Therefore we see thatWToda dependson g0 only through A+ and that WToda(A+) is obtained by simply substitutingA+ for the argument of the di�erential polynomial W . In other words, takingalso into a

ount that the form of A+ is the same as that of Jdiag, we haveWToda(g0) =W (A+) =W0(j0 ! �+g0 � g�10 ) : (3:25)Thus the 
hiral W 's depend on the non-
hiral `Toda 
urrent' �+g0 � g�10 in thesame way as on the 
hiral variable j0. We note that in their Lax pair approa
hto Toda theory Leznov and Savaliev [3, 4℄ 
onstru
ted the 
onserved 
urrentsby dire
tly solving the `
hara
teristi
 equation'��WToda(g0) = 0 (3:26)for WToda. The above arguments, essentially due to Palla [28℄ who observed(3.25) in the 
ase of the usual Toda theory, provide the translation between theLax pair [4, 11, 17℄ and the 
onstrained KM des
riptions of the W-algebra ofthe Toda system (2.2), for non-degenerate M�.
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IV. Lo
al symmetry transformations of KM type and W-transformationsIn this se
tion we set up a s
heme for des
ribing all the lo
al KM typesymmetry transformations of the WZNW theory surviving the redu
tion toToda theory. In parti
ular, we shall give a natural generalization of the resultsof [13℄ about the KM implementation of the W-symmetry.In the WZNW theory, we 
all a transformation of the formÆKg = K � g (4:1)a (left, 
urrent dependent, lo
al) KM transformation if the G-valued fun
tionK is a di�erential polynomial in the 
omponents of J and their derivatives.(For simpli
ity, we shall often refer to these transformations simply as KMtransformations. This is an abuse of terminology sin
e the standard KM trans-formations are 
urrent independent.) The KM transformations are symmetries,i.e. they a
t on the spa
e of solutions of the theory. Their a
tion on the leftmoving �eld gL(x+) and on the 
urrent J(x+) is given asÆKgL = K(J) � gL (4:2)and ÆKJ = DJK = �+K + [K ; J ℄ : (4:3)A KM type symmetry is an in�nitesimal 
anoni
al transformation if and onlyif it 
an be written asK = ÆQÆJ ; Q = Z 2�0 dx+ q(J; J 0; :::) ; (4:4)where q is some di�erential polynomial in the 
omponents of J , possibly de-pending on some test fun
tions too. Indeed, as follows easily from the form ofthe KM Poisson bra
ket, we have ÆQ = ÆK for K in (4.4), where, by de�nition,ÆQ a
ts on any quantity via Poisson bra
ket, ÆQ( � ) � �fQ ; � g.We are looking for those KM transformations whi
h preserve the 
onstraintsurfa
e and proje
t to transformations on the spa
e of gauge orbits in a wellde�ned way. Taking into a

ount the form of the 
onstrained 
urrent, denotedfrom now on as J
, J
 = M� + j ; j 2 (G0 + G+) ; (4:5)the �rst 
ondition is equivalent to��(ÆKJ
) = 0 : (4:6)13



The se
ond 
ondition requires ÆK to be invariant under gauge transformations,up to in�nitesimal gauge transformations, whi
h proje
ts to zero when going tothe spa
e of gauge orbits. To see the meaning of this 
ondition, let us observethat under a gauge transformation, A(x+) 2 G+, K transforms a

ording tothe rule K �! KA ; KA(J
) � A �K(AdjA�1(J
)) �A�1 ; (4:7)sin
e ÆK(J
) is a ve
tor �eld on the 
onstraint surfa
e. Thus ÆK(J
) proje
ts toa well de�ned ve
tor �eld on the spa
e of gauge orbits if and only if��0(KA �K) = 0 : (4:8)Here we introdu
ed the notation ��0 for (�� + �0), operating a

ording to thede
omposition (2.1).Combining our previous equations, we 
on
lude that the `residual' KMtype symmetries, i.e. the ones surviving the redu
tion, 
an be determined asthe lo
al solutions K(J
) of the following two 
onditions:��(�+K + [K ; M�℄ + [K ; j℄) = 0 ; (4:9)and��0(K(J
)) = ��0(A �K(AdjA�1(J
)) �A�1) ; 8A(x+) 2 G+ : (4:10)It is easy to see that K solves these equations if and only if its `lower triangularpart' ��0(K) does, and thatK and ��0(K) give rise to the same transformationon the spa
e of gauge orbits. For this reason, without loss of generality, it isenough to 
onsider those solutions whi
h are lower triangular, �+(K) = 0, forwhi
h (4.10) be
omesK(J
) = ��0(A �K(AdjA�1(J
)) �A�1) ; 8A(x+) 2 G+ : (4:11)The 
anoni
al transformations generated by the elements of theW-algebraare implemented by those residual 
urrent dependent KM transformationswhi
h are given by means of equation (4.4), where q is some extension of agauge invariant di�erential polynomial from the 
onstraint surfa
e to the KMphase spa
e. Note that if one takes the trivial extension for whi
h q dependsonly on ��0(J) then K is lower triangular. It should be noted that not everyresidual KM transformation is a W-transformation, for the same reason thatnot every 
urrent dependent KM transformation is 
anoni
al in WZNW theory.14



Namely, a 
urrent dependent KM transformation is 
anoni
al in WZNW theoryprovided K 
an be written as a gradient, eq. (4.4).Every residual KM transformationK indu
es a transformation on the spa
eof gauge orbits. Representing the orbits by a gauge se
tion, the indu
ed trans-formations be
ome gauge preserving KM transformations. From this point ofview, as we shall see below, the advantage of the DS gauge is that there isa one-to-one 
orresponden
e between lo
al KM transformations preserving theDS gauge and lo
al KM transformations preserving the 
onstraint surfa
e andsatisfying (4.11). Moreover, we shall give an e�e
tive algorithm whi
h allows for�nding all the KM transformations preserving the DS gauge, and for identifyingthe subset of indu
ed W-transformations.In some �xed DS gauge, a gauge preserving KM transformation KDS is alo
al solution of the equationÆJDS = �+KDS + [KDS ; M�℄ + [KDS ; jDS℄ : (4:12)Here the 
ondition is that this variation preserves the form of JDS =M�+ jDS,that is one must have ÆJDS 2 V, where V is the 
omplementary spa
e in (3.7)de�ning the DS gauge in question. Any residual KM transformation K(J
)gives rise to a gauge preserving variation de�ned byKDS(JDS) = K(JDS) + k(JDS) ; k 2 G+ ; (4:13)where k is a uniquely determined lo
al in�nitesimal gauge transformation 
om-pensating for the fa
t that ÆK does not ne
essarily preserve the DS gauge. Con-versely, any di�erential polynomial solution of (4.12) 
an be uniquely extendedto a di�erential polynomial K(J
) de�ning a residual KM transformation onthe full 
onstraint surfa
e. To this it is enough to take (4.13) as the de�nitionof K(JDS) and then use (4.11).We note that, of 
ourse, there is a natural one-to-one relationship betweengauge preserving KM transformations and solutions of (4.9), (4.11) for anyunique gauge �xing. The spe
ial feature of the DS gauge is that K(J
) is lo
alin J
 if and only if the 
orresponding KDS(JDS) is lo
al in JDS. This followsfrom (4.11) and (4.13) and the fa
t that J
 
an be brought to the DS gauge bya gauge transformation whi
h is lo
al in J
.Next we give a te
hni
al result about equations (4.9) and (4.12), whi
hplays a 
ru
ial role in our analysis. These linear equations determine the allowedset of KM transformations K(J
) and KDS(JDS), whi
h de�ne form preservingvariations of J
 and JDS, respe
tively. Here we shall establish the stru
ture of15



their general solution. We start by observing that the non-degenera
y 
ondition(3.3) is equivalent to the fa
t that the mapadM� : G�i �! G�i�1 ; i = 0; 1; : : : ; N ; (4:14)is always onto. This is easily proven by using the invarian
e of the Cartan-Killing form and the fa
t that under this s
alar produ
t the dual spa
e to Giis G�i. Thus, by using the non-degenera
y assumption, we 
an 
hoose a dire
tsum de
ompositionG�i = P�i + Z�i ; i = 0; 1; : : : ; N ; (4:15)in su
h a way that adM� maps Z�i onto G�i�1 in a one-to-one manner. Forexample, a possible, in some sense 
anoni
al, 
hoi
e is to take P �PNi=0 P�i tobe Ker(adM�), and Z �PNi=0 Z�i to be some 
omplement to P in (G� + G0).We remark that one always has Z�N = f0g for the lowest grade �N . Itturns out to be useful to de
ompose any lower triangular solution of (4.9) and,respe
tively, any solution of (4.12) in the following manner:K(J
) = p(J
) + z(J
) ; p 2 P; z 2 Z ; (4:16)andKDS(JDS) = p(JDS)+z(JDS)+k(JDS); p 2 P; z 2 Z; k 2 G+ : (4:17)Substituting (4.16) into (4.9), one 
an prove that the 
omponents of p(J
) 
anbe arbitrarily given and then the 
omponents of z are uniquely determined interms of p and J
 by this equation. Moreover, one sees by inspe
tion thatthe 
omponents of z are di�erential polynomials in J
 and linear di�erentialpolynomials in the 
omponents of p. Similarly, equation (4.12) determines z andk as unique di�erential polynomials linear in the arbitrarily given 
omponentsof p and in general non-linear in JDS.To prove that the general solutions of (4.9) and (4.12) are parametrizedby arbitrary P-valued fun
tions in the above manner one has to 
onsider theseequations grade by grade, starting from the lowest grade, and at every gradeuse the non-degenera
y 
ondition and the de
ompositions (4.15), and also thede
omposition (3.4) when 
onsidering (4.12). The 
ru
ial property of these de-
ompositions to be used in this analysis is that adM� maps Z�i onto G�i�1and Gi+1 onto Ii in a one-to-one manner, for any i = 0; 1; : : : ; N . The iterativepro
edure of solving (4.9) and (4.12) grade by grade provides one with an algo-rithm for 
omputing K and KDS in terms of the parameters p(J
) and p(JDS).16



This algorithm is very 
onvenient, e.g. sin
e one obtains ÆKJ
 (resp. ÆKDSJDS)essentially by means of the same 
omputation whi
h produ
es K (resp. KDS).A parti
ular 
onsequen
e of the above result is that K(J
) and KDS(JDS)are lo
al fun
tions if and only if the parameter fun
tions p(J
) and p(JDS)are lo
al. Equation (4.11) imposes a further 
ondition on p(J
) whi
h is hardto handle pra
ti
ally. On the other hand, any lo
al p(JDS) de�nes a gaugepreserving KM transformation implementing a residual KM symmetry. In 
on-
lusion, we see that the set of residual, lo
al, 
urrent dependent KM symmetrytransformations is parametrized, in a one-to-one manner, by dim(P) = dim(G0)arbitrary but lo
al fun
tions of JDS. (Note that the equality dim(P) = dim(G0)is a 
onsequen
e of the non-degenera
y 
ondition of M�, eq. (3.3).)Now we establish the KM implementation of the indu
edW-transformationÆ�QJDS(x+) = �fQ ; JDS(x+)g� ; Q = Z 2�0 dx+ q(W i;ni) ; (4:18)where q is an arbitrary element of theW-algebra, that is an arbitrary di�erentialpolynomial in the W-basis W i;ni asso
iated with the DS gauge. We note thatunder the Dira
 bra
ket one 
an substitute the DS 
urrents U i;ni forW i;ni , andthat we allow q to depend on some test fun
tions as well. Our purpose is to�nd the fun
tion KDS(JDS) for whi
hÆ�QJDS = ÆKDS(JDS)JDS : (4:19)By the meaning of the Dira
 bra
ket, Æ�Q is nothing but the gauge preservingKM transformation indu
ed by the W-transformationÆQJ(x+) = �fQ ; J(x+)g ; (4:20a)for whi
h ÆQJ = ÆK(J)J (4:20b)with K(J) given by (4.4).We have seen that any gauge preserving KM transformation 
an be 
om-puted from (4.12) if its 
omponents in P are known, so our problem boils downto establishing how the `parameter fun
tion' p(JDS) of KDS in (4.19) dependson Q. To formulate the solution of this problem, �rst we note that, as a 
onse-quen
e of their de�nition, the spa
e of parameters P � (G�+ G0) is ne
essarilydual with respe
t to the Cartan-Killing form to the spa
e V � (G0+G+) de�ningthe DS gauge. (This is trivial to see in the spe
ial 
ase of the highest weight17



gauge and P = Ker(adM�). The general 
ase is 
onveniently treated as a mod-i�
ation of this situation.) This allows us to introdu
e a basis F̂m;nm in P insu
h a way that < F̂m;nm ; Fi;ni >= Æmi Ænmni ; (4:21)where Fi;ni is the basis of V, whi
h we used to de�ne the W i;ni , and < ; > isthe Cartan-Killing form. Furthermore, we 
hoose the spa
e Z � (G� + G0) tobe the annihilator of V with respe
t to the s
alar produ
t, that is Z 
onsists ofall the elements z 2 (G� + G0) satisfying< z ; v >= 0 ; 8v 2 V : (4:22)We 
an now write the general solution of (4.12) asKDS(JDS) =Xi;ni pi;ni F̂ i;ni + z(JDS) + k(JDS); (4:23)where z(JDS) 2 Z and k(JDS) 2 G+ are uniquely determined by the parameterfun
tions pi;ni . Then we have the followingTheorem: The parameters of KDS(JDS) satisfying (4.19) are the fun
tionalderivatives of Q with respe
t to the W i;ni , that ispi;ni(x+) = ÆQÆW i;ni(x+) (JDS) : (4:24)This is one of our main results. Before explaining how to prove this theo-rem, we mention some of its 
onsequen
es. An important spe
ial 
ase is obtainedby taking Q to be a moment of the W i;ni , that is by 
onsideringQa = Z 2�0 dx+ Xi;ni ai;ni(x+)W i;ni(x+) ; (4:25)for arbitrary test fun
tions ai;ni(x+). It follows from (4.24) that in this par-ti
ular 
ase the parameters are just the test fun
tions themselves. Spe
ializingfurther, we denote by Kk;nky+ the solution of equation (4.12) belonging to thefollowing 
hoi
e of parameters:pi;ni(x+) � Æi;kÆni;nkÆ(x+ � y+) ; (4:26)for any �xed k; nk and y+. By 
ombining our previous results, it then followsthatfUk;nk(y+) ; JDS(x+)g� = � ��x+Kk;nky+ (x+)� [Kk;nky+ (x+) ; JDS(x+)℄ ; (4:27)18



where Uk;nk is the DS 
urrent 
omponent introdu
ed in (3.15). This gives us analgorithm for 
omputing the W-algebra itself by solving equation (4.12), whi
his a simple linear problem. This is a dire
t generalization of the algorithm givenin [13℄. This algorithm provides one with an e�e
tive tool for working out non-trivial examples [13℄, and it is also useful for studying the qualitative features,e.g. the sub-algebra stru
ture [15℄, of the W-algebras.To sket
h the proof of the above theorem we �rst point out that it 
anbe redu
ed to (4.27) by using the Leibniz rule. On the other hand, (4.27)
an be obtained by 
onsidering the problem for Qa with test fun
tions 
hosenas ai;ni = pi;ni in (4.26). The point then is that for Qa, with arbitrary testfun
tions, (4.24) follows from (4.4) and (4.13) by taking into a

ount thatW i;nibe
omes the 
urrent 
omponent U i;ni in the DS gauge. Alternatively, the proofsgiven in [13℄ for the spe
ial 
ase of (4.25) in the 
ontext of the usual Toda theory
an also be easily adapted to our general situation.
V. On a Lax pair interpretation of the W-symmetryIn a re
ent paper Mans�eld and Spen
e [17℄ proposed a new interpretationof the W-symmetry of the Toda system (2.2). Their interpretation, developedin [17℄ for the 
ase of the standard Toda theory given by (2.5), is that the W-symmetry 
orresponds to `non-Abelian gauge transformations' preserving theform of the Lax pair (2.4). More exa
tly, they 
onsider variations of A� of thetype ÆKA� = ��K + [K ; A�℄ ; (5:1)where K is a G-valued fun
tion. They �nd that, upon requiring the abovevariation to respe
t the form of A�, this equation determines the allowed setof K's in terms of dim(G0) independent 
hiral parameter fun
tions. They arethen able to interpret these form preserving variations as the ones underlyingthe W-symmetry, and also �nd some ni
e expli
it formulae.Our aim now is to understand how the above interpretation of the W-symmetry relates to the KM interpretation, given in [13℄ for the 
ase of thestandard Toda theory and generalized in this paper. In fa
t, originally thisquestion provided our motivation for investigating the relationship between theWZNW and Lax pair des
riptions of Toda theory.Let us 
onsider a residual KM type symmetry transformation ÆK of the19




onstrained WZNW theory, given by some lo
al solution K(J
) of equations(4.9) and (4.11). We know that ÆK gives a well de�ned variation of any gaugeinvariant quantity, be
ause of (4.11). We would like to 
ompute the variationof the Lax pair. To this �rst we re
all that a KM transformation a
ts on theWZNW �eld g(x+; x�) and on its 
hiral part gL(x+) a

ording to (4.1) and(4.2). Se
ond, supposing that we are in the Gauss de
omposable se
tor, thea
tion of ÆK on the upper triangular �eld g+(x+; x�) in (2.12) is also �xed inprin
iple by (4.1), sin
e g+ is a unique fun
tion of g. Combining these, we getthat the variation of the gauge invariant �eld ĝ de�ned by (2.18) reads asÆK ĝ = K � ĝ ; (5:2)where, from (4.2), K = g�1+ �K(J
) � g+ � g�1+ � ÆKg+ : (5:3)It then follows from A� = ��ĝ � ĝ�1+ that the variation of the Lax pair under theresidual KM transformation is given by equation (5.1) with K determined byformula (5.3). Sin
e ÆK preserves the 
onstraints redu
ing the WZNW theoryto Toda theory, it is obvious that any variation arising in the above mannerpreserves the form of the Lax pair. Moreover, sin
e we have seen that theW-transformations are implemented by 
ertain residual KM transformations,namely by those whi
h are lo
al in J
 and 
anoni
al, it follows that the W-algebra indeed a
ts on the Lax pair by form preserving transformations of thetype (5.1). On the other hand, it is also 
lear that not every form preservingvariation of A� is aW-transformation, simply be
ause not all of them are even
anoni
al transformations. This is an obvious 
onsequen
e of the fa
t that forW-transformations one has a non-trivial gradient 
ondition 
orresponding to(4.24).The fun
tion K given by (5.3) des
ribes the transformation of the gaugeinvariant obje
ts ĝ and A� under the residual KM symmetry, and therefore it
an be expressed as some fun
tion of the Toda �eld g0(x+; x�), K = KToda(g0).Below we establish the fun
tional form of KToda.To this �rst we introdu
e the notation K0 for the restri
tion of K(J
)to the diagonal gauge (3.22), K0(j0) � K(Jdiag). We assumed that K is lowertriangular and from this it follows that ÆK preserves the diagonal gauge. Indeed,ÆKJdiag has only grade zero 
omponents be
ause of (4.3) and (4.9). This meansthat the lower triangular matrix K0 implements the residual KM symmetry inthe diagonal gauge. 20



The result we prove is that KToda depends on g0 only through A+ and thatKToda(A+) 
an be obtained by simply substituting A+ for the argument of K.In other words, analogously to (3.25), we haveKToda(g0) = K(A+) = K0(j0 ! �+g0 � g�10 ) : (5:4)For W-transformations this follows from (3.25) by taking into a

ount thatJdiag and A+ not only have the same form, but the form of the Poisson bra
ketrelations of their 
omponents is the same as well. This then implies (5.4) forgeneral residual KM transformations too, simply be
ause (5.3) is an algebrai
formula.In summary, we see that the Lax pair interpretation of the W-symmetryproposed in [17℄ arises immediately as a translation of our KM interpretation.This way we not only generalized the result of [17℄ to the 
ase of the generalToda system (2.2), but also obtained a 
ertain 
lari�
ation, namely we have ageneral method allowing us to single out the W-transformations amongst thegeneral `form preserving gauge transformations' of the Lax pair.
VI. Con
lusionsIn this paper we analysed the stru
ture of the generalized 
onformal Todatheories asso
iated with the integral gradings of the simple Lie algebras. Ourmain results are the following.First, we established the relationship between the 
onstrained WZNW andthe Lax pair des
riptions of the Toda theories. Se
ond, in the non-degenerate
ase, we set up a general framework for analysing the extended 
onformalsymmetry algebras and the 
urrent dependent, residual KM type symmetriespresent in these models as a 
onsequen
e of their WZNW origin. In parti
ular,by exhibiting the highest weight gauge, we un
overed the sl(2) stru
ture under-lying the W-algebras 
onsidered and found their 
onformal primary �eld basis.Furthermore, we have given an algorithm for �nding the KM implementation ofthe symmetry transformations generated by the W-algebra, whi
h 
an be used,for example, to 
ompute the W-algebra itself. Our results on the W-algebrageneralize and 
omplement the ones given in [13℄, where the spe
ial 
ase of thestandard Toda theory was 
onsidered. Here we have also shown how to expressthese results in terms of the Lax pair framework. In parti
ular, we re
overed21



the interpretation of theW-symmetry given in [17℄ as a 
onsequen
e of our KMinterpretation.This paper is a 
ontinuation of the series [12-14, 29℄, and most of the otherresults obtained in those papers 
an be generalized to the 
ase 
onsidered here.This is also true for the 
ase of the 
onformal Toda theories asso
iated with thehalf-integral embeddings of sl(2) into the simple Lie algebras [15, 25℄.In addition to the outstanding problem of �nding the quantum analoguesof our W-algebras, the following `
lassi
al' problems would deserve further in-vestigation. The 
onformal redu
tions of the KM phase spa
e leading to 
hiralalgebras of polynomial nature should be 
lassi�ed. We think that the WGS alge-bras mentioned in Se
tion III. 
onstitute an important 
lass of W-algebras andtheir stru
ture should be analysed in detail. Furthermore, it would be impor-tant to explore the KdV like hierar
hies of integrable equations whi
h should
orrespond to the generalized W-algebras (see also [15, 16, 30℄). Finally, the(aÆne) WZNW framework [24℄ of des
ribing aÆne Toda theories should alsobe further developed. We hope to be able to report on some of these issues ina future publi
ation.
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