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Abstra
tThe partition fun
tion and the order parameter for the 
hiral sym-metry breaking are 
omputed for a family of 2-dimensional intera
tingtheories 
ontaining the gauged Thirring model. In parti
ular we derivenon-perturbative expressions for the dependen
e of the 
hiral 
onden-sate on the temperature and the 
urvature. Both, high temperatureand high 
urvature supress the 
ondensate exponentially and we 
anasso
iate an e�e
tive temperature to the 
urvature.
1E-mail: ivo�itp.ethz.
h2E-mail: wipf�itp.ethz.
h



1 Introdu
tionDespite of the 
onsiderable amount of work devoted to the subje
t of 
hiralsymmetry breaking in gauge theories and in parti
ularQCD, the understand-ing of this non-perturbative phenomenon is still unsatisfa
tory [1℄. Also thebehaviour of quantum systems in a hot and dense enviroment (eg. in neu-tron stars or in the early universe) are still under a
tive investigation [1℄. Onanother front there has been mu
h e�ort on the apparently di�erent problemof quantizing self-intera
ting theories in a ba
kground gravitational �eld [2℄.Rather than seeking new partial results for realisti
 4-dimensional theo-ries we analyse a family of intera
ting theories of 
harged fermions, s
alars,pseudo-s
alars and photons propagating in 2-dimensional 
urved spa
etimein detail. These models are de�ned by the a
tionS = R p�g h � i
�(D� � ig1���+ ig2� �� ���) +g��(������+ ������)� g3R�� 14F��F ��i; (1)where F�� is the ele
tromagneti
 �eld strength and D� = r� � ieA� thegenerally- and gauge 
ovariant derivative. This family 
ontains in parti
ularthe S
hwinger model (gi = 0; i = 1; ::; 3)[3℄ and the gauged Thirring model(g21=�g22=g2; g3=0)[4, 5℄ in 
urved spa
etimeSTh = Z p�gh � i
�D� � g24 j�j� � 14F��F ��i:The 
oupling 
onstant g3 has been introdu
ed in order to test the e�e
t ofnon-minimal 
oupling to the gravitational �eld. Finite temperature e�e
tsare then in
luded by quantizing the system on an eu
lidean torus1 [0; �℄ �[0; L℄ with arbitrary metri
. We 
hoose 
oordinates su
h thatg�� = e2�(x) � j� j 00 1� ; where � = i�L:� is the inverse temperature and L is the infrared 
ut-o� whi
h will beremoved after the 
orrelation have been 
al
ulated. Furthermore, �nite tem-perature boundary 
onditions are imposed on the quantum �elds [6℄.1
hoosing a torus rather than a 
ylinder provides us with an infrared regularization [6℄.1



On the torus a general gauge potential with non-vanishing 
ux 
an bede
omposed as A� = Ak� + t� + ���� �����';where the last 3 terms are re
ognized as Hodge de
omposition of the singlevalued part of A and Ak is an instanton potential giving rise to a quantized
ux e R F = 2� k: As a 
onsequen
e the 
orresponding Dira
 operator hasjkj zero modes [6℄ of 
hirality signfkg. These zero modes are responsiblefor a non vanishing 
hiral 
ondensate h �  i as 
an be seen by inspe
ting thefermioni
 generating fun
tional [6℄ in the external �elds2A; �; �; h and sour
es�; ��ZF [Ak; �; �; h�; �; ��℄ = jkjYp=1(��;  0p)( y0p; �)det0(i =D) e�R pg��(x)Se(x;y)�(y): (2)Here  0p(x); p=1; :::; jkj, are the jkj zero modes in the topologi
al se
tor kand det0(i =D) denotes the zero mode trun
ated determinant. Se(x; y) is theex
ited fermioni
 Green's fun
tion. We shall restri
t ourselves to the se
torsk = 0 and k = 1, sin
e these 
ontribute to the partition fun
tion and the
hiral 
ondensate, respe
tively. Finally we introdu
e a 
hemi
al potential forthe 
onserved ele
tri
 
harge. In the eu
lidean forumlation this is done byshifting the zero 
omponent of the gauge potential by an imaginary 
onstant[7℄.2 Partition fun
tionAs a �rst step in analyzing stru
ture of the quantum theory we evaluate thepartition fun
tion formally de�ned byZ0 = Z D(A; �; �; h)ZF [A; �; �; h℄e�SB(A;�;�;h); (3)where SB(A; �; �; h) = � Z pg�4�+ �4�� h�h� � 14F��F ��:2the harmoni
 �eld h is needed for a 
onsistent quantization on the torus, analogousto the harmoni
 part t� of the gauge �eld. On the torus the a
tion (1) is 
hanged toS ! S + R pg[g2h�j� + h�h�℄ 2



After a 
ovariant gauge �xing (3) is promoted to a well de�ned quantity.From (2) it is 
lear that only the trivial topologi
al se
tor 
ontributes to thepartition fun
tion. Then ZF [A; �; �; h℄ equals the determinant of the Dira
operator =D whi
h is related by 
onformal- and 
hiral transformations toi =̂D � 
̂�(�� � 2�iL a�); where 2�L a� = et� + g2h� � ��Æ0;�:Hatted quantities refer to 
at metri
 and 
onstant gauge potentials. The
hemi
al potential is 
ontained in the last term in a�. Integrating the 
hiral-and 
onformal anomalies [8℄ we �nddet(i =D) = det(i =̂D) exp [ 124�SL + 12� Z pgG 14G℄; (4)where SL = 14 Z R 14Ris the Liouville a
tion and G = g2'+ e�. One must be 
areful in 
omputingthe hatted determinant sin
e the gauge potential is 
omplex. This has beendone in [9℄ with the resultdet(i =̂D) = 1j�(�)j2�h a1�a0 i(0; �) ��h �a1��a0 i(0; �): (5)The remaining fun
tional integrals in (3) turn out to be of iterative Gaussiantype and yield after substitution of (5)Z0 = p2�V em
 L�j�(�)j4 1det0 12 (�4+m2
) exp �( 112� + g23)SL� (6)where V =R pg and m2
 = e2� 2�2� + g22is the dynami
ally generated "photon" mass. This result already indi
atesthat in the trivial topologi
al se
tor the theory (1) should be equivalent to afree, massive, neutral, boson even in 
urved spa
e-time. Note that the massdepends on g2. In parti
ular (6) shows that only the transversal part of the
urrent-
urrent intera
tion 
ontributes to the mass renormalization in the3



Thirring model. Note also that the 
hemi
al potential does not appear inthe �nal result for the partition fun
tion. This may not 
ome as a surprise,be
ause of the equivalen
e to a un
harged boson. Also ��Z[�℄ = 0 is theonly result 
onsistent with Gauss's law. We 
onsider this 
onsisten
y as a
on�rmation of our de�nition of the fermioni
 determinant whi
h di�ers fromprevious ones in the literature [10℄. The non-minimal 
oupling to gravity (forg3 6= 0) 
ontributes to the gravitational anomaly and therefore a�e
ts theintensity of the Hawking radiation3 Chiral CondensateThe 
hiral 
ondensate h �  i is the order parameter for the 
hiral symmetrybreaking, responsible for the mass term in (6). Here we evaluate the depen-den
e of the order parameter on temperature and 
urvature. Re
alling (2)we see that only 
on�gurations within the topologi
al se
tors k = �1 
an
ontribute to this expe
tation value. More pre
i
elyh � (x)P+ (x)i = 1Z0 Z D(: : :) y01(x) 01(x)det0(i =D) e�SB[A1;�;�;h℄jk=1; (7)where P+ = 12(1 + 
5) is the proje
tor on states with positive 
hirality. Z0has been 
omputed in the previous se
tion (6). The generalization of (4) tonon-zero k readsdet0(i =D) = det N N̂ det0(i =̂D) exp ( 124�SL)� exp ( 12� Z pgG 14G+ 2kV Z pgG+ 2�k2V̂ Z qĝ�); (8)where the hatted determinant now also 
ontains the instanton potential. Nis the normmatrix of the zero modes p0+(x) = eiF�
5(G+2k��)� 12� ̂p0+(x)and �(x) satis�es the di�erential equationpg4� = pg2�V �qĝ2�̂V :4



All information about the harmoni
s and the 
hemi
al potential is 
ontainedin the zero modes. However,Z d2t det0(i =̂D) y01 01 = 1p2�Land hen
eh yP+ i = s�i�V̂ j�(�)j2e�2�2=e2V+2�=V̂ R pĝ�De�2(g�+e')(x)��(x)E�'; (9)where the expe
tation value is evaluated withSeff = Z pgh12'(42 � e2�4)'� e2�m2
 �4�� eg2� �4'i:A formal 
al
ulation of the resulting Gaussian integrals yieldsh yP+ i = s�i�V̂ j�(�)j2e�2�2=e2V+2�=V̂ R pĝ� e��(x)�4��(x)� exp [2�2m4
e2 K(x; x)℄ exp [ 2�g222� + g22 G0(x; x)℄; (10)where K(x; y) = hxj 142 �m2
4jyi = 1m2
 (G0(x; y)�Gm
 (x; y)) (11)and Gm; G0 are the massive and massless Green's fun
tions respe
tively.As it stands (10) is still a formal expression sin
e G0(x; y) is logarith-mi
ally divergent when x tends to y. To extra
t a �nite answer we needto renormalize the operator exp(��). This wave fun
tion renormalization isequivalent to the renormalization of the fermion �eld in the Thirring modeland thus is very mu
h expe
ted already in 
at spa
e time [11℄. Its general-ization to 
urved spa
e-time is found to beGreg0 (x; x) = � 12� log [2�j�(�)j2Lm
 ℄:To determine the 
hiral 
ondensate we also need to determine K(x; y) on thediagonal. In a �rst step we shall obtain it for the 
at torus. Its 
urvaturedependen
e is then determined in a se
ond step.5



For �=0 the Green's fun
tion K has been 
omputed in [6℄. Substitutionof this Green's fun
tion leads, after removing the infrared 
ut-o�, to thefollowing exa
t formula for the 
hiral 
ondensate on 
at spa
eh yP+ i� = �T� m
2�T � g222�+g22 exp h� �2m
e2 T + 2�2� + g22F i; (12)where F (�) = Xn>0 h 1n � 1qn2 + (�m
=2�)2 i:For arbitrary values of the temperature and g2 the in�nite sum F is evaluatedon a 
omputer (Fig.1). It is however interesting to dis
uss some limiting
ases.For low temperatures, 
ompared to m
 we haveF (�)! 
 + log �m
4� + ��m
 ; (13)where 
 = 0:57721 : : : is the Euler 
onstant. Substitution of (13) yields thezero temperature resulth yP+ i = �m
4� 2g22=(2�+g22) exp � 2�2� + g22 
� for T ! 0: (14)On the other hand for temperatures large 
ompared to the indu
ed photonmass F vanishes. Thus we obtain the high temperature behaviourh yP+ iT = �T� m
2�T � g222�+g22 exp �� �2m
e2 T� for T !1: (15)Hen
e the 
hiral 
ondensate de
ays exponentially for high temperatures ap-proa
hing zero assymptoti
ally. The 
oupling to the pseudos
alars � weakensthe e�e
t of the temperature while the s
alar �eld � has no e�e
t. For thegauged Thirring model this result implies that only the transversal part of the
urrent-
urrent 
oupling a�e
ts the 
hiral 
ondensate. Finally note that, asthe partition fun
tion, the 
hiral 
ondensate does not depend on the 
hemi
alpotential.How does the gravitational �eld a�e
t the 
hiral 
ondensate? To answerthis question we need to know the massive Green's fun
tion, entering in (11),6



for non-trivial gravitational �elds (for simpli
ity we assume T = 0). Let us�rst 
onsider a spa
e with 
onstant positive 
urvature. Then Gm
 has been
omputed expli
itely [13℄. Here we only need the short distan
e expansion,given byGm
 (x; y) = � 14�f2
 + log (s2R8 ) +  (12 + �) +  (12 � �) +O(s2)g; (16)where �2= 14� 2m2
R and  (z) is the Digamma fun
tion. Substituting (16) into(11) we end up with the exa
t formula for the 
hiral 
ondensate for 
onstant
urvatureh yP+ iR = h yP+ iR=0 � exp h �2e2m2
f log ( R2m2
 ) + (12 +�) + (12 � �)gi:(17)The assymptoti
 expansions for large-and small 
urvatures are easily workedout inserting the 
orresponding expansions for the Digamma fun
tion [14℄.We �nd h yP+ iR = h yP+ iR=0 � exp h� �12e2Ri for Rm
 ! 0 (18)andh yP+ iR = h yP+ iR=0 �( R2m2
 ) �2�+g22 exp h� �4e2R��m2
4e2 
i for Rm
 !1:(19)Hen
e the 
hiral 
ondensate de
ays exponentially for large 
urvature analo-gous to the high temperature behaviour. However, the pseudo-s
alars do notsupress the e�e
t of the 
urvature in 
ontrast to (15). Comparing the expo-nentials in (19) to (15) we are lead to de�ne the 
urvature indu
ed e�e
tivetemperature as Teff = R4�m
 : (20)In passing we note that if we 
ompare the prefa
tors, rather than the expo-nentials, we would write Teff = R 124�p2 : (21)7



The latteridenti�
ation a
tually 
oin
ides (up to fa
tor of 2) with the Hawk-ing temperature of free s
alars in de Sitter spa
e [15℄. The 
orre
t iden-ti�
ation involves the (dynami
al) mass of the gauge �eld and is thereforenot universal. From this observation we learn that the temperature asso
i-ated with 
urvature depends on the matter 
ontent. Note �nally that thenon-minimal 
oupling (g3) has no e�e
t on the 
hiral 
ondensate. In Fig.2 we have plotted the 
hiral 
ondensate for arbitrary 
onstant values of the
urvature.For gravitational ba
kgrounds with non-
onstant 
urvature we have torefer to perturbative methods for the 
al
ulation of the massive Green's fun
-tion. Again we only need the short distan
e expansion of Gm
 . For geodesi
distan
es s small 
ompared to m�1
 the massive Green's fun
tion may beapproximated by the Seeley DeWitt expansion [16℄Gm(x; y) � 14i 1Xj=0 aj(x; y)(� ��m2 )j H(2)0 (ms); (22)where H(2)0 is the Hankel fun
tion of the se
ond kind and order zero. Inparti
ular H(2)0 (z)! 2i� [ log z2 + 
℄ for z ! 0:Inserting (22) into (11) we end up with the following expansion for the 
hiral
ondensate in an arbitrary ba
kgroundh yP+ iR = h yP+ iR=0 � exp h� �2 (m
e )2 1X1 aj(x)(j � 1)!m2j i; (23)where we have used that a0(x) = 1. The �rst order 
ontribution involvesa1(x) = 16R and reprodu
es the assymptoti
 behaviour (18). Higher order
ontributions must be taken into a

ount to un
over the e�e
t of variable
urvature. For this one has to substitute is the 
orresponding Seeley DeWitt
oeÆ
ients aj into (23). These have been 
omputed up to j=5 [17℄.4 SummaryWe have 
omputed the partition fun
tion and the order parameter of the
hiral symmetry breaking for a Thirring-like gauge theory. In parti
ular we8



�nd that both, high temperature and high 
urvature supress the 
ondensateexponentially. Comparing the two results, we de�ned a 
urvature indu
ed ef-fe
tive temperature whi
h, unlike the Hawking temperature, depends on thematter 
ontent and is therefore not universal. Furthermore we have shownthat a non-minimal 
oupling to gravity a�e
ts the Hawking radiation whileit has no e�e
t on the 
hiral symmetry breaking. The non-minimal 
oupling
hoosen in our model is however not unique and this result is therefore notgeneral. Finally we obtain that a 
hemi
al potential for the ele
tri
 
hargedoes a�e
t neither the partition fun
tion, nor the 
hiral 
ondensate, in 
on-siten
y with Gauss's law.5 A
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