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Abstra
tIn this paper we show how the well-known lo
al symmetries of Lagrangeansystems, and in parti
ular the di�eomorphism invarian
e, emerge in theHamiltonian formulation. We show that only the 
onstraints whi
h are linearin the momenta generate transformations whi
h 
orrespond to symmetriesof the 
orresponding Lagrangean system. The nonlinear 
onstraints (whi
hwe have, for instan
e, in gravity, supergravity and string theory) rathergenerate the dynami
s of the 
orresponding Lagrangean system. Only in avery spe
ial 
ombination with "trivial" transformations proportional to theequations of motion do they lead to symmetry transformations. We revealthe importan
e of these spe
ial "trivial" transformations for the inter
on-ne
tion theorems whi
h relate the symmetries of a system with its dynami
s.We prove these theorems for general Hamiltonian systems. We apply thedeveloped formalism to 
on
rete physi
ally relevant systems and in parti
u-lar those whi
h are di�eomorphism invariant. The 
onne
tion between theparameters of the symmetry transformations in the Hamiltonian- and La-grangean formalisms is found. The possible appli
ations of our results aredis
ussed.



Chapter 1Introdu
tionLo
al symmetries play a very important role in all �eld theories being rel-evant in physi
s. The a
tions of su
h theories are invariant with respe
t tosome group of lo
al transformations. For example, for Yang-Mills theoriesthese are the gauge transformations, for string theory and gravity di�eo-morphisms and for supersymmetri
 theories 
oupled to gravity lo
al super-symmetry transformations. These symmetries are quite transparent in theLagrangean formulation and this is seen as one of the main virtues of thisapproa
h. A
tually the Lagrangean of a theory is 
onstru
ted su
h that itis invariant under gauge transformations and/or di�eomorphisms.If we go from the Lagrangean to the �rst order Hamiltonian formalismthen at �rst glan
e it seems that these symmetries are not manifest. Thisapplies espe
ially to di�eomorphism invariant theories and is of mu
h rele-van
e in general relativity [1, 2, 3, 4℄. One of the purposes of this paper isto show that one 
an 
onstru
t the symmetries of 
onstrained Hamiltoniansystems in an expli
it manner.It was found in [5, 6℄ that the �rst order a
tion is invariant with respe
tto in�nitesimal time-dependent transformations generated by the �rst 
lass
onstraints if the Lagrangean multipliers are simultaneously transformed.However, we shall see that these transformations 
orrespond to Lagrangeansymmetries only if the 
onstraints are linear in momenta. For instan
e,this is the 
ase for Yang-Mills theories, where all gauge transformations(in
luding time-dependent ones) 
an be re
overed in su
h a manner in theHamiltonian formalism.For the 
onstraints whi
h are nonlinear in the momenta (as they existin di�eomorphism invariant theories, e.g. gravity or string theory) this is1



not true anymore. The nonlinear 
onstraints by themselves do not gener-ate transformations whi
h 
orrespond to symmetries of the 
orrespondingLagrangean system. They are rather responsible for the dynami
s of su
hsystems.Although the transformations generated by the nonlinear 
onstraints arestill symmetries of the Hamiltonian system (whi
h 
annot be identi�ed withLagrangean symmetries) it is not 
lear whether they are of any relevan
e,sin
e only their in�nitesimal form is known. It is not obvious whether fornontrivial theories they 
an be exponentiated, that is 
an be iterated to�nite transformations.The a
tion in the Hamiltonian (and even Lagrangean) formalism is alsoinvariant with respe
t to so-
alled in�nitesimal 'trivial' transformations [7,8, 9℄ whi
h are proportional to antisymmetri
 
ombinations of the equationsof motion and do not vanish o� mass-shell. This huge 
lass of additionaltransformations exists even in theories without lo
al symmetries. It is 
learthat most of them (or sometimes even all) are irrelevant and 
an safely beignored [7, 8, 9℄. However, we shall see that not all of the "trivial" transfor-mations are really unimportant for the systems with nonlinear 
onstraints.Indeed, we shall demonstrate that all Lagrangean symmetries 
an be re-
overed in the Hamiltonian formalism only if we 
onsider the transforma-tions generated by the nonlinear 
onstraints in a very spe
ial 
ombinationwith parti
ular "trivial" transformations. The 
ombined transformations
an be exponentiated sin
e they 
orrespond to known Lagrangean symme-tries. Thus, not all of the trivial transformations are irrelevant for systemswith nonlinear 
onstraints, although they may be ignored for parti
ular per-turbative questions [9℄. However, this is not alway the 
ase. In parti
ularwe shall see later that it is impossible to get the theorems whi
h relate thedynami
s of a super-hamiltonian system with its symmetry properties (e.g.the inter
onne
tion theorems in general relativity) if we negle
t the trivialtransformations. Also, when one ignores them this 
an lead to wrong resultsin nonperturbative 
al
ulations. One last remark 
on
erns the identi�
a-tion of transformations generated by the 
onstraints with the Lagrangeansymmetries on mass-shell. It seems that this identi�
taion of in�nitesimaltransformations is meaningless, sin
e on mass-shell any in�nitesimal trans-formation 
an be viewed as "symmetry transformation" sin
e solutions ofthe equations of motion are stationary points of the a
tion.The questions whi
h we address in this paper are the following. First weinvestigate how one re
overs and generalizes the lo
al Lagrangean symme-tries in the �rst order Hamiltonian formalism. This question has also been2



raised re
ently in [10℄. However, our approa
h is very di�erent and 
an beviewed as 
omplimentary to that in [10℄. Also we expli
itly reveal the 
on-ne
tion between the parameters of the transformations in the Hamiltonianand Lagrangean formalisms in most physi
ally important theories. Someof these results (but not all) 
an be found in the literature and our pur-pose here will be to 
larify the 
onfusing points whi
h still exist. The otherquestion 
on
erns the di�eren
e between linear and nonlinear in momenta
onstraints. We will show that the transformations generated by the non-linear 
onstraints always take any traje
tory whi
h belongs to the subspa
ewhere the Lagrangean system lives 1 away from this subspa
e. Hen
e thesetransformations 
annot 
orrespond to Lagrangean symmetries. The role ofthe "trivial" transformations is to proje
t the traje
tory ba
k to this sub-spa
e. The nonlinear 
onstraints themselves rather generate the dynami
sof the 
orresponding Lagrangean systems.We will follow in detail how the 
losed Lie algebra belonging to thedi�eomorphism group arises in a natural manner in the Hamiltonian for-malism. We 
larify the 
onne
tion between the symmetry properties of thesystem and its dynami
s and prove the so-
alled "inter
onne
tion" theorem[11℄ for general 
onstrained Hamiltonian systems entirely in the Hamilto-nian formalism. This theorem plays a 
ru
ial role in the Dira
 quantizationprogram and also in the Hamilton-Ja
obi appraoa
h to 
lassi
al general rel-ativity. It will be shown that this theorem is nontrivial only for theories withan in�nite number of degrees of freedom and only if there are nonlinear inmomenta 
onstraints. The spe
ial role played by the trivial transformationsin proving it is emphasized. Most of our 
onsiderations are 
lassi
al and we
omment on the 
orresponding problems in the quantized theories at theend of the paper.The paper is organized as follows. In the se
ond se
tion we des
ribe thesymmetries of general �rst order Hamiltonian systems. In the subsequentse
tions we apply the results to gauge theories, the relativisti
 parti
le, thelo
ally supersymmetri
 relativisti
 parti
le, bosoni
 string and to generalrelativity. We show that the lo
al symmetries of Hamiltonian systems 
o-in
ide with the lo
al symmetries of the 
orresponding Lagrangean systemsby revealing the 
onne
tion between the parameters of the 
orrespondinggroups for the Hamiltonian and Lagrangean systems. In the last 
hapter wedis
uss why from our point of view the Hamiltonian formalism is more 'fun-1The subspa
e on whi
h the momenta and velo
ities are related by the �rst half ofHamilton's equations 3



damental' than the Lagrangean one, in parti
ular for the quantized theories,and des
ribe the possible appli
ations of the developed formalism.
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Chapter 2Symmetry TransformationsWe shall 
onsider a general �rst order Hamiltonian system with 
onstraints,the a
tion of whi
h isS = Z �p~i _q~i �N ~�C~�(p; q)�H(p; q)�dt: (2.1)If the system 
ontains fermions then some of the variables p; q;N will be ofGrassmannian type. The �rst order a
tion (2.1) des
ribes both systems witha �nite or in�nite number of degrees of freedom sin
e the following 
ondensednotation [12℄ is assumed: the indi
es ~i; ~� are supposed to be 
omposite ones,that is they may 
ontain dis
rete and 
ontinuous variables. For systems witha �nite number of degrees of freedom ~� = � and ~i = i are dis
rete. For �eldtheories ~i = fi; xg and ~� = f�; xg, where i and � are some dis
rete (internal)indi
es and in d spa
e-time dimensions x = fx1; : : : ; xd�1g are the d�1 spa
e
oordinates. For example, for a s
alar �eld q~i(t) = �x(t) = �(x; t) and fora ve
tor �eld q~i(t) = Ai;x(t) = Ai(x; t), where in 4 spa
etime dimensionsi = 1; 2; 3. We adopt the Einstein 
onvention for repeated indi
es in 'up'and 'down' positions, that is we assume summation over dis
rete repeatedindi
es and integration over 
ontinuous ones, for example�xpi;x _qi;x =Xi Z dx�(x)pi(x) _qi(x); (2.2)but �xpi;xqxi =Xi �(x)pi(x)qi(x); no integration. (2.3)Also, we shall not distinguish qi;x and qxi and use the position of the 
ontin-uous index just to indi
ate when we should integrate. Sometimes it will be5




onvenient to resolve the 
omposite index ~i (or ~�) as i; x (or �; x). The dotalways denotes derivative with respe
t to time t on whi
h p; q and N maydepend.For �rst 
lass Hamiltonian system [13℄ the 
ontraints C~� and Hamilto-nian H form a 
losed algebra with respe
t to the standard Poisson bra
ketf:; :g (possibly extended to fermioni
 variables, in whi
h 
ase the algebra isgraded [14℄): fC~�; C~�g = t~
~�~�C~
 and fH; C~�g = t~�~�C~� ; (2.4)where the t's are the stru
ture 
oeÆ
ients 1. These 
oeÆ
ients may dependon the 
anoni
al variables. For �eld theories t~
~�~� � t
z�x �y and t~�~� � t�y�x.The equations of motion resulting from the variation of the a
tion (2.1)with respe
t to q; p and the Lagrangean multipliers NÆS = Z �Æp~iEM(q~i)� Æq~iEM(p~i)� ÆN ~�C~��dt+ bound. terms (2.5)are EM(q~i) � _q~i � fq~i;N ~�C~� +Hg = 0;EM(p~i) � _p~i � fp~i;N ~�C~� +Hg = 0;C~� = 0: (2.6)Below we shall often use these abbreviations EM(q) and EM(p) for the lefthand sides in (2.6). Of 
ourse, on mass shell we have EM = 0, but o� massshell either EM(q) or EM(p) (or both) does not vanish.To go from the Hamiltonian to the Lagrangean formalism we shouldexpress the momenta in terms of the velo
ities via the Hamiltonian equationsEM(q~i) = 0. Thus not all o� mass-shell traje
tories of the Hamiltoniansystem 
an be 
onsidered in the Lagrangean formalism, but only those forwhi
h EM(q)=0. Hen
e one 
an say that the Lagrangean system lives onlyin the subspa
e M of the 'extended phase spa
e' de�ned by the 
onditionsM : EM(q~i) � _q~i � fq~i;N ~�C~� +Hg = 0 (2.7)Clearly the spa
e of traje
tories in phase spa
e where the Hamiltonian sys-tem lives is mu
h bigger than the spa
e of Lagrangean traje
tories.1If some 
onstraints depend expli
itly on time, then we should add �tC~� to the righthand side of the se
ond relation. 6



The a
tion (2.1) is invariant (up to boundary terms) with respe
t to thein�nitesimal transformations generated by the 
onstraints if the Lagrangeanmultipliers are transformed simultaneously [5, 6℄:Æ�qxi = fqxi ; �~�C~�g;Æ�pix = fpix; �~�C~�g;Æ�N ~� = _�~� � �~�N ~
t~�~
 ~� � �~�t~�~� : (2.8)The parameters �~� = ��(N ; x; t) in (2.8) are the parameters of the in�nites-imal transformations. The order in whi
h � enters in (2.8) is important ifsome of the variables are of Grassmannian type. We shall only 
onsiderthe 
ase when the parameters � depend expli
itly on spa
etime 
oordinatesand Lagrangean multipliers, sin
e this suÆ
es to 
over all known physi
allyrelevant theories2. Be
ause of this N -dependen
e we should keep � insidethe Poisson bra
ket even for purely bosoni
 theories sin
e if we 
al
ulatethe 
ommutator of two subsequent in�nitesimal transformations, then theparameter � of the se
ond transformation will depend on q; p if the stru
ture
oeÆ
ients depend on the 
anoni
al variables. It is not diÆ
ult to see thatthe variation of the a
tion (2.1) under these transformations leads only tothe boundary terms Æ�S = �p~iÆ� q~i � �~�C~��jtfti : (2.9)This term 
an be removed even if the parameters � do not vanish at theboundaries if we add to the a
tion (2.1) the total derivative of some fun
tionQ(p; q) whi
h satis�es the equationÆQÆq~i Æ�q~i + ÆQÆp~i Æ�p~i = �~�C~� � p~iÆ�q~i: (2.10)The question whi
h naturally arise here is the following: do the symmetrytransformations (2.8) 
orrespond to Lagrangean symmetries, that is are they,for instan
e, the di�eomorphism transformations in general relativity andstring theory?2In prin
iple, we 
ould 
onsider more general transformations for whi
h the � would alsodepend on the 
anoni
al variables q and p. One 
an show that in this 
ase the a
tion (2.1)is also invariant with respe
t to in�nitesimal transformations generated by the 
onstraintsif N ~� are transformed as Æ�N ~� = �t�~�(q; p; t)��~�N ~
t~�~
 ~���~�t~�~��N ~�fC~� ; �~�g�fH; �~�g:7



As we shall see below the answer to this question 
ru
ially depends on themomenta dependen
e of the 
onstraints. If the 
onstraints are linear in themomenta, then the answer is yes. However, it is not the 
ase if some of the
onstraints are nonlinear. The reason is that the transformation (2.8) gener-ated by a nonlinear 
onstraint take a traje
tory inM (see (2.7)) away fromit and the transformed traje
tory 
an not be viewed as a traje
tory of theLagrangean system, sin
e EM(q)=0 does not hold anymore. To pro
eed inthis 
ase we should 
onsider extra 
ompensating symmetry transformationsof the Hamiltonian system.A
tually the set of in�nitesimal o� mass-shell transformations whi
hleave the a
tion (2.1) invariant is mu
h bigger than (2.8). Any in�nitesimaltransformation (Æq; Æp; ÆN ) orthogonal to the (fun
tional) gradient rS =(�EM(p); EM(q);�C) leaves the a
tion invariant, as 
an be easily seenfrom (2.5). Hen
e we 
ould add to the transformations generated by the
onstraints for example any transformation of the formÆq~i = EM(q~j)� ~j~i +EM(p~j)�~j~i;Æp~i = EM(p~j)�~i~j +EM(q~j)� ~j~i;ÆN ~� = 0; (2.11)where � ~j~i are arbitrary 'matri
es' (kernels) and the �~j~i; � ~j~i are antisym-metri
. Generi
ally su
h transformations are nonlo
al, and they exist for allsystems even for those without any symmetries.Most of them are a
tually irrelevant for the physi
ally interesting trans-formations [7, 8, 9℄. However, if some of the 
onstraints are nonlinear then,as we will see, the parti
ular "trivial" transformations from (2.11) play animportant role for re
overing the Lagrangean symmetries in the Hamiltonianformalism.We will show that in all theories 
ontaining only one nonlinear 
onstraint(e.g. gravity and string theory) we need only very spe
ial transformationsfrom (2.11), namelyÆ�qxi = EM(qxi )�x and Æ�pix = EM(pix)�x (2.12)to re
over all Lagrangean symmetries.Only for theories with several nonlinear 
onstraints do we need extratransformations from (2.11) in addition to (2.8) to re
over all o� mass-shellLagrangean symmetries in the Hamiltonian approa
h. For a system with8



only one nonlinear 
onstraint we 
onsider the 
ombined transformationsÎ�;� F (q; p;N ) = F (Î�;� q; Î�;� p; Î�;� N ); Î�;� = 1̂ + Æ�;� + � � � ; (2.13)where Æ�;� qxi = EM(qxi )�x + fqxi ; �~�C~�g;Æ�;� pix = EM(pix)�x + fpix; �~�C~�g;Æ�;�N ~� = _�~� � �~�N ~
t~�~
 ~� � �~�t~�~� : (2.14)The number of fun
tions (�; ��) whi
h appear here is equal to the numberof 
onstraints (per point of spa
e) plus one. This seems strange sin
e for all
onstrained theories the number of parameters in the Lagrangean symmetrytransformations is equal to the number of 
onstraints. Thus not all of theparameters in (2.14) should be independent for these transformations to besymmetries of the 
orresponding Lagrangean systems. To understand whywe need the "trivial" transformations (2.12) in additions to (2.8) and toreveal the 
onne
tions between the parameters � and �� we derive the 
on-ditions under whi
h the transformations (2.14) 
an be viewed as Lagrangeansymmetries.For that the transformations (2.14) should at least leave the subspa
eM (see (2.7)) in whi
h the Lagrangean system lives, invariant. That is,they should leave any traje
tory whi
h belongs to the subspa
e M in thissubspa
e. The ne
essary 
onditions for that 
an be gotten by varying (2.7)as followsddt (Æ�;�q~i) = Æ2(H+N ~�C~�)Æp~iÆq~j Æ�;�q~j+ Æ2(H+N ~�C~�)Æp~iÆp~j Æ�;�p~j + fq~i; Æ�;�N ~�C~�g: (2.15)Thus the transformations Æq; Æp and ÆN should satisfy this equation in thesubspa
e M. If this is not the 
ase, then the traje
tories for whi
hEM(q) = 0() p~i = f ~i( _q ~j ; q ~j;N ~�) (2.16)are transformed into traje
tories for whi
h this equality fails and they 
annotbe viewed as traje
tories of the 
orresponding Lagrangean system. The9



transformation of p whi
h would follow from (2.16) asÆp~i = �f ~i�q~j Æq~j + �f ~i� _q~j Æ( _q~j) + �f ~i�N ~� ÆN ~� (2.17)would be di�erent from the transformation (2.14) for p. Thus (2.14) will notbe a Lagrangean symmetry for whi
h (2.17) must hold. Substituting (2.14)into (2.15) this 
ondition simpli�es toÆ2(H +N ~�C~�)ÆpixÆpjy EM(pjy)�y = Æ2C~�ÆpixÆpjyEM(pjy)�~�: (2.18)The point is that this equation relates � and �� and if it holds then the phasespa
e transformations (2.14) 
an be interpreted as Lagrangean symmetries.At the same time the number of free fun
tions be
omes equal to the numberof 
onstraints as it should be.Let us note that the "trivial" transformations (2.12) alone do not satisfy(2.18) for o� mass-shell traje
tories if the Hamiltonian H and/or C~� arenonlinear in momenta. Hen
e they 
annot be identi�ed with the Lagrangeansymmetries.If some 
onstraints C~� are nonlinear, then the transformations (2.8) gen-erated by them alone also 
annot satisfy (2.18) for o� mass-shell traje
tories.Hen
e they 
annot be viewed as Lagrangean symmetries either. Only whenthe transformations generated by the nonlinear 
onstratins are taken in avery spe
ial 
ombination with the "trivial" transformations (2.12) one 
ansatisfy the 
ondition (2.18). The reason why the nonlinear 
onstraints alonedo not generate the Lagrangean symmetries is simple. They always take o�mass-shell traje
tories away form the subspa
e M, where the Lagrangeansystem lives. The "trivial" transformations (2.12) return the traje
toriesba
k in M, if for the given �� in (2.14) we take the appropriate �(��) tosatisfy (2.18). They play the role of 
ompensating transformations. As weshall see later, the nonlinear 
onstraints themselves generate the dynami
sfor Lagrangean systems in the subspa
e M.Now we would like to 
onsider two important examples:Gauge Invarian
e. If the 
onstraints C~� are linear andH at least quadrati
in the momenta then only for �z = 0 
an equation (2.18) be satis�ed 3. So,3IfH and all 
onstraints are linear in momenta then the Hamiltonian system is stronglydegenerate. 10



in this 
ase the transformations whi
h are generated by the 
onstraints willalso be symmetry transformations for the 
orresponding Lagrangean system.We shall 
all them gauge transformations:Ĝ� = Î�=0;� =) nÆ�q~i = fq~i; �~�C~�g; Æ�p~i = fp~i; �~�C~�g;Æ�N ~� = _�~� � �~�N ~
t~�~
 ~� � �~�t~�~� : (2.19)For example, in Yang-Mills theories all 
onstraints are linear in the momentaand (as we shall see in the next se
tion) the �nite gauge transformations 
anbe re
overed as transformations generated only by the 
onstraints (� = 0)in the Hamiltonian formalism 4. Thus the extra transformations (2.12) areirrelevan t in this 
ase.Reparametrization invarian
e. Very often the reparametrization in-varian
e of a Lagrangean system, if it exists, is identi�ed with the gaugeinvarian
e (2.19) in the Hamiltonian formalism. As we shall see they area
tually very di�erent.If some of the 
onstraints in (2.1) are nonlinear then it is obvious thatthe transformations generated by the 
onstraints only (� = 0) do not satisfy(2.18). However, in all known theories with nonlinear 
onstraints H = 0and the 
ondition (2.18) 
an be satis�ed if we impose some fun
tional de-penden
e between � and � in (2.14) so that � 6= 0 for su
h theories. Thus thenonlinear 
onstraints generate the Lagrangean symmetries only in very spe-
ial 
ombination with 'trivial' transformations from (2.12). More expli
itlytaking �~� to be ��z = N �z�z in (2.18) we redu
e this equation toN �z(�y � �z) Æ2C�zÆpixÆpjyEM(pjy) = 0: (2.20)One sees at on
e that if Æ2C�zÆpixÆpjy � Æ(z � y) (2.21)then even for 
onstraints nonlinear in the momenta the equation (2.18) issatis�ed o� mass shell (EM(p) 6= 0). From that it follows immediately thatthe transformations (2.14) with ��z = N �z�z are symmetry transformations4Another interesting 
lass of theories where all 
onstraints are linear in momenta arethe 
onstrained Wess-Zumino-Novikov-Witten theories [15℄.11



for the 
orresponding Lagrangean system if H = 0. We shall 
all this sym-metry reparametrization invarian
e: R̂� = Î�;��z=N�z�z . The expli
it formof the reparametrization transformations generalized to �eld theories isÆ�qxi = _qxi �x + (�y � �x)fqxi ;N �yC�ygÆ�pix = _pix�x + (�y � �x)fpix;N �yC�ygÆ�N�x = (N�x�x)� � �yN �yN 
zt�x
z;�y: (2.22)We would like to remind that a

ording to our notation we assume hereintegration over y and z but no integration over x. For systems with a �nitenumber of degrees of freedom the se
ond terms or the right hand sides areabsent and (2.22) has a familiar form.If several 
onstraints are nonlinear in momenta then there are extrareparametrisation transformations in addition to (2.22). They 
an be ob-tained by 
ombining the transformations generated by the 
onstraints with'trivial' transformations (2.11) in su
h a manner that (2.18) is ful�lled (seese
tion 5).In some of the theories we shall study (string, gravity) there are both lin-ear and nonlinear 
onstraints. For su
h theories the symmetry transforma-tions whi
h 
orrespond to Lagrangean symmetries are 
ombinations of gaugetransformations (generated by the linear 
onstraints) and reparametrizationtransformations.Algebra of transformations To 
onstru
t the �nite transformations weneed to apply the in�nitesimal transformations many times. To be su

essfulin this 'exponentiation' it is 
lear that the following ne
essary 
onditionshould be ful�lled: The algebra of in�nitesimal transformations should be
losed, that is the 
ommutator of two subsequent transformations should bea transformation of the same type. To 
he
k the algebra of transformationslet us 
al
ulate the result for the 
ommutator of two subsequent in�nitesimaltransformations (2.14) with parameters �1; �1 and �2; �2 respe
tively. For anarbitrary algebrai
 fun
tion F (q; p) of the 
anoni
al variables (for exampleF = q or F = p) a rather lengthy but straightforward 
al
ulation yields the
ommutator[Î�2�2 ; Î�1�1 ℄F x(q; p) = �ÆF xÆqzi EM(qzi ) + (q ! p)�( _�z1�z2 � �z1 _�z2)+�(�x2 � �y2 )�~
1 �N ~
�x2 �y1 � (1$ 2)��fF x; ÆC~
Æqyj gEM(qyj ) + (q ! p)�12



�(�x2 �y1 � �x1 �y2)�fF x; ÆHÆqyj gEM(qyj ) + (q ! p)�+ fF x; ��~
C~
g (2.23)and 
orrespondingly for the Lagrangean multipliers one has[Î�2�2 ; Î�1�1 ℄N ~� = (Î�� � 1)N ~� + �~Æ2�~
1� _t~�~
~Æ � ft~�~
~Æ;N ~�C~� +Hg��(�~
2�x1 � �~
1�x2 )� ÆÆqxi (N ~�t~�~�~
 + t~�~
 )EM(qxi ) + (q ! p)�; (2.24)where we have introdu
ed��~� = �~�1�~�2 t~�~�~� + Æ�~�2ÆN ~� Æ�1N ~� � Æ�~�1ÆN ~� Æ�2N ~�: (2.25)In deriving (2.23) and (2.24) we used the identities(�~
1�~Æ2 � �~
2�~Æ1)(ft~�~�~
 ; C~Æg+ t~�~�~
t~�~�~Æ) = �~
1�~Æ2(t~�~
~Æt~�~� ~� � ft~�~
~Æ; C~�g); (2.26)and (�~
1�~Æ2 � �~
2�~Æ1)(ft~�~
 ; C~Æg+ t~�~
 t~�~�~Æ) = �~
1�~Æ2(t~�~
~Æt~�~� � ft~�~
~Æ;Hg); (2.27)whi
h follow from the Ja
obi identities for ffC~� ; �~
1C~
g; �~�2C~�g and forffH; �~
1C~
g; �~�2C~�g.5 Also we took into a

ount that if the variables q; pare transformed to new variables ~q = q + 4q and ~p = p + 4p, then thePoisson bra
ket of some quantities A(~q; ~p) and B(~q; ~p) with respe
t to ~q; ~pare related with the Poisson bra
kets of A(q; p) and B(q; p) with respe
t tothe old variables in �rst order in 4q; 4p in the following mannerfA(~q; ~p); B(~q; ~p)g~q;~p = fA(q; p); B(q; p)gq;p+ ÆÆq~i (fA;Bg)4q~i + (q ! p) +O(4q2;4p2): (2.28)We would like to stress that when we are performing the se
ond trans-formation in (2.23,2.24) whi
h follows the �rst one, then we must use thetransformed variables. In parti
ular, instead of �2(N ; x; t) we must take�2(Î�1N ; x; t). This explains the appearen
e of the last terms in (2.25).5With the ex
eption of se
tion 5 we 
onsider for simpli
ity only the bosoni
 
ase fromnow on. 13



First let us 
onsider the 
ase, when the transformations are generatedonly by the 
onstraints without extra 
ompensating "trivial" transforma-tions. In the parti
ular 
ase where the stru
ture 
oeÆ
ents t~�~�~
 do notdepend on the 
anoni
al variables q; p the parameter �� also does not dependon them as 
an be seen from (2.25). Also, _t~�~�~
 = 0 in this 
ase and thusthe 
ommutator of two transformations generated by the 
onstraints only(� = 0) yields again a transformation generated by the 
onstraint. Hen
e, ifthe stru
ture 
oeÆ
ients do not depend on the 
anoni
al variables the trans-formations generated by the 
onstraints form a 
losed algebra o� mass-shell.On the other hand, if the stru
ture 
oeÆ
ients do depend on the 
anoni
alvariables that does not automati
ally imply that the algebra of transforma-tions will not 
lose even in the absen
e of trivial transformations. A
tually,the q; p-dependen
e in the formula (2.25) for �� 
an, in prin
iple, be 
an-
elled. The pri
e we pay for that is that the �-parameters may be
omeN -dependent. As we shall see in se
tion 7 this happens for gravity wheresome of the stru
ture 
oeÆ
ients depend on q, if we 
onsider transformationsof fun
tions whi
h depend on the 
anoni
al variables (2.23). The algebra oftransformations (2.14) 
an also be 
losed in all relevant 
ases when � 6= 0if the �~� and � are related in a 
ertain way. The 
orresponding transfor-mations 
an be interpreted as Lagrangean symmetries when some of the
onstraints are nonlinear in the momenta. We shall dis
uss the 
ases whi
hare of parti
ular interest for us later on.An interesting question to whi
h we have no general answer is the fol-lowing: what are the suÆ
ient 
onditions to exponentiate the in�nitesimaltransformations (2.14) to �nite ones. In the theories we shall 
onsider weknow the �nite Lagrangean symmetries whi
h 
an be formulated in theHamiltonian formalism and this way one 
an �nd the �nite transformationin the �rst order formalism. But in general it seems unlikely that the 
losingof the algebra of in�nitesimal transformations is suÆ
ient to exponentiatethem sin
e already for a free nonrelativisi
 parti
le, whi
h very probablydoes not admit any �nite lo
al symmetry, the transformations (2.12) forma 
losed algebra. This diÆ
ult and very important question (i.e. for thefun
tional integral) what are the 
onditions su
h that the transformations(2.14) 
an be made �nite needs further investigation.Constraints and the equations of motion. There is a very interestingand non-trivial 
onne
tion between the equations of motion and the 
on-straints. As it is wellknown, if we demand that the 
onstraints are ful�lled14



on some initial hypersurfa
e t = t0, then due to the equations of motionthey will be satis�ed at later times. A
tually, we have_C~� = ÆC~�Æq~i _q~i + ÆC~�Æp~i _p~i= N ~�t~
~�~�C~
 + t~�~�C~� + ÆC~�Æq~i EM(q~i) + ÆC~�Æp~i EM(p~i); (2.29)from whi
h immediately follows that _C � C if the equations of motionare satis�ed. Thus we need to impose the 
onstraints only on the initialhypersurfa
e and then they will hold at any moment of time owing to theequations of motion.Inversely, in some theories (e.g. gravity) we 
an get all of the equa-tions of motions (or some of them as in string theory) if we only demandthat the 
onstraints are ful�lled for all t (i.e. everywhere) and that thesymmetry transformations do not destroy this property. For example, ingravity and string theory this means that we demand that the 
onstraintsare valid everywhere and for any 
hoi
e of spa
elike hypersurfa
es, be
ausethe symmetry transformations (di�eomorphism transformations) 
an be in-terpreted as a 
hange of foliation of spa
e-time. In general relativity thisstatement is known as inter
onne
tion theorem [11℄. Usually, to prove thistheorem it is assumed that the �rst four Einstein equation 
orrespondingto the 
onstraints are valid in any 
oordinate system (for any foliation) andthen one immediately 
on
ludes that this 
an be true only if the remainingsix Einstein equations are satis�ed. Moreover, if one 
onsiders �nite trans-formations then it suÆ
es to demand that only the �rst Einstein equationmust be ful�lled to 
on
lude that the remaining equations must hold [11℄.Note however, that to get the Einstein equations one needs to imposehalf of the Hamiltonian equations to express the momenta in term of thevelo
ities. In the Hamiltonian formulation these equations are on the samefooting as the other ones and thus the above arguments 
an hardly be seenas satisfa
tory in a Hamiltonian approa
h sin
e we 
annot state that thewhole dynami
s is en
oded in the 
onstraints. One does not dedu
e theHamiltonian equations of motion only from the 
onstraints and symmetries.Thus our purpose will be to �ll this gap and derive the equations of motionusing the 
onstraints and the symmetry properties entirely in the Hamil-tonian formalism, without postulating any of the Hamiltonian equations ofmotion.For that let us 
onsider how the 
onstraints are 
hanged under the sym-15



metry transformations (2.14):Æ�;�C~� = ÆC~�Æqxi Æ�;�qxi + ÆC~�Æpix Æ�;�pix= ÆC~�Æqxi EM(qxi )�x + ÆC~�ÆpixEM(pix)�x + �~
t~�~�~
C~�: (2.30)For the known theories the 
onstraints are lo
al fun
tions of q and p andinvolve only spatial derivatives of q up to se
ond and p up to �rst order. Itfollows then that the fun
tional derivatives of the 
onstraints have the formÆC�yÆqxi = Ai�Æ(x; y) +Bia� ��ya Æ(x; y) +Diab� �2�ya�yb Æ(x; y)ÆC�yÆpix = E�iÆ(x; y) + F a�i ��ya Æ(x; y); (2.31)where A;B; : : : are fun
tions of qy and py. Substituting (2.30) into (2.31) astraightforward 
al
ulation yieldsÆ�;�C�y = ( _C�y +N ~�t~
~�;�yC~
 + t~
�yC~
)�y+ �~
t~��y;~
C~� + �Bia� EM(qyi ) + F a�iEM(piy)���y�ya+ Diab� �2�EM(qyi )�ya ��y�yb +EM(qyi ) �2�y�ya�yb�: (2.32)Here we used the expli
it form for some of the indi
es ~� = �; y, ~i = i; xet
; a; b run over the spatial indi
es and it is understood that there is nointegration over y.Now we 
an reformulate our question in the following manner: when
an the equations of motion (or some of them) be the 
onsequen
e of theequations C~� = 0 and Æ�;�C~� = 0: (2.33)The �rst 
ondition just means that the 
onstraints are ful�lled everywhereand the se
ond one that this statement does not depend on the 
hosenfoliation.From (2.30) we 
an immediately 
on
lude that the equations of motion
an be derived from (2.33) only if the following ne
essary 
onditions aresatis�ed: 16



� Some of the 
onstraints should be nonlinear in the momenta, sin
e, aswe showed earlier, only in this 
ase should we use the extra "trivial"transformations (and 
onsequently � 6= 0).� The system should have an in�nite number of degrees of freedom.Otherwise there are no spatial derivatives of � and the pie
es whi
hare proportional to the equations of motion are absent.� The 
onstraints should involve spatial derivatives of the p and/or the q.Else all 
oeÆ
ients B;F;D in (2.31) vanish and the pie
es proportionalto the equations of motion are again absent.If we demand that (2.33) holds for an arbitrary �, then from (2.30,2.31) weimmediately get the following set of equationsDiab� EM(qyi ) = 0Bia� EM(qyi ) + 2Diba� �EM(qyi )�yb = 0F a�iEM(piy) = 0 (2.34)whi
h 
an be solved to obtain the equations of motion. The equationsof motion whi
h we 
an get from (2.34) depends on the properties of thematri
es D;B;F .Now we will brie
y review how the general results apply to parti
ularsystems:Systems with a �nite number of degrees of freedom: In this 
aseno equations of motion follow from (2.33) even if � 6= 0 sin
e there are nospatial derivatives of �.Gauge theories All of the 
onstraints are linear in the momenta andtherefore the "trivial" transformations (2.11) are absent. Consequently, noneof the equations of motion 
an be obtained from (2.33).Bosoni
 string: One 
onstraint is nonlinear in the momenta and hen
e� 6= 0. The matri
es F;D are identi
ally zero and B 6= 0. Then only somerelations between the EM(q) follow from (2.33) (see se
tion 6).
17



Gravity: This is the most interesting 
ase. One 
onstraint is nonlinearand leads to � 6= 0 for the di�eomorphism transformations. The matri
es Fand D are non-singular. As is 
lear from (2.34) all Hamiltonian equationsfollow then from (2.33), that is the whole dynami
s of general relativityin the Hamiltonian formulation is hidden in the requirement that the 
on-straints are satis�ed everywhere and for any foliation. Let us stress that indistin
tion to [11℄ we did not assume EM(q) = 0. These equations are also
onsequen
es of eqs. (2.33) and thus the inter
onne
tion theorem has beenproven entirely within the Hamiltonian formalism (see se
tion 7).In the following we apply the general results of this se
tion to 
on
retesystems. First in se
t. 3 to gauge theories whi
h are trivial as regardingtheir symmetries, sin
e all 
onstraints are linear in the momenta and thus thegauge transformations are generated by the 
onstraints themselves. Thenwe 
onsider the relativisti
 parti
le where the 
onstraint is quadrati
 in themomenta. We demonstrate the role played by the "trivial" transformationsto re
over the reparametization invarian
e. In se
t. 5 we show how topro
eed if several 
onstraints are nonlinear in the momenta at the example ofthe lo
ally supersymmetri
 relativisti
 parti
le [17℄. The se
tions 6 and 7 aredevoted to string theory and gravity. The di�erent se
tions are self
ontainedand the reader may skip those parts whi
h are not of immediate interest forhim/her.
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Chapter 3Yang Mills-theoriesThe a
tion for the (non-abelian) gauge �elds isS = �14 Z tr [F��F �� ℄d3xdt (3.1)where 1 F�� = ��A� � ��A� � i[A�; A� ℄A� = Aa�Ta; [Ta; T
℄ = if 
abT
; (3.2)and it is invariant under lo
al gauge transformationsA� �! e�i�A�ei� + ie�i���ei� (3.3)with � = �aTa. The fun
tions �a = �a(x; t) are arbitrary fun
tions on spa
e-time. The in�nitesimal form of these gauge transformations isÆ�Aa� = ����a � fab
Ab��
 = �(D��)a: (3.4)Now we will show that these in�nitesimal gauge transformations are just thetransformations generated by the 
onstraints (see (2.8)).In the usual way one 
an now transform the Lagrangean system intothe 
orresponding Hamiltonian system and obtains the following �rst ordera
tion for Yang-Mills theories [16℄S = Z h~�~a � _~A~a �A0~a( ~D � ~�)~a � 12(~�~a � ~�~a + ~B~a � ~B~a)idt; (3.5)1a; b; : : : denote internal indi
es, �; � : : : spa
e-time indi
es. The Ta are hermiteangenerators and the stru
ture 
onstants f
ab are totally antisymmetri
.19



where ~a = (a; x), �~ai are the momenta 
onjugate to A~ai , and( ~D �~�)a = ~� � ~�a + fab
 ~Ab � ~�
~Ba = �~� � ~Aa � 12fab
 ~Ab ~A
: (3.6)Here we 
olle
ted the spatial 
omponents into 3-ve
tors ~A = (A1; A2; A3)(similarly for ~�; ~B) and assume the gauge group to be 
ompa
t, so that~Aa = ~Aa et
.The system (3.5) is a �rst 
lass Hamiltonian system (2.1) for whi
h the
omponents A0~a play the role of Lagrangean multipliers, the 
onstraints arejust C~a = ( ~D � ~�)~a; (3.7)and the Hamiltonian H = 12(~�~a~�~a + ~B~a ~B~a): (3.8)The 
onstraints and Hamiltonian form a 
losed algebra with respe
t to thePoisson bra
ketfCax; Cbyg = f 
abÆ(x; y)C
x; fH; Caxg = 0: (3.9)From that it follows that the stru
ture 
oeÆ
ients are equal tot
zax;by = f 
ab Æ(x� y)Æ(z � x); taxby = 0: (3.10)Substituting (3.7) and (3.10) in formulae (2.8) we obtain the following sym-metry transformations for the system (3.5)Æ ~A~a = f ~A~a; �~bC~bg = �( ~D�)~a ÆA0~a = ÆN ~a = _�~a � t~a~b~
A0~b�~
 (3.11)and Æ~�~a = f~�~a; �~bC~bg = �fab
~�bx�
x: (3.12)These transformations 
orrespond to symmetries of the 
orresponding La-grangean system sin
e the 
onstraints (3.7) are linear in the momenta. Thetransformations (3.11) 
oin
ide with (3.4) if we identify � = �. Hen
e itis 
lear that the whole group of gauge transformations (in
luding time de-pendent ones) is generated by the 
onstraints. It is easy to verify that thetransformations for the momenta (3.12) follow from the �rst equation in(3.11) if we use the relation between velo
ities _~A~a und momenta ~�~a (the20



�rst Hamiltonian equation) whi
h de�nes the supspa
e M where the La-grangean system lives. To 
ompare the symmetries in the Lagrangean andHamiltonian formulations we need to use these equations. However, theLagrangean system lives in the subspa
e M (see (2.7)) while the transfor-mations (3.11,3.12) 
an be viewed as symmetries in the whole phase spa
eand hen
e the group of symmetries is ri
her in the Hamiltonian formalismsin
e it a
ts also on traje
tories whi
h do not belong to M.The transformations (3.11,3.12) 
an be made �nite in phase spa
e o�the hypersurfa
eM. A
tually the a
tion (3.5) is invariant under the trans-formation (3.3) if simultaneously the momenta are transformed as� �! e�i��ei�: (3.13)To prove this we do not need to use any of the Hamiltonian equations. Sothis symmetry holds for all traje
tories in phase spa
e. This is why the globalsymmetry of Hamiltonian systems is ri
her as the usual gauge symmetry ofthe 
orresponding Lagrangean systems.
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Chapter 4Relativisti
 parti
leIt is 
onvenient to des
ribe the relativisti
 parti
le moving in 4-dimensionalMinkowski spa
etime by 4 s
alar �elds ��(t), � = 0; 1; 2; 3, in 1-dimensional'spa
etime' with 
oordinate t. The a
tion has the formS = �12 Z p�g[g00 _�� _�� +m2℄dt (4.1)where the dot denotes di�erentiation with respe
t to time t and ���� =�(�0)2 +P31(�i)2. The m2 term maybe viewed as '
osmologi
al 
onstant'in 1-dimensional 'spa
etime' with metri
 g00.The a
tion (4.1) is manifestly invariant under general 
oordinate trans-formations in 1-dimensional 'spa
etime' (reparametrization invarian
e). Thein�nitesimal form of these transformations readst! t� �; g00 ! g00 + L�g00; �� ! �� + L���; (4.2)where L� is the Lie-derivative in 1-dimensional 'spa
etime'. Introdu
ing thelapse fun
ion N a

ording to g00 = �N 2 (4.3)and de�ning the momenta 
onjugated to ���� = �L� _�� = _��N (4.4)as a result of the Legendre transformation one �nds the following �rst ordera
tion for the relativisti
 parti
leS = Z [�� _�� �NC℄dt: (4.5)22



The lapse fun
tion N plays the role of a Lagrangean multiplier in (4.5) andthe 
onstraint is quadrati
 in the momentaC = 12(���� +m2): (4.6)Of 
ourse, the stru
ture 
oeÆ
ient vanishes.The a
tion (4.5) still should be invariant (at least in M) under thein�nitesimal di�eomorphisms (4.2), the expli
it form of whi
h isÆ�� = _��� and ÆN = (N �)� : (4.7)Sin
e � and � are independent variables in the �rst order formalism, weshould add to (4.7) the transformation law for � to have the di�eomorphismson the whole phase spa
e. This transformation law for �, whi
h 
orrespondsto the di�eomorphism group, 
an be obtained at �rst inM (see (2.7)), wherethe Lagrangean system lives, from (4.4) asÆ�� = Æ _��N � _��N 2 ÆN = _��� (4.8)and then 
an be extended to the whole phase spa
e and hen
e to traje
-tories for whi
h (4.4) does not hold. Clearly the transformations (4.7,4.8)
orrespond to the reparametrisation (di�eomorphism) invarian
e of the rel-ativisti
 parti
le in the Hamiltonian formalism. They 
oin
ide with (2.22)1,whi
h is a spe
ial 
ombination of the 'trivial' and 
onstraint-generated trans-formations.The algebra of transformations (4.7,4.8) 
loses and forms a Lie algebraon the whole phase spa
e. Their �nite form reads��(t)! ��(�(t)); ��(t)! ��(�(t)); N (t)! d�dtN (�(t)): (4.9)It is easy to see (without using Hamilton's equations) that the a
tion (4.5)is invariant under these �nite tranformations 
ompletely o� mass-shell.The �rst order a
tion (4.5) is also (o� mass-shell) invariant under thetransformations (2.8) generated by the 
onstraints aloneÆ��� = ���; Æ��� = 0; ÆN = _�: (4.10)1For systems with a �nite number of degrees of freedom �y � �x vanishes in (2.22)23



It is 
lear that they are very di�erent from the reparametrisation transfor-mations (4.7,4.8) even in the subspa
e M and hen
e 
annot 
orrespond toany Lagrangean symmetry. Only on mass-shell,_�� = N�� ; _�� = 0 (4.11)do the transformations (4.10) 
oin
ide with the reparametrization transfor-mations if we make the identi�
ation � = N �. However, as we argued earlierthe 
omparison of in�nitesimal transformations on mass-shell is meaningless.If we demand that as a result of the transformation (4.10) the traje
-tory should stay in M then we immediately see that this 
an be true onlyfor on-shell traje
tories. Therefore (4.10) 
an be viewed as the dynami
alequations in the subspa
eM, where the Lagrangean system lives. Thus we
on
lude that the nonlinear 
onstraint (4.6) generates the dynami
s, ratherthan symmetries inM. This explains the origin of the dynami
s for super-hamiltonian systems.However, in the whole phase spa
e, the in�nitesimal transformations(4.10) 
an still be viewed as o� mass-shell symmetries of the Hamiltoniansystem. Moreover they 
an be exponentiated to the �nite ones��(t)! ��(t) + �(t)��(t); ��(t)! ��(t); N (t)! N (t) + _�: (4.12)whi
h are very di�erent from (4.9). As we stressed already, the symmetry(4.10,4.12) do not 
orrespond to di�eomorphisms of the Lagrangean systemand it is not 
lear to us what is the relevan
e of this symmetry whi
h existsonly in the Hamiltonian version of the theory.
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Chapter 5The lo
ally supersymmetri
relativisti
 parti
leThe theory of the relativisti
 parti
le 
an be super-symmetrized and thisleads to the simplest one-dimensional analog of supergravity, namely thetheory for the lo
ally supersymmetri
 relativisi
 parti
le [17℄. For that weneed to introdu
e in addition to the bosoni
 variables �� fermioni
 vari-ables  � whi
h live in 1-dimensional 'spa
etime' and they would des
ribespin-1=2 parti
les in 4-dimensional spa
etime. To make the theory lo
allysupersymmetri
 we also need the analog of the the spin-3=2 gravitino �eldin supergravity and whi
h we denote by �. Then the a
tion for masslessparti
les readsS = �12 Z dtdet(e 0̂0 )[g00 _�2 � i � 
0 _ � g00 ��0 _�℄: (5.1)To simplify the formulae we skipped all external indi
es. Here e 0̂0 is theeinbein �eld in 1-dimensional 'spa
etime' on whi
h the bosoni
 �elds �; e 0̂0and fermioni
 ones  ; �0 live. We denote by 0̂ the 'Lorentzian' index andby 0 the 'spa
etime' index. The fermioni
 �elds are assumed to be realMajorana �elds and the 'spin 3=2' �eld � is taken in the Rarita-S
hwingerrepresentation where it is 
onsidered as 
ovariant ve
tor of Majorana spinors.Of 
ourse in one-dimensional 'spa
etime' this 
ovariant ve
tor has only one
omponent.Introdu
ing the lapse fun
tion as in (4.3) and taking into a

ount thate 0̂0 = N ; e0̂0 = 1N ; 
0 = e0̂0
0̂ = iN (5.2)25



and for Majorana spinors� =  y
0̂ = i ; �� = �y
0̂ = i� (5.3)the a
tion (5.1) be
omesS = 12 Z dt[ 1N _�2 � i _ � iN � _�℄: (5.4)This a
tion is manifestly invariant under (in�nitesimal) di�eomorphism trans-formations t! t� �0 and Q! Q+ L�Q (5.5)whi
h now have the expli
it formÆ� = _��0; Æ = _ �0; ÆN = (N �0)�; Æ� = (��0)�; (5.6)sin
e �;  are spa
etime s
alars and � is a 
ovariant ve
tor. In addition itis also invariant under (in�nitesimal) lo
al supersymmetry transformationsÆ� = i� ; Æ = �( _�� i2� )N�1; ÆN = i��; Æ� = 2 _�; (5.7)where � is the time-dependent Grassmannian parameter of the supersymme-try transformations. Clearly the a
tion (5.4) is invariant under simultane-ous in�nitesimal di�eomorphisms (5.6) and supersymmetry transformations(5.7). Our aim is to re
over the 
orresponding o� mass-shell symmetries(di�eomorphisms and lo
al supersymmetry) in the �rst order Hamiltonianformalism.The standard pro
edure leads to the following �rst order a
tion for thelo
ally supersymmetri
 parti
leS = Z [�� _�� 12 i _ �N�C�℄dt (5.8)with Lagrangean multiplier �eldsN 0 = N and N 1 = 12�: (5.9)Thus N 0 is the bosoni
 lapse fun
tion and N 1 proportional to the fermioni
'gravitino' �eld. The 
onstraintsC0 = 12�2� and C1 = i�� (5.10)26



form a 
losed algebra with respe
t to the Poisson bra
ket, whi
h are gener-alized to graded algebras to in
lude fermioni
 variables as follows:f�; ��g = 1 ; f ; g = i: (5.11)A
tually we havefC0; C0g = fC0; C1g = 0 and fC1; C1g = �2iC0: (5.12)As it follows from (5.11) the only nonvanishing stru
ture 
oeÆ
ient ist011 = �2i: (5.13)The in�nitesimal transformations (2.8) generated by the 
onstraints (5.10)read Æ�� = �0�� + i�1 ; Æ��� = 0; Æ� = �1��Æ�N = _�0 + i�1� Æ�� = 2 _�1: (5.14)where �0 and �1 are bosoni
 and Grassmannian variables, respe
tively. A
-tually they are nilpotent, i.e. ff:; CgCg = 0, and thus 
an easily be ex-ponentiated to �nite ones. One obtains the �nite transformations F (t) !F (t) + Æ�(t)F (t), where F (t) denotes any of the �elds or Lagrangean mul-tipliers appearing in (5.14). However, the transformations (5.14) are notreally the symmetries of the Lagrangean system we are looking for.To see that more 
learly we �rst write the equations of motion whi
h aregotten by varying the a
tion (5.11) with respe
t to the dynami
al variables�; �� and  EM(�) = _��N�� � i2� = 0;EM(��) = _�� = 0;EM( ) = _ � 12��� = 0: (5.15)The subspa
eM in whi
h the Lagrangean system lives is de�ned by the eq.EM(�)=0. In this subspa
e we 
an read that the momentum �� under thetransformations (5.6) and (5.7) should be tansformed asÆ�� = _���0 + iN �( _ � 12���): (5.16)27



Comparing (5.6,5.7) and (5.16) with the transformations (5.14) we immedi-ately 
on
lude that they 
oin
ide only if all equations of motion are satis�ed,that is on mass-shell.This agrees with our general 
onsiderations in se
.2 sin
e for the super-symmetri
 parti
le both 
onstraints in the a
tion (5.8) are quadrati
 in themomenta �� and � = � i2 and hen
e the o�-shell symmetries whi
h 
orre-spond to the symmetries of the Lagrangean system 
annot be generated bythe 
onstraints alone. Both of them take a o�-shell traje
tory whi
h belongstoM away from this subspa
e. To return the traje
tory ba
k toM we need
ompensating transformations from the set of trivial transformations (2.11),one per nonlinear 
onstraint. In parti
ular the trivial transformations (2.12)in 
ombination with the transformations generated by the 
onstraint C0 leadto the familiar reparametrization invarian
e (2.22).Be
ause the 
onstraint C1 is also quadrati
 in the momenta we take anextra 
ompensating transformation from the set (2.11) and add it to (2.14)to obtain all Lagrangean symmetries in the Hamiltonian formalism. Theresulting transformations readÆ� = EM(�)� + f�; ��C�g = ( _��N�� � i2� )� + Æ��Æ�� = EM(��)� +EM(� )� + f��; ��C�g = _�� � i( _ � 12���)�;Æ = EM( )� +EM(�)� + f ; ��C�g (5.17)= ( _ � 12���)� + ( _��N�� � i2� )� + Æ� ;ÆN = Æ�NÆ� = Æ��;where Æ� is given in (5.14) and � = � i2 . Here � is the Grassmann pa-rameter of the 'extra' transformation from the set of transformations (2.11)whi
h we need to 
orre
t the gauge transformation generated by the non-linear 
onstraint C1. Of 
ourse the parameters are not independent and arerelated by the requirement that the Hamiltonian symmetry is also a La-grangean one. The 
orresponding 
ondition (2.15), properly generalized toin
lude fermioni
 variables, is satis�ed by� = �0; � = �N ; �0 = N �0 and �1 = � + 12��0; (5.18)expressing the 4 parameters �; �; �0; �1 in terms of 2 independent parame-ters �0 and �. With this identi�
ation the symmetry transformations (5.17)28



of the Hamiltonian system are redu
ed exa
tly to the original di�eomor-phism and supersymmetry transformations (5.6,5.7) and (5.16) for the La-grangean system without using any of the Hamiltonian equations. However,the transformations (5.17) with parameters (5.18) are symmetries even o�the subspa
eM. They also form a 
losed algebra on the whole phase spa
e1. A
tually, denoting the transformations (5.17) by Î(�0; �) we �nd thefollowing 
ommutator of two subsequent transformations[Î(�02 ; �2); Î(�01 ; �1)℄ = Î(�03 ; �3)� 1̂; (5.19)where �03 = _�01�02 � �01 _�02 + 2iN �2�1�3 = _�1�02 � _�2�01 + 1N �1�2� (5.20)Again this 
losure holds 
ompletely o� mass shell. Hen
e we expe
t thatthe transformations (5.17,5.18) 
an be 'exponentiated' to �nite symmetrytransformations on the whole phase spa
e and thus extend the original groupof Lagrangean symmetries.The same properties we expe
t to hold for supergravity theories in moredimensions. But be
ause the 
omputations are quiet involved we have sofar refrained from repeating the above 
al
ulations for these more realisti
theories.We 
on
lude this se
tion by stressing that in the 
onsidered supersym-metri
 model neither of the 
onstraints generates a symmetry transformation
orresponding to a Lagrangean symmetry. They rather generate the dynam-i
s of the Lagrangean system in the Hamiltonian formalism, similar as forthe relativisti
 parti
le.
1It is worth noting that the transformation (5.17) without the extra � term form a
losed algebra only on mass shell 29



Chapter 6The bosoni
 stringThe bosoni
 string propagating in a D-dimensional 
at target spa
e 
anbe viewed as the theory for D massless s
alar �elds ��; � = 0; : : : ;D � 1on a 2-dimensional world-sheet spa
etime with metri
 g�� . The a
tion forthis theory 
an be written in a manifestly invariant form with respe
t todi�eomorphism transformations as [18℄S = �12 Z p�gg�� ����x� ����x� d2x; (6.1)where x� � (t; x) are the 
oordinates in the 2-dimensional spa
etime. Tosimplify the formulae we shall skip the target-spa
e index � sin
e it alwaysappears in a trivial way and 
an easily be reinserted.The di�eomorphism transformations whi
h are o� mass-shell symmetriesof the a
tion (6.1) arex� ! x� � ��; g�� ! g�� + L�g�� ; �! �+ L��; (6.2)where �� is the in�nitesimal parameter. In addition the a
tion is invariantwith respe
t to Weyl transformationsg�� ! 
2(x)g�� and �! �: (6.3)To arrive at the �rst order formulation it is 
onvenient to use the 1 + 1-de
omposition for the world-sheet metri
 as [19℄g�� = �(N 2 �N 1N1)dt2 + 2N1dxdt+ 
11dx2; (6.4)where N and N1 are the lapse and shift fun
tions, respe
tively. We rise andlower the spa
ial index '1' using the metri
 
11 � 
 of the 1-dimensional30



hypersurfa
e t=
onstant in 2-dimensional spa
etime. Correspondingly wehave 
11 = 1
 ; N 1 = 1
N1; p�g = Np
: (6.5)Using (6.2) an easy 
al
ulation yields the following expli
it transformationlaws for N 0 = Np
 ; (6.6)N 1 and � under di�eomorphism transformations x� ! x� � ��; �� =(�0; �1):ÆN 0 = Æ( Np
 ) = (N 0�0)� +N 10(N 0�0)�N 1(N 0�0)0+N 00(�1 +N 1�0)�N 0(�1 +N 1�0)0;ÆN 1 = (�1 +N 1�0)� +N 10(�1 +N 1�0)�N 1(�1 +N 1�0)0 (6.7)+N 00(�1 +N 1�0)�N 0(�1 +N 1�0)0;Æ� = _��0 + �0�1:Here dot and prime mean the di�erentiations with respe
t to the time andspa
e 
oordinates x0 = t and x1 = x, respe
tively. The transformation lawfor the momentum � 
onjugated to �,� = �L� _� = p
N ( _��N 1�0) (6.8)follows immediately from (6.7) and (6.8):Æ� = _��0 + (��1)0 + (N 1� +N 0�0)�00: (6.9)In the �rst order Hamiltonian formulation the a
tion (6.1) takes the formS = Z (� _��N�C�)dxdt; (6.10)where the Lagrangean multipliers N� are just the fun
tions de�ned in(6.5,6.6) (that is they are the lapse and shift fun
tions up to p
). The
onstraints C0 = 12(�2 + �02); and C1 = ��0 (6.11)form a 
losed algebra, i.e. are �rst 
lass 
onstraints, with respe
t to thestandard Poisson bra
kets f�(x); �(y)g = Æ(x; y):31



fCi(x); Ci(y)g = C1(x) ��xÆ(x; y) � C1(y) ��y Æ(x; y)fC0(x); C1(y)g = C0(x) ��xÆ(x; y) � C0(y) ��y Æ(x; y); (6.12)where i = 1; 2. Rewriting these relations in terms of the light-
one 
on-straints C0 � C1 we immediately re
ognize them as Virasoro algebra [20℄.Con
erning the symmetries we �rst note that the Weyl symmetry (6.3)takes the trivial form in the Hamiltonian formalismN 0 = Np
 ! 
N
p
 = N 0; N 1 = N1p
 ! N 1; (6.13)so that all variables in the �rst order a
tion are Weyl invariant.Be
ause one of the 
onstraints, namely C0, is quadrati
 in the momen-tum, we need to 
ombine gauge and reparametrization transformations as in(2.14) to re
over the di�eomorphism invarian
e (6.7,6.8) in the Hamiltonianformalism. For the bosoni
 string the expli
it transformation (2.14) readsÆN 0 = _�0 +N 10�0 �N 1�00 +N 00�1 �N 0�10ÆN 1 = _�1 +N 10�1 �N 1�10 +N 00�0 �N 0�00 (6.14)Æ� = EM(�)� + f�; �~�C~�g = ( _��N 0� �N 1�0)� + ��0 + �0�1;Æ� = EM(�)� + f�; �~�C~�g = ( _� � (N 0�0 +N 1�)0)� + (�0�0)0 + (��1)0;where we need to assume that the parameters are related by the 
ondition(2.18). This 
ondition is solved if we express the parameters �; �0; �1 interms of two independent parameters as� = �0; �0 = N 0�0 = Np
 �0; �1 = �1 +N 1�0; (6.15)and then we immediately re
ognize the transformations (6.14) as di�eomor-phism transformations (6.7,6.8) without using the Hamiltonian equations.On
e again we emphasize that the transformations (6.14) are in�nitesimalsymmetry transformations on the whole phase spa
e whereas the transfor-mations (6.7,6.8) are appli
able only to traje
tories on the hypersurfa
eM.As a �rst step towards exponentiating the in�nitesimal transformations(6.14), i.e. make them �nite, we should 
he
k their algebra. Using theformulae for the parti
ular 
hoi
e (6.15) of parameters it easy to �nd that32



the 
ommutator of two subsequent transformations Î�;� � Î(~�), where ~� =(�0; �1) be
omes [Î(~�); Î(~�)℄ = Î(L~�~�)� 1̂; (6.16)
ompletely o� mass shell. Hen
e the algebra of transformations (6.14) formsa (in�nite dimensional) Lie-algebra even o� the subspa
e M.Let us stress on
e more that the in�nitesimal gauge transformationsgenerated by the 
onstraints only (that is the transformations (6.14) with� set to zero) are not symmetry transformations whi
h 
ould 
orrespond tothe di�eomorpisms of the Lagrangean system. The nonlinear 
onstraint C0is reponsible for the dynami
s.The last remark 
on
erns the 
onne
tion between the 
onstraints and theequations of motion for the string theory. Cal
ulating the �rst fun
tionalderivative of the 
onstraints with respe
t to the 
anoni
al variables we seethat the B and E 
oeÆ
ients in (2.31) areB0 = E1 = �0y ; B1 = E0 = �y; (6.17)while the D and F 
oeÆ
ients vanish. Then the eqs. (2.34) redu
e to�0�EM(��) = 0 and ��EM(��) = 0 (6.18)where � is the target-spa
e index. From these equations we 
annot 
on-
lude that all eqs. of motion should be satis�ed. However, they put 
ertainrestri
tions on the allowed EM(�). Sin
e the 
oeÆ
ients F are equal zero(the 
onstraints do not involve any spatial derivatives of the momenta) therequirement that the 
onstraints are satis�ed everywhere and for any foli-ation does not tell us anything about the eqs. of motion EM(�) = 0. Wewill see in the next se
tion that the inter
onne
tion theorem, whi
h we justdis
ussed, has mu
h more interesting 
ontent in gravity.
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Chapter 7GravityGeneral relativity without matter has the a
tionS = Z Rp�gd4x (7.1)(we adapt the sign and units 
onventions in [21℄) and is invariant with respe
tto 
oordinate (or di�eomorphism) transformations, the in�nitesimal form ofwhi
h read x� ! x� � ��; g�� ! g�� + L�g�� : (7.2)Rewriting the metri
 g�� in the 3 + 1-split form [19℄ds2 = �(N 2 �NiN i)dt2 + 2Nidxidt+ 
ijdxidxj ; (7.3)where N is the lapse fun
tion, Ni are the shift fun
tions, Ni = 
ijN j , and
ij is the metri
 of the 3-dimensional hypersurfa
e �t of 
onstant time t, wederive from (7.2) the following expli
it transformations for N , N i, and 
ij :ÆN = (N �0)� �N i(N �0);i+N ;m (�m +Nm�0) ;ÆN i = (�i +N i�0)� � (�i +N i�0);mNm +N i;k (�k +N k�0)�N
ij(N �0);j +
ijN ;j (N �0) ; (7.4)Æ
ij = ( _
ij �Nijj �Njji)�0 +(3) L�+N �0 
ij :Here the 
omma denotes ordinary di�erentiation with respe
t to the 
or-responding spa
e 
oordinate, the bar denotes 
ovariant derivative in the 3dimensional spa
e �t with metri
 
ij , 
ij is the inverse 3-dimensional metri
on �t and (3)L is the Lie derivative in �t. This Lie derivative is to be takenin the dire
tion � +N �0 � f�i +N i�0g.34



In the �rst order Hamiltonian formalism the ADM a
tion for pure grav-ity takes the form S = Z (�ij _
ij �N�H�)d3xdt; (7.5)where �ij are the momenta 
onjugated to 
ij and the four Lagrangean mul-tipiers are N 0 = N ; and N i = 
ijNj; (7.6)that is the lapse and shift fun
tions. Correspondingly the 
onstraints H�are1 [19, 21℄ H0 = Gijkl�ij�kl �p
 (3)R; Hi = �2
ij�jljl ; (7.7)where Gijkl = 12p
 (
ik
jl + 
il
jk � 
ij
kl); 
 = det(
ij) (7.8)is the metri
 in superspa
e [21℄ and (3)R the instrinsi
 
urvature of the hy-persurfa
e �t of 
onstant time t. With the help of the fundamental Poissonbra
kets f
ij(x); �kl(y)g = Æ(ki Æl)j Æ(x; y) = 12(Æki Ælj + ÆliÆkj )Æ(x; y) (7.9)one 
he
ks that the 
onstraints (7.7) are �rst 
lass [21℄fH0(x);H0(y)g = 
ij(x)Hj(x) ��xi Æ(x; y) � 
ij(y)Hj(y) ��yi Æ(x; y)fHi(x);H0(y)g = H0(x) ��xi Æ(x; y) (7.10)fHi(x);Hj(y)g = Hj(x) ��xi Æ(x; y) �Hi(y) ��yj Æ(x; y): (7.11)Let us note that if we add matter (
ovariantly 
oupled to gravity) to (7.1)then the 
onstraints 
ontain extra pie
es, but their algebra remains un-
hanged. Another interesing observation is the following: If we use p
H0instead of H0 as a 
onstraint then the algebra of 
onstraints looks very mu
hlike a natural generalization of the Virasoro algebra (6.12) to four dimen-sions. It is a nontrivial problem where the di�eomorphism invarian
e of the1in this se
tion we denote the 
onstraints by H�, a notation whi
h is widely used ingravity 35



original a
tion (7.1) is hidden in the �rst order Hamiltonian reformulationof gravity. There have been various attempts to reveal this symmetry (see,for instan
e [1, 2, 3℄)Three of the 
onstraints, namely the Hi, are linear in momenta, so theyshould generate transformations whi
h 
oin
ide with di�eomorphism trans-formations. This has been realized for time independent transformationssome time ago [22℄. However, the fourth 
onstraint, namely H0, is quadrati
in the momenta and hen
e 
annot generate a symmetry of the 
orrespondingLagrangean system a

ording to our general results in se
tion 2. Only 
om-bined with a 
ompensating transformation does it generate the symmetrywe are looking for. Sin
e the Hamiltonian is zero, this symmetry is exa
tlythe reparametrization invarian
e (2.22). Assuming that the parameters in(2.14) are related su
h that the 
ondition (2.18) is satis�ed, we 
an writethis o� shell symmetry transformation for gravity in the following expli
itmanner ÆN = _�0 �N j�0;j +N ;j �j;ÆN i = _�i �N j�i;j +N i;j �j �N
ij�0;j +
ijN ;j �0;Æ
ij = EM(
ij)� + f
ij ; �~�H~�g (7.12)= EM(
ij)� + 1p
 (2�ij � 
ij�)�0 +(3) L�
ijand Æ�ij = EM(�ij)� + f�ij ; �~�H~�g: (7.13)Here the 5 parameters �; �� are to be expressed in terms of the four inde-pendent parameters �� as� = �0; �0 = N �0; �i = �i +N i�0 (7.14)to resolve (2.17) and then it be
omes evident that (7.12) is identi
al to (7.4).Again we need not use any of the Hamiltonian equations. A rather lengthy
al
ulation shows that the transformation law for the momenta one gets byusing the de�nition of the momenta in terms of 
ij ; Nk and (7.4) 
oin
ideswith (7.13) also o� mass shell.Thus we found that in gravity the three 
onstraints whi
h are linear inthe momenta generate the di�eomorphism transformations while the forth
onstraintH0 does it only in a parti
ular 
ombination with the 'trivial' trans-formation (2.12). This nonlinear in momenta 
onstraint itself is responsible36



for the origin of the dynami
s in the subspa
e M in the superhamiltonianreformulation of gravity.The important question is how to read o� the Lie algebra stru
ture of thedi�eomorphism group in the Hamiltonian formulation. Be
ause for gravitythe stru
ture 
oeÆ
ients depend on the 
anoni
al variables (in distin
tionfrom the previous 
ases) one might expe
t that the algebra of in�nitesimaltransformations (7.12-7.14) 
annot 
lose in this 
ase. A
tually naively thedependen
e on the 
anoni
al variables 
an enter in the parameter �� for the
ommutator of two in�nitesimal transformations with parameters throughthe 
-dependen
e of the stru
ture 
oeÆ
ients (see (2.25)). Fortunately, thisexpe
tation is not 
on�rmed. In parti
ular, in the formula (2.25) for the��-parameter this 
-dependen
e of the various terms on the right hand side
an
els for the 
on
rete 
hoi
e (7.14) for the N -dependen
e of the param-eters �. The pri
e we pay for that is the expli
it dependen
e of the pa-rameters of transformations on the Lagrangean mulitpliers, but not on the
anoni
al variables 
; �. Starting from the general formulae (2.23-2.25) astraightforward but rather lengthy 
al
ulation shows that the transforma-tions (7.12-7.14) form a Lie algebra 
ompletely o� mass shell:[Î(�); Î(�)℄ = Î(L��)� 1̂; � = (�0; : : : ; �3); � = (�0; : : : ; �3); (7.15)where �0; �i and �0; �i are de�ned in (7.14), as it should be for di�eomor-phisms. The formula (7.15) holds even o� the hypersurfa
e M where theLagrangean system lives.There is a deep 
onne
tion between the 
onstraints and equations ofmotion in gravity. Cal
ulating the derivative of the 
onstraints in this 
asewe shall �nd that all of the 
oeÆ
ients A; � � � ; F in (2.31) do not vanish.In parti
ular, taking into a

ount that the index k in the formulae(2.31,2.32) in the 
ase of gravity is a 
omposite one,, i � (j; k); a; b runover the same spatial index l and 
al
ulating the derivatives of Hi withrespe
t to �jk and H0 with respe
t ot 
np we �ndF lijk = �2
i(jÆlk) and Dnplk0 = �Gnplk; (7.16)where Gnplk is the inverse of the superspa
e-metri
, GnplkGlkij = Æ(ni Æp)j .Then the �rst and last equations in (2.34) take the formGnplkEM(
np) = 0 and 2
ijEM(�jl) = 0: (7.17)Sin
e the determinants det G and det 
 are not equal zero the eqs.(7.17)have the unique solutionEM(
np) = 0 and EM(�jl) = 0: (7.18)37



The remaining equations in (2.34) are then automati
ally ful�lled. Thus, wesee that in general relativity the whole dynami
s follows from the require-ment that the 
onstraints are satis�ed everywhere and they are preservedunder di�eomorphisms.
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Chapter 8Dis
ussionIn the previous se
tions we revealed the relevant lo
al symmetries of La-grangean systems in the �rst order Hamiltonian systems. We have seenthat all symmetries have a similar stru
ture in the Hamiltonian approa
halthough they may look quite di�erently in the Lagrangean one. All funda-mental �eld theories in physi
s, and in parti
ular the ones we 
onsidered,are systems with �rst 
lass 
onstraints. If the 
onstraints are linear in themomenta (as in Yang-Mills theories) then they generate the well knowngauge symmetry. If some of the 
onstraints are nonlinear in the momentathen only very spe
ial 
ombinations of the transformations generated bythe 
onstraints and simple 
ompensating transformations proportional tothe equations of motion 
orrespond to the o� mass shell symmetries of the
orresponding Lagrangean system. If only one of the 
onstraints is nonlin-ear in the momenta, as in string theory and gravity, then the symmetriesof the system 
onsist of the gauge transformations generated by the linear
onstraints plus an extra reparametrization transformation related to thenonlinear 
onstraint, but not just generated by this 
onstraint. This takespla
e only if the Hamiltonian is equal to zero, i.e. is a super-Hamiltonian. Allwellknown theories with nonlinear 
onstraints possess a super-Hamiltonian.However, presently we do not know if there is a deep 
onne
tion betweenthe non-linearity of some of the 
onstraints and the super-Hamiltonian 
har-a
ter of the system. If there are more then one nonlinear 
onstraint thenone has to use extra transformations from the huge set of transformations(2.15) in a 
ombination with the transformations generated by the nonlinear
onstraints to re
over the Lagrangean symmetries.In any 
ase, the wellknown symmetries of the Lagrangean systems are39



manifest in the Hamiltonian formalism and even more transparent there.Di�erent symmetries may look quite di�erently in the Lagrangean formal-ism (for example, lo
al supersymmetry and di�eomorphisms) but they havethe same formal stru
ture in the Hamiltonian approa
h. In addition, thesymmetry transformations for the Hamiltonian systems are ri
her as the
orresponding ones for the Lagrangean systems. This is so sin
e in theHamiltonian approa
h the transformations are a
ting on the whole phasespa
e and are symmetries for all o� mass shell traje
tories. For su
h generaltraje
tories the momenta need not be related to the velo
ities, as it shouldbe for Lagrangean systems.We 
onsidered mainly the in�nitesimal form of the symmetry transfor-mations and 
he
ked the algebra of two subsequent in�nitesimal transfor-mations. We found that for all theories we studied (gauge theories, pointparti
le, bosoni
 string and gravity) the algebras are 
losed 
ompletely o�mass shell in the whole phase spa
e, even o� the subspa
e M in whi
h theLagrangean system lives. In parti
ular, for gravity, where the stru
ture 
on-stants depend on the 
anoni
al variables, we revealed a 
losed Lie algebrain the Hamiltonian formalism.Di�erent theories whi
h are invariant under di�eomorphism transfor-mations (as for example string theory and gravity) have similar 
onstraintalgebras but the 
onstraints look quite di�erently. However, for the phasespa
e transformations belonging to di�eomorphisms to form a Lie algebrathe 
onstraints themselves should have some underlying 
ommon stru
turewhi
h we did not reveal. For example, we 
ould ask what kind of general
onditions the 
onstraints in string theory, dilaton 
oupled 2-dimensionalgravity, gravity or higher derivative gravity, the 
onstraints of whi
h arelooking quite di�erently, should satisfy to 
lose the algebra. These interest-ing questions deserve further investigations.The other question 
on
erns the role of the transformations generatedby the nonlinear 
onstraints alone. We showed that they are responsible forthe dynami
s of Lagrangean systems in the superhamiltonianin formalism.Also we have seen that there is a deep 
onne
tion between the stru
tureof the 
onstraints and the dynami
s. For example, in string theory some ofthe Hamiltonion equations and in gravity all of them automati
ally followif we demand that the 
onstraints are satis�ed everywhere for any foliationof spa
e time. The presen
e of the spatial derivatives of q and/or p isresponsible for that on the te
hni
al level.One possible appli
ation of the developed approa
h to phase spa
e sym-metries is a way to 
onstru
t new theories possessing lo
al symmetries in40



the Hamiltonian formalism (see, for instan
e [15, 17℄). A
tually in many
ases the 
onstraints have a 
lear physi
al interpretation (as the Gauss 
on-straints in ele
tromagnetism). So one starts by introdu
ing 
ontraints in thetheory to satisfy some physi
al requirements. Then one should 
ommute the
onstraints (leading to se
ondary 
onstraints) su
h that the systems of orig-inal 
onstraints together with the se
ondary ones form a �rst 
lass system.Note that only �rst 
lass 
onstraints generate lo
al symmetries 1. The num-ber of 
onstraints is equal to the number of parameters of the symmetrytransformations of the 
orresponding Lagrangean system.Another interesting appli
ation of the 
onsidered formalism one 
ould�nd in the quantized theories, in whi
h we are ultimately interested. Forexample, in the fun
tional integral approa
h to quantum theories it is morenatural to 
onsider the Hamiltonian fun
tional integral as 
ompared to theLagrangean one. This is true in parti
ular for theories whi
h are invariantunder di�eomorphisms. In the phase spa
e fun
tional integral at least theq; p-pie
e of the measure is just the well-de�ned Liouville measure. Afterperforming the integration over the momenta we arrive at the fun
tionalintegral in the Lagrangean formulation. However, even in the simple 
ase ofa �rst order a
tion (2.1) whi
h is quadrati
 in the momenta, a q-dependentfun
tion multiplying p2 appears in the measure for the Lagrangean fun
-tional integral. For systems where the a
tion is not quadrati
 in the mo-menta or even for gravity the question about the 
orre
t measure be
omesquite nontrivial. Also, in the Hamiltonian version of the BRST-quantizationit is not 
lear whi
h symmetries (the ones generated by the 
onstraints aloneor the symmetries of the Lagrangean system) should we use to 
onstru
t theBRST 
harge for systems with nonlinear 
onstraints and whether these dif-ferent 
harges lead to the same �nal quantization. Only in the simple 
asesof the relativisti
 parti
le and supersymmetri
 parti
le it has been demon-strated that the results in both 
ases are the same [24℄. For both systemsthe two kinds of transformations 
an be written down in �nite form.For �eld theories this question has not been investigated. For theorieswith nonlinear 
onstraints, and in parti
ular gravity, there are two di�erentBRST 
harges. One belonging to di�eomorphisms and one to the transfor-mations generated by the 
onstraints. They 
oin
ide only if we impose theequations of motion and this may be the reason why the Batalin-Vilkovisky1For example, a system with 2n se
ond 
lass 
onstraints 
an lo
ally be transformed intoa system with n �rst 
lass 
onstraints and n gauge �xings by a 
anoni
al transformation.Thus the gauge transformations generated by the �rst 
lass 
onstraints are automati
lly�xed by the n gauge �xings and no symmetries survive.41



theorem [23℄ might break down when the two 
ompared gauges are not in-�nitesimally 
lose to ea
h other [25℄. The transformations generated bythe two BRST 
harges di�er by trivial transformations. The relevan
e ofthese trivial transformations 
an already be seen on the perturbative levelin theories with non
losing algebras (for instan
e in supergravity [26℄).One would like to hope that the results obtained in this paper 
ould helpto �ll the gap in the study of symmetries of 
onstraint Hamiltonian systemswhi
h, from our point of view, still exist even on the 
lassi
al level in the
urrent literature.A
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