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AbstratIn this paper we show how the well-known loal symmetries of Lagrangeansystems, and in partiular the di�eomorphism invariane, emerge in theHamiltonian formulation. We show that only the onstraints whih are linearin the momenta generate transformations whih orrespond to symmetriesof the orresponding Lagrangean system. The nonlinear onstraints (whihwe have, for instane, in gravity, supergravity and string theory) rathergenerate the dynamis of the orresponding Lagrangean system. Only in avery speial ombination with "trivial" transformations proportional to theequations of motion do they lead to symmetry transformations. We revealthe importane of these speial "trivial" transformations for the interon-netion theorems whih relate the symmetries of a system with its dynamis.We prove these theorems for general Hamiltonian systems. We apply thedeveloped formalism to onrete physially relevant systems and in partiu-lar those whih are di�eomorphism invariant. The onnetion between theparameters of the symmetry transformations in the Hamiltonian- and La-grangean formalisms is found. The possible appliations of our results aredisussed.



Chapter 1IntrodutionLoal symmetries play a very important role in all �eld theories being rel-evant in physis. The ations of suh theories are invariant with respet tosome group of loal transformations. For example, for Yang-Mills theoriesthese are the gauge transformations, for string theory and gravity di�eo-morphisms and for supersymmetri theories oupled to gravity loal super-symmetry transformations. These symmetries are quite transparent in theLagrangean formulation and this is seen as one of the main virtues of thisapproah. Atually the Lagrangean of a theory is onstruted suh that itis invariant under gauge transformations and/or di�eomorphisms.If we go from the Lagrangean to the �rst order Hamiltonian formalismthen at �rst glane it seems that these symmetries are not manifest. Thisapplies espeially to di�eomorphism invariant theories and is of muh rele-vane in general relativity [1, 2, 3, 4℄. One of the purposes of this paper isto show that one an onstrut the symmetries of onstrained Hamiltoniansystems in an expliit manner.It was found in [5, 6℄ that the �rst order ation is invariant with respetto in�nitesimal time-dependent transformations generated by the �rst lassonstraints if the Lagrangean multipliers are simultaneously transformed.However, we shall see that these transformations orrespond to Lagrangeansymmetries only if the onstraints are linear in momenta. For instane,this is the ase for Yang-Mills theories, where all gauge transformations(inluding time-dependent ones) an be reovered in suh a manner in theHamiltonian formalism.For the onstraints whih are nonlinear in the momenta (as they existin di�eomorphism invariant theories, e.g. gravity or string theory) this is1



not true anymore. The nonlinear onstraints by themselves do not gener-ate transformations whih orrespond to symmetries of the orrespondingLagrangean system. They are rather responsible for the dynamis of suhsystems.Although the transformations generated by the nonlinear onstraints arestill symmetries of the Hamiltonian system (whih annot be identi�ed withLagrangean symmetries) it is not lear whether they are of any relevane,sine only their in�nitesimal form is known. It is not obvious whether fornontrivial theories they an be exponentiated, that is an be iterated to�nite transformations.The ation in the Hamiltonian (and even Lagrangean) formalism is alsoinvariant with respet to so-alled in�nitesimal 'trivial' transformations [7,8, 9℄ whih are proportional to antisymmetri ombinations of the equationsof motion and do not vanish o� mass-shell. This huge lass of additionaltransformations exists even in theories without loal symmetries. It is learthat most of them (or sometimes even all) are irrelevant and an safely beignored [7, 8, 9℄. However, we shall see that not all of the "trivial" transfor-mations are really unimportant for the systems with nonlinear onstraints.Indeed, we shall demonstrate that all Lagrangean symmetries an be re-overed in the Hamiltonian formalism only if we onsider the transforma-tions generated by the nonlinear onstraints in a very speial ombinationwith partiular "trivial" transformations. The ombined transformationsan be exponentiated sine they orrespond to known Lagrangean symme-tries. Thus, not all of the trivial transformations are irrelevant for systemswith nonlinear onstraints, although they may be ignored for partiular per-turbative questions [9℄. However, this is not alway the ase. In partiularwe shall see later that it is impossible to get the theorems whih relate thedynamis of a super-hamiltonian system with its symmetry properties (e.g.the interonnetion theorems in general relativity) if we neglet the trivialtransformations. Also, when one ignores them this an lead to wrong resultsin nonperturbative alulations. One last remark onerns the identi�a-tion of transformations generated by the onstraints with the Lagrangeansymmetries on mass-shell. It seems that this identi�taion of in�nitesimaltransformations is meaningless, sine on mass-shell any in�nitesimal trans-formation an be viewed as "symmetry transformation" sine solutions ofthe equations of motion are stationary points of the ation.The questions whih we address in this paper are the following. First weinvestigate how one reovers and generalizes the loal Lagrangean symme-tries in the �rst order Hamiltonian formalism. This question has also been2



raised reently in [10℄. However, our approah is very di�erent and an beviewed as omplimentary to that in [10℄. Also we expliitly reveal the on-netion between the parameters of the transformations in the Hamiltonianand Lagrangean formalisms in most physially important theories. Someof these results (but not all) an be found in the literature and our pur-pose here will be to larify the onfusing points whih still exist. The otherquestion onerns the di�erene between linear and nonlinear in momentaonstraints. We will show that the transformations generated by the non-linear onstraints always take any trajetory whih belongs to the subspaewhere the Lagrangean system lives 1 away from this subspae. Hene thesetransformations annot orrespond to Lagrangean symmetries. The role ofthe "trivial" transformations is to projet the trajetory bak to this sub-spae. The nonlinear onstraints themselves rather generate the dynamisof the orresponding Lagrangean systems.We will follow in detail how the losed Lie algebra belonging to thedi�eomorphism group arises in a natural manner in the Hamiltonian for-malism. We larify the onnetion between the symmetry properties of thesystem and its dynamis and prove the so-alled "interonnetion" theorem[11℄ for general onstrained Hamiltonian systems entirely in the Hamilto-nian formalism. This theorem plays a ruial role in the Dira quantizationprogram and also in the Hamilton-Jaobi appraoah to lassial general rel-ativity. It will be shown that this theorem is nontrivial only for theories withan in�nite number of degrees of freedom and only if there are nonlinear inmomenta onstraints. The speial role played by the trivial transformationsin proving it is emphasized. Most of our onsiderations are lassial and weomment on the orresponding problems in the quantized theories at theend of the paper.The paper is organized as follows. In the seond setion we desribe thesymmetries of general �rst order Hamiltonian systems. In the subsequentsetions we apply the results to gauge theories, the relativisti partile, theloally supersymmetri relativisti partile, bosoni string and to generalrelativity. We show that the loal symmetries of Hamiltonian systems o-inide with the loal symmetries of the orresponding Lagrangean systemsby revealing the onnetion between the parameters of the orrespondinggroups for the Hamiltonian and Lagrangean systems. In the last hapter wedisuss why from our point of view the Hamiltonian formalism is more 'fun-1The subspae on whih the momenta and veloities are related by the �rst half ofHamilton's equations 3



damental' than the Lagrangean one, in partiular for the quantized theories,and desribe the possible appliations of the developed formalism.
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Chapter 2Symmetry TransformationsWe shall onsider a general �rst order Hamiltonian system with onstraints,the ation of whih isS = Z �p~i _q~i �N ~�C~�(p; q)�H(p; q)�dt: (2.1)If the system ontains fermions then some of the variables p; q;N will be ofGrassmannian type. The �rst order ation (2.1) desribes both systems witha �nite or in�nite number of degrees of freedom sine the following ondensednotation [12℄ is assumed: the indies ~i; ~� are supposed to be omposite ones,that is they may ontain disrete and ontinuous variables. For systems witha �nite number of degrees of freedom ~� = � and ~i = i are disrete. For �eldtheories ~i = fi; xg and ~� = f�; xg, where i and � are some disrete (internal)indies and in d spae-time dimensions x = fx1; : : : ; xd�1g are the d�1 spaeoordinates. For example, for a salar �eld q~i(t) = �x(t) = �(x; t) and fora vetor �eld q~i(t) = Ai;x(t) = Ai(x; t), where in 4 spaetime dimensionsi = 1; 2; 3. We adopt the Einstein onvention for repeated indies in 'up'and 'down' positions, that is we assume summation over disrete repeatedindies and integration over ontinuous ones, for example�xpi;x _qi;x =Xi Z dx�(x)pi(x) _qi(x); (2.2)but �xpi;xqxi =Xi �(x)pi(x)qi(x); no integration. (2.3)Also, we shall not distinguish qi;x and qxi and use the position of the ontin-uous index just to indiate when we should integrate. Sometimes it will be5



onvenient to resolve the omposite index ~i (or ~�) as i; x (or �; x). The dotalways denotes derivative with respet to time t on whih p; q and N maydepend.For �rst lass Hamiltonian system [13℄ the ontraints C~� and Hamilto-nian H form a losed algebra with respet to the standard Poisson braketf:; :g (possibly extended to fermioni variables, in whih ase the algebra isgraded [14℄): fC~�; C~�g = t~~�~�C~ and fH; C~�g = t~�~�C~� ; (2.4)where the t's are the struture oeÆients 1. These oeÆients may dependon the anonial variables. For �eld theories t~~�~� � tz�x �y and t~�~� � t�y�x.The equations of motion resulting from the variation of the ation (2.1)with respet to q; p and the Lagrangean multipliers NÆS = Z �Æp~iEM(q~i)� Æq~iEM(p~i)� ÆN ~�C~��dt+ bound. terms (2.5)are EM(q~i) � _q~i � fq~i;N ~�C~� +Hg = 0;EM(p~i) � _p~i � fp~i;N ~�C~� +Hg = 0;C~� = 0: (2.6)Below we shall often use these abbreviations EM(q) and EM(p) for the lefthand sides in (2.6). Of ourse, on mass shell we have EM = 0, but o� massshell either EM(q) or EM(p) (or both) does not vanish.To go from the Hamiltonian to the Lagrangean formalism we shouldexpress the momenta in terms of the veloities via the Hamiltonian equationsEM(q~i) = 0. Thus not all o� mass-shell trajetories of the Hamiltoniansystem an be onsidered in the Lagrangean formalism, but only those forwhih EM(q)=0. Hene one an say that the Lagrangean system lives onlyin the subspae M of the 'extended phase spae' de�ned by the onditionsM : EM(q~i) � _q~i � fq~i;N ~�C~� +Hg = 0 (2.7)Clearly the spae of trajetories in phase spae where the Hamiltonian sys-tem lives is muh bigger than the spae of Lagrangean trajetories.1If some onstraints depend expliitly on time, then we should add �tC~� to the righthand side of the seond relation. 6



The ation (2.1) is invariant (up to boundary terms) with respet to thein�nitesimal transformations generated by the onstraints if the Lagrangeanmultipliers are transformed simultaneously [5, 6℄:Æ�qxi = fqxi ; �~�C~�g;Æ�pix = fpix; �~�C~�g;Æ�N ~� = _�~� � �~�N ~t~�~ ~� � �~�t~�~� : (2.8)The parameters �~� = ��(N ; x; t) in (2.8) are the parameters of the in�nites-imal transformations. The order in whih � enters in (2.8) is important ifsome of the variables are of Grassmannian type. We shall only onsiderthe ase when the parameters � depend expliitly on spaetime oordinatesand Lagrangean multipliers, sine this suÆes to over all known physiallyrelevant theories2. Beause of this N -dependene we should keep � insidethe Poisson braket even for purely bosoni theories sine if we alulatethe ommutator of two subsequent in�nitesimal transformations, then theparameter � of the seond transformation will depend on q; p if the strutureoeÆients depend on the anonial variables. It is not diÆult to see thatthe variation of the ation (2.1) under these transformations leads only tothe boundary terms Æ�S = �p~iÆ� q~i � �~�C~��jtfti : (2.9)This term an be removed even if the parameters � do not vanish at theboundaries if we add to the ation (2.1) the total derivative of some funtionQ(p; q) whih satis�es the equationÆQÆq~i Æ�q~i + ÆQÆp~i Æ�p~i = �~�C~� � p~iÆ�q~i: (2.10)The question whih naturally arise here is the following: do the symmetrytransformations (2.8) orrespond to Lagrangean symmetries, that is are they,for instane, the di�eomorphism transformations in general relativity andstring theory?2In priniple, we ould onsider more general transformations for whih the � would alsodepend on the anonial variables q and p. One an show that in this ase the ation (2.1)is also invariant with respet to in�nitesimal transformations generated by the onstraintsif N ~� are transformed as Æ�N ~� = �t�~�(q; p; t)��~�N ~t~�~ ~���~�t~�~��N ~�fC~� ; �~�g�fH; �~�g:7



As we shall see below the answer to this question ruially depends on themomenta dependene of the onstraints. If the onstraints are linear in themomenta, then the answer is yes. However, it is not the ase if some of theonstraints are nonlinear. The reason is that the transformation (2.8) gener-ated by a nonlinear onstraint take a trajetory inM (see (2.7)) away fromit and the transformed trajetory an not be viewed as a trajetory of theLagrangean system, sine EM(q)=0 does not hold anymore. To proeed inthis ase we should onsider extra ompensating symmetry transformationsof the Hamiltonian system.Atually the set of in�nitesimal o� mass-shell transformations whihleave the ation (2.1) invariant is muh bigger than (2.8). Any in�nitesimaltransformation (Æq; Æp; ÆN ) orthogonal to the (funtional) gradient rS =(�EM(p); EM(q);�C) leaves the ation invariant, as an be easily seenfrom (2.5). Hene we ould add to the transformations generated by theonstraints for example any transformation of the formÆq~i = EM(q~j)� ~j~i +EM(p~j)�~j~i;Æp~i = EM(p~j)�~i~j +EM(q~j)� ~j~i;ÆN ~� = 0; (2.11)where � ~j~i are arbitrary 'matries' (kernels) and the �~j~i; � ~j~i are antisym-metri. Generially suh transformations are nonloal, and they exist for allsystems even for those without any symmetries.Most of them are atually irrelevant for the physially interesting trans-formations [7, 8, 9℄. However, if some of the onstraints are nonlinear then,as we will see, the partiular "trivial" transformations from (2.11) play animportant role for reovering the Lagrangean symmetries in the Hamiltonianformalism.We will show that in all theories ontaining only one nonlinear onstraint(e.g. gravity and string theory) we need only very speial transformationsfrom (2.11), namelyÆ�qxi = EM(qxi )�x and Æ�pix = EM(pix)�x (2.12)to reover all Lagrangean symmetries.Only for theories with several nonlinear onstraints do we need extratransformations from (2.11) in addition to (2.8) to reover all o� mass-shellLagrangean symmetries in the Hamiltonian approah. For a system with8



only one nonlinear onstraint we onsider the ombined transformationsÎ�;� F (q; p;N ) = F (Î�;� q; Î�;� p; Î�;� N ); Î�;� = 1̂ + Æ�;� + � � � ; (2.13)where Æ�;� qxi = EM(qxi )�x + fqxi ; �~�C~�g;Æ�;� pix = EM(pix)�x + fpix; �~�C~�g;Æ�;�N ~� = _�~� � �~�N ~t~�~ ~� � �~�t~�~� : (2.14)The number of funtions (�; ��) whih appear here is equal to the numberof onstraints (per point of spae) plus one. This seems strange sine for allonstrained theories the number of parameters in the Lagrangean symmetrytransformations is equal to the number of onstraints. Thus not all of theparameters in (2.14) should be independent for these transformations to besymmetries of the orresponding Lagrangean systems. To understand whywe need the "trivial" transformations (2.12) in additions to (2.8) and toreveal the onnetions between the parameters � and �� we derive the on-ditions under whih the transformations (2.14) an be viewed as Lagrangeansymmetries.For that the transformations (2.14) should at least leave the subspaeM (see (2.7)) in whih the Lagrangean system lives, invariant. That is,they should leave any trajetory whih belongs to the subspae M in thissubspae. The neessary onditions for that an be gotten by varying (2.7)as followsddt (Æ�;�q~i) = Æ2(H+N ~�C~�)Æp~iÆq~j Æ�;�q~j+ Æ2(H+N ~�C~�)Æp~iÆp~j Æ�;�p~j + fq~i; Æ�;�N ~�C~�g: (2.15)Thus the transformations Æq; Æp and ÆN should satisfy this equation in thesubspae M. If this is not the ase, then the trajetories for whihEM(q) = 0() p~i = f ~i( _q ~j ; q ~j;N ~�) (2.16)are transformed into trajetories for whih this equality fails and they annotbe viewed as trajetories of the orresponding Lagrangean system. The9



transformation of p whih would follow from (2.16) asÆp~i = �f ~i�q~j Æq~j + �f ~i� _q~j Æ( _q~j) + �f ~i�N ~� ÆN ~� (2.17)would be di�erent from the transformation (2.14) for p. Thus (2.14) will notbe a Lagrangean symmetry for whih (2.17) must hold. Substituting (2.14)into (2.15) this ondition simpli�es toÆ2(H +N ~�C~�)ÆpixÆpjy EM(pjy)�y = Æ2C~�ÆpixÆpjyEM(pjy)�~�: (2.18)The point is that this equation relates � and �� and if it holds then the phasespae transformations (2.14) an be interpreted as Lagrangean symmetries.At the same time the number of free funtions beomes equal to the numberof onstraints as it should be.Let us note that the "trivial" transformations (2.12) alone do not satisfy(2.18) for o� mass-shell trajetories if the Hamiltonian H and/or C~� arenonlinear in momenta. Hene they annot be identi�ed with the Lagrangeansymmetries.If some onstraints C~� are nonlinear, then the transformations (2.8) gen-erated by them alone also annot satisfy (2.18) for o� mass-shell trajetories.Hene they annot be viewed as Lagrangean symmetries either. Only whenthe transformations generated by the nonlinear onstratins are taken in avery speial ombination with the "trivial" transformations (2.12) one ansatisfy the ondition (2.18). The reason why the nonlinear onstraints alonedo not generate the Lagrangean symmetries is simple. They always take o�mass-shell trajetories away form the subspae M, where the Lagrangeansystem lives. The "trivial" transformations (2.12) return the trajetoriesbak in M, if for the given �� in (2.14) we take the appropriate �(��) tosatisfy (2.18). They play the role of ompensating transformations. As weshall see later, the nonlinear onstraints themselves generate the dynamisfor Lagrangean systems in the subspae M.Now we would like to onsider two important examples:Gauge Invariane. If the onstraints C~� are linear andH at least quadratiin the momenta then only for �z = 0 an equation (2.18) be satis�ed 3. So,3IfH and all onstraints are linear in momenta then the Hamiltonian system is stronglydegenerate. 10



in this ase the transformations whih are generated by the onstraints willalso be symmetry transformations for the orresponding Lagrangean system.We shall all them gauge transformations:Ĝ� = Î�=0;� =) nÆ�q~i = fq~i; �~�C~�g; Æ�p~i = fp~i; �~�C~�g;Æ�N ~� = _�~� � �~�N ~t~�~ ~� � �~�t~�~� : (2.19)For example, in Yang-Mills theories all onstraints are linear in the momentaand (as we shall see in the next setion) the �nite gauge transformations anbe reovered as transformations generated only by the onstraints (� = 0)in the Hamiltonian formalism 4. Thus the extra transformations (2.12) areirrelevan t in this ase.Reparametrization invariane. Very often the reparametrization in-variane of a Lagrangean system, if it exists, is identi�ed with the gaugeinvariane (2.19) in the Hamiltonian formalism. As we shall see they areatually very di�erent.If some of the onstraints in (2.1) are nonlinear then it is obvious thatthe transformations generated by the onstraints only (� = 0) do not satisfy(2.18). However, in all known theories with nonlinear onstraints H = 0and the ondition (2.18) an be satis�ed if we impose some funtional de-pendene between � and � in (2.14) so that � 6= 0 for suh theories. Thus thenonlinear onstraints generate the Lagrangean symmetries only in very spe-ial ombination with 'trivial' transformations from (2.12). More expliitlytaking �~� to be ��z = N �z�z in (2.18) we redue this equation toN �z(�y � �z) Æ2C�zÆpixÆpjyEM(pjy) = 0: (2.20)One sees at one that if Æ2C�zÆpixÆpjy � Æ(z � y) (2.21)then even for onstraints nonlinear in the momenta the equation (2.18) issatis�ed o� mass shell (EM(p) 6= 0). From that it follows immediately thatthe transformations (2.14) with ��z = N �z�z are symmetry transformations4Another interesting lass of theories where all onstraints are linear in momenta arethe onstrained Wess-Zumino-Novikov-Witten theories [15℄.11



for the orresponding Lagrangean system if H = 0. We shall all this sym-metry reparametrization invariane: R̂� = Î�;��z=N�z�z . The expliit formof the reparametrization transformations generalized to �eld theories isÆ�qxi = _qxi �x + (�y � �x)fqxi ;N �yC�ygÆ�pix = _pix�x + (�y � �x)fpix;N �yC�ygÆ�N�x = (N�x�x)� � �yN �yN zt�xz;�y: (2.22)We would like to remind that aording to our notation we assume hereintegration over y and z but no integration over x. For systems with a �nitenumber of degrees of freedom the seond terms or the right hand sides areabsent and (2.22) has a familiar form.If several onstraints are nonlinear in momenta then there are extrareparametrisation transformations in addition to (2.22). They an be ob-tained by ombining the transformations generated by the onstraints with'trivial' transformations (2.11) in suh a manner that (2.18) is ful�lled (seesetion 5).In some of the theories we shall study (string, gravity) there are both lin-ear and nonlinear onstraints. For suh theories the symmetry transforma-tions whih orrespond to Lagrangean symmetries are ombinations of gaugetransformations (generated by the linear onstraints) and reparametrizationtransformations.Algebra of transformations To onstrut the �nite transformations weneed to apply the in�nitesimal transformations many times. To be suessfulin this 'exponentiation' it is lear that the following neessary onditionshould be ful�lled: The algebra of in�nitesimal transformations should belosed, that is the ommutator of two subsequent transformations should bea transformation of the same type. To hek the algebra of transformationslet us alulate the result for the ommutator of two subsequent in�nitesimaltransformations (2.14) with parameters �1; �1 and �2; �2 respetively. For anarbitrary algebrai funtion F (q; p) of the anonial variables (for exampleF = q or F = p) a rather lengthy but straightforward alulation yields theommutator[Î�2�2 ; Î�1�1 ℄F x(q; p) = �ÆF xÆqzi EM(qzi ) + (q ! p)�( _�z1�z2 � �z1 _�z2)+�(�x2 � �y2 )�~1 �N ~�x2 �y1 � (1$ 2)��fF x; ÆC~Æqyj gEM(qyj ) + (q ! p)�12



�(�x2 �y1 � �x1 �y2)�fF x; ÆHÆqyj gEM(qyj ) + (q ! p)�+ fF x; ��~C~g (2.23)and orrespondingly for the Lagrangean multipliers one has[Î�2�2 ; Î�1�1 ℄N ~� = (Î�� � 1)N ~� + �~Æ2�~1� _t~�~~Æ � ft~�~~Æ;N ~�C~� +Hg��(�~2�x1 � �~1�x2 )� ÆÆqxi (N ~�t~�~�~ + t~�~ )EM(qxi ) + (q ! p)�; (2.24)where we have introdued��~� = �~�1�~�2 t~�~�~� + Æ�~�2ÆN ~� Æ�1N ~� � Æ�~�1ÆN ~� Æ�2N ~�: (2.25)In deriving (2.23) and (2.24) we used the identities(�~1�~Æ2 � �~2�~Æ1)(ft~�~�~ ; C~Æg+ t~�~�~t~�~�~Æ) = �~1�~Æ2(t~�~~Æt~�~� ~� � ft~�~~Æ; C~�g); (2.26)and (�~1�~Æ2 � �~2�~Æ1)(ft~�~ ; C~Æg+ t~�~ t~�~�~Æ) = �~1�~Æ2(t~�~~Æt~�~� � ft~�~~Æ;Hg); (2.27)whih follow from the Jaobi identities for ffC~� ; �~1C~g; �~�2C~�g and forffH; �~1C~g; �~�2C~�g.5 Also we took into aount that if the variables q; pare transformed to new variables ~q = q + 4q and ~p = p + 4p, then thePoisson braket of some quantities A(~q; ~p) and B(~q; ~p) with respet to ~q; ~pare related with the Poisson brakets of A(q; p) and B(q; p) with respet tothe old variables in �rst order in 4q; 4p in the following mannerfA(~q; ~p); B(~q; ~p)g~q;~p = fA(q; p); B(q; p)gq;p+ ÆÆq~i (fA;Bg)4q~i + (q ! p) +O(4q2;4p2): (2.28)We would like to stress that when we are performing the seond trans-formation in (2.23,2.24) whih follows the �rst one, then we must use thetransformed variables. In partiular, instead of �2(N ; x; t) we must take�2(Î�1N ; x; t). This explains the appearene of the last terms in (2.25).5With the exeption of setion 5 we onsider for simpliity only the bosoni ase fromnow on. 13



First let us onsider the ase, when the transformations are generatedonly by the onstraints without extra ompensating "trivial" transforma-tions. In the partiular ase where the struture oeÆents t~�~�~ do notdepend on the anonial variables q; p the parameter �� also does not dependon them as an be seen from (2.25). Also, _t~�~�~ = 0 in this ase and thusthe ommutator of two transformations generated by the onstraints only(� = 0) yields again a transformation generated by the onstraint. Hene, ifthe struture oeÆients do not depend on the anonial variables the trans-formations generated by the onstraints form a losed algebra o� mass-shell.On the other hand, if the struture oeÆients do depend on the anonialvariables that does not automatially imply that the algebra of transforma-tions will not lose even in the absene of trivial transformations. Atually,the q; p-dependene in the formula (2.25) for �� an, in priniple, be an-elled. The prie we pay for that is that the �-parameters may beomeN -dependent. As we shall see in setion 7 this happens for gravity wheresome of the struture oeÆients depend on q, if we onsider transformationsof funtions whih depend on the anonial variables (2.23). The algebra oftransformations (2.14) an also be losed in all relevant ases when � 6= 0if the �~� and � are related in a ertain way. The orresponding transfor-mations an be interpreted as Lagrangean symmetries when some of theonstraints are nonlinear in the momenta. We shall disuss the ases whihare of partiular interest for us later on.An interesting question to whih we have no general answer is the fol-lowing: what are the suÆient onditions to exponentiate the in�nitesimaltransformations (2.14) to �nite ones. In the theories we shall onsider weknow the �nite Lagrangean symmetries whih an be formulated in theHamiltonian formalism and this way one an �nd the �nite transformationin the �rst order formalism. But in general it seems unlikely that the losingof the algebra of in�nitesimal transformations is suÆient to exponentiatethem sine already for a free nonrelativisi partile, whih very probablydoes not admit any �nite loal symmetry, the transformations (2.12) forma losed algebra. This diÆult and very important question (i.e. for thefuntional integral) what are the onditions suh that the transformations(2.14) an be made �nite needs further investigation.Constraints and the equations of motion. There is a very interestingand non-trivial onnetion between the equations of motion and the on-straints. As it is wellknown, if we demand that the onstraints are ful�lled14



on some initial hypersurfae t = t0, then due to the equations of motionthey will be satis�ed at later times. Atually, we have_C~� = ÆC~�Æq~i _q~i + ÆC~�Æp~i _p~i= N ~�t~~�~�C~ + t~�~�C~� + ÆC~�Æq~i EM(q~i) + ÆC~�Æp~i EM(p~i); (2.29)from whih immediately follows that _C � C if the equations of motionare satis�ed. Thus we need to impose the onstraints only on the initialhypersurfae and then they will hold at any moment of time owing to theequations of motion.Inversely, in some theories (e.g. gravity) we an get all of the equa-tions of motions (or some of them as in string theory) if we only demandthat the onstraints are ful�lled for all t (i.e. everywhere) and that thesymmetry transformations do not destroy this property. For example, ingravity and string theory this means that we demand that the onstraintsare valid everywhere and for any hoie of spaelike hypersurfaes, beausethe symmetry transformations (di�eomorphism transformations) an be in-terpreted as a hange of foliation of spae-time. In general relativity thisstatement is known as interonnetion theorem [11℄. Usually, to prove thistheorem it is assumed that the �rst four Einstein equation orrespondingto the onstraints are valid in any oordinate system (for any foliation) andthen one immediately onludes that this an be true only if the remainingsix Einstein equations are satis�ed. Moreover, if one onsiders �nite trans-formations then it suÆes to demand that only the �rst Einstein equationmust be ful�lled to onlude that the remaining equations must hold [11℄.Note however, that to get the Einstein equations one needs to imposehalf of the Hamiltonian equations to express the momenta in term of theveloities. In the Hamiltonian formulation these equations are on the samefooting as the other ones and thus the above arguments an hardly be seenas satisfatory in a Hamiltonian approah sine we annot state that thewhole dynamis is enoded in the onstraints. One does not dedue theHamiltonian equations of motion only from the onstraints and symmetries.Thus our purpose will be to �ll this gap and derive the equations of motionusing the onstraints and the symmetry properties entirely in the Hamil-tonian formalism, without postulating any of the Hamiltonian equations ofmotion.For that let us onsider how the onstraints are hanged under the sym-15



metry transformations (2.14):Æ�;�C~� = ÆC~�Æqxi Æ�;�qxi + ÆC~�Æpix Æ�;�pix= ÆC~�Æqxi EM(qxi )�x + ÆC~�ÆpixEM(pix)�x + �~t~�~�~C~�: (2.30)For the known theories the onstraints are loal funtions of q and p andinvolve only spatial derivatives of q up to seond and p up to �rst order. Itfollows then that the funtional derivatives of the onstraints have the formÆC�yÆqxi = Ai�Æ(x; y) +Bia� ��ya Æ(x; y) +Diab� �2�ya�yb Æ(x; y)ÆC�yÆpix = E�iÆ(x; y) + F a�i ��ya Æ(x; y); (2.31)where A;B; : : : are funtions of qy and py. Substituting (2.30) into (2.31) astraightforward alulation yieldsÆ�;�C�y = ( _C�y +N ~�t~~�;�yC~ + t~�yC~)�y+ �~t~��y;~C~� + �Bia� EM(qyi ) + F a�iEM(piy)���y�ya+ Diab� �2�EM(qyi )�ya ��y�yb +EM(qyi ) �2�y�ya�yb�: (2.32)Here we used the expliit form for some of the indies ~� = �; y, ~i = i; xet; a; b run over the spatial indies and it is understood that there is nointegration over y.Now we an reformulate our question in the following manner: whenan the equations of motion (or some of them) be the onsequene of theequations C~� = 0 and Æ�;�C~� = 0: (2.33)The �rst ondition just means that the onstraints are ful�lled everywhereand the seond one that this statement does not depend on the hosenfoliation.From (2.30) we an immediately onlude that the equations of motionan be derived from (2.33) only if the following neessary onditions aresatis�ed: 16



� Some of the onstraints should be nonlinear in the momenta, sine, aswe showed earlier, only in this ase should we use the extra "trivial"transformations (and onsequently � 6= 0).� The system should have an in�nite number of degrees of freedom.Otherwise there are no spatial derivatives of � and the piees whihare proportional to the equations of motion are absent.� The onstraints should involve spatial derivatives of the p and/or the q.Else all oeÆients B;F;D in (2.31) vanish and the piees proportionalto the equations of motion are again absent.If we demand that (2.33) holds for an arbitrary �, then from (2.30,2.31) weimmediately get the following set of equationsDiab� EM(qyi ) = 0Bia� EM(qyi ) + 2Diba� �EM(qyi )�yb = 0F a�iEM(piy) = 0 (2.34)whih an be solved to obtain the equations of motion. The equationsof motion whih we an get from (2.34) depends on the properties of thematries D;B;F .Now we will briey review how the general results apply to partiularsystems:Systems with a �nite number of degrees of freedom: In this aseno equations of motion follow from (2.33) even if � 6= 0 sine there are nospatial derivatives of �.Gauge theories All of the onstraints are linear in the momenta andtherefore the "trivial" transformations (2.11) are absent. Consequently, noneof the equations of motion an be obtained from (2.33).Bosoni string: One onstraint is nonlinear in the momenta and hene� 6= 0. The matries F;D are identially zero and B 6= 0. Then only somerelations between the EM(q) follow from (2.33) (see setion 6).
17



Gravity: This is the most interesting ase. One onstraint is nonlinearand leads to � 6= 0 for the di�eomorphism transformations. The matries Fand D are non-singular. As is lear from (2.34) all Hamiltonian equationsfollow then from (2.33), that is the whole dynamis of general relativityin the Hamiltonian formulation is hidden in the requirement that the on-straints are satis�ed everywhere and for any foliation. Let us stress that indistintion to [11℄ we did not assume EM(q) = 0. These equations are alsoonsequenes of eqs. (2.33) and thus the interonnetion theorem has beenproven entirely within the Hamiltonian formalism (see setion 7).In the following we apply the general results of this setion to onretesystems. First in set. 3 to gauge theories whih are trivial as regardingtheir symmetries, sine all onstraints are linear in the momenta and thus thegauge transformations are generated by the onstraints themselves. Thenwe onsider the relativisti partile where the onstraint is quadrati in themomenta. We demonstrate the role played by the "trivial" transformationsto reover the reparametization invariane. In set. 5 we show how toproeed if several onstraints are nonlinear in the momenta at the example ofthe loally supersymmetri relativisti partile [17℄. The setions 6 and 7 aredevoted to string theory and gravity. The di�erent setions are selfontainedand the reader may skip those parts whih are not of immediate interest forhim/her.
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Chapter 3Yang Mills-theoriesThe ation for the (non-abelian) gauge �elds isS = �14 Z tr [F��F �� ℄d3xdt (3.1)where 1 F�� = ��A� � ��A� � i[A�; A� ℄A� = Aa�Ta; [Ta; T℄ = if abT; (3.2)and it is invariant under loal gauge transformationsA� �! e�i�A�ei� + ie�i���ei� (3.3)with � = �aTa. The funtions �a = �a(x; t) are arbitrary funtions on spae-time. The in�nitesimal form of these gauge transformations isÆ�Aa� = ����a � fabAb�� = �(D��)a: (3.4)Now we will show that these in�nitesimal gauge transformations are just thetransformations generated by the onstraints (see (2.8)).In the usual way one an now transform the Lagrangean system intothe orresponding Hamiltonian system and obtains the following �rst orderation for Yang-Mills theories [16℄S = Z h~�~a � _~A~a �A0~a( ~D � ~�)~a � 12(~�~a � ~�~a + ~B~a � ~B~a)idt; (3.5)1a; b; : : : denote internal indies, �; � : : : spae-time indies. The Ta are hermiteangenerators and the struture onstants fab are totally antisymmetri.19



where ~a = (a; x), �~ai are the momenta onjugate to A~ai , and( ~D �~�)a = ~� � ~�a + fab ~Ab � ~�~Ba = �~� � ~Aa � 12fab ~Ab ~A: (3.6)Here we olleted the spatial omponents into 3-vetors ~A = (A1; A2; A3)(similarly for ~�; ~B) and assume the gauge group to be ompat, so that~Aa = ~Aa et.The system (3.5) is a �rst lass Hamiltonian system (2.1) for whih theomponents A0~a play the role of Lagrangean multipliers, the onstraints arejust C~a = ( ~D � ~�)~a; (3.7)and the Hamiltonian H = 12(~�~a~�~a + ~B~a ~B~a): (3.8)The onstraints and Hamiltonian form a losed algebra with respet to thePoisson braketfCax; Cbyg = f abÆ(x; y)Cx; fH; Caxg = 0: (3.9)From that it follows that the struture oeÆients are equal totzax;by = f ab Æ(x� y)Æ(z � x); taxby = 0: (3.10)Substituting (3.7) and (3.10) in formulae (2.8) we obtain the following sym-metry transformations for the system (3.5)Æ ~A~a = f ~A~a; �~bC~bg = �( ~D�)~a ÆA0~a = ÆN ~a = _�~a � t~a~b~A0~b�~ (3.11)and Æ~�~a = f~�~a; �~bC~bg = �fab~�bx�x: (3.12)These transformations orrespond to symmetries of the orresponding La-grangean system sine the onstraints (3.7) are linear in the momenta. Thetransformations (3.11) oinide with (3.4) if we identify � = �. Hene itis lear that the whole group of gauge transformations (inluding time de-pendent ones) is generated by the onstraints. It is easy to verify that thetransformations for the momenta (3.12) follow from the �rst equation in(3.11) if we use the relation between veloities _~A~a und momenta ~�~a (the20



�rst Hamiltonian equation) whih de�nes the supspae M where the La-grangean system lives. To ompare the symmetries in the Lagrangean andHamiltonian formulations we need to use these equations. However, theLagrangean system lives in the subspae M (see (2.7)) while the transfor-mations (3.11,3.12) an be viewed as symmetries in the whole phase spaeand hene the group of symmetries is riher in the Hamiltonian formalismsine it ats also on trajetories whih do not belong to M.The transformations (3.11,3.12) an be made �nite in phase spae o�the hypersurfaeM. Atually the ation (3.5) is invariant under the trans-formation (3.3) if simultaneously the momenta are transformed as� �! e�i��ei�: (3.13)To prove this we do not need to use any of the Hamiltonian equations. Sothis symmetry holds for all trajetories in phase spae. This is why the globalsymmetry of Hamiltonian systems is riher as the usual gauge symmetry ofthe orresponding Lagrangean systems.
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Chapter 4Relativisti partileIt is onvenient to desribe the relativisti partile moving in 4-dimensionalMinkowski spaetime by 4 salar �elds ��(t), � = 0; 1; 2; 3, in 1-dimensional'spaetime' with oordinate t. The ation has the formS = �12 Z p�g[g00 _�� _�� +m2℄dt (4.1)where the dot denotes di�erentiation with respet to time t and ���� =�(�0)2 +P31(�i)2. The m2 term maybe viewed as 'osmologial onstant'in 1-dimensional 'spaetime' with metri g00.The ation (4.1) is manifestly invariant under general oordinate trans-formations in 1-dimensional 'spaetime' (reparametrization invariane). Thein�nitesimal form of these transformations readst! t� �; g00 ! g00 + L�g00; �� ! �� + L���; (4.2)where L� is the Lie-derivative in 1-dimensional 'spaetime'. Introduing thelapse funion N aording to g00 = �N 2 (4.3)and de�ning the momenta onjugated to ���� = �L� _�� = _��N (4.4)as a result of the Legendre transformation one �nds the following �rst orderation for the relativisti partileS = Z [�� _�� �NC℄dt: (4.5)22



The lapse funtion N plays the role of a Lagrangean multiplier in (4.5) andthe onstraint is quadrati in the momentaC = 12(���� +m2): (4.6)Of ourse, the struture oeÆient vanishes.The ation (4.5) still should be invariant (at least in M) under thein�nitesimal di�eomorphisms (4.2), the expliit form of whih isÆ�� = _��� and ÆN = (N �)� : (4.7)Sine � and � are independent variables in the �rst order formalism, weshould add to (4.7) the transformation law for � to have the di�eomorphismson the whole phase spae. This transformation law for �, whih orrespondsto the di�eomorphism group, an be obtained at �rst inM (see (2.7)), wherethe Lagrangean system lives, from (4.4) asÆ�� = Æ _��N � _��N 2 ÆN = _��� (4.8)and then an be extended to the whole phase spae and hene to traje-tories for whih (4.4) does not hold. Clearly the transformations (4.7,4.8)orrespond to the reparametrisation (di�eomorphism) invariane of the rel-ativisti partile in the Hamiltonian formalism. They oinide with (2.22)1,whih is a speial ombination of the 'trivial' and onstraint-generated trans-formations.The algebra of transformations (4.7,4.8) loses and forms a Lie algebraon the whole phase spae. Their �nite form reads��(t)! ��(�(t)); ��(t)! ��(�(t)); N (t)! d�dtN (�(t)): (4.9)It is easy to see (without using Hamilton's equations) that the ation (4.5)is invariant under these �nite tranformations ompletely o� mass-shell.The �rst order ation (4.5) is also (o� mass-shell) invariant under thetransformations (2.8) generated by the onstraints aloneÆ��� = ���; Æ��� = 0; ÆN = _�: (4.10)1For systems with a �nite number of degrees of freedom �y � �x vanishes in (2.22)23



It is lear that they are very di�erent from the reparametrisation transfor-mations (4.7,4.8) even in the subspae M and hene annot orrespond toany Lagrangean symmetry. Only on mass-shell,_�� = N�� ; _�� = 0 (4.11)do the transformations (4.10) oinide with the reparametrization transfor-mations if we make the identi�ation � = N �. However, as we argued earlierthe omparison of in�nitesimal transformations on mass-shell is meaningless.If we demand that as a result of the transformation (4.10) the traje-tory should stay in M then we immediately see that this an be true onlyfor on-shell trajetories. Therefore (4.10) an be viewed as the dynamialequations in the subspaeM, where the Lagrangean system lives. Thus weonlude that the nonlinear onstraint (4.6) generates the dynamis, ratherthan symmetries inM. This explains the origin of the dynamis for super-hamiltonian systems.However, in the whole phase spae, the in�nitesimal transformations(4.10) an still be viewed as o� mass-shell symmetries of the Hamiltoniansystem. Moreover they an be exponentiated to the �nite ones��(t)! ��(t) + �(t)��(t); ��(t)! ��(t); N (t)! N (t) + _�: (4.12)whih are very di�erent from (4.9). As we stressed already, the symmetry(4.10,4.12) do not orrespond to di�eomorphisms of the Lagrangean systemand it is not lear to us what is the relevane of this symmetry whih existsonly in the Hamiltonian version of the theory.
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Chapter 5The loally supersymmetrirelativisti partileThe theory of the relativisti partile an be super-symmetrized and thisleads to the simplest one-dimensional analog of supergravity, namely thetheory for the loally supersymmetri relativisi partile [17℄. For that weneed to introdue in addition to the bosoni variables �� fermioni vari-ables  � whih live in 1-dimensional 'spaetime' and they would desribespin-1=2 partiles in 4-dimensional spaetime. To make the theory loallysupersymmetri we also need the analog of the the spin-3=2 gravitino �eldin supergravity and whih we denote by �. Then the ation for masslesspartiles readsS = �12 Z dtdet(e 0̂0 )[g00 _�2 � i � 0 _ � g00 ��0 _�℄: (5.1)To simplify the formulae we skipped all external indies. Here e 0̂0 is theeinbein �eld in 1-dimensional 'spaetime' on whih the bosoni �elds �; e 0̂0and fermioni ones  ; �0 live. We denote by 0̂ the 'Lorentzian' index andby 0 the 'spaetime' index. The fermioni �elds are assumed to be realMajorana �elds and the 'spin 3=2' �eld � is taken in the Rarita-Shwingerrepresentation where it is onsidered as ovariant vetor of Majorana spinors.Of ourse in one-dimensional 'spaetime' this ovariant vetor has only oneomponent.Introduing the lapse funtion as in (4.3) and taking into aount thate 0̂0 = N ; e0̂0 = 1N ; 0 = e0̂00̂ = iN (5.2)25



and for Majorana spinors� =  y0̂ = i ; �� = �y0̂ = i� (5.3)the ation (5.1) beomesS = 12 Z dt[ 1N _�2 � i _ � iN � _�℄: (5.4)This ation is manifestly invariant under (in�nitesimal) di�eomorphism trans-formations t! t� �0 and Q! Q+ L�Q (5.5)whih now have the expliit formÆ� = _��0; Æ = _ �0; ÆN = (N �0)�; Æ� = (��0)�; (5.6)sine �;  are spaetime salars and � is a ovariant vetor. In addition itis also invariant under (in�nitesimal) loal supersymmetry transformationsÆ� = i� ; Æ = �( _�� i2� )N�1; ÆN = i��; Æ� = 2 _�; (5.7)where � is the time-dependent Grassmannian parameter of the supersymme-try transformations. Clearly the ation (5.4) is invariant under simultane-ous in�nitesimal di�eomorphisms (5.6) and supersymmetry transformations(5.7). Our aim is to reover the orresponding o� mass-shell symmetries(di�eomorphisms and loal supersymmetry) in the �rst order Hamiltonianformalism.The standard proedure leads to the following �rst order ation for theloally supersymmetri partileS = Z [�� _�� 12 i _ �N�C�℄dt (5.8)with Lagrangean multiplier �eldsN 0 = N and N 1 = 12�: (5.9)Thus N 0 is the bosoni lapse funtion and N 1 proportional to the fermioni'gravitino' �eld. The onstraintsC0 = 12�2� and C1 = i�� (5.10)26



form a losed algebra with respet to the Poisson braket, whih are gener-alized to graded algebras to inlude fermioni variables as follows:f�; ��g = 1 ; f ; g = i: (5.11)Atually we havefC0; C0g = fC0; C1g = 0 and fC1; C1g = �2iC0: (5.12)As it follows from (5.11) the only nonvanishing struture oeÆient ist011 = �2i: (5.13)The in�nitesimal transformations (2.8) generated by the onstraints (5.10)read Æ�� = �0�� + i�1 ; Æ��� = 0; Æ� = �1��Æ�N = _�0 + i�1� Æ�� = 2 _�1: (5.14)where �0 and �1 are bosoni and Grassmannian variables, respetively. A-tually they are nilpotent, i.e. ff:; CgCg = 0, and thus an easily be ex-ponentiated to �nite ones. One obtains the �nite transformations F (t) !F (t) + Æ�(t)F (t), where F (t) denotes any of the �elds or Lagrangean mul-tipliers appearing in (5.14). However, the transformations (5.14) are notreally the symmetries of the Lagrangean system we are looking for.To see that more learly we �rst write the equations of motion whih aregotten by varying the ation (5.11) with respet to the dynamial variables�; �� and  EM(�) = _��N�� � i2� = 0;EM(��) = _�� = 0;EM( ) = _ � 12��� = 0: (5.15)The subspaeM in whih the Lagrangean system lives is de�ned by the eq.EM(�)=0. In this subspae we an read that the momentum �� under thetransformations (5.6) and (5.7) should be tansformed asÆ�� = _���0 + iN �( _ � 12���): (5.16)27



Comparing (5.6,5.7) and (5.16) with the transformations (5.14) we immedi-ately onlude that they oinide only if all equations of motion are satis�ed,that is on mass-shell.This agrees with our general onsiderations in se.2 sine for the super-symmetri partile both onstraints in the ation (5.8) are quadrati in themomenta �� and � = � i2 and hene the o�-shell symmetries whih orre-spond to the symmetries of the Lagrangean system annot be generated bythe onstraints alone. Both of them take a o�-shell trajetory whih belongstoM away from this subspae. To return the trajetory bak toM we needompensating transformations from the set of trivial transformations (2.11),one per nonlinear onstraint. In partiular the trivial transformations (2.12)in ombination with the transformations generated by the onstraint C0 leadto the familiar reparametrization invariane (2.22).Beause the onstraint C1 is also quadrati in the momenta we take anextra ompensating transformation from the set (2.11) and add it to (2.14)to obtain all Lagrangean symmetries in the Hamiltonian formalism. Theresulting transformations readÆ� = EM(�)� + f�; ��C�g = ( _��N�� � i2� )� + Æ��Æ�� = EM(��)� +EM(� )� + f��; ��C�g = _�� � i( _ � 12���)�;Æ = EM( )� +EM(�)� + f ; ��C�g (5.17)= ( _ � 12���)� + ( _��N�� � i2� )� + Æ� ;ÆN = Æ�NÆ� = Æ��;where Æ� is given in (5.14) and � = � i2 . Here � is the Grassmann pa-rameter of the 'extra' transformation from the set of transformations (2.11)whih we need to orret the gauge transformation generated by the non-linear onstraint C1. Of ourse the parameters are not independent and arerelated by the requirement that the Hamiltonian symmetry is also a La-grangean one. The orresponding ondition (2.15), properly generalized toinlude fermioni variables, is satis�ed by� = �0; � = �N ; �0 = N �0 and �1 = � + 12��0; (5.18)expressing the 4 parameters �; �; �0; �1 in terms of 2 independent parame-ters �0 and �. With this identi�ation the symmetry transformations (5.17)28



of the Hamiltonian system are redued exatly to the original di�eomor-phism and supersymmetry transformations (5.6,5.7) and (5.16) for the La-grangean system without using any of the Hamiltonian equations. However,the transformations (5.17) with parameters (5.18) are symmetries even o�the subspaeM. They also form a losed algebra on the whole phase spae1. Atually, denoting the transformations (5.17) by Î(�0; �) we �nd thefollowing ommutator of two subsequent transformations[Î(�02 ; �2); Î(�01 ; �1)℄ = Î(�03 ; �3)� 1̂; (5.19)where �03 = _�01�02 � �01 _�02 + 2iN �2�1�3 = _�1�02 � _�2�01 + 1N �1�2� (5.20)Again this losure holds ompletely o� mass shell. Hene we expet thatthe transformations (5.17,5.18) an be 'exponentiated' to �nite symmetrytransformations on the whole phase spae and thus extend the original groupof Lagrangean symmetries.The same properties we expet to hold for supergravity theories in moredimensions. But beause the omputations are quiet involved we have sofar refrained from repeating the above alulations for these more realistitheories.We onlude this setion by stressing that in the onsidered supersym-metri model neither of the onstraints generates a symmetry transformationorresponding to a Lagrangean symmetry. They rather generate the dynam-is of the Lagrangean system in the Hamiltonian formalism, similar as forthe relativisti partile.
1It is worth noting that the transformation (5.17) without the extra � term form alosed algebra only on mass shell 29



Chapter 6The bosoni stringThe bosoni string propagating in a D-dimensional at target spae anbe viewed as the theory for D massless salar �elds ��; � = 0; : : : ;D � 1on a 2-dimensional world-sheet spaetime with metri g�� . The ation forthis theory an be written in a manifestly invariant form with respet todi�eomorphism transformations as [18℄S = �12 Z p�gg�� ����x� ����x� d2x; (6.1)where x� � (t; x) are the oordinates in the 2-dimensional spaetime. Tosimplify the formulae we shall skip the target-spae index � sine it alwaysappears in a trivial way and an easily be reinserted.The di�eomorphism transformations whih are o� mass-shell symmetriesof the ation (6.1) arex� ! x� � ��; g�� ! g�� + L�g�� ; �! �+ L��; (6.2)where �� is the in�nitesimal parameter. In addition the ation is invariantwith respet to Weyl transformationsg�� ! 
2(x)g�� and �! �: (6.3)To arrive at the �rst order formulation it is onvenient to use the 1 + 1-deomposition for the world-sheet metri as [19℄g�� = �(N 2 �N 1N1)dt2 + 2N1dxdt+ 11dx2; (6.4)where N and N1 are the lapse and shift funtions, respetively. We rise andlower the spaial index '1' using the metri 11 �  of the 1-dimensional30



hypersurfae t=onstant in 2-dimensional spaetime. Correspondingly wehave 11 = 1 ; N 1 = 1N1; p�g = Np: (6.5)Using (6.2) an easy alulation yields the following expliit transformationlaws for N 0 = Np ; (6.6)N 1 and � under di�eomorphism transformations x� ! x� � ��; �� =(�0; �1):ÆN 0 = Æ( Np ) = (N 0�0)� +N 10(N 0�0)�N 1(N 0�0)0+N 00(�1 +N 1�0)�N 0(�1 +N 1�0)0;ÆN 1 = (�1 +N 1�0)� +N 10(�1 +N 1�0)�N 1(�1 +N 1�0)0 (6.7)+N 00(�1 +N 1�0)�N 0(�1 +N 1�0)0;Æ� = _��0 + �0�1:Here dot and prime mean the di�erentiations with respet to the time andspae oordinates x0 = t and x1 = x, respetively. The transformation lawfor the momentum � onjugated to �,� = �L� _� = pN ( _��N 1�0) (6.8)follows immediately from (6.7) and (6.8):Æ� = _��0 + (��1)0 + (N 1� +N 0�0)�00: (6.9)In the �rst order Hamiltonian formulation the ation (6.1) takes the formS = Z (� _��N�C�)dxdt; (6.10)where the Lagrangean multipliers N� are just the funtions de�ned in(6.5,6.6) (that is they are the lapse and shift funtions up to p). Theonstraints C0 = 12(�2 + �02); and C1 = ��0 (6.11)form a losed algebra, i.e. are �rst lass onstraints, with respet to thestandard Poisson brakets f�(x); �(y)g = Æ(x; y):31



fCi(x); Ci(y)g = C1(x) ��xÆ(x; y) � C1(y) ��y Æ(x; y)fC0(x); C1(y)g = C0(x) ��xÆ(x; y) � C0(y) ��y Æ(x; y); (6.12)where i = 1; 2. Rewriting these relations in terms of the light-one on-straints C0 � C1 we immediately reognize them as Virasoro algebra [20℄.Conerning the symmetries we �rst note that the Weyl symmetry (6.3)takes the trivial form in the Hamiltonian formalismN 0 = Np ! 
N
p = N 0; N 1 = N1p ! N 1; (6.13)so that all variables in the �rst order ation are Weyl invariant.Beause one of the onstraints, namely C0, is quadrati in the momen-tum, we need to ombine gauge and reparametrization transformations as in(2.14) to reover the di�eomorphism invariane (6.7,6.8) in the Hamiltonianformalism. For the bosoni string the expliit transformation (2.14) readsÆN 0 = _�0 +N 10�0 �N 1�00 +N 00�1 �N 0�10ÆN 1 = _�1 +N 10�1 �N 1�10 +N 00�0 �N 0�00 (6.14)Æ� = EM(�)� + f�; �~�C~�g = ( _��N 0� �N 1�0)� + ��0 + �0�1;Æ� = EM(�)� + f�; �~�C~�g = ( _� � (N 0�0 +N 1�)0)� + (�0�0)0 + (��1)0;where we need to assume that the parameters are related by the ondition(2.18). This ondition is solved if we express the parameters �; �0; �1 interms of two independent parameters as� = �0; �0 = N 0�0 = Np �0; �1 = �1 +N 1�0; (6.15)and then we immediately reognize the transformations (6.14) as di�eomor-phism transformations (6.7,6.8) without using the Hamiltonian equations.One again we emphasize that the transformations (6.14) are in�nitesimalsymmetry transformations on the whole phase spae whereas the transfor-mations (6.7,6.8) are appliable only to trajetories on the hypersurfaeM.As a �rst step towards exponentiating the in�nitesimal transformations(6.14), i.e. make them �nite, we should hek their algebra. Using theformulae for the partiular hoie (6.15) of parameters it easy to �nd that32



the ommutator of two subsequent transformations Î�;� � Î(~�), where ~� =(�0; �1) beomes [Î(~�); Î(~�)℄ = Î(L~�~�)� 1̂; (6.16)ompletely o� mass shell. Hene the algebra of transformations (6.14) formsa (in�nite dimensional) Lie-algebra even o� the subspae M.Let us stress one more that the in�nitesimal gauge transformationsgenerated by the onstraints only (that is the transformations (6.14) with� set to zero) are not symmetry transformations whih ould orrespond tothe di�eomorpisms of the Lagrangean system. The nonlinear onstraint C0is reponsible for the dynamis.The last remark onerns the onnetion between the onstraints and theequations of motion for the string theory. Calulating the �rst funtionalderivative of the onstraints with respet to the anonial variables we seethat the B and E oeÆients in (2.31) areB0 = E1 = �0y ; B1 = E0 = �y; (6.17)while the D and F oeÆients vanish. Then the eqs. (2.34) redue to�0�EM(��) = 0 and ��EM(��) = 0 (6.18)where � is the target-spae index. From these equations we annot on-lude that all eqs. of motion should be satis�ed. However, they put ertainrestritions on the allowed EM(�). Sine the oeÆients F are equal zero(the onstraints do not involve any spatial derivatives of the momenta) therequirement that the onstraints are satis�ed everywhere and for any foli-ation does not tell us anything about the eqs. of motion EM(�) = 0. Wewill see in the next setion that the interonnetion theorem, whih we justdisussed, has muh more interesting ontent in gravity.
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Chapter 7GravityGeneral relativity without matter has the ationS = Z Rp�gd4x (7.1)(we adapt the sign and units onventions in [21℄) and is invariant with respetto oordinate (or di�eomorphism) transformations, the in�nitesimal form ofwhih read x� ! x� � ��; g�� ! g�� + L�g�� : (7.2)Rewriting the metri g�� in the 3 + 1-split form [19℄ds2 = �(N 2 �NiN i)dt2 + 2Nidxidt+ ijdxidxj ; (7.3)where N is the lapse funtion, Ni are the shift funtions, Ni = ijN j , andij is the metri of the 3-dimensional hypersurfae �t of onstant time t, wederive from (7.2) the following expliit transformations for N , N i, and ij :ÆN = (N �0)� �N i(N �0);i+N ;m (�m +Nm�0) ;ÆN i = (�i +N i�0)� � (�i +N i�0);mNm +N i;k (�k +N k�0)�Nij(N �0);j +ijN ;j (N �0) ; (7.4)Æij = ( _ij �Nijj �Njji)�0 +(3) L�+N �0 ij :Here the omma denotes ordinary di�erentiation with respet to the or-responding spae oordinate, the bar denotes ovariant derivative in the 3dimensional spae �t with metri ij , ij is the inverse 3-dimensional metrion �t and (3)L is the Lie derivative in �t. This Lie derivative is to be takenin the diretion � +N �0 � f�i +N i�0g.34



In the �rst order Hamiltonian formalism the ADM ation for pure grav-ity takes the form S = Z (�ij _ij �N�H�)d3xdt; (7.5)where �ij are the momenta onjugated to ij and the four Lagrangean mul-tipiers are N 0 = N ; and N i = ijNj; (7.6)that is the lapse and shift funtions. Correspondingly the onstraints H�are1 [19, 21℄ H0 = Gijkl�ij�kl �p (3)R; Hi = �2ij�jljl ; (7.7)where Gijkl = 12p (ikjl + iljk � ijkl);  = det(ij) (7.8)is the metri in superspae [21℄ and (3)R the instrinsi urvature of the hy-persurfae �t of onstant time t. With the help of the fundamental Poissonbrakets fij(x); �kl(y)g = Æ(ki Æl)j Æ(x; y) = 12(Æki Ælj + ÆliÆkj )Æ(x; y) (7.9)one heks that the onstraints (7.7) are �rst lass [21℄fH0(x);H0(y)g = ij(x)Hj(x) ��xi Æ(x; y) � ij(y)Hj(y) ��yi Æ(x; y)fHi(x);H0(y)g = H0(x) ��xi Æ(x; y) (7.10)fHi(x);Hj(y)g = Hj(x) ��xi Æ(x; y) �Hi(y) ��yj Æ(x; y): (7.11)Let us note that if we add matter (ovariantly oupled to gravity) to (7.1)then the onstraints ontain extra piees, but their algebra remains un-hanged. Another interesing observation is the following: If we use pH0instead of H0 as a onstraint then the algebra of onstraints looks very muhlike a natural generalization of the Virasoro algebra (6.12) to four dimen-sions. It is a nontrivial problem where the di�eomorphism invariane of the1in this setion we denote the onstraints by H�, a notation whih is widely used ingravity 35



original ation (7.1) is hidden in the �rst order Hamiltonian reformulationof gravity. There have been various attempts to reveal this symmetry (see,for instane [1, 2, 3℄)Three of the onstraints, namely the Hi, are linear in momenta, so theyshould generate transformations whih oinide with di�eomorphism trans-formations. This has been realized for time independent transformationssome time ago [22℄. However, the fourth onstraint, namely H0, is quadratiin the momenta and hene annot generate a symmetry of the orrespondingLagrangean system aording to our general results in setion 2. Only om-bined with a ompensating transformation does it generate the symmetrywe are looking for. Sine the Hamiltonian is zero, this symmetry is exatlythe reparametrization invariane (2.22). Assuming that the parameters in(2.14) are related suh that the ondition (2.18) is satis�ed, we an writethis o� shell symmetry transformation for gravity in the following expliitmanner ÆN = _�0 �N j�0;j +N ;j �j;ÆN i = _�i �N j�i;j +N i;j �j �Nij�0;j +ijN ;j �0;Æij = EM(ij)� + fij ; �~�H~�g (7.12)= EM(ij)� + 1p (2�ij � ij�)�0 +(3) L�ijand Æ�ij = EM(�ij)� + f�ij ; �~�H~�g: (7.13)Here the 5 parameters �; �� are to be expressed in terms of the four inde-pendent parameters �� as� = �0; �0 = N �0; �i = �i +N i�0 (7.14)to resolve (2.17) and then it beomes evident that (7.12) is idential to (7.4).Again we need not use any of the Hamiltonian equations. A rather lengthyalulation shows that the transformation law for the momenta one gets byusing the de�nition of the momenta in terms of ij ; Nk and (7.4) oinideswith (7.13) also o� mass shell.Thus we found that in gravity the three onstraints whih are linear inthe momenta generate the di�eomorphism transformations while the forthonstraintH0 does it only in a partiular ombination with the 'trivial' trans-formation (2.12). This nonlinear in momenta onstraint itself is responsible36



for the origin of the dynamis in the subspae M in the superhamiltonianreformulation of gravity.The important question is how to read o� the Lie algebra struture of thedi�eomorphism group in the Hamiltonian formulation. Beause for gravitythe struture oeÆients depend on the anonial variables (in distintionfrom the previous ases) one might expet that the algebra of in�nitesimaltransformations (7.12-7.14) annot lose in this ase. Atually naively thedependene on the anonial variables an enter in the parameter �� for theommutator of two in�nitesimal transformations with parameters throughthe -dependene of the struture oeÆients (see (2.25)). Fortunately, thisexpetation is not on�rmed. In partiular, in the formula (2.25) for the��-parameter this -dependene of the various terms on the right hand sideanels for the onrete hoie (7.14) for the N -dependene of the param-eters �. The prie we pay for that is the expliit dependene of the pa-rameters of transformations on the Lagrangean mulitpliers, but not on theanonial variables ; �. Starting from the general formulae (2.23-2.25) astraightforward but rather lengthy alulation shows that the transforma-tions (7.12-7.14) form a Lie algebra ompletely o� mass shell:[Î(�); Î(�)℄ = Î(L��)� 1̂; � = (�0; : : : ; �3); � = (�0; : : : ; �3); (7.15)where �0; �i and �0; �i are de�ned in (7.14), as it should be for di�eomor-phisms. The formula (7.15) holds even o� the hypersurfae M where theLagrangean system lives.There is a deep onnetion between the onstraints and equations ofmotion in gravity. Calulating the derivative of the onstraints in this asewe shall �nd that all of the oeÆients A; � � � ; F in (2.31) do not vanish.In partiular, taking into aount that the index k in the formulae(2.31,2.32) in the ase of gravity is a omposite one,, i � (j; k); a; b runover the same spatial index l and alulating the derivatives of Hi withrespet to �jk and H0 with respet ot np we �ndF lijk = �2i(jÆlk) and Dnplk0 = �Gnplk; (7.16)where Gnplk is the inverse of the superspae-metri, GnplkGlkij = Æ(ni Æp)j .Then the �rst and last equations in (2.34) take the formGnplkEM(np) = 0 and 2ijEM(�jl) = 0: (7.17)Sine the determinants det G and det  are not equal zero the eqs.(7.17)have the unique solutionEM(np) = 0 and EM(�jl) = 0: (7.18)37



The remaining equations in (2.34) are then automatially ful�lled. Thus, wesee that in general relativity the whole dynamis follows from the require-ment that the onstraints are satis�ed everywhere and they are preservedunder di�eomorphisms.
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Chapter 8DisussionIn the previous setions we revealed the relevant loal symmetries of La-grangean systems in the �rst order Hamiltonian systems. We have seenthat all symmetries have a similar struture in the Hamiltonian approahalthough they may look quite di�erently in the Lagrangean one. All funda-mental �eld theories in physis, and in partiular the ones we onsidered,are systems with �rst lass onstraints. If the onstraints are linear in themomenta (as in Yang-Mills theories) then they generate the well knowngauge symmetry. If some of the onstraints are nonlinear in the momentathen only very speial ombinations of the transformations generated bythe onstraints and simple ompensating transformations proportional tothe equations of motion orrespond to the o� mass shell symmetries of theorresponding Lagrangean system. If only one of the onstraints is nonlin-ear in the momenta, as in string theory and gravity, then the symmetriesof the system onsist of the gauge transformations generated by the linearonstraints plus an extra reparametrization transformation related to thenonlinear onstraint, but not just generated by this onstraint. This takesplae only if the Hamiltonian is equal to zero, i.e. is a super-Hamiltonian. Allwellknown theories with nonlinear onstraints possess a super-Hamiltonian.However, presently we do not know if there is a deep onnetion betweenthe non-linearity of some of the onstraints and the super-Hamiltonian har-ater of the system. If there are more then one nonlinear onstraint thenone has to use extra transformations from the huge set of transformations(2.15) in a ombination with the transformations generated by the nonlinearonstraints to reover the Lagrangean symmetries.In any ase, the wellknown symmetries of the Lagrangean systems are39



manifest in the Hamiltonian formalism and even more transparent there.Di�erent symmetries may look quite di�erently in the Lagrangean formal-ism (for example, loal supersymmetry and di�eomorphisms) but they havethe same formal struture in the Hamiltonian approah. In addition, thesymmetry transformations for the Hamiltonian systems are riher as theorresponding ones for the Lagrangean systems. This is so sine in theHamiltonian approah the transformations are ating on the whole phasespae and are symmetries for all o� mass shell trajetories. For suh generaltrajetories the momenta need not be related to the veloities, as it shouldbe for Lagrangean systems.We onsidered mainly the in�nitesimal form of the symmetry transfor-mations and heked the algebra of two subsequent in�nitesimal transfor-mations. We found that for all theories we studied (gauge theories, pointpartile, bosoni string and gravity) the algebras are losed ompletely o�mass shell in the whole phase spae, even o� the subspae M in whih theLagrangean system lives. In partiular, for gravity, where the struture on-stants depend on the anonial variables, we revealed a losed Lie algebrain the Hamiltonian formalism.Di�erent theories whih are invariant under di�eomorphism transfor-mations (as for example string theory and gravity) have similar onstraintalgebras but the onstraints look quite di�erently. However, for the phasespae transformations belonging to di�eomorphisms to form a Lie algebrathe onstraints themselves should have some underlying ommon struturewhih we did not reveal. For example, we ould ask what kind of generalonditions the onstraints in string theory, dilaton oupled 2-dimensionalgravity, gravity or higher derivative gravity, the onstraints of whih arelooking quite di�erently, should satisfy to lose the algebra. These interest-ing questions deserve further investigations.The other question onerns the role of the transformations generatedby the nonlinear onstraints alone. We showed that they are responsible forthe dynamis of Lagrangean systems in the superhamiltonianin formalism.Also we have seen that there is a deep onnetion between the strutureof the onstraints and the dynamis. For example, in string theory some ofthe Hamiltonion equations and in gravity all of them automatially followif we demand that the onstraints are satis�ed everywhere for any foliationof spae time. The presene of the spatial derivatives of q and/or p isresponsible for that on the tehnial level.One possible appliation of the developed approah to phase spae sym-metries is a way to onstrut new theories possessing loal symmetries in40



the Hamiltonian formalism (see, for instane [15, 17℄). Atually in manyases the onstraints have a lear physial interpretation (as the Gauss on-straints in eletromagnetism). So one starts by introduing ontraints in thetheory to satisfy some physial requirements. Then one should ommute theonstraints (leading to seondary onstraints) suh that the systems of orig-inal onstraints together with the seondary ones form a �rst lass system.Note that only �rst lass onstraints generate loal symmetries 1. The num-ber of onstraints is equal to the number of parameters of the symmetrytransformations of the orresponding Lagrangean system.Another interesting appliation of the onsidered formalism one ould�nd in the quantized theories, in whih we are ultimately interested. Forexample, in the funtional integral approah to quantum theories it is morenatural to onsider the Hamiltonian funtional integral as ompared to theLagrangean one. This is true in partiular for theories whih are invariantunder di�eomorphisms. In the phase spae funtional integral at least theq; p-piee of the measure is just the well-de�ned Liouville measure. Afterperforming the integration over the momenta we arrive at the funtionalintegral in the Lagrangean formulation. However, even in the simple ase ofa �rst order ation (2.1) whih is quadrati in the momenta, a q-dependentfuntion multiplying p2 appears in the measure for the Lagrangean fun-tional integral. For systems where the ation is not quadrati in the mo-menta or even for gravity the question about the orret measure beomesquite nontrivial. Also, in the Hamiltonian version of the BRST-quantizationit is not lear whih symmetries (the ones generated by the onstraints aloneor the symmetries of the Lagrangean system) should we use to onstrut theBRST harge for systems with nonlinear onstraints and whether these dif-ferent harges lead to the same �nal quantization. Only in the simple asesof the relativisti partile and supersymmetri partile it has been demon-strated that the results in both ases are the same [24℄. For both systemsthe two kinds of transformations an be written down in �nite form.For �eld theories this question has not been investigated. For theorieswith nonlinear onstraints, and in partiular gravity, there are two di�erentBRST harges. One belonging to di�eomorphisms and one to the transfor-mations generated by the onstraints. They oinide only if we impose theequations of motion and this may be the reason why the Batalin-Vilkovisky1For example, a system with 2n seond lass onstraints an loally be transformed intoa system with n �rst lass onstraints and n gauge �xings by a anonial transformation.Thus the gauge transformations generated by the �rst lass onstraints are automatilly�xed by the n gauge �xings and no symmetries survive.41



theorem [23℄ might break down when the two ompared gauges are not in-�nitesimally lose to eah other [25℄. The transformations generated bythe two BRST harges di�er by trivial transformations. The relevane ofthese trivial transformations an already be seen on the perturbative levelin theories with nonlosing algebras (for instane in supergravity [26℄).One would like to hope that the results obtained in this paper ould helpto �ll the gap in the study of symmetries of onstraint Hamiltonian systemswhih, from our point of view, still exist even on the lassial level in theurrent literature.Aknowledgements:This work has been supported by the Swiss National Siene Foundation.We wish to thank K. Kiefer, R. Kallosh, C. Isham, P. Hajiek, J. Halliwelland J. York for helpful disussions.
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