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I. IntrodutionTwo dimensional onformally invariant soluble �eld theories are based on var-ious extensions of the hiral Virasoro algebras. The best known extension is theKa-Moody (KM) extension [1℄, whose most prominent Lagrangean realization is theWess-Zumino-Novikov-Witten (WZNW) model [2℄. There are various indiationsthat the KM algebra may even underlie all the rational onformal �eld theories. Forexample, the Goddard-Kent-Olive (GKO) onstrution [3℄ generates a huge lass ofrational onformal �eld theories. Another extension is the so-alled W-extension,whih is a polynomial extension of the Virasoro algebra by higher spin �elds. Thestudy of polynomial extensions of the Virasoro algebra was initiated by Zamolod-hikov [4℄. Later it was realized [5,6℄ that a large lass of polynomial extensions ofthe Virasoro algebra an be onstruted by quantizing the seond Gelfand-DikeyPoisson braket struture of Lax operators, used in the theory of integrable systems.These W-algebras proved very fruitful to analyse onformal �eld theories and theybeome the subjet of intense studies [5-8℄. Reently it has been found by Gervaisand Bilal that Toda theories provide a realization of W-algebras [8,9℄. Toda theoriesare important in the theory of integrable systems and inlude the ubiquitous Liouvilletheory, whih, among other things, desribes two dimensional indued gravity in theonformal gauge.There are a number of results suggesting that Toda theories must be loselyrelated to WZNW models. First, in both ases the �elds an be reovered fromthe generators of the respetive extended Virasoro algebras (KM and W-algebras)by means of linear di�erential equations [8℄. Seond, the Gelfand-Dikey Poissonbraket struture an be obtained by a Hamiltonian redution from a KM phasespae [10℄. Finally, it has been shown by Polyakov [11℄ that two dimensional induedgravity (in the light one gauge) exhibits (left-moving) SL(2; R) KM symmetry.



In a reent letter [12℄ we have shown that the exat relationship is that Todatheories may be regarded as WZNW models (based on maximally non-ompat, sim-ple real Lie groups) redued by ertain onformally invariant onstraints. To be morepreise, Toda theory an be identi�ed as the onstrained WZNW model, modulo theleft-moving upper triangular and right-moving lower triangular KM transformations,whih are gauge transformations generated by the onstraints. The advantages oftreating Toda theory as a gauge theory embedded into a WZNW model are the fol-lowing: First, the oordinate singularities of Toda theory disappear by using theWZNW variables. Seond, the W-algebra of Toda theory arises immediately as thealgebra formed by the gauge invariant polynomials of the onstrained KM urrentsand their derivatives. Third, the general solution of the Toda �eld equations is easilyobtained from the very simple WZNW solution. Finally, there are natural gaugeswhih failitate the analysis of the theory. In this paper we exploit the embedding ofToda theory into the WZNW model to obtain a number of new insights and resultsabout the struture of Toda theory and W-algebra. All our onsiderations are las-sial. We hope that their quantum generalizations will provide new onstrutions ofquantum Toda theories [13℄ and W-algebras.We �rst set up a Lagrangean framework for the WZNW-Toda redution, namelywe establish that Toda theories an be identi�ed as the gauge invariant ontent ofertain gauged WZNW models. Our gauged WZNW models di�er from the usualgauged WZNW models [14℄ used in the path integral realization of the GKO on-strution not only in the non-ompatness of our groups, but also in that instead ofa single diagonal subgroup we gauge two subgroups of the left� right WZNW group,the upper triangular maximal nilpotent subgroup on the left and the lower triangularone on the right hand side. The nilpoteny of the triangular subgroups is ruial tothis ambidextrous generalization of the usual vetor gauged WZNW models, and infat the nilpoteny of the gauge group is the reason for the appearane of the simplepolynomial strutures in Toda theory. The onstrained WZNW model is reoveredin this framework by an appropriate partial gauge �xing whih leaves the left andright moving triangular gauge transformations mentioned earlier as a residual gauge



symmetry.In most of our onsiderations we rely heavily on the use of a lass of naturalgauges used in studying the gauge invariant di�erential polynomials in the reviewpaper [10℄ by Drinfeld and Sokolov. The basi property whih makes the DS gaugesonvenient is that in eah DS gauge the surviving omponents of the KM urrentserve as a basis for the W-algebra.Working in the DS gauges, we give a simple algorithm to �nd the KM transfor-mations whih implement the anonial transformations generated by theW-algebra.This provides us with a new method both for omputing the W-algebra and for de-termining the ation of the W-algebra on the Toda �elds. Our method ruiallydepends on using the embedding WZNW theory and its full, non-onstrained KMalgebra. We illustrate the method on the examples of A2 and B2 and demonstrateits power by omputing the omplete W-algebra relations for the rather nontrivialexample of G2.We �nd a DS gauge whih enables us to onstrut a primary �eld basis of theW-algebra. As far as we know a general algoritm for onstruting primaryW-generatorshas not been known before, although suh generators have been found in low dimen-sional examples [6℄. We note that even the existene of a primary �eld basis is notompletely trivial, sine suh a basis is onstruted by a non-linear transformation[6℄ even if one starts from W-generators transforming in a linear (inhomogeneous)manner under the Virasoro algebra. Our onstrution of the primaryW-generators isbased on a speial SL(2; R) subgroup of the WZNW group, whih plays an importantrole throughout the theory. The primary W-generators are assoiated in a naturalway to the highest weight states of this SL(2; R) in the adjoint representation of theWZNW group.There have been attempts [15℄ at onstruting polynomial extensions of the Vi-rasoro algebra from a KM algebra by using the higher Casimirs of the underlyingLie algebra similarly as the seond order Casimir is used in the Sugawara onstru-tion. On the quantum level these Casimir algebras lose only under very restritiveonditions on the KM representation. We show that the leading terms (i. e. terms



without derivatives) of the W-generators are always Casimirs, and that the Poissonbraket version of the Casimir algebras always lose. In fat, we prove that theselassial Casimir algebras are obtained from the orresponding W-algebras by a er-tain trunation, and thus the Casimir algebras an be used to investigate the leadingterms of the W-algebras. For the lassial Lie algebras Al, Bl and Cl we give theexpliit form of the Casimir algebra.We also onsider the existene of quadrati relations for the W-algebras. In thease of the Al, Bl and Cl Lie algebras it is easy to displayW-generators with quadratirelations. The above mentioned relation between the Casimir and W-algebras showsthat for the other Lie algebras the W-relations are neessarily of higher order.Finally, we investigate how the Toda �elds an be reonstruted from the W-generators. This reonstrution is a redued version of the reonstrution of thegroup valued WZNW �eld from the KM urrents, and this tells us that every Todasolution with regular W-generators an be represented by a regular WZNW solu-tion. The reonstrution problem leads us to studying the di�erential equationssatis�ed by the gauge invariant omponents of the onstrained WZNW �eld. Thisway we reover the Lax operators studied in [10℄, whih also appear in the generalizedShr�odinger equations of [8℄. For Al, Bl, Cl and G2 the reonstrution problem anbe redued to solving a single ordinary di�erential equation of the order of the de�n-ing representation of the orresponding algebra, in all other ases one inevitably hasa pseudo-di�erential equation. We will see that one has a single ordinary di�erentialequation exatly when the representation in whih the group valued WZNW �eld istaken is irreduible under the SL(2; R) subgroup mentioned earlier, and that in gen-eral the struture of the pseudo-di�erential operator depends on the deompositionof this representation under the SL(2; R) subgroup.The plan of the paper is the following: In Chapter II we present a short re-view of the redution of the WZNW model to Toda theory and desribe the gaugedWZNW framework. We elaborate on the role of the residual gauge invariane andon the gauge invariant quantities in Setion II.2. The longest and most importanthapter is III. We start it with the de�nition of the W-algebras. In III.1 we present



the onstrution of the Drinfeld-Sokolov gauges and observe that in these gauges theW-algebra redues to the Dira braket algebra of the surviving KM urrent om-ponents. In III.2 we exhibit a primary �eld basis of the W-algebra and illustrate itwith B2. In III.3 we give an algorithm to implement the ation of the W-algebra bymeans of KM transformations and illustrate the proedure with A2 and B2. In III.4�rst we display a sublass of Drinfeld-Sokolov gauges where the W-algebra relationsare quadrati for Al, Bl and Cl. Then we introdue the `diagonal' gauge, whih isfrequently used in Chapter IV., and briey disuss the related Miura-transformation.Chapter IV. ontains a detailed analysis of the relation between the Casimir Poissonbraket algebras and theW-algebras. In IV.2 we present the expliit Poisson braketalgebra of the Casimir operators of the lassial Lie algebras Al, Bl and Cl. In thelast hapter, V., we study the di�erential and pseudo-di�erential operators appear-ing when reonstruting the Toda-�elds from the W-generators (or the onstrainedWZNW �elds from the KM urrents). There are three appendies; Appendix A on-taining our onventions and some important group theoretial results, Appendix Bwith the ompleteW(G2) algebra and Appendix C with the details of the alulationsof the Casimir algebras.



II. Toda Field Theory as a Gauge TheoryIn this hapter �rst we summarize the main points of the redution of WZNWmodels to Toda theories. Then we show how to set up a Lagrangean frameworkfor the redution, using an ambidextrous generalization of the usual vetor gaugedWZNW models. Then we elaborate on the onept of residual gauge transformationsand on the orresponding gauge invariant quantities. In partiular, we point outthat in the WZNW framework W-algebras appear naturally as symmetry algebrasof Toda theory.II.1. Toda Theory as a Gauged WZNW ModelThe so alled Toda �eld equations onstitute a rather interesting set of inte-grable (soluble) equations. These equations appear naturally in various problems(ylindrially symmetri instantons [16℄, et.) and they an also be thought of as ageneralization of the ubiquitous Liouville equation:�+���+Me� = 0 ; where M = onst: : (2:1)Now the Toda equations are given as:�+���� + 12 j�j2M� expf12 X�2�K����g = 0 ; (2:2)where K�� is the Cartan matrix* of a simple Lie algebra, � denotes the set of simpleroots and the M�'s are (positive) onstants. The orresponding Lagrangean is:L = �2� X�;�2� 12j�j2K���+�� ���� � X�2�M� expf12 X�2�K�� ��g�; (2:3)where � is the oupling onstant of the theory. Clearly (2.2) redues to the Liouvilleequation (2.1) by making the simplest hoie for K��, namely when it is just anumber (orresponding to a rank one algebra). In fat Toda �eld theories are also* Our onventions are olleted in Appendix A.



distinguished by being the only two dimensional, nontrivial onformally invariantmodels whih are soluble [8,16℄, in the lass of salar theories without derivativeouplings.These theories possess an improved energy-momentum tensor��� = �2� X�;�2� 1j�j2K���������� � 4 X�2� 1j�j2 �2� ��� (2:4)with vanishing trae, �+� = 0, on shell. Interestingly, the general solution of (2.2)an be written in losed form [16℄.Let us reall �rst, how Toda theories an be regarded as onstrained WZNWmodels. We start with the WZNW ation based on a onneted real Lie group G(with maximally non-ompat simple real Lie algebra G)S(g) = � k8� Z d2x ���Trn(g�1��g)(g�1��g)o+ k12� ZB3 Trn(g�1dg)3o ; (2:5)where g is a group-valued �eld and B3 is a three-dimensional manifold whose bound-ary is Minkowski spae-time. We hoose the oupling onstants � and k to be relatedby the equality k = �4��.This ation possesses left and right KM symmetries. Their Noether urrentsassoiated to some Lie algebra element, �, are given as follows:J(�) = Tr(� � J) ; J = �(�+g)g�1~J(�) = Tr(� � ~J) ; ~J = ��g�1(��g) : (2:6)The �eld equations are equivalent to the onservation of the left and right urrents:��J = 0 �+ ~J = 0: (2:7)Let now �� and �� (� 2 �) be arbitrary positive numbers and denote the set ofpositive roots by �+. The main result of ref. [12℄ was that by imposing the followingonstraints: J(E�) = ���J(E') = 0 ~J(E��) = ����~J(E�') = 0 � 2 �' 2 �+ n� (2:8)



the equations of motion of the WZNW theory (2.7) redue to the Toda �eld equations(2.2). To prove this result we start with the (loal) Gauss deompositiong = ABC (2:9a)of the group valued �eld g, whereA = expn X'2�+ a'E'o C = expn X'2�+ 'E�'o ;B = expn12 X�2���H�o : (2:9b)This group-valued Gauss deomposition is loally unique for Lie groups G with max-imally non-ompat Lie algebras.Now exploiting the fat that �� and �� are zero for all but the simple roots, theonstraints (2.8) an be re-written as:A�1��A = X�2� 12 j�j2��E� exp f12 X�2�K����g(�+C)C�1 = X�2� 12 j�j2��E�� exp f12 X�2�K����g : (2:10)Substituting (2.10) into the �eld equations (2.7) one indeed reovers the Toda equa-tions (2.2) (withM� = j�j2����). It an be shown that this redution is anonial inthe sense that the Poisson brakets of the Toda variables � and _� an be alulatedeither from the Toda or from the WZNW ation (as a requirement, this �xes therelationship between the oupling onstants).We remark that the famous Leznov-Savaliev general solution of the Toda �eldequations [16℄ an be derived e�ortlessly from the general solution of the WZNW�eld equations (2.7): g(x+; x�) = gL(x+) � gR(x�) ; (2:11)where gL and gR are arbitrary group valued funtions onstrained only by the bound-ary onditions and there is an obvious onstant-matrix ambiguity in the de�nition ofgL and gR. The general solution of the Toda equations an be obtained from (2.11)



by �rst imposing the onstraints (2.8) and then deomposing it aording to (2.9)[12℄. In Chapter V we shall show that it is equally easy to reover the solution of theToda �eld equations in the form reently found by Gervais and Bilal [8℄ from (2.11).As the quantization of Liouville and Toda theories is expeted to be simplerin the WZNW formulation, it is worthwile to �nd a Lagrangean realization of theredution of the WZNW model to Toda theory. In the following we wish to showthat an ambidextrous generalization of gauged WZNW models [14℄ provide a naturalframework to arry out this redution. For example, gauged WZNW models turnedout to be useful in the Lagrangean desription of the Goddard-Kent-Olive osetonstrution (GKO) [3℄.We shall need the Polyakov-Wiegmann identity [17℄ expressing the WZNW a-tion for the produt of three matries A, B, C as the sum of the respetive ationsfor A, B and C, modulo loal terms:S(ABC) = S(A) + S(B) + S(C)+ � Z d2x Tr�(A�1��A)(�+B)B�1+ (B�1��B)(�+C)C�1 + (A�1��A)B(�+C)C�1B�1	: (2:12)Next we want to onsider the gauged version of the WZNW theory, i.e. we are lookingfor an ation invariant under the transformations:g ! �g��1 � 2 H; � 2 ~H; (2:13)where �, � are funtions of both x+ and x�, and H; ~H are two isomorphi subgroupsof G.Let us �rst reall the `usual' gauged WZNW models [14℄. In the standard aseone gauges a diagonal (vetor) subgroup, H, of the Ka-Moody group GL�GR. Nowthe transformation of g under the vetor subgroup is given as:g ! g�1 (x+; x�) 2 H: (2:14a)It is easy to see that the ation funtionalI(g; h;~h) = S(hg~h�1)� S(h~h�1) h; ~h 2 H



is gauge invariant, provided (2:14a) is supplemented withh! h�1 ~h! ~h�1: (2:14b)Using (2.12) I(g; h;~h) an be re-written asI(g; A�; A+) = S(g) + � Z d2� Tr�(A�(�+g)g�1 + (g�1��g)A++ A�gA+g�1 �A�A+	 (2:15)where S(g) is the WZNW ation (2.5) andA� = h�1��h A+ = (�+~h�1)~h : (2:16)In the ation funtional (2.15) A�, A+ are regarded as the light-one omponents ofsome `gauge �eld' belonging to the adjoint representation of H, transforming aord-ing to (2.16), and its gauge invariane is obvious from the above onstrution. Thevariation of this ation with respet to the non-propagating gauge �elds A� providesonstraints whih lassially set the urrents of H to zero. It has been demonstrated[14℄ that a areful quantization of (2.15) yields the GKO oset onstrution.At �rst sight it seems impossible to generalize (2.15) to be invariant under themore general transformations (2.13), sine now the only obvious andidate for aninvariant ation is just S(hg~h�1) whih is non-loal in the gauge �elds. However,in the rather degenerate ase when H and ~H are the subgroups of G generated bythe step operators assoiated to the positive and negative roots, and denoted by Nand ~N respetively, their Lie algebras are nilpotent, and hene one has the ruialproperty that: S(h) = S(~h) � 0 : (2:17)So S(hg~h�1)�S(g) is loal, therefore the gauge �elds A�, A+ in eq. (2.16) (wherenow h 2 N and ~h 2 ~N) an be used in this ase in the same way as for the ase ofa diagonal subgroup to set the orresponding N and ~N urrents to zero. Sine theonstraints we want to implement set ertain urrents to onstants rather than tozero, we onsider the following ation:I(g; A�; A+) = S(g) + � Z d2x Tr�(A�(�+g)g�1 + (g�1��g)A++ A�gA+g�1 � A���A+�	 (2:18)



where �, � are speial (onstant) matries, given by:� = X�2� 12 j�j2��E� � = X�2� 12 j�j2��E�� :A+, A� are now independent gauge �elds in the adjoint representation of the sub-groups N and ~N so they are nilpotent matries. The invariane of the ation (2.18)under the gauge transformationsg ! �g��1; A� ! �A���1 + ��� ��1; A+ ! �A+��1 + (�+�)��1 (2:19a)where � = �(x+; x�) 2 N and � = �(x+; x�) 2 ~N (2:19b)is now not ompletely obvious beause of the non-gauge-invariant looking terms,Tr(A+� + A��). However, these terms hange by a total derivative under gaugetransformations beause of the speial form of A+, A� and that the matrix � (resp.�) ontains only step operators orresponding to simple positive (resp. negative)roots. For example under the transformation (2.19) with�(x+; x�) = exp � X'2�+  'E�'�we have Tr f� � (�+�)��1g = X'2� �'�+ ';and the term TrA+� indeed hanges only by a total derivative. The equations ofmotion following from (2.18) are:�+(g�1��g + g�1A�g)� [A+; g�1��g + g�1A�g℄ + ��A+ = 0 (2:20a)��(�+gg�1 + gA+g�1) + [A�; �+gg�1 + gA+g�1℄ + �+A� = 0 (2:20b)Tr [E��(g�1��g + g�1A�g � �)℄ = 0 (2:20)Tr [E�(�+gg�1 + gA+g�1 � �)℄ = 0: (2:20d)Now making use of gauge invariane, A+ and A� an be set equal to zero simul-taneously and then we reover from (2.20) the equations of motion of the WZNW



model (2.7) together with the onstraints (2.8). Note however, that setting A+; A�to zero is not a omplete gauge �xing. Indeed, it is lear that the ondition A� = 0 isinvariant under hiral gauge transformations � = �(x+) and � = �(x�) whih are inthe intersetion of the gauge group and the KM symmetry group of the theory. Sinein the A� = 0 gauge (2.20) redues to (2.7) and (2.8), it follows that the residualgauge transformationsg ! �g��1 where � = �(x+) 2 N; and � = �(x�) 2 ~N (2:21)must leave (2.8) invariant. This an also be veri�ed by using the standard transfor-mation property of the urrents J and ~J under KM transformations:J ! �J��1 + �(�+�)��1 and ~J ! � ~J��1 + �(���)��1: (2:22)Note that these hiral gauge transformations (2.21) form the omplete residual gaugegroup of the gauge A� = 0.From now on we stay in this gauge. Here we point out how the residual gaugetransformations (2.21) arise from the Hamiltonian point of view. To this and in therest of the paper we take the spae of solutions, given by (2.11), of the WZNW theoryas our phase spae. This is onvenient here beause of the left-right fatorized form ofthe general solution. The translation to the equivalent equal time anonial formalismould be made by parametrizing the solutions by their initial data and expressing theinitial data in terms of the anonial varibles. To make this translation as easy aspossible, in this paper we use equal time Poisson brakets on the spae of solutions.After these remarks, let us observe that the KM Poisson brakets of those urrentomponents whih are to be onstrained aording to (2.8) vanish on the submanifoldof the phase spae de�ned by (2.8) (onstraint-surfae), i.e. we are dealing with�rst lass onstraints. Now �rst lass onstraints always generate suh anonialtransformations whih leave the onstraint-surfae invariant, and it is easy to see thatin our ase these are naturally identi�ed with the residual gauge transformations.



II.2. Gauge Invariant QuantitiesClearly the Toda �elds, �� in (2:9b), are not a�eted by the residual gaugetransformations (2.21). Assuming the validity of the Gauss deomposition, (2.9), theToda �elds onstitute a omplete system of independent invariants with respet tothese transformations on the `onstraint-surfae'. In other words, Toda theory an beidenti�ed, at least loally, with the onstrained WZNW model modulo residual gaugetransformations. From now on we shall refer to the residual gauge transformations(2.21-22) simply as gauge transformations.It is important to note, that (2.9) is valid only in a neighbourhood of the identityof G. As a onsequene of this non-global nature of the Gauss deomposition, ourredution an generate singular Toda solutions from perfetly regular WZNW ones.This is the basis of one of the most important properties of the WZNW setting of Todatheory, namely, that the physially allowed singularities of the Toda solutions arepreisely those whih disappear by using the WZNW variables. We have shown thisin [12℄ in the speial ase of SL(2; R), by proving that the requirement that a Liouvillesolution be obtained from a regular solution of the WZNW theory, is equivalent todemanding that the assoiated energy-momentum tensor (2.4) be regular.In Chapter V we shall show that this generalizes for a rank l algebra where besidesthe energy-momentum tensor there are l � 1 additional `W-densities'. In that asethe Toda solutions with regular W-densities an be represented by regular WZNWsolutions, even if they appear singular in terms of the original loal Toda variables��. It an be argued that the singular lassial solutions with regular W-densitiesorrespond to an important setor of the quantized Toda theory. In the WZNWontext these solutions are learly on the same footing as the manifestly regularsolutions. Thus the WZNW variables are the proper ones for Toda theories. However,sine we must still identify gauge-related WZNW �elds, we are lead to study thegauge-invariant quantities in the onstrained WZNW theory.The Toda �elds �� are invariant, but they are only well-de�ned for WZNWsolutions in that neighbourhood of the identity where the Gauss-deomposition (2.9)



is valid. Of ourse one ould over G with a �nite number of pathes and introdueloally regular Toda �elds on them. These loal �elds would be related by somegroup transformations on the intersetions of these pathes and together they wouldde�ne a global Toda �eld.Fortunately there is a simpler and more diret way to �nd globally well-de�nedquantities whih redue to the loal Toda �elds in the neighbourhood of the identity.Consider some (d-dimensional) representation of G and hoose a basis suh that theCartan subalgebra is represented by diagonal matries, and the Lie algebras of Nand ~N are represented by upper and lower triangular matries, respetively. Then,beause � and � in (2.21) are upper and lower triangular matries respetively, with1's in their diagonals, it follows that the lower-right sub-determinantsDi � det0B� gii : : : gid... ...gdi : : : gdd1CA (2:23)of the matrix (gij) are all gauge invariant quantities. It is also easy to see that in theGauss deomposable ase the Toda �elds �� an be reovered as linear ombinationsof logarithms of the Di.For example, let us onsider Al and take G = SL(l + 1; R) in the de�ning repre-sentation. Using the standard onvention, in whih H�i has 1 in its ii-slot, �1 inits (i+ 1)(i+ 1)-slot and 0's elsewhere, for a Gauss deomposable g one obtains thesimple formula: Di = e� 12�i�1 where �k � ��k : (2:24)The loal Toda �eld � indeed beomes singular where the Gauss-deomposition easesto be valid, that is where one of the sub-determinants Di hanges sign.In general the globally well-de�ned sub-determinants (2.23) yield an overom-plete system of invariants, but in eah onrete ase one an single out l independentones. For example, for the de�ning representations of the lassial groups, the last lsub-determinants starting from gdd suÆe. They an be used as global variables forthe Toda theory, after imposing the onstraints (2.8). Sine these sub-determinantsare polynomial in the omponents of the basi WZNW �eld, g, they appear better



suited for quantizing Toda theories than the original Toda �elds themselves.For later use we note that beside the sub-determinants, whih are fully gauge-invariant polynomial quantities, there are other important quantities, whih are linearin g, but invariant under left (or right) gauge transformations only. These are simplythe elements of the last row (olumn) of g (and of gL and gR in (2.11), respetively).As the KM algebra plays a entral role in WZNW theories, it is lear that gaugeinvariant quantities formed out of the KM urrent J (and ~J) will also be importantin the Toda theories. To illustrate this, we reall how the onformal invariane ofthe Toda theory appears in the WZNW framework. Here we restrit ourselves to theleft-moving setor. It an be shown that there is a unique Virasoro algebra in thesemidiret produt formed by the KM algebra and its assoiated Sugawara Virasoroalgebra, weakly ommuting with the onstraints (2.8). Sine the residual gaugetransformations are generated by these onstraints, the energy-momentum densityL = LS � Tr (J 0 �̂) where LS = 12� Tr(J2) ; �̂ = 12 X�2�+H� (2:25)giving rise to this Virasoro algebra, beomes gauge invariant on the onstraint-surfae.It follows that L must generate the onformal symmetry of the onstrained WZNW,i.e. of Toda theory. (One an verify that, after imposing (2.8) and using the loal o-ordinates de�ned by the Gauss deomposition (2.9), L indeed redues to the improvedenergy-momentum tensor �++ (2.4).) Note that �̂ in (2.25) has the property:[�̂; E�℄ = E� when � 2 � ; (2:26)and that the lassial entre of the (Toda) Virasoro algebra is: = �12kTr(�̂2) ; (2:27)where k is the level of the underlying KM algebra.We will see in Chapter III that, besides L, there are other gauge invariant polyno-mial quantities formed out of the onstrained KM urrent and its derivatives. Theseobjets will be referred to as gauge invariant di�erential polynomials.



A ruial property (we elaborate on this in Chapter III) of the gauge invariant di�er-ential polynomials is that they form a losed algebra under the KM Poisson braketoperation. That is, the Poisson braket of two gauge invariant di�erential polyno-mials is again expressible in terms of gauge invariant di�erential polynomials andÆ-distributions. This means that if the quantities W i form a basis in the ring ofgauge invariant di�erential polynomials then we have:fW i(x);W j(y)g =Xk P ijk (W )Æ(k)(x1 � y1) ; (2:28)where the P ijk are polynomials of the W i's and their derivatives. These Poissonbraket relations generate a nonlinear algebra, reminisent of a universal envelopingalgebra.This nonlinear algebra of the gauge invariant di�erential polynomials always ontainsthe Virasoro algebra, hene it is a polynomial extension of it. This way one assoiatesan extended onformal algebra to every Ka-Moody algebra based on maximally non-ompat simple real Lie-algebras, for any level k. It turns out that this polynomialalgebra is always �nitely generated, by l=rank(G) elements. In the literature thesealgebras are referred to as lassial W-algebras.The quantum analogues of these Poisson braket algebras play an importantrole in onformal �eld theory [4-9℄. It has reently been realized [5-6℄ that quantumW-algebras an be onstruted by quantizing the so-alled seond Gelfand-DikeyPoisson braket algebra of pseudo-di�erential operators, whih has been studied ear-lier in the theory of integrable systems and is known to be isomorphi to the algebraof gauge invariariant di�erential polynomials [10℄ mentioned above.It is worth noting that the di�erential operators whih provide the bridge be-tween the original Gelfand-Dikey onstrution and the KM approah to W-algebras[10℄ (also onstruted by an independent reasoning in [8℄) appear naturally in ourframework. They are nothing but the operators de�ning the di�erential equationssatis�ed by those (last row) omponents of gL whih are invariant under left gaugetransformations. These di�erential equations an be obtained as a onsequene of



the obvious relation (��+ � J)gL = 0 ; (2:29)where (2.29) is taken in the de�ning representation of the orresponding maximallynon-ompat real Lie-algebra G (see Chapter V for more details).In their review paper [10℄ Drinfeld and Sokolov studied the algebra of gaugeinvariant di�erential polynomials by making use of the onstrained KM algebra. Weshall see that exploiting the full (unonstrained) embedding KM algebra yields furtherinsight into the struture of lassial W-algebras and leads to new results.



III. The W-AlgebraIn this hapter we undertake a detailed analysis of the W-algebra introdued inChapter II. We �rst make the de�nition of the W-algebra more expliit. The basiobjets we are dealing with are gauge invariant di�erential polynomials, W i, de�nedon the spae P of the onstrained KM urrents (i. e. urrents J satisfying (2.8)). ThePoisson brakets of the W i are obtained by �rst extending their domain to the wholeKM phase spae, K, omputing the Poisson brakets on K and then restriting toP . The Poisson brakets on K depend on the hosen extension of the W i's (denotedby ~W i), but their restritions to P , whih are again gauge invariant, do not. Thisfollows by using the standard properties of the Poisson braket from the the �rst lassnature of the onstraints, from the fat that the W i's are invariant under the gaugetransformations generated by the onstraints (and the assumption that the ~W i arereal analyti in a neighbourhood of P ).There is no reason to expet that a generi extension of theW i's loses under thePoisson braket on K, but there is a trivial extension, whih has the property thatthe Poisson brakets of the ~W i's not only lose but have the same formal strutureon K as on P , i.e. f ~W i(x); ~W j(y)g =Xk P ijk ( ~W ) Æ(k)(x1 � y1) ;where the P ijk 's are the `struture di�erential-polynomials' (2.28) of the W-algebra.This partiular extension is onstruted as follows. First one expands the generalKM urrent J 2 K in the Cartan-Weyl basis and noties that in P the upper trian-gular and Cartan omponents vary freely, while the lower triangular omponents areompletely �xed by (2.8). The trivial extension ~W i of W i is then de�ned to be theone whih simply does not depend on the lower triangular urrent omponents.Every element W of the W-algebra generates anonial transformations on theKM phase spae by the formulaJ ! J + Æ ~WJ Æ ~WJ = � Z 2�0 dx1 a(x)n ~W (x) ; Jo ;



where ~W (x) is any extension and a(x) is an arbitrary test funtion.(Note that our equal-time Poisson brakets and spatial Æ's are in fat equivalent tolight-one brakets and Æ's. Prime everywhere means, even on Æ's, `twie spatial-derivative' and this redues to �+ on quantities, J(x), W i(x) and our test funtions,whih depend on x = (x0; x1) through x+ only.)Sine the transformation Æ ~W is anonial (preserves the KM-struture and henethe o-adjoint orbits in K), it follows that it an be represented as a �eld dependentKM transformation, i.e. Æ ~WJ = ÆRJ � [R; J ℄ + �R0 ;where R(J) is some (J -dependent) element of the KM algebra. The transformationÆ ~W transforms P into itself, and it in fat indues a transformation Æ�W on the spaeM of the gauge-orbits in P . The transformations Æ ~W orresponding to di�erentextensions ~W ofW di�er on P only by (�eld dependent) gauge trans formations, andthus the indued transformation Æ�W do not depend on the extension (only on W ).Of ourse, the redued phase spae M arries its own Poisson braket struturewhih is inherited from the Poisson braket struture of K, and is desribed bythe standard Dira braket formula if one parametrizes M with some setion of thegauge orbits in P (gauge hoie). The indued W-transformations Æ�W are anonialtransformations on M with respet to this indued (Dira) Poisson braket.In Setion III.1. we introdue some onvenient gauges (alled DS gauges), whihwill be used to show that the W-algebra has a �nite (l-dimensional) basis and toexhibit some partiular bases W i (i = 1 : : : l). The partiular W-generators W i willbe the gauge invariant extensions (from the gauge setion to P ) of those urrentomponents (alled DS urrents) whih survive the gauge �xing. Thus, in thesegauges the W-algebra appears as the Dira braket algebra of the DS urrents. Thisis the basi fat on whih most of our results are based.In Setion III.2. we exhibit a onformal �eld basis of the W-algebra. In SetionIII.3., working in a DS gauge, we shall present an algorithm for �nding the �elddependent KM transformations whih implement the induedW-transformations Æ�W .



This algorithm is our main result sine it enables us to alulate the ation of theW-algebra on any gauge invariant quantity. In the last setion we deal with somepartiular gauges whih failitate the study of some properties of the W-algebra.III.1. Drinfeld-Sokolov GaugesIn this setion we reall the onstrution of a lass of partiularly onvenientgauges in whih the properties of the W-algebra beome apparent. This lass ofgauges has been introdued �rst by Drinfeld and Sokolov [10℄, so we all them DSgauges.First we onsider a speial sl(2; R) subalgebra of G, S, whih will play an im-portant role in what follows. This subalgebra is spanned by the Cartan element �̂ in(2.25) and nilpotent generators I� suh that[I+; I�℄ = 2�̂ [�̂; I�℄ = � I� : (3:1)The step operators are expliitly given byI� = lXi=1 �iE��i I+ = lXi=1 ni�i E�i (3:2a)where �i = 12��ij�ij2 ni = 2 lXj=1(K�1)ij : (3:2b)Note that sine Tr(I�E�i) = ��i any element of P , i.e. any urrent ful�lling theonstraints (2.8) (with ��i = �i), has the formJ(x) = I� + X�2� ��(x)H� + X'2�+ �'(x)E': (3:3)The adjoint representation of G deomposes into S multiplets. Sine �̂ is an elementof the Cartan subalgebra of G the step operators are �̂-eigenstates,[�̂; E'℄ = h(')E'; (3:4a)



where h(') is the height of the root ', i.e.h(') � lXi=1mi if ' = lXi=1mi�i: (3:4b)Let Gh be the eigensubspae of �̂ of eigenvalue h. If h 6= 0, thendim Gh = number of roots of height h: (3:5)It an be shown [18, 10℄ that, if for 1 � h � h (h : height of the highest root  )nh = dim Gh � dim Gh+1 ; (Xh nh = l); (3:6)is not zero, then h is an exponent of G with multipliity nh.We reall the meaning of the exponents and their multipliities [18℄: The ring ofgroup invariant polynomial funtions on G is generated by l homogeneous elementswhose degrees are determined by the exponents, h. More preisely, there are exatlynh independent generators of order h + 1. In other words, these generators de�nea omplete set of independent Casimir operators. We note that h = 1 and h = h are always exponents. The multipliity of the exponents is always 1, exept for D2l,where there are 2 independent Casimirs of order 2l.Note that for (h � �1) I� maps Gh+1 into Gh injetively, that isdim I�(Gh+1) = dim Gh+1; (3:7)where I�(Gh+1) = [I�;Gh+1℄. For any exponent, h, let Vh be a linear omplement ofI�(Gh+1) in Gh (dim Vh = nh) and let us also introdue the diret sumV �Mh Vh (dim V = l): (3:8)We hoose a basis Fi (i = 1 : : : l) in V in suh a way that[�̂; Fi℄ = hiFi (3:9a)holds, where 1 = h1 � h2 � � � � � hl = h (3:9b)



is the list of the exponents with possible multipliities inluded (see Appendix A).The basi fat we need is that any onstrained urrent of the form (3.3) an beuniquely gauge transformed into a urrent Ĵ(x) of the formĴ(x) = A(x)J(x)A�1(x) + �A0(x)A�1(x) � I� + lXi=1W i(x)Fi ; (3:10)and that the W i(x) and the parameters a'(x) of the gauge transformationA(x) = exp � X'2�+ a'(x)E'�are di�erential polynomials in the omponents of J(x). The proof of this statement[10℄ is atually easy. Using the fat that the gauge transformations are generated byupper triangular matries, the inspetion of (3.10) reveals that it is uniquely solublein purely algebrai steps for both W i(x) and a'(x) in terms of J(x).Denote now by MV the spae, whose `points' are urrents of the form (3.10).The previous statement tells us that MV de�nes a omplete gauge �xing. Moreover,it also follows immediately that the omponents, W i(x), of the unique intersetionpoint of MV with the gauge orbit passing through J 2 P de�ne gauge invariantdi�erential polynomials on P , whih freely generate the W-algebra. In other words,the W i's form a basis in the algebra of gauge invariant di�erential polynomials.On the other hand, a ompletely general element of the KM algebra K an beexpanded asJ(x) = lXi=1 U i(x)Fi + X'2�+ ��'(x)E�' + X'2�+ �'(x)[I�; E'℄ (3:11)and MV is obtained by �rst onstraining the ��'(x) by imposing (2.8) and then also�xing the residual gauge freedom by setting the �'(x) to zero. The urrent ompo-nents, U i(x), whih are not a�eted by this two step restrition and the orrespondinggauge invariant di�erential polynomials, W i(x), are related byU i(x)jMV =W i(x)jMV : (3:12)



However, it should be stressed that oneptually the U i(x) (linear funtions on K)and the W i(x) (gauge invariant di�erential polynomials on P ) are very di�erentobjets and must be arefully distinguished. To make this distintion even learerwe introdue a separate name for the U i. From now on we shall refer to them as DSurrents. It will turn out that most of our results are a onsequene of (3.12). Forexample, this relation immediately implies that eah di�erential polynomial W i(x)ontains a leading term, i.e. a term without derivatives. In Setion IV.1. we shallprove that the leading terms of any W-basis are obtained by restriting Casimirsfrom K to P .Now we disuss how the W-algebra appears in a DS gauge. ClearlyMV inheritsa Poisson braket struture from the embedding KM algebra. This indued Poissonbraket struture is given by the familiar Dira braket formula [19℄nf; go� = nf; go� X�;�2�Z 2�0 Z 2�0 dx1 dy1nf; ��(x)oD��(x; y)n��(y); go ; (3:13)whih is valid for two arbitrary phase spae funtions (f and g are funtions on theKM phase spae but only their restrition toMV really matters). In this formula the�� are the urrent omponents to be onstrained (f. (3.11)), and D��(x; y) is theinverse of C��(x; y) � n��(x); ��(y)o ; (3:14)whih satis�es X�2� Z 2�0 dy1C��(x; y)D�(y; z) = Æ� Æ(x1�z1) ; (3:15)for arbitrary �;  2 �. (Observe that the matrix-elements C�� , where �; � 2 �� ,vanish on P , while the submatrix C��� (�; � 2 �+ ) is regular on MV . Hene C��is also regular on MV .)Now the DS urrents, U i(x), whih survive the omplete gauge �xing provide us withoordinates for the phase spae MV . Thus the indued Poisson struture of MV anbe desribed by speifying the Dira brakets of the U i(x). The ruial point is thatthe Dira brakets of the DS urrents satisfynU i(x); U j(y)o� = nW i(x);W j(y)o on MV ; (3:16)



as a onsequene of (3.12). As disussed earlier the Poisson brakets of the W i's arein priniple alulated by �rst extending them to K and then restriting the Poissonbrakets alulated on K to P . Beause of the gauge invariane of the W i's, this isequivalent to alulating the Dira brakets of the DS urrents.To summarize, we see that if the spae of gauge orbits M is parametrized by thegauge setionMV , then its Poisson braket struture is naturally desribed by meansof the Dira brakets of the DS urrents, and that the W-algebra an in fat beregarded as the Dira braket algebra of the DS urrents. It will be demonstratedin the rest of this hapter that the properties of the W-algebra are most e�etivelystudied by making use of the DS gauges.The family of DS gauges is parametrized by the possible hoies of the linearspae V in (3.8). It is easy to see that U1(x) � L(x) on MV and therefore W 1(x) �L(x) on the onstraint-surfae P , for any DS gauge.III.2. Conformal W-GeneratorsThe energy-momentum density of the Toda theory, L in (2.25), generates theation of the onformal group on the KM phase spae. This onformal ation operatesas J ! J + ÆLJÆLJ = � Z 2�0 dx1 a(x)nL(x) ; Jo = (aJ)0 + � a00�̂+ a0 [�̂; J ℄ ; (3:17)where J 2 K and a(x) is any test funtion. The main point of this setion is theobservation that the W-generators assoiated to a ertain DS gauge (highest weightgauge) are primary �elds with respet to this onformal ation.To demonstrate this it will be useful to desribe the onformal ation in termsof �eld dependent KM transformations. Let R(J) be a KM algebra valued funtionde�ned on the KM phase spae. Then it generates an in�nitesimal (�eld dependent)KM transformation: J ! J + ÆRJ ÆRJ � [R; J ℄ + �R0 : (3:18)



Now it is not diÆult to verify that the onformal ation ÆL is implemented by the�eld dependent KM transformation generated by the partiular KM valued funtionR0(a; J) = 1�aJ + a0�̂ ; (3:19a)that is one has ÆLJ = ÆR0J for any J : (3:19b)The onformal ation (3.17) transforms the set of onstrained KM urrents, P ,into itself. Another ruial property of ÆL is that on P it ommutes (modulo gaugetransformations) with the ation of the gauge transformations (2.22). Therefore(3.17) indues a onformal ation on the gauge equivalene lasses of the onstrainedurrents, whih amounts to an ation on the set of gauge �xed urrents, MV , rep-resenting those equivalene lasses, for any hoie of V . Our purpose below is todesribe this indued onformal ationJ ! J + Æ�LJ ; (J 2MV ) (3:20)operating on MV .In general J + ÆLJ =2 MV , and therefore to determine Æ�LJ we must �nd theompensating (unique) gauge transformation, r = r(a; J), suh thatJ + ÆLJ + ÆrJ 2MV ; for any J 2MV ; (3:21a)and then we haveÆ�LJ = ÆLJ + ÆrJ = ÆRJ with R = R(a; J) = R0(a; J) + r(a; J) : (3:21b)Before trying to determine r(a; J) let us reall that Æ�L is a anonial trans-formation on the redued phase spae MV , generated by L by means of the Dirabraket:Æ�LJ = � Z 2�0 dx1 a(x)nL(x); Jo� = � Z 2�0 dx1 a(x)nU1(x); Jo� (3:21)



on MV . Here the seond equality holds provided we normalize the DS urrent U1aording to U1(x) = L(x) on MV ; (3:22a)whih orresponds to the following normalization of the basis vetor F1 :TrF1I� = � : (3:22b)With this normalization, as an obvious onsequene of (3.16) and (3.21), we have :Æ�L U1 = a(U1)0 + 2a0U1 � �Tr(�̂2) a000: (3:23)Next we want to determine the indued onformal transformation of the U i fori � 2. First, for an arbitrary gauge �xed urrentJ(x) = I� + lXi=1 U i(x)Fi (3:24)one easily sees that :ÆR0J = lXi=1[a(U i)0 + (hi + 1)a0U i℄Fi + �a00 �̂ ; (3:25)where hi is the height of the Lie algebra element Fi aording to (3:9a). The lastterm is `out of gauge' so one indeed needs a `ompensating' gauge transformation.In priniple it is a purely algebrai problem to �nd r(a; J), but in pratie it is quitehard to produe an expliit formula for the solution in an arbitrary DS gauge for anarbitrary Lie algebra.However, one an �nd a speial gauge in whih the form of r(a; J) is partiularlysimple and the DS urrents are primary with respet to the indued onformal ation(3.21). The onstrution is based on the sl(2; R) subalgebra S introdued in theprevious setion. Sine the adjoint representation of G deomposes into S multiplets,it is natural to onsider the orresponding highest weight states, i.e those Lie algebraelements whih ommute with I+. It is easy to see that the highest weight states inGh span a natural omplement of I�(Gh+1). Chosing this partiular omplement in



the onstrution presented in III.1. we obtain a partiular DS gauge, whih we allthe highest weight gauge. By using the fat that the basis vetors Fi of V in (3.8)now satisfy the onditionF1 � I+; [I+; Fi℄ = 0; i = 2 : : : l ; (3:26a)one easily proves that in the ase of the highest weight gauge the ompensating gaugetransformation r(a; J) is given by the simple formular(a; J) = �12�a00I+: (3:26b)The orresponding onformal variation of the DS urrents U i then turns out to beÆ�L U i = a(U i)0 + (hi + 1)a0 U i for i = 2 : : : l ; (3:27)i. e. they are indeed primary with respet to the indued onformal ation (3.21).Equivalently, one an say that the orresponding gauge invariant di�erential polyno-mials,W i, are primary with respet to the original onformal ation (3.17) (restritedto P ). The onformal weights of the W i's (U i's) are (hi+1), i.e. they are in one-to-one orrespondene with the orders of the independent Casimirs of G.To summarize, we have proven that the generators W i (i = 2 : : : l) de�ned bythe highest weight gauge, together with L = W 1, onstitute a natural, onformal�eld basis of the W-algebra. This is one of our main results. As far as we know,an algorithm to �nd a onformal W-basis has not been known before in the generalase, although onformal W-generators were expliitly exhibited for some partiularlow dimensional examples [6℄ .We now illustrate the idea of both the DS and the highest weight gauges onthe example of B2 = o(3; 2). We use the onvention [20℄ in whih this Lie algebraonsists of (5� 5) matries whih are antisymmetri under reetion with respet tothe `seond diagonal'. The Cartan subalgebra is spanned by the diagonal matriesin B2. In this onvention the Lie algebras of N and ~N are represented by upper andlower triangular matries, respetively. In partiular, the E� for � 2 � have non-zero



entries only in the �rst slanted row above the diagonal. The Cartan element �̂ in(2.25) is then easily found to be�̂ = diag (2; 1; 0;�1;�2) : (3:28a)By a onvenient hoie of the parameters �i in (3.2) we an hoose the step operatorsof S asI+ = 0BBB� 0 4 0 0 00 0 6 0 00 0 0 �6 00 0 0 0 �40 0 0 0 0
1CCCA ; I� = 0BBB� 0 0 0 0 01 0 0 0 00 1 0 0 00 0 �1 0 00 0 0 �1 0

1CCCA : (3:28b)(Note that the value of the parameters �i is irrelevant sine they an be rede�ned byresaling the simple step-operators.) The elements of Gh are now those matries inB2 that have non-zero entries h steps above the diagonal only. Before desribing thegeneral DS gauge, we need to know the image I�(G2). In fat, an easy alulationyields that I�(G2) is the set of matries of the form0BBB� 0 x 0 0 00 0 �x 0 00 0 0 x 00 0 0 0 �x0 0 0 0 0
1CCCA : (3:29)Sine dimG1 = 2, there is now a one parameter family of (one dimensional) linearsub-spaes V1 of G1 whih are omplementary to I�(G2) in G1. These are nothingbut the `lines' spanned by the vetors of the formF1 = F1(p) = 0BBB� 0 p 0 0 00 0 �� p 0 00 0 0 p� � 00 0 0 0 �p0 0 0 0 0

1CCCA ; (3:30)for any real p. Note that F1 has been normalized aording to (3:22b). (For the Blalgebras Tr means half of ordinary matrix trae in the de�ning representation.) Thegeneral urrent in the `DS gauge of parameter p' is written asJ(x) = I� + U1(x)F1 + U2(x)F2 = 0BBB� 0 pU1 0 U2 01 0 qU1 0 �U20 1 0 �qU1 00 0 �1 0 �pU10 0 0 �1 0
1CCCA ; (3:31)



where q � ��p. We designate this set of gauge �xed urrents as Mp. Observe thatfor 5p = 2� the matrix F1 is proportional to I+, so that this value of p orrespondsto the highest weight gauge.It is not hard to alulate the ompensating gauge transformation r(a; J) in(3.21) whih anels the last term in (3.25). The reader an hek that the result isr(a; J) = �12�a00I+ +0BBB� 0 0 y2 y3 00 0 0 0 �y30 0 0 0 �y20 0 0 0 00 0 0 0 0
1CCCA ; (3:32a)with y2 = � a000; y3 = �[�a0000 � a00U1℄ ; � = �(2�� 5p); (3:32b)whih redues to (3:26b) in the ase of the highest weight gauge, as it should. Theorresponding onformal variation of U2 on Mp is given by:Æ�L U2 = 4a0U2 + a(U2)0 � ��(��p)a000U1 + �(a00U1)0 � �2a00000�: (3:33)Sine U1 generates the indued onformal ation on Mp through the Dira braket,from (3.33), taking (3.16) also into aount, we an read o� the Poisson braket ofW 1 with W 2 (restrited to P ), whih is now given as:fW 1(x);W 2(y)g =3W 2(x)0Æ(x1 � y1) + 4W 2(x)Æ0(x1 � y1)+ ��(p��)(W 1Æ)000 � �(W 1Æ0)00 + �2Æ00000�: (3:34)For �=0, that is for the heighest weight gauge, the orresponding W-generator,W 2, is a onformal primary �eld of weight 4. The generator W 2 = W 2(p) assoiatedto any other DS gauge (of parameter p) transforms in a ompliated, inhomogeneousmanner under the onformal ation.III.3. KM Implementation of W-TransformationsHere our purpose is to study the anonial transformations de�ned (as disussedat the beginning of the hapter) by the W-algebra on the spae of gauge orbits



M . For this we onsider the transformation Æ�W indued on M by the followingW-transformation Æ ~W (ating originally on K) :J ! J + Æ ~WJ Æ ~WJ = � lXi=1 Z 2�0 dx1 ai(x)n ~W i(x) ; J o ; (3:35)where the ~W i(x) are some arbitrary extensions from P to K of the W-generatorsW i(x) assoiated to some DS gauge with gauge setion MV , and the ai(x) are ar-bitrary test funtions. We parametrize M by MV and in this parametrization thetransformation Æ�W is generated by means of the Dira braket aording toJ ! J + Æ�WJ Æ�WJ = �nQ(a; J) ; J o� ; (3:36a)with Q(a; J) = lXi=1 Z 2�0 dx1 ai(x)U i(x) ; (3:36b)where the U i(x) are the orresponding DS urrents. Similarly to the speial aseof the indued onformal transformation Æ�L disussed in the preeeding setion, theindued W-transformation Æ�W an be implemented by some �eld dependent KMtransformation R(a; J).Of ourse, this KM implementation is in priniple possible in any gauge, buthere we show that in the DS gauges there exists a simple, e�etive algorithm foratually omputing the KM valued funtion R(a; J) whih implements Æ�W , i. e.whih satis�es Æ�WJ = ÆRJ for any J 2MV : (3:37)This is immediately translated into the ation of theW-algebra on itself, sine in theDS gauge the W i(x) redue to the urrent omponents U i(x). An extra bonus of theKM implementation is that the KM algebra ats also on the G-valued WZNW �eldg(x+; x�) and from that ation we get:Æ�W g = ÆRg that is nQ(a; J) ; go� = �R(a; J) � g ; (3:38)where `dot' means ordinary matrix produt. From this equation we an read o� theation of the W-algebra on the Toda �elds, whih are the sub-determinants of g.



In order to make the presentation more onrete, we onsider as examples theW-algebras of the rank 2 Lie algebras A2, B2 and G2. The A2 example, whih is thesimplest non-trivial ase, is inluded for the purpose of illustration. The B2 examplehas some non-trivial features whih will motivate some developments in subsequentsetions. Finally, G2 (in Appendix B) illustrates the power of the method, sine itenables us to ompute the very non-trivial struture polynomials of this W-algebra.We start by presenting a general haraterization of the tangential (gauge pre-serving) KM transformations for an arbitrary DS gauge. First we pik a point,J0 2 MV , and onsider the tangential KM transformations at J0. In other words,we want to desribe all elements R(J0) of the KM algebra, whih map J0 2MV intoMV , i. e. we want to solve the ondition thatJ0 + ÆRJ0 � J0 + [R; J0℄ + �R0 is in MV : (3:39)To give the general solution of this ondition, it turns out to be useful to supplementthe deompositions introdued in setion III.1,Gh = Vh � I�(Gh+1) ; h � 1 (3:40)by similar ones for the subspaes G�h of G orresponding to the negative roots (f.(3.4)). Indeed, the deomposition we onsider is indued by (3.40) as follows:G�h = V�h � U�h ; for h � 1 ; (3:41)where V�h is the transpose of Vh:V�h = nvt j v 2 Vho ; (3:42a)and U�h is the annihilator of Vh in G�h with respet to the salar produt Tr :U�h � nu 2 G�h j Truv = 0 8 v 2 Vho : (3:42b)(The transpose in (3:42a) an be de�ned abstratly by means of the Cartan-Weylbasis as Et' = E�', Ht' = H', but in onvenient onventions [20℄ it is the ordinary



matrix transpose.)Having introdued the neessary de�nitions now we return to the study of (3.39) anddeompose the quantities entering this ondition as follows:R(x) =Xh�1�u�h(x) + v�h(x)�+Xh�0 yh(x) ; (3:43a)where u�h; v�h and yh are in the subspaes U�h, V�h and Gh, respetively, andJ0(x) = I� +Xh�1 v0h(x) ÆRJ0(x) =Xh�1 vh(x) ; (3:43b)where both v0h and vh must be in Vh. By analysing equation (3.39), one �nds thatif J0 and all the v�h(x) are given, then the remaining omponents of R are uniquelydetermined di�erential polynomials in terms of these. Furthermore, it follows thatthe omponents of ÆRJ0 are di�erential polynomials of J0 and v�h as well. In fat,the di�erential polynomials, R and ÆRJ0, are linear in v�h(x), but in general non-linear in J0.The above result provides us with a omplete haraterization of the tangential KMtransformations at the arbitrarily hosen gauge-�xed urrent J0. To atually provethis, one has to onsider equation (3.39) height by height, starting from below, anduse the following two properties of our Lie algebra deomposition:First, for h � 0, I� maps Gh into Gh�1 in a one-to-one manner and this map is infat onto for those h whih are not exponents. Seond, for 1 � h � (h � 1), I�maps U�h onto G�h�1 also in a one-to-one manner.By using these properties of I�, it is not diÆult to verify that ondition (3.39)is indeed uniquely soluble for R(J0) and ÆRJ0 by purely algebrai means at everyheight, one J0 and the v�h are given, and that the solution is linear in v�h.Let us hoose a basis fF�ig in Lh V�h dual to the basis fFig in Lh VhF�i � F tiTrFi F ti : (3:44a)Sine we assume that Fi 2 Vhi , the duality property (whih we shall need later on)TrFiF�j = Æ ji ; (3:44b)



is automati in almost all ases, i.e. for those basis vetors whih orrespond toexponents hi 6= hj of multipliity 1, and we an also ensure this by a hoie in the aseof those 2 basis vetors whih orrespond to that exeptional exponent h = (2l � 1)of D2l whose multipliity is 2. Using this basis, we an now write R in (3.43) asR = R(a; J0) = lXi=1 ai(x)F�i +Xh�1u�h(x) +Xh�0 yh(x) ; (3:45)where the ai(x) are arbitrary funtions and the u�h and yh are di�erential polyno-mials linear in the ai, but not neessarily in J0.It is important to emphasize that, sine J0 was arbitrary in the onstrution, thisequation de�nes an element R(a; J) of the KM algebra for any J and ai. Aordingto its onstrution, at any �xed J 2MV this KM valued funtion R(a; J) provides aparametrization of the set of tangential KM transformations at J , by the l arbitraryreal funtions ai(x). Hene it is lear that by varying J and at the same time pro-moting the parameters ai to funtionals of J one an write in the form R(a(J); J)the most general �eld dependent, gauge-preserving KM transformation on MV . So,in partiular, the �eld dependent KM transformation implementing the indued W-transformation Æ�W (3.37) an also be written in this form with some funtionalsai(J).The result we prove is that the above onstruted KM valued funtion R(a; J)when onsidered for �xed (J -independent) ai and varying J is the one whih imple-ments the indued W-transformation Æ�W aording to (3.37) and (3.38).This result means that we in e�et replaed the task of �nding the inverse ofthe matrix C��(x; y) (3.14) whih enters the standard formula (3.13) of the Dirabraket, by the muh easier (as will be lear from the examples) task of solvingequation (3.39).To justify our laim we now show that(ÆRf)(J0) = nf;Qo�(J0) (3:46)holds for an arbitrary real funtion f(J), where R = R(a; J) is given by the aboveonstrution, Q = Q(a; J) is the moment of the DS urrents de�ned in (3:36b) and



J0 2MV is arbitrary.To this �rst we reall that any element R0 of the KM algebra de�nes a partiular(�eld independent) KM transformation ÆR0 on the full KM phase spae K, whih isan (in�nitesimal) anonial transformation generated by means of the KM Poissonbraket by the funtion: Q0(J) = 2�Z0 dx1TrR0(x)J(x) : (3:47)This means that the relation ÆR0 F (J) = nF;Q0o(J) (3:48)is satis�ed on the full KM phase spae K, for any real funtion F (J). The trik isthat now we take R0 to be R(a; J0) in (3.45) for �xed J0 and a. In this ase weknow that at J0 the variation ÆR0 respets the onstraints de�ning MV (R(a; J0) wasonstruted by requiring this) and therefore at J0 the onstraint-ontributions dropout from the Dira-braket of Q0 (3.47) with any quantity. This way we derivenF;Q0o(J0) = nF;Q0o�(J0) : (3:49)On the other hand, it is easy to see that for R0 = R(a; J0) the funtions Q0(J) (3.47)and Q(a; J) (3:36b) di�er on MV only by a onstant. This implies that they an beinterhanged on MV under Dira-braket. Taking this into aount we immediatelyobtain (3.46) by ombining (3.48) and (3.49) and by taking FjMV = fjMV . This�nishes the proof.We now illustrate on the simplest non-trivial example, A2 = sl(3; R), how toalulate the W-algebra by our algorithm. The W(A2)-algebra is well known but itis worth reonsidering it in the present framework as an illustration. We use againthe onventions of [20℄. The Cartan element of the speial sl(2; R) is represented by:�̂ = diag(1; 0;�1): (3:50a)



Choosing �1=�2=1 in (3.2) the remaining generators of S are given by:I+ = 0� 0 2 00 0 20 0 01A and I� = 0� 0 0 01 0 00 1 01A : (3:50b)As in the B2 example, there is a one parameter family of DS gauges, and thegauge �xed urrent in the `DS gauge of parameter p' is written asJ(x) = I� + U1(x)F1 + U2(x)F2 ; (3:51)where we an takeF1 = F1(p) = 0� 0 p 00 0 ��p0 0 0 1A and F2 = 0� 0 0 10 0 00 0 01A : (3:52)Here F1 is normalized aording to (3:22b). The highest weight gauge orrespondsto 2p=�, but here we hoose to work in the `Wronskian gauge' p= �, whih is thegauge usually onsidered in the literature [5-9℄ (the origin of the name `Wronskiangauge' will beome lear in Chapter V).Our aim is to �nd the expliit form of R(a; J) in (3.45) in the Wronskian gauge.In this ase F�1 = 0� 0 0 01� 0 00 0 01A and F�2 = 0� 0 0 00 0 01 0 01A ; (3:53)and U�1 in (3:42b) now onsists of matries for whih only a32 is non-zero, while U�2is trivial. The expliit form of R in (3.45) reads then asR = R(a1; a2; J) = 0� y0 y1 y2a1� (~y0 � y0) ~y1a2 u�1 �~y01A ; (3:54)where the ai are arbitrary funtions and the other entries are to be determined bythe ondition that the variation ÆRJ must leave J `form invariant'. In our ase thismeans that ÆRJ must be of the formÆRJ = [R; J ℄ + �R0 � 0� 0 �ÆU1 ÆU20 0 00 0 0 1A ; (3:55)



sine in the Wronskian gauge J = 0� 0 �U1 U21 0 00 1 0 1A : (3:56)As it follows from our general result, substituting (3.54) and (3.56) into (3.55) oneobtains a system of equations whih is uniquely soluble in purely algebrai steps forboth the omponent funtions u�1 : : : y2 of R and for the orresponding variationof J . One has to onsider (3.55) height by height, starting from below, and easilyobtains the following formulae for the omponents of R(a; J):u�1 = a1� � �a02 ;y0 = a01 + �3 [a2U1 � �a002 ℄ ;~y0 = 2y0 � a01 ; y1 = a1U1 + a2U2 � �y00 ;~y1 = a2U2 � �~y00 ;y2 = a1� U2 + �~y01: (3:57)Before proeeding let us note that R(a2=0) implements the indued onformalation in the Wronskian gauge, and in fat one an rewrite the above formula asR(a1; a2=0; J) = [ 1�a1J + a01�̂℄� �[ 12a001I+ + � a0001 F2℄ ; (3:58)whih is onsistent with (3.21) and (3:19a) desribing the onformal ation in general.The variation of J under the KM transformation ÆR is found to be :ÆU1 =[a1(U1)0 + 2a01U1 � 2�a0001 ℄+ [2a2(U2)0 + 3a02U2 � �2(a2U1)00 + �3a00002 ℄ (3:59)and ÆU2 =[a1(U2)0 + 3a01U2 + �2a001U1 � �3a00001 ℄+ a2[�2(U2)00 + 23�3U1(U1)0 � 23�4(U1)000℄+ a02[ 23�3(U1)2 + 2�2(U2)0 � 2�4(U1)00℄� 2�4a002(U1)0 � 43�4a0002 U1 + 23�5a000002 : (3:60)
Now by ombining equations (3.36) and (3.37), it follows thatÆU i(x) = Xj=1;2Z 2�0 dy1 aj(y)nU i(x); U j(y)o� (3:61)



holds, so from (3.59) and (3.60) one an read o� the Dira brakets of the DS urrents,yielding immediately the Poisson brakets of W 1 and W 2 aording to (3.16). (Seesetion IV.1.)Observe that the W 2 generator assoiated to the Wronskian gauge is not aprimary �eld with respet toW 1 = L. However, it is easy to see that the ombinationW 2 � �22 (W 1)0 (3:62)de�nes a primary �eld of weight 3. By investigating the transformation rules be-tween the W-bases orresponding to di�erent DS gauges one an prove that (3.62) ispreisely the W-generator assoiated to the highest weight gauge.Note also that in this example the omponents of R(a; J) in (3.57) are only linearfuntions of the urrent omponents, and as a onsequene ÆRJ is at most quadratiin J , whih implies that the Poisson brakets of the W-generators are also (at most)quadrati polynomials. This is not always the ase, as an be seen e.g. in the exampleof B2.We now illustrate the ation of the W-generators on the omponents of thematrix-valued �eld g(x+; x�) on this example. All we have to do is to use the results(3.57) for (3.54) and substitute it into (3.38).Let us disuss the onformal transformations �rst. For this ase, we �nd:Æ1g1i = a1g1i + (a1U1 � �a001)g2i + (a1� U2 � �2a001)g3i (3:63a)Æ1g2i = a1� g1i � �a001g3i (3:63b)Æ1g3i = a1� g2i � a01g3i : (3:63)To simplify (3.63) we an make use of the relation between the urrents and thematrix-valued �elds, (2.6). In this example this givesg2i = �� i g1i = �2�2 i ; (3:64)where  i = g3i and � = �=�x+. (2.6) also gives a di�erential equation satis�ed by  i(see Chapter V), whih we will not expliitly use here. Using (3.64), (3:63) simpli�esto Æ1 i = a1� i � a01 i ; (3:65)



whih tells us that  i is a primary �eld with onformal spin�1, whereas the remainingequations in (3.63) desribe the onformal transformation properties of the seondary�elds (3.64).We now turn to the genuine W-transformation generated by U2. Using (3.64)again, we �nd Æ2 i = a2(�2�2 � 2�3 U1) i � �2a02� i + 2�23 a002 i : (3:66)(3.66) an be thought of as the transformation rule for a `W-primary' �eld under theW 2-transformation (for the A2 W-algebra).For the algebra B2 we have derived the onformal ation in Setion III.2. Thusit only remains to determine the anonial transformation generated by W 2 to knowthe omplete set of transformations generated by the W-algebra in this ase, fromwhih we an of ourse again (as for A2) read o� the W-relations themselves. Byapplying the algorithm presented above one �nds after lengthy but straightforwardalulations thatfU2(x); U2(y)g� = 12 2Xi=0[F2i+1(x) + F2i+1(y)℄ Æ(2i+1)(x1 � y1)� �5P Æ(7)(x1 � y1)(3:67)on Mp, where F1 =Q11(U2)00 +Q12U1U2 +Q13(U1)0000 +Q14U1(U1)00+Q15((U1)0)2 +Q16(U1)3F3 =Q31U2 +Q32(U1)00 +Q33(U1)2 ; F5 = Q5U1 ;P =p2 + (p� q)2 and q = �� p : (3:68)
Here Q5, Qjk are polynomials of the parameter p, given expliitly as follows:Q11 =� 2�2pQ31 =2�2(3p� q) Q12 =8p2 � 16�p+ 4�2Q32 =� 2�4[2P + 3pq℄ Q13 =2�4[P + 2pq℄Q16 =2(q + �)pq2 (3:69a)Q33 =� �(q + �)2P � 2�2(2q + �)pqQ5 =2�3[(q + �)P + �pq℄Q14 =2�2(q + �)P + 2�2(q + 2�)pqQ15 =�[3q2 + 4�q + 2�2℄P + 2�2(q + 2�)pq (3:69b)



Observe that unlike for the A2-model, there is now also a ubi term, (U1)3 in F1.The oeÆient Q16 of this single ubi term vanishes in the speial ases when p = 0,� or p = 2�. In other words, the B2 W-algebra is given by quadrati relations inthat W-bases whih are assoiated to the partiular DS gauges of parameter p = 0,� or p = 2�. These `quadrati gauges' ould be useful in the quantization of the W-algebra, sine normal ordering is more ompliated when the order of the polynomialsinvolved gets larger. In ontrast, the onformal properties are hidden in these gaugesand are not as transparent as in the highest weight gauge (whih belongs to 5p = 2�in the B2 example ). III.4. Other Convenient GaugesIn the previous setions we have disussed the DS type gauges and have shownthat hoosing a DS gauge naturally leads to a orresponding hoie of basis for theW-algebra, by relating theW-generators to the non-vanishing urrent omponents inthat gauge. The highest weight gauge plays a partiular role beause the orrespond-ing W-generators are onformal primary �elds (with the exeption of the onformalgenerator W 1). In the examples of A2 and B2 (C2) we have shown that it is pos-sible to hoose suh DS gauges in whih the generating relations of the W-algebraare quadrati. These gauges are also important beause the quadrati losure of thealgebra simpli�es the quantization. In this setion we show that suh gauges existfor the algebras Al; Bl and Cl. We will see in the next hapter that they are notavailable for the rest of the Lie algebras.We start by onsidering Al, i.e. sl(l + 1; R) and will use the de�ning represen-tation. Here (and also for Bl, Cl and Dl later) we shall use the onventions [20℄ inwhih the positive and negative step-operators are upper and lower triangular matri-es, respetively, and the elements of the Cartan subalgebra are diagonal matries.For simpliity, now we hoose all �i in (3.2) to be equal to 1, and then the matrix I�



reads I� = 0BBBBBB� 0 0 0 : : : 0 01 0 0 : : : 0 00 1 0 : : : 0 0... . . . ...0 0 0 : : : 0 00 0 0 : : : 1 0
1CCCCCCA : (3:70)The elements of Gh are matries with non-zero entries only in the slanted row h stepsabove the diagonal. The image I�(Gh+1) (for h � 0) onsists of those matries in Ghfor whih the sum of the matrix elements is zero. Fixing a DS gauge means hosinga single matrix in Gh for whih the sum of the matrix elements is di�erent from zero.The simplest hoie yields the `Wronskian' gauge de�ned byJ = I� +0BB� 0 U1 : : : U l0 0 : : : 0... ... : : : ...0 0 : : : 0 1CCA : (3:71)This gauge is a speial example of the more general blok gauges for whihJ = I� + j = I� + � 0 U0 0 � (3:72)and U is a p� q blok (p+ q = l+1) ontaining the l DS urrents. The `Wronskian'gauge is the speial ase when p=1 and q= l. In general these `blok' gauges are notunique: we are still free to distribute the DS urrents in a number of di�erent waysalong the intersetions of the slanted rows with the blok.Now we are going to show that the W-algebra loses quadratially in any ofthese `blok' gauges. Aording to the results developed in the previous setion, wean derive the W-relations by determining the �eld dependent KM transformationR(a; J) in (3.45) whih implements the indued W-transformations on MV . To this�rst we rewrite the de�ning equation (3.39) of R(a; J) in the form[R; I�℄ + �R0 = ÆJ + [j; R℄: (3:73)Now, sine we know that the unique solution of (3.73) for R = R(a; J) and ÆJ islinear in the in�nitesimal parameters of the transformation, i.e. in the funtions ai



introdued in (3.45), and polynomial in the given gauge �xed urrent I�+ j, we anexpand both R and ÆJ in powers of the DS urrents (j):R = R0 +R1 +R2 + � � �ÆJ = (ÆJ)0 + (ÆJ)1 + (ÆJ)2 + � � � (3:74)and solve (3.73) perturbatively:[Rm; I�℄ + �R0m = (ÆJ)m + [j; Rm�1℄ m = 0; 1; 2 : : : (3:75)Sine in the `blok' gauge both J and ÆJ are upper triangular in the blok sense:j = � 0 U0 0 � Æj = � 0 ÆU0 0 � ; (3:76)if we write out (3.73) in `blok' omponents it is not diÆult to see that the �rstorder solution must be of the formR1 = �A B0 C � ; (3:77)where the p� p blok A and the q � q blok C are further restrited byApi = 0 for i � p� 1 and Ci1 = 0 for i � 2 (3:78)and that the seond order solution is of the formR2 = � 0 D0 0 � with Di1 = Dpj = 0 ; i = 1; 2 : : : p ; j = 1; 2 : : : q : (3:79)For the `blok' gauges the expansion stops here and, by the results of III.3., thisimplies that the algebra of the W-generators orresponding to any DS gauge fromthe family of blok gauges loses quadratially indeed.Note that the `Wronskian' gauge is speial sine D = 0 in this ase and thus theKM transformation R = R(a; j) is only linear in the DS urrents. The algebra is stillquadrati, sine (ÆJ)2 = [R1; j℄: (3:80)For the other matrix algebras, Bl and Cl, one an de�ne analogous `blok' gaugesby embedding them into appropriate A-type algebras.



For Cl � sp(2l; R) we an use the 2l-dimensional de�ning representation. Wewrite the Cl matries in terms of four l � l square bloks. In this notation thesympleti metri is given by G = � 0 "�" 0� ; (3:81)where the only nonvanishing entries of " are in the seond diagonal (the diagonal frombottom-left to top-right), and these entries are all 1. The elements of the Lie-algebraare represented by matries of the formK = �A BC � ~A� where ~B = B ~C = C (3:82)and ~ means reetion with respet to the seond diagonal.Positive (negative) step-operators are again upper (lower) triangular matriesand elements of the Cartan subalgebra are diagonal. By a onvenient hoie of the(irrelevant) parameters �i, I� is now given by the 2l � 2l matrix:
I� = 0BBBBBB� 0 0 0 : : : 0 01 0 0 : : : 0 00 1 0 : : : 0 0... . . . ...0 0 0 : : : 0 00 0 0 : : : �1 0

1CCCCCCA : (3:83)
It has l 1 entries and (l � 1) (�1)'s.The `blok' gauges, in whih the algebra loses quadratially are haraterized byJ = I� + � 0 U0 0 � ; (3:84)where ~U = U and it has non-vanishing omponents along every seond slanted row,orresponding to the exponents of this algebra.Finally, for Bl � so(l+1; l) we take the (2l+1)-dimensional vetor representation.In a 3�3 blok matrix notation orresponding to the partition l+1+l the Lorentzianmetri is G = 0� 0 0 "0 1 0" 0 01A (3:85)



and the elements of the Lie-algebra are of the formK = 0� A X BY t 0 �XtC �Y � ~A 1A where ~B = �B; ~C = �C: (3:86)The matrix I� is again similar to (3.83) but it is now a (2l+1)� (2l+1) matrixand has l upper entries 1 and l lower entries (�1). The `blok' gauges for this algebraare de�ned by J = I� +0� 0 x b0 0 �xt0 0 0 1A ; (3:87)where ~b = �b and the DS urrents are again distributed along every seond slantedrow.An other onvenient gauge is what we will all the diagonal gauge. It is de�nedby J(x) = I� + lXi=1 �i(x)Hi: (3:88)(Here we hoose the fHig to form an orthonormal basis for the Cartan subalgebra.)Note that this is a new type of gauge �xing, not a member of the family of the DSgauges, but it will turn out to be very useful in appliations and it is most useful inthe quantum theory. Before we start disussing the gauge hoie (3.88) in detail, wemention two diÆulties onneted with it. We will illustrate these diÆulties on thesimplest example, sl(2; R).In this ase the gauged �xed urrent in the diagonal gauge is parametrized by asingle real �eld �(x): Jdiag = � � 01 ��� (3:89)and it is easy to see that the transformation from the `Wronskian' gaugeJWron = � 0 U(x)1 0 � (3:90)to the diagonal gauge amounts to solving the Riati equation�2 � ��0 = U: (3:91)



Now, if we require all �elds to be periodi and integrate the Riati equation over theperiod, the derivative term drops out and we see that (3.91) has no solution unless2�Z0 U(x)dx1 � 0: (3:92)In other words, the diagonal gauge an only be reahed from that part of the phasespae where (3.92) is satis�ed.A related diÆulty is that when the Riati equation an be solved, its solutionis not unique, it in fat has two independent solutions. (For an arbitrary Lie algebra,the number of independent solutions of the analogous equations is equal to the orderof the Weyl-group.)However, note that when available the diagonal gauge is loally well-de�ned(the ambiguities mentioned above orrespond to �nite gauge transformations) andtherefore the orresponding Dira brakets are also well-de�ned. Sine theW-algebrais determined by polynomial relations, its struture an be analysed by restriting theonsiderations to that part of the phase spae where the diagonal gauge is availableand we will see that this is often onvenient.Expanding the general KM urrent, J , in the Cartan-Weyl basis asJ = X'2�+ ��'E�' + lXi=1 �iHi + X'2�+ �'E' ; (3:93)the set of onstraints de�ning the diagonal gauge an naturally be divided into twoparts: � = � �� � : (3:94)The diagonal gauge is de�ned by onstraining the ��' by imposing the originalonstraints (2.8) and, in addition, setting the �' to 0. Sine on the orrespondingonstraint surfae f�; �g = 0 and f�; �g = 0; (3:95)the C operator, whose inverse enters the formula for the Dira braket an shemat-ially be written as C = f�; �g � � 0 B�B 0 � ; (3:96)



where B = f�; �g. Now the Dira braket of any two quantities u and v takes theform fu; vg� = fu; vg+ fu; �gB�1f�; vg � fu; �gB�1f�; vg: (3:97)The important property of the diagonal �elds �i(x) that makes the diagonal gaugeextremely simple is that they (weakly) ommute with the additional onstraints �' :f�i(x); �g � 0: (3:98)Beause of (3.98), the Dira braket of two diagonal urrents is the same as theiroriginal KM Poisson braket:f�i(x); �j(y)g� � f�i(x); �j(y)g = �ÆijÆ0(x1 � y1): (3:99)In other words, the diagonal omponents of the urrent are a set of free �elds. There-fore in the diagonal gauge the W-generators are given as di�erential polynomials infree �elds and these di�erential polynomials are simply obtained by restriting thefull (gauge-invariant) di�erential polynomials to the `diagonal urrents' of the form(3.88). This free-�eld representation of the W-generators is alled the Miura trans-formation and has been used to quantize the theory [5℄.



IV.1. Leading Terms and Casimir AlgebraWe have already seen that any DS gauge de�nes a basis of the W-algebra, andthat there is a one-to-one orrespondene between the onformal weights of the W-generators assoiated to the highest weight gauge (or the sale dimensions of the W-generators assoiated to any DS gauge) and the orders of the independent Casimirs ofthe underlying simple Lie algebra. In this setion we shall elaborate on this onnetionfurther, by showing that the leading terms of the W-generators (i.e. terms withoutany derivatives) are always Casimirs (restrited to P ). Then we demonstrate thatthe Casimirs themselves form a polynomial algebra under the Poisson braket, whihis a trunated version of the full W-algebra. This Casimir algebra, in its quantumversion, has been studied in [15℄.We shall denote the leading terms of the W-generators, W j , by W j0 . Sine theseleading terms ontain no derivatives, they are invariant under rigid gauge transfor-mations, that isW j0 (JA) =W j0 (J) for A 2 N ; where JA = AJA�1for any onstrained urrent (J 2 P ). On the other hand, an arbitrary Casimir Cj isa group-invariant polynomial, that is for any KM urrent J and an arbitrary B 2 Gone has Cj(JB) = Cj(J) where JB = BJB�1 :First we want to show that the leading terms of the W-generators are restritedCasimirs, or in other words thatW j0 (J) = Cj(J) J 2 P (4:1)for some Cj .To this we shall use the theorem of Chevalley from the theory of invariant poly-nomials [18℄, whih we now reall. This theorem states that there is a one-to-oneorrespondene between the Casimirs and the Weyl-invariant polynomials on theCartan subalgebra, and that the orrespondene is simply given by restrition. That



is, �rst, if Cj(J) is an arbitrary group invariant polynomial (Casimir) on G, then itsrestrition to the Cartan subalgebra, �Cj(H), is a Weyl-invariant polynomial. (Weshall denote the Cartan subalgebra by H and the restrition of any funtion to H byan overbar.) Conversely, from any given Weyl-invariant polynomial on H, a orre-sponding full group invariant an be reonstruted in a unique way.For later use we also reall that the uniqueness of the reonstrution is provenby `diagonalization'. First note that for any Lie algebra element J in the ompatform of G there exists a group element g 2 G that `diagonalizes' J :Jg = gJg�1 = H(J) 2 H :(The use of the ompat form is justi�ed here sine the problem is purely algebrai.)Using the group invariane of the Casimir Cj we see thatCj(J) = Cj(Jg) = Cj(H(J)) = �Cj(H(J))so �Cj determines the full Casimir Cj uniquely indeed.By using Chevalley's theorem (4.1) will follow if we an prove that the restri-tion of W j0 (J) to urrents J in the diagonal gauge (f. (3.88)) is a Weyl-invariantpolynomial of the Cartan omponents of J . To this we only have to show that for any`diagonal' onstrained urrent J it is possible to �nd suh rigid gauge transformationsA 2 N , whose ation on the Cartan omponents �i of J oinides with the ation ofthe Weyl-group on the �i.To show this, let us hoose a simple root �k and onsider the ation of thefollowing �nite gauge transformation:A = ea with a = !E�k (4:2a)on a onstrained urrent J 2 P :J �! J (a) = eaJe�a = J + [a; J ℄ + 12 [a; [a; J ℄℄ + � � � ; (4:2b)where ! is an arbitrary real parameter. Parametrizing the onstrained urrent J 2 Pin the following way:J = I� + lXi=1 �iH�i + lXi=1 �iE�i +X' �'E';



where ' runs over the set of positive non-simple roots, we �nd (remember that I� isgiven by (3.2)) that the omponents of J transform under (4.2) as�(a)i = �i + !Æik�k�(a)i = �i � 2!j�kj2 ÆikXj (�j; �k)�j � !2Æik�k�(a)' = �' +Xj 	'j(!)�j +X'0 �''0(!)�'0 ;where the preise form of the oeÆients 	'j and �''0 is irrelevant for our purpose.Now we �x J 2 P and hoose the parameter ! to be! = � 2�kj�kj2 Xj (�j; �k)�j ;so that the set of omponents (�i; �') transforms homogeneously:�(a)i = �i ; �(a)' = �' +Xj 	'j�j +X'0 �''0�'0 ;whih implies that the transformation (4.2) applied to the `diagonal' urrentJdiag = I� + lXi=1 �iH�itakes it into another urrent whih is also in the diagonal gauge. Moreover, with thishoie of ! the ation of the gauge transformation A = ea (4:2a) on the the Cartanomponents �i of this partiular diagonal urrent is:�(a)i = �i � 2j�kj2 ÆikXj (�j; �k)�j ;whih is preisely the same as the e�et of the Weyl-reetion orresponding to thesimple root �k on the Cartan omponents �i would be. This implies that everyWeyl-transformation of the Cartan omponents of the diagonal urrents an indeedbe implemented by rigid gauge transformations. (Sine the Weyl-group is not asubgroup of N , the partiular rigid gauge transformation A whih `implements' agiven Weyl-transformation on the omponents �i of a `diagonal' urrent Jdiag must



depend on the partiular urrent on whih it ats, and it is really �eld-dependentaording to the above onstrution.) Sine the leading term W j0 is invariant underrigid gauge transformations, it follows that its restrition �W j0 to the diagonal gauge isa Weyl-invariant polynomial of the urrent omponents �i. Chevalley's theorem thentells us that �W j0 is the restrition of a uniquely determined Casimir Cj to the diagonalurrents (note that I� has no ontribution in Cj(Jdiag) beause of the neutrality ofthe group invariant Cj). To �nish the proof of (4.1) one has to show that the leadingterm W j0 itself is the restrition of the same Casimir Cj to P . This last step followsfrom the fat that W j0 and the restrition of Cj to P are the same (namely �W j0 )when restrited to `diagonal' urrents, sine an N -invariant on P an uniquely bereonstruted from its Weyl-invariant restrition to the spae of diagonal urrents.(The uniqueness of this reonstrution an be shown by an argument similar to theone that was used in the ase of the Chevalley theorem.)It is not hard to see that the Casimirs fCjg orresponding to the leading termsof a W-basis fW jg form a basis in the ring of group-invariant polynomials. (It isenough to prove this for a W-basis onstruted by means of some DS gauge, butin this ase these l Casimirs are independent even if restrited to the gauge setionMV , where they simply oinide with the l DS urrents fU jg.) So we an assoiatea Casimir basis to any W-basis. On the other hand, it is also possible to hoosesome onvenient basis for the Casimirs �rst, and then onstrut a W-basis in suh away that the leading terms of the W-generators are the given set of Casimirs. Forexample, for the ase of Al we an hoose the Casimirs as:Cj = 1j + 1TrJ j+1 ; j = 1; 2 : : : l: (4:3)Then we an de�ne W-generators orresponding to these Casimirs by the formula:W j = 1j + 1Tr Ĵ j+1 ;where Ĵ = AJA�1 + �A0A�1



is the representative of the gauge orbit of the onstrained urrent J 2 P in somepartiular DS gauge. (Remember that both Ĵ 2 MV and the gauge transformationA are uniquely determined by J 2 P .) It follows that we haveW j = 1j + 1 Tr Ĵ j+1 = 1j + 1 Tr(J + �A�1A0)j+1 = 1j + 1 Tr J j+1 + � � � ; (4:4)that is the leading terms of the W j are indeed the Casimirs Cj . It is also easy tosee that the fW jg assoiated by this method to a set of independent Casimirs forma basis of W-algebra. (The W-generators assoiated to a given Casimir by means ofdi�erent DS gauges di�er in their derivative, non-leading terms.)In the SL(3; R) example, hoosing the `Wronskian' gaugeĴ = 0� 0 W 1 W 21 0 00 1 0 1Awe have W 1 = 12Tr Ĵ2 and W 2 = 13Tr Ĵ3: (4:5)By using the results of Setion III.3 on the A2 example we an derive the relationsfW 1(x);W 1(y)g =�(W 1)0(x)Æ + 2�W 1(x)Æ0 � 2�3Æ000fW 1(x);W 2(y)g =2�(W 2)0(x)Æ + 3�W 2(x)Æ0� �2[W 1(x)Æ℄00 + �4Æ0000fW 2(x);W 2(y)g =�[ 23 (W 1)0W 1 + �(W 2)00 � 23�2(W 1)000℄(x)Æ+ �[ 23 (W 1)2 + 2�(W 2)0 � 2�2(W 1)00℄(x)Æ0� 2�3(W 1)0(x)Æ00 � 43�3W 1(x)Æ000 + 23�5Æ00000 ;
(4:6)

where Æ = Æ(x1 � y1) and x0 = y0. On the other hand, it is not diÆult to verifythat the orresponding CasimirsC1 = 12Tr J2 and C2 = 13TrJ3 (4:7)satisfy the following algebra under Poisson braket:fC1(x); C1(y)g = �(C1)0(x)Æ + 2�C1(x)Æ0fC1(x); C2(y)g = 2�(C2)0(x)Æ + 3�C2(x)Æ0fC2(x); C2(y)g = �[ 23(C1)0C1℄(x)Æ + �[ 23 (C1)2℄(x)Æ0 ; (4:8)



whih is nothing but the leading term (in �) of the full W-algebra for SL(3; R).In fat we will show that in general, if the W-generators W i and W j satisfyfW i(x);W j(y)g =XA fA(W )(x)Æ(A)(x1 � y1)where the `struture funtions' fA(W ) are di�erential polynomials in fW jg, then theorresponding Casimirs Ci and Cj satisfy the simpli�ed (trunated) algebrafCi(x); Cj(y)g = f10 (C)(x)Æ0 + f01 (C)(x)Æ (4:9a)where f10 and f01 are the leading terms of f1 and f0 in the number of derivatives,whih are 0 and 1 respetively.To show this, let us �rst note that from the form of the KM Poisson braketsand group invariane of the Casimirs it already follows that the ommutator (4:9a)must be of the form fCi(x); Cj(y)g = g10(J)(x)Æ0 + g01(J; J 0)(x)Æ (4:9b)with some group-invariant funtions g10 and g01. (g01 is polynomial in J , but linear inJ 0.) Now we have to demonstrate thatg10(J) = f10 (C(J)) and g01(J; J 0) = f01 (C(J)): (4:10)We will make use of the diagonal gauge and the Chevalley theorem one more. Inthe diagonal gauge the leading terms of W i and Ci oinide and therefore we have�g10(H) = f10 ( �C(H)) and �g01(H;H 0) = f01 ( �C(H)): (4:11)Now applying the Chevalley theorem to g10, the �rst equation in (4.10) follows fromthe �rst one in (4.11). Before one is able to apply the theorem also to g01, one �rst hasto generalize it for the ase of operators ontaining one derivative. This is possibleand the proof is basially the same as for operators without any derivatives. Let usde�ne the group invariant Æ01(J; J 0) byg01(J; J 0) = f01 (C(J)) + Æ01(J; J 0):



From the seond equation in (4.11) we see that �Æ01(H;H 0) vanishes, but then the fullÆ01(J; J 0) must vanish too sineÆ01(J; J 0) = Æ01(H(J); (J 0)g) = Æ01(H(J); (H 0)g) = �Æ01(H(J); (H 0)g) = 0where the seond step follows from the neutrality of the group-invariant Æ01.This way we have shown that the set of Casimirs loses to form a polynomialalgebra under the Poisson braket and that this algebra is a trunated version of aorrespondingW-algebra. Sine the ompletely loal Casimirs fCig are more elemen-tary objets than the fW ig whih ontain derivatives as well, one an ask whetherthe losure of the Casimir algebra an be shown without any referene to the moreompliatedW-algebra. In other words, one has to show that (4:9a) holds with somefuntions f10 and f01 . It is trivial that g10 in (4:9b) depends on J only through theCasimirs, sine this merely expresses the fat that the fCig form a basis for theompletely loal group-invariants.To show that g01 is also a funtion of the Casimirs we go to the diagonal gaugeagain. In this gauge the restrition of g01 must be of the form�g01(H;H 0) = lXi=1 Ai�0i; (4:12)where the f�ig are oordinates with respet to some basis in the Cartan subalgebraand the oeÆients fAig an be onsidered as an l-omponent vetor in the Cartansubalgebra and an be expanded asAi =Xj Bj � �Cj(H)��i (4:13)simply beause the l vetors f� �Cj=��ig are linearly independent. (This is the analytiexpression of the fat that the l invariants f �Cjg are funtionally independent.)Substituting (4.13) into (4.12) we �nd�g01(H;H 0) =Xj Bj � �Cj(H)��i �0i =Xj 1hj + 1Bj[ �Cj(H)℄0



and we see that the oeÆients Bj must be Weyl-invariants:�g01(H;H 0) =Xj 1hj + 1Bj( �C(H))[ �Cj(H)℄0:Now using the generalized Chevalley theorem for g01 again we haveg01(J; J 0) =Xj 1hj + 1Bj(C(J))[Cj(J)℄0:After this digression we return to the question of the quadrati losure of theW-algebra. We have shown in the previous setion that the W-algebras for Al, Bl andCl are quadrati in a suitable hosen basis. As an appliation of the relation betweenthe W-algebras and the algebras of the orresponding Casimirs we now prove thatno suh basis exists for Dl and the exeptional algebras. In fat we show this for theCasimir algebras, from whih the analogous result for the W-algebras immediatelyfollows.Let CH be the highest order Casimir, of order H (see Appendix A), and let usonsider the Poisson braket of CH with itself:fCH(x); CH(y)g = �2H�2(C)(x)Æ0 + 12�02H�2(C)(x)Æ: (4:14)(Here the two struture funtions are not independent of eah other due to theantisymmetry of the Poisson braket.) The struture funtion �2H�2(C) is a Casimirof order (2H � 2) and by inspeting the list of group-invariants for the ase of theexeptional groups it is easy to see that it an never be expressed as a quadratifuntion of the basi Casimirs fCjg for these groups.The situation for Dl is more ompliated. Here we an show that the set ofCasimirs fC1; C2; : : : ; Clg de�ned bydet(1�p�J) = 1� lXn=1�n Cn (4:15)where the determinant is taken in the 2l-dimensional vetor representation of Dl,form a quadrati algebra under Poisson braket. (This is atually the same algebra



as formed by the orresponding Casimirs of the Bl and Cl groups.) However, as is wellknown, (4.15) is not a orret hoie of basi Casimirs for Dl, the latter is given bythe set fC1; C2; : : : ; Cl�1;C� = pClg. By introduing the `spinorial' invariant C�,we destroy the quadrati property of the algebra. We �nd that �4l�6, the struturefuntion in the ommutator of two highest Casimirs Cl�1 is given by (see AppendixC) �4l�6 = �12�(C�)2Cl�3 � 4�Cl�1Cl�2 (4:16)whih is indeed ubi for l > 3.IV.2. Expliit Casimir AlgebrasIn IV.1 we have shown that the Casimir operators, Cn, form a losed, polynomialalgebra under Poisson braket, whih is a trunated version of the W-algebra. TheseCasimir algebras are interesting in their own right and they are also useful for studyingthe related W-algebras. In this subsetion we exhibit their struture in some detail.First, it is obvious that the Casimirs are onformal primary �elds with respet tothe Sugawara energy-momentum tensor. Next we want to determine the non-trivialPoisson braket relations desribing this algebra. What we are atually going toalulate is the Poisson braket of the generating polynomialsA(�; x) = det �1� �J(x)� = 1� lXn=1 �n+1Cn(x) (4:17a)and B(�; x) = det �1�p�J(x)� = 1� lXn=1 �nCn(x) (4:17b)for the l independent Casimirs C1; :::; Cl of the Al and Bl (Cl) algebras respetively.One �rst observes that the overomplete set of group invariant polynomialsQn(x) = 1n Tr Jn(x) n = 2; 3; : : : (4:18)



whih are related to the l independent Casimirs Cn viaCn�1 = � 1n! dnd�n exp�� 1Xr=2�rQr�j�=0 ; for Al;Cn = � 1n! dnd�n exp�� 2 1Xr=1 �rQ2r�j�=0 ; for Bl; Cl;satisfy the Poisson brakets (see Appendix C)fQn(x); Qm(y)g =�h(p� 2)Qp�2 � qN Qn�1 Qm�1i(x) Æ0+ �h(m� 1) (Qp�2)0 � qN Qn�1 (Qm�1)0i(x) Æ (4:19)where Æ stands for Æ(x1 � y1) as before, p = n+m, q = (n�1)(m�1) and Nis the dimension of the de�ning representation. Note in partiular that for the Band C algebras both n and m must be even integers (sine for odd n the Qn vanishidentially) and as a onsequene the quadrati terms on the right hand side of (4.19)are automatially absent.However, formula (4.19) is only the �rst step in �nding the expliit Casimiralgebras. For example, in the ase of A2 one obtainsfQ3(x); Q3(y)g = ��4Q4 � 43Q2Q2� Æ0 + �2�4Q4 � 43Q2Q2�0 Æand only after expressing Q4 in terms of the independent Casimirs Q2 and Q3 via2Q4 = (Q2)2 does one �nd the result (4.8) (note that Q2 = C1 and Q3 = C2 there).More generally, if one omputes the Poisson brakets of the highest Casimirs foran algebra of rank l, one has to use the harateristi polynomial O(l=2) times toexpress the right hand side of (4.19) in terms of the independent Casimirs. Clearlythis method beomes soon umbersome and another algorithm is needed.As a �rst step to alulate the Poisson braket of the generating polynomial(with itself) we expand its logarithm:log det �1� �J(x)� = � 1Xn=2�nQn(x) (4:20)and use (4.19) to alulate the Poisson braket of log det(1� �J). This allows thenfor the omputation of the Poisson brakets of the determinant. After some algebra



one �nds that this Poisson braket an be reexpressed in terms of the determinantand its derivatives. For the details of the derivation we refer the reader to AppendixC. The �nal results are:Al algebras:fA(�; x); A(�; y)g=��2�2� 1�� � (�� � ��)� 1l+ 1�����A(�; x)A(�; x) Æ0+ ��2�2�(�� � ��) 1�� � � 1l + 1�����A(�; x)�xA(�; x) Æ+ ��2�2(�� �)2�A(�; x)�xA(�; x)�A(�; x)�xA(�; x)� Æ; (4:21)Bl; Cl algebras:fB(�; x); B(�; y)g=4��� 1�� � (��� � ���)B(�; x)B(�; x) Æ0+ 4���(��� � ���) 1�� � �B(�; x)�xB(�; x)� Æ+ 2��� �+ �(�� �)2 �B(�; x)�xB(�; x)� B(�; x)�xB(�; x)� Æ:(4:22)The algebra of the Casimirs an now be omputed by inserting the expansions (4.17)into both sides of (4.21) resp. (4.22) and omparing oeÆients in the resultingpolynomials in � and �. One sees, in partiular, that with respet to the Casimirsde�ned by the determinant the algebras lose always quadratially.For example, for the highest Casimirs of Al; l � 2 one obtainsfCl(x); Cl(y)g = �al(x)Æ0 + �2 a0l(x)Æal = �2ClCl�2�(l� 3) + ll+ 1(Cl�1)2 (4:23)and for the highest Casimirs of Bl and Cl with l � 2 one �ndsfCl(x); Cl(y)g = �4�ClCl�1Æ0 � 2��ClCl�1�0Æ: (4:24)The orresponding results for the lower Casimirs are presented in Appendix C.



V. Di�erential and Pseudo-Di�erential Operators and Toda FieldsThe aim of this last hapter is to demonstrate that the di�erential and pseudo-di�erential operators studied in [10℄, and taken as a starting point for the quantizationof W-algebra in [5℄, arise naturally in our framework. These operators appear in thedi�erential equations satis�ed by the gauge-invariant omponents of the WZNW �eld.Let us reall that the solution of the �eld equations for the group-valued �eld gis g(x+; x�) = gL(x+) � gR(x�) (5:1)with g0Lg�1L = J and g�1R g0R = ~J (5:2)and where the urrents J and ~J are subjet to the onstraints (2.8). (In this hapterprime means 2��=�x1.) We will onsider the simplest ase, SL(n;R) �rst, andonentrate on the left-moving part of the theory. (We omit the subsript L.)In order to reonstrut the group-valued �eld g(x+) from the urrent J(x+) (sat-isfying the onstraints (2.8)), one has to solve the set of linear di�erential equationsg0 = Jg : (5:3)Obviously this is a separate set of equations for eah olumn-vetor of the matrix g,whih are of the form 0BB� g01ig02i...g0ni1CCA = (I� + j)0BB� g1ig2i...gni1CCA : (5:4)Solving (5.4) is the simplest in the `Wronskian' gauge, (3.71). In this gauge one aneasily express all omponents of g in terms of the bottom omponents, gni, denotedby  i: g(n�1)i =  0ig(n�2)i =  00i...g1i =  (n�1)i (5:5)



leading to a single nth-order di�erential equation satis�ed by  i: (n)i = n�1Xj=1 U j (n�j�1)i : (5:6)The group-valued �eld g an now be built from the n independent solutions of (5.6):g = 0BBB� (n�1)1  (n�1)2 : : :  (n�1)n... ... ... 01  02 : : :  0n 1  2 : : :  n
1CCCA ; (5:7)where the set of solutions f ig must satisfy the Wronskian onstraint (hene thename of the gauge): det g = 1 (5:8)in order that the matrix g be an element of the group SL(n;R).We note that if the DS urrents fU jg are regular funtions then so are the solu-tions f ig of the generalized Shr�odinger equation (5.6). By ombining gL given by(5.7) with the similarly onstruted right-moving solution gR, the resulting WZNW�eld g(x+; x�) is also regular, as are the globally de�ned Toda �elds, being sub-determinants of the latter (aording to (2.23)). Furthermore, if the W-generatorsorresponding to a given (say, the `Wronskian') DS gauge are given by regular fun-tions for a Toda solution, then by this proedure one an always onstrut a regularWZNW representative of that Toda solution, whether or not the solution appears tobe regular in terms of the traditional loal Toda variables, ��.We also remark that one the solutions of the `right handed' analogue of (5.6),f�ig, are known, then as a onsequene of (2.24) and (5.1), the Toda �elds an beexpressed in terms of the f g's and the f�g's as follows:e� 12�n�1 = Dn =  � �e� 12�n�2 = Dn�1 = det� 0 � �0  0 � � � �0  � � �= ( 0 � �0)( � �)� ( 0 � �)( � �0)e� 12�n�3 = Dn�2 = det0� 00 � �00  00 � �0  00 � � 0 � �00  0 � �0  0 � � � �00  � �0  � � 1A= ( 00 � �00)( 0 � �0)( � �) + � � �

(5:9)



where  � � =Xi  i � �i ;  0 � � =Xi  0i � �i ; (5:10)and so on. In fat equation (5.9) was the starting point of the analysis of Todatheory in [8℄. Without going into details we note that the above results an easily begeneralized for the Bl and Cl series.So far we have studied (5.4) in a de�nite DS gauge. Let us now try to solveit for g without gauge-�xing the urrent J . It is easy to see that starting from thebottom row, it is always possible to eliminate all higher omponents of g suesively,even without any gauge �xing. This elimination leads to a di�erential equation ofthe form: D(A)n  i = �n i � n�1Xj=1W j [J(x+)℄�n�j�1 i = 0: (5:11)Here � = ��=�x+ and the oeÆient funtions fW jg are automatially obtained assome di�erential polynomials in the urrent omponents. Moreover, they are gaugeinvariant, sine the original equation (5.3) was gauge-ovariant and the bottom om-ponents gni =  i are gauge-invariant (with respet to left-moving upper triangulargauge transformations). This implies that the W j 's in (5.11) are nothing but the W-generators assoiated to the `Wronskian' gauge, sine they redue to the DS urrentsfU jg in this gauge.To summarize, if theW-densities assoiated to a DS gauge (here the `Wronskian'gauge) are known, then one an reonstrut the orresponding WZNW solution bysolving (5.2) for g = gL �gR in that DS gauge. In the reonstrution proedure one ob-tains a higher order di�erential equation (here (5.6)) satis�ed by the gauge-invariant(bottom row) omponents of gL (and an analogous equation for the last olumn ofgR). The same equation an also be derived from (5.4) by elimination without anygauge �xing. Sine the resulting di�erential equation is gauge-invariant, one an reado� the expliit formula of the W-generators orresponding to the given DS gauge byomparing the oeÆients in the di�erential equations obtained with and withoutgauge-�xing. By a similar argument, one an also establish the transformation rulesrelating the W-bases orresponding to di�erent DS gauges.



The elimination is also simple in the diagonal gauge. In this gaugej = 0BB� �1 0 : : : 00 �2 : : : 0... ... . . . ...0 0 : : : �n1CCA ; (5:12)and the di�erential operator takes the formD(A)n = (� � �1)(� � �2) : : : (� � �n): (5:13)By rearranging this produt as a sum orresponding to (5.11), one an read o� theexpression of the W-generators in this gauge. Note that the diagonal �elds (5.12)are not independent, beause �1 + �2 + � � � + �n = 0. This is the original form ofthe Miura transformation [21℄ and the operator (5.13) is the starting point for theLukyanov-Fateev free-�eld onstrution of quantized W-algebra [5℄.The derivation of the gauge-invariant higher order di�erential operators and thereonstrution of the matrix valued �eld g from the onstrained urrents (or fromW-generators) proeeds analogously for the Lie-algebras Bn and Cn. The resultinggauge-invariant di�erential operators are of order (2n + 1) and (2n), respetively,aording to the dimensions of the de�ning representations. Due to the restri-tions (3.86) and (3.82), the di�erential operators D(B)n and D(C)n are (formally) anti-selfadjoint and selfadjoint, respetively. Without going into details, we give theseoperators in the fatorized form orresponding to the diagonal gauge:D(B)n = (� � �1)(� � �2) : : : (� � �n)�(� + �n) : : : (� + �2)(� + �1) (5:14a)D(C)n = (� � �1)(� � �2) : : : (� � �n)(� + �n) : : : (� + �2)(� + �1) (5:14b)Here the �i's are independent free �elds.The ase of the algebras Dn is more ompliated. As an example, let us onsiderD3 �rst. We use the 6-dimensional vetor representation and go to the diagonalgauge, where (with a onvenient hoie of the �i)J = I� + j = 0BBBBB� �1 0 0 0 0 01 �2 0 0 0 00 1 �3 0 0 00 1 0 ��3 0 00 0 �1 �1 ��2 00 0 0 0 �1 ��1
1CCCCCA : (5:15)



If we write out (5.4) in omponents we have (suppressing the index i):g5 = �(� + �1)g6 (5:16a)g3 + g4 = �(� + �2)g5 (5:16b)g2 = (� + �3)g4 (5:16)g2 = (� � �3)g3 (5:16d)g1 = (� � �2)g2 (5:16e)0 = (� � �1)g1 (5:16f)From (5.16) we see that the elimination is bloked here after the seond step, sinethe ombination g3 � g4 never ours on the left hand side. On the other hand, itsderivative an be expressed, ombining (5:16) and (5:16d):�(g3 � g4) = �3(g3 + g4): (5:17)One an go on with the elimination by integrating (5.17) (formally) using the `anti-derivation' symbol ��1: (g3 � g4) = ��1�3(g3 + g4): (5:18)One then �nds:D(D)3 = (� � �1)(� � �2)(� � �3��1�3)(� + �2)(� + �1)= (� � �1)(� � �2)(� � �3)��1(� + �3)(� + �2)(� + �1): (5:19)Similarly, by performing the elimination in the (2n)-dimensional vetor representa-tion, one an assoiate a pseudo-di�erential operator to any Dn algebra:D(D)n = (� � �1)(� � �2) : : : (� � �n)��1(� + �n) : : : (� + �2)(� + �1): (5:20)This not only shows that it is impossible to obtain a di�erential operator for Dn inthe vetor representation, but from the example of D3 � A3 we also see that the typeof pseudo-di�erential operator depends on the representation in whih (5.4) is taken.(For D3 there is an ordinary di�erential operator orresponding to the 4-dimensionalrepresentation, but this is the spinor of D3.)



For the ase of An, Bn and Cn what makes the elimination simple is that thematrix I� (see (3.70) and (3.83)) has non-zero entries immediately below the diagonaland only there. Sine I� is the negative step-operator of the speial sl(2; R) subal-gebra S introdued in setion III.1, this fat means that the de�ning representationsof these algebras are still irreduible with respet to this sl(2; R) subalgebra.For Dn, the vetor representation is reduible with respet to S with branhing2n = (2n� 1) + 1. This is why one has a pseudo-di�erential, rather than a di�eren-tial, operator after eliminating the higher omponents from the system of �rst orderdi�erential equations (5.4). (The spinor representations of Dn are even worse fromthis point of view, exept for n = 3.)Turning to the exeptional algebras, we �nd that the 7-dimensional represen-tation of G2 is irreduible with respet to S and therefore the elimination for G2will result in a 7th order di�erential operator (see Appendix B). The orrespondingbranhing rule for F4 is [22℄ 26=17+9, so in this ase we have a pseudo-di�erentialoperator, ontaining one integration.Finally, for E6, E7 and E8 the branhing rules are [22℄:E6 :E7 :E8 : 27 = 17 + 9 + 156 = 28 + 18 + 10248 = 59 + 47 + 39 + 35 + 27 + 23 + 15 + 3 (5:21)and therefore in these ases the elimination leads to pseudo-di�erential operators,ontaining 2, 2 and 7 integrations, respetively.



VI. ConlusionsIn this paper we have shown that extended onformal algebras,W-algebras arisenaturally in the onstrained WZNW formulation of Toda �eld theories. Our mainresults are the following:We have given an ambidextrous generalization of the usual gauged WZNW mod-els to derive Toda theories. Using the embedding WZNW phase spae, we have shownhow to implement the ation of the W-algebra generators as ertain �eld dependentKa-Moody transformations. This led us to a powerful algorithm to alulate theW-algebra relations. Using this algorithm we alulated the so far unknown Poissonbraket algebra of W(G2) expliitly.We exhibited a partiular basis where all the W-generators are onformal pri-mary �elds. We have also shown that for the A, B, C series there is always a basis inwhih theW-algebra loses quadratially, and that is not true for the rest of the sim-ple Lie-algebras. Finally we have proved that the leading terms of the W-generators(i.e. terms without derivatives) are restrited Casimir operators. We exhibited theCasimir algebra relations in detail for the A, B and C series and have given a generalproof of losure of their Poisson braket algebra for any simple Lie algebra.As found in [15℄ the quantum version of the Casimir algebra does not losein general (it has been shown to lose for SU(3) only when the level is equal toone) hene it is natural to ask whether an extension of the W-generators to the fullKa-Moody phase spae (in the sense disussed in the introdution of Chapter III)exists, with the full, unrestrited Casimirs as leading terms. If one ould �nd suhan extension it would make possible to assoiate a representation of the W-algebrain terms of unrestrited Ka-Moody generators to any Ka-Moody algebra. As suhan extension would also be a deformation of the Casimir algebra, it ould possiblysurvive quantization. This problem is ertainly very interesting as it would alsolarify the origin of W-algebras, without making referene to any partiular model.A detailed investigation of suh deformations of the Casimir algebras is outside thesope of this paper. After some preliminary investigation of the problem we found



that at least for A2 one annot extend the W-algebra to the whole phase spae ofthe (hiral) Ka-Moody urrents, at least with the assumption of the W i's beingdi�erential polynomials with unrestited Casimirs as leading terms.However by giving up the polynomial nature of the W i's we have found suhan extension of the generators of the W-algebra for A2. In fat this result an begeneralized for an arbitrary An algebra. This problem is under investigation.
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Appendix A: ConventionsHere we give our onventions and present some formulae whih are used in the paper.Spae-time and Poisson brakets:�00 = ��11 = 1; x� = 12(x0 � x1); �� = �0 � �1 : (A:1)We use equal time Poisson brakets and spatial Æ-distributions. At �xed x0 all quanti-ties are supposed to be periodi with period 2�. Prime means `twie spatial derivative'everywhere, even on Dira Æ's. Note that this is equal to �+ on quantities dependingon x through x+ only.Conformal primary �elds:The left-moving onformal transformations are generated by the onserved momentsQa = Z 2�0 dx1a(x)L(x) (A:2)of the Virasoro density L(x) = �++(x), for any periodi test funtion a(x) for whih��a(x) = 0. A onformal primary �eld 	 of left onformal weight � transforms as(ÆL	)(y) = �fQa;	(y)g = a(y)�+	(y) + � �	(y) �+a(y) : (A:3)If ��	 = 0 then this is eqivalent tofL(x);	(y)gjx0=y0 = � �	(x) Æ0(x1 � y1) + (�� 1) � (�+	(x)) Æ(x1 � y1): (A:4)Lie algebras:Let G be a omplex simple Lie algebra, � the set of roots with respet to some Cartansubalgebra, and � a set of simple roots. There is a Cartan element H' assoiated toevery ' 2 � and the Cartan matrix K�� is given asK�� = �(H�) = 2� � �j�j2 = j�j22 Tr (H� �H�) �; � 2 � ; (A:5)where Tr is the usual matrix trae multiplied by an appropriate normalization on-stant, whih ensures that j�longj2 = 2. For example, for the de�ning representations



of the orthogonal Lie algebras Bl and Dl this normalization onstant is 12 , and it is1 for the de�ning representations of Al and Cl. For any positive root � 2 �+ wehoose step operators E�� so that we haveH� = [E�; E��℄ Tr (E� �E�) = 2j�j2 Æ�;�� Tr (E� �H�) = 0 (A:6)for �; � 2 �, and also[H�; E�℄ = K��E� ; for � ; � 2 � : (A:7)In our Cartan-Weyl basis H� (� 2 �), E�' (' 2 �+) all the struture onstants ofG are real numbers. Throughout the paper we use the maximally non-ompat realform G of G for whih the Cartan deomposition is valid without omplexi�ation.We in fat take G to be the real span of the Cartan-Weyl basis of G. The maximallynon-ompat real forms of Al, Bl, Cl and Dl are (up to isomorphism) sl(l + 1; R),so(l; l+ 1; R), sp(2l; R) and so(l; l; R), respetively.The exponents of the simple Lie algebras are listed in the following table:Algebra ExponentsAl 1; 2 : : : ; lBl 1; 3; : : : ; 2l� 1Cl 1; 3; : : : ; 2l� 1Dl 1; 3 : : : ; 2l� 3; l� 1G2 1; 5F4 1; 5; 7; 11E6 1; 4; 5; 7; 8; 11E7 1; 5; 7; 9; 11; 13; 17E8 1; 7; 11; 13; 17; 19; 23; 29Ka-Moody algebras:We denote the spae of G-valued left-moving urrents byK. The KM Poisson braketsof the omponents of J(x) = Ja(x)Ta are given as:fJa(x); Jb(y)gjx0=y0 = fabJ(x)Æ(x1 � y1) + �gabÆ0(x1 � y1) (A:8)where the fab are the struture onstants, the KM level k is �4��, and Lie algebraindies are raised and lowered by using the metrigab = Tr(Ta � Tb) : (A:9)



Appendix B: G2 W-algebraIn this Appendix, as a nontrivial example, we ompute the Poisson-braket re-lations of the W-algebra orresponding to G2 expliitly, using the tangential Ka-Moody method introdued in III.3.We will work in the 7-dimensional representation of G2 and hoose the followingmatrix representation for the two simple step operators:
E� = 0BBBBBBB�

0 0 0 0 0 0 00 0 1 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 �1 00 0 0 0 0 0 00 0 0 0 0 0 0
1CCCCCCCA E� = 0BBBBBBB�

0 1 0 0 0 0 00 0 0 0 0 0 00 0 0 p2 0 0 00 0 0 0 �p2 0 00 0 0 0 0 0 00 0 0 0 0 0 �10 0 0 0 0 0 0
1CCCCCCCA : (B:1)

Choosing �1 = �2 = 1, the generators of the speial sl(2; R) subalgebra areI� = Et� + Et� I+ = 10E� + 6E� �̂ = 12[I+; I�℄ (B:2)where �̂ is a diagonal matrix with diagonal elements 3; 2; 1; 0;�1;�2;�3, respetively.Sine there is no `quadrati' gauge for G2, the only distinguished gauge is the`highest weight' DS gauge and we will work in this gauge. We denote the two DS�elds by L and Z, whih are the oeÆients of 12I+ and the step operator for thehighest root, respetively:
J = 0BBBBBBB�

0 3L 0 0 0 Z 01 0 5L 0 0 0 �Z0 1 0 3p2L 0 0 00 0 p2 0 �3p2L 0 00 0 0 �p2 0 �5L 00 0 0 0 �1 0 �3L0 0 0 0 0 �1 0
1CCCCCCCA : (B:3)

On the other hand, a general Lie algebra element an be parametrized as
R = 0BBBBBBB�

H1 A1 B p2C D E 0a1 H2 A2 �p2B C 0 �Eb a2 H3 p2A1 0 �C �Dp2 �p2b p2a1 0 �p2A1 p2B �p2Cd  0 �p2a1 �H3 �A2 �Be 0 � p2b �a2 �H2 �A10 �e �d �p2 �b �a1 �H1
1CCCCCCCA ; (B:4)



where H1 = H2 +H3.Now we have to solve the equationÆJ = [R; J ℄ + �R0 (B:5)for the variations ÆL, ÆZ parametrizing ÆJ in terms of the independent parametersof R, whih are the parameter e and a ertain linear ombination of a1 and a2, whihorrespond to the variations generated by Z and L, respetively.Let us disuss the onformal variation �rst. Using (3:22b), we see that theproperly normalized onformal generator is� = 14� L: (B:6)The onformal variations, generated by the onformal `harge'Q� = Z 2�0 dx1�(x)�(x) (B:7)(through Dira-brakets) are obtained by solving (B:5) withe = 0 and a1 = a2 = 1��: (B:8)We �nd: f�; Q�g� = Æ�� = ��0 + 2�0�� 14��000fZ;Q�g� = Æ�Z = �Z 0 + 6�0Z: (B:9)From (B:9) we see that the entral harge of the Virasoro algebra is = �168k (B:10)and that the �eld Z is a onformal primary �eld with onformal spin 6.The only nontrivial W-transformation is generated byQe = Z 2�0 dx1e(x)Z(x): (B:11)The orresponding variations an be found by solving (B:5) now withe 6= 0 and 9a1 + 5a2 = 0: (B:12)



After a lengthy omputation we �ndfZ;Qeg� = ÆeZ= 1168�� �11e(11) + 4Xi=0 �2i+1[(eQ2i+1)(2i+1) + e(2i+1)Q2i+1℄	; (B:13)whereQ1 = �4576L2Z � 756�2L00Z � 1850�2L0Z 0 � 860�2LZ 00 � 74�4Z 0000+ 230400L5 + 407392�2L3L00 + 1514056�2L2(L0)2 + 111956�4L2L0000+ 1010254�4LL0L000 + 797637�4L(L00)2 + 1648812�4(L0)2L00 + 21196�6LL(6)+ 138201�6L0L00000 + 364431�6L00L0000 + 4951172 �6(L000)2 + 2073�8L(8);Q3 = 1240LZ + 120�2Z 00 � 168608L4 � 184316�2L2L00 � 457655�2L(L0)2� 34870�4LL0000 � 157520�4L0L000 � 124443�4(L00)2 � 3410�6L(6);Q5 = �52Z + 30580L3 + 17226�2LL00 + 428672 �2(L0)2 + 1683�4L0000;Q7 = �2046L2 � 396�2L00;Q9 = 55L:Note that it is a nontrivial hek on our result for ÆeZ that it an be written inthe form (B:13), whih follows from the antisymmetry of the fZ;Zg� Dira-brakethidden in fZ;Qeg�.Finally, by introduing an orthonormal basis fH1; H2g in the Cartan subalgebrade�ned by[E�; Et�℄ = p2H1 [E�; Et�℄ = � 3p2H1 + 3p6H2 (B:14)and going to the diagonal gauge whereJ = I� + �1H1 + �2H2 (B:15)we an easily write down the 7th-order di�erential operator disussed in Chapter V:D(G)2 = (�� � 2p6�2)(�� � 1p6�2 � 1p2�1)(�� � 1p6�2 + 1p2�1)�(��)(�� + 1p6�2 � 1p2�1)(�� + 1p6�2 + 1p2�1)(�� + 2p6�2): (B:16)



Appendix C: Expliit Casimir CalulationsIn this appendix we present the arguments leading to the Poisson brakets (4.21)and (4.22). We then use these results to derive expliit formulae for the Poissonbrakets of the Casimirs Cn as de�ned in (4.17).First we need the Poisson brakets of the group invariant objets, Qn, de�ned in(4.18). We observe that due to the invariane of the trae under yli permutationsfabJaTr (JnT ) = Tr�Jn [J; Tb℄� = Tr�Jn+1Tb � JnTbJ� = 0; (C:1)the Poisson brakets of the Qn's are given byfQn(x); Qm(y)g = �gabTr(Jn�1T a)�Tr(Jm�1T b)(x) Æ0 + Tr(Jm�1T b)0(x)Æ�; (C:2)where the argument of Æ and Æ0 is (x1 � y1). Now by using the identityJn = Tr(JnTa)T a + nN Qn; (C:3)valid for the A;B and C series, we �ndgabTr(JnT a) Tr(JmT b) = (n+m)Qn+m � nmN QnQmgabTr(JnT a) Tr(JmT b)0 = m(Qn+m)0 � nmN Qn(Qm)0 :Together with (C.2) this leads to the Poisson brakets (4.19).Now we are ready to alulate the Poisson brakets for the generating funtionfor the Al algebras f(�; x) = log det�1� �J(x)�: (C:4)By using the power expansion (4.20) and the Poisson brakets (4.19) one arrives atff(�; x); f(�; y)g= � Xm;n�2�n�m�(p�2)Qp�2 � qN Qn�1Qm�1�(x)Æ0+ � Xn;m�2�n�m�(m�1)(Qp�2)0� qN Qn�1(Qm�1)0�(x)Æ (C:5)where p = m+n and q = (n�1)(m�1).



The sums quadrati in the Qn are readily expressed in terms of f and its derivativesand we turn to the more diÆult task of expressing the two remaining sums linearin the Qn in terms of f .In the �rst sumXn;m�2(p� 2)�n�mQp�2 =Xp�4(p� 2)(��) p2 Qp�2 Xm+n=p(�=�)n�m2we insert the identity Xn+m=p�n�m = �p�3 � �3�p�� 1=�and then the remaining sum over p an be written in terms of f and its derivativesas X(p� 2)�n�mQp�2 = �2�2�� � ���f � ��f�: (C:6)In the seond nontrivial sum in (C.5)X(m� 1)�n�m (Qp�2)0 =X(��) p2 (Qp�2)0 Xm+n=p(m� 1)(�=�)n�m2we insert X(m� 1)�n�m = �p�2 � �2�p(�� 1=�)2 � (p� 2) �3�p�� 1=�and the remaining sum over p an again be written in terms of f and its derivativesas X(m� 1)�n�m (Qp�2)0 = �2�2�� � �x��f + �2�2(�� �)2 �x�f(�)� f(�)�: (C:7)Finally, using (C.6) and (C.7) in (C.5) yieldsff(�; x);f(y; �)g = ��2�2� 1�� � [��f � ��f ℄� 1N ��f��f�Æ0+ ��2�2� 1�� � �x��f + 1(�� �)2 �x[f(�)� f(�)℄� 1N ��f�x��f�Æ:(C:8)From this equation one immediately obtains the Poisson brakets (4.21) of the gen-erating polynomial A(�; x) = exp(f(�; x)) for the A-series.



The Poisson brakets for the generating polynomial of the B and C series anbe alulated in a similar manner. The only di�erene is that instead of formulae(C.6) and (C.7) one needs the identitiesXn;m�1 2(p� 1)�n�mQ2(p�1) = ���� � ����g � ���g� (C:9)andXn;m�1 (2m� 1)�n�mQ2(p�1) = 12�� �+ �(�� �)2�g(�)� g(�)�+ ���� � ���g (C:10)to derive the Poisson brakets (4.22). (Here g(�; x) = logB(�; x).)The Poisson brakets of the generating polynomials ontain all information aboutthe Casimir algebra. For example, by using the expansion (4:17a) in (4.21) oneobtains for AlfCk(x); Ck(y)g = �ak(x)Æ0(x1 � y1) + 12�a0k(x)Æ(x1 � y1) ; k = 1; 2:::l ; (C:11)where ak = 2k�(l+ 1� 2k)C2k�1 + �(k � 2) � k(1� kl + 1)(Ck�1)2� 2�(k � 3) k�3Xi=0 �(l� i� k)(i+ 1)Ck+iCk�i�2 ;and by using the expansion (4:17b) in (4.22) one obtains for the Bl and Cl algebrasfCk(x); Ck(y)g = �bk(x)Æ0(x1 � y1) + 12�b0k(x)Æ(x1 � y1) ; k = 1; 2:::l ; (C:12)wherebk = 4(2k � 1)�(l+ 1� 2k)C2k�1 � 4�(k � 2) k�2Xi=0 �(l� i� k)(2i+ 1)Ck+iCk�i�1:In partiular, for the highest Casimirs the Poisson brakets simplify to (4.23) and(4.24).
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