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limits of string theory. Supersymmetri models are easier to solve than their non-supersymmetri ounterparts, sine they are more strongly onstrained by the higherdegree of symmetries.In reent years we have seen a renewed interest in nonperturbative aspets of stronglyinterating supersymmetri theories. This is mainly due to the Seiberg-Witten solutionfor the low-energy e�etive ation of N = 2 super-Yang-Mills theory [1℄ and the Mal-daena onjeture stating that N = 4 super-onformal SU(N)-gauge theories arisingon parallel D3-branes are in the limit of large 't Hooft oupling and large N dual tosupergravity theories on an AdS5-bakground [2℄. Despite of these striking results thereis still a long way to go towards a better understanding of nonperturbative e�ets insupersymmetri theories with less supersymmetries and �nite N. In partiular, sinelow-energy physis is manifestly not supersymmetri, it is neessary that this symme-try is broken at some energy sale. As issues of supersymmetry breaking are diÆultto address in perturbation theory, one is motivated to study supersymmetri modelson a spaetime lattie. Unfortunately, supersymmetry is expliitly broken by most dis-retization proedures, and it is a nontrivial problem to reover supersymmetry in theontinuum limit. However, there are disretizations with nonloal interation terms forwhih supersymmetry is manifestly realized [3℄. Alternatively, for some models one andisretize spae { but not time { suh that a subalgebra of the supersymmetry algebrawhih determines spetral properties of the super-Hamiltonian remains intat [4℄.Every supersymmetri �eld theory on a spatial lattie may be reinterpreted as a higher-dimensional supersymmetri quantum mehanial system. The �rst studies of suh sys-tems go bak to Niolai [5℄ and have been extended by Witten in his work on supersym-metry breaking [6, 7, 8℄. Soon after that, de Crombrugghe and Rittenberg [9℄ presenteda very general analysis of supersymmetri Hamiltonians. Over the years, it has beendemonstrated that supersymmetry is a useful tehnique to onstrut exat solutions inquantum mehanis [10℄. For example, all ordinary Shr�odinger equations with shapeinvariant potentials an be solved algebraially with the methods of supersymmetry. Onthe other hand, apparently di�erent quantum systems may be related by supersymmetry,and this relation may shed new light on the physis of the two systems. For example,the hydrogen atom (its Hamiltonian, angular momentum and Runge-Lenz vetor) anbe supersymmetrized. The orresponding theory ontains both the proton-eletron andthe proton-positron system as subsetors [11℄.The present work ontains the �rst part of our attempt to better understand supersym-metri �eld theories on spatial latties. Here, we will analyze properties of quantummehanial systems. In a forthoming publiation, our results will be related to Wess-Zumino models on suh latties. This paper is organized as follows: In Setion 2 wereall supersymmetri quantum mehanis with N supersymmetries. The main empha-sis is on the algebrai struture of suh systems. In the following setion we give expliitrealizations of systems with one, two or more supersymmetries. They are based on theDira operator in external gauge and gravitational �elds. We shall see that for ertainbakground �elds there are N inequivalent ways to take the square root of � =D2. At the2



same time � =D2 ommutes with several partile-number operators whih orrespond toomplex strutures. The superalgebra implies onsisteny onditions for these struturesand the gauge �eld strength. For example, the Dira operator in four dimensions admitsan extended N =4 supersymmetry if spaetime is hyper-K�ahler and the gauge �eld is(anti-)selfdual. In Setion 4 we show that, for bakground �elds admitting an extendedsupersymmetry, the geometry and gauge potential are enoded in a superpotential. Thesuperpotential may be used to deform the generally- and gauge-ovariant derivative intothe ordinary derivative. In Setion 5 we apply our general results to study the Diraoperator on the omplex projetive spaes CP n with an Abelian bakground gauge �eld.We derive expliit expressions for the superpotential and fermioni zero modes on theseK�ahler spaes.2 Extended Supersymmetri Quantum MehanisSupersymmetri quantum mehanis desribes systems with nonnegative Hamiltoniansthat an be written asÆijH = 12 fQi; Qjg ; i; j = 1; : : : ;N ; (1)with Hermitian superharges Qi antiommuting with an involutary operator �,fQi;�g = 0; �y = �; �2 = 1: (2)There are various de�nitions of supersymmetri quantum mehanis in the literature, fora reent disussion, in partiular onerning the role of the grading operator �, we referto [12℄. One may also relax the ondition for the left-hand side of (1), see for example[13℄, but in this paper we will not onsider suh systems.The +1 and �1 eigenspaes of � are alled bosoni and fermioni setors respetively,H = HB �HF; HB = P+H; HF = P�H; P� = 12 (1� �): (3)The superharges Qi map HB into HF and vie versa. The super-algebra (1) impliesthat they ommute with the super-Hamiltonian,[Qi;H℄ = 0; (4)and generate supersymmetries of the system. The simplest models exhibiting this stru-ture are 2� 2-matrix Shr�odinger operators in one dimension [5, 6, 7℄. In this paper weshall investigate expliit representations of the superalgebra (1) with one, two, four andmore superharges.
3



One superharge: In this ase every eigenstate of H = Q21 � 0 with positive energyis paired by the ation of Q1. For example, if jBi is a bosoni eigenstate with positiveenergy, then jF i � Q1jBi is a fermioni eigenstate with the same energy. However, anormalizable eigenstate with zero energy is annihilated by the superharge, Q1j0i = 0,and hene has no superpartner. In a basis where � = �3 
 1, the Hermitian harge Q1has the form Q1 = P�Q1P+ + P+Q1P� � �0 AyA 0 � : (5)The index of Q1 ounts the di�erene of bosoni and fermioni zero modes,ind Q1 = dimkerA� dimkerAy = n0B � n0F: (6)Supersymmetry is spontaneously broken if and only if there exists no state whih is leftinvariant by the superharges, or equivalently if 0 is not in the disrete spetrum of H.Two superharges: In this ase there exist two antiommuting and Hermitian roots ofthe super-HamiltonianH = Q21 = Q22; fQ1; Q2g = 0; Qyi = Qi: (7)Later we shall use the nilpotent omplex superhargeQ = 12(Q1 + iQ2); (8)and its adjoint Qy, in terms of whih the supersymmetry algebra takes the formH = fQ;Qyg; Q2 = Qy 2 = 0 and [Q;H℄ = 0: (9)The number of normalizable zero modes of H is given by [6℄n0 = n0B + n0F = dim(kerQ=im Q) = dim(kerQy=im Qy): (10)Four superharges: Now there are four distint roots of the super-Hamiltonian,H = Q21 = Q22 = Q23 = Q24: (11)The only nontrivial antiommutators of the omplex nilpotent superhargesQ = 12(Q1 + iQ2) and ~Q = 12 (Q3 + iQ4) (12)and their adjoints are fQ;Qyg = f ~Q; ~Qyg = H: (13)
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3 Supersymmetries and the Eulidean Dira OperatorThere exists a fundamental supersymmetri Hamiltonian in nature, the square of theEulidean Dira operator. In other words, one identi�es the Dira operator as a super-harge assoiated to this Hamiltonian. There are non-linear sigma-models whih giverise to exatly these superharges, in partiular the (1 + 0)-dimensional models studiedin [13, 14℄. In ontrast to those models, we allow for the presene of gauge �elds butdo not inlude torsion. The identi�ation of Dira operators and superharges has alsobeen employed by Alvarez-Gaum�e in [15℄, where he uses supersymmetry to derive theAtiyah-Singer index theorem.The hiral supersymmetry with one harge exists in all even dimensions and for arbi-trary gauge and gravitational bakground �elds. It an be extended if =D2 ommuteswith ertain partile-number operators to be de�ned below. For example, in D = 2nEulidean dimensions and for bakground �elds with holonomy group U(n) the operator=D2 ommutes with one partile-number operator and admits two supersymmetries. InD=4n dimensions and for bakground �elds with holonomy group Sp(n), there are threeonserved number operators and four supersymmetries.We onsider a smooth Riemannian manifoldM of dimension D whih allows for a spinstruture. We desribe the gravitational �elds in terms of vielbeins EAM rather than ametri GMN , whih is related to the vielbein byGMN = EAMEBNÆAB ; ÆAB = GMNEAMEBN : (14)The Lorentz indies A;B 2 f1; : : : ;Dg are onverted into oordinate indies M;N 2f1; : : : ;Dg (or vie versa) with the help of the vielbein EAM or its inverse, whih is givenby EMA = GMNEBNÆBA. The Cli�ord algebra is generated by the Hermitian matries�A, satisfying f�A;�Bg = 2ÆAB or f�M ;�Ng = 2GMN ; (15)where the �M = �AEMA are the matries with respet to the holonomi basis �M .3.1 Chiral SupersymmetryIn even dimensions we always have hiral supersymmetry generated by the HermitianEulidean Dira operator, viewed as superhargeQ1 = i =D = i�MrM = i�ArA; rA = EMA rM : (16)The generally- and gauge-ovariant derivative ating on spinors,rM = �M +
M +AM= �M + 14
MAB�AB +AaMTa; (17)5



ontains the onnetion 
 and gauge potential A together with the anti-Hermitian gen-erators �AB = 12 ��A;�B� and T a of spin rotations and gauge transformations. Thegamma-matries are ovariantly onstant in the following sense,rM�N = �M�N + �NMP�P + [
M ;�N ℄ = 0: (18)For the involutary operator � in (2) we take in D=2n dimensions� = ��1 : : :�D; (19)where the phase � is hosen suh that � is Hermitian and squares to 1, �2 = (�)n. The`bosoni' and `fermioni' subspaes onsist of spinor �elds with positive and negativehiralities, respetively, and the number of bosoni minus the number of fermioni zeromodes equals the index of the Dira operator,n0B � n0F = ind i =D : (20)Sine the ommutator of two ovariant derivatives yields the gauge �eld strength andurvature tensor in the spinor-representation,[rM ;rN ℄ = FMN = FMN +RMN ;FMN = �MAN � �NAM + [AM ; AN ℄ = F aMNTa; (21)RMN = �M
N � �N
M + [
M ;
N ℄ = 14RMNAB�AB;where the Riemann urvature tensor is obtained from the onnetion viaRMNAB = �M
NAB � �N
MAB +
 CMA 
NCB � 
 CNA 
MCB; (22)we �nd the squared Dira operator or super-Hamiltonian� =D2 = H = Q21 = �GMNrMrN � 12�ABFAB : (23)Here we have used the omponents of FMN with respet to an orthonormal vielbein,FAB = EMA ENB FMN = [rA;rB ℄:Note that the two ovariant derivatives rMrN in (23) at on di�erent types of �elds.The derivative on the right ats on spinors and is given in (17), whereas the derivativeon the left ats on spinors with a oordinate index and hene ontains an additionalterm proportional to the Christo�el symbols,rM N = �M N +
M N � �PMN P +AM N : (24)3.2 Extended SupersymmetriesIn this setion we show that for partiular bakground �elds the hiral supersymmetryan be extended to �ner, partile-number onserving supersymmetries. The existeneof a single onserved number operator is equivalent to the existene of a ovariantlyonserved omplex struture. This way one �nds that N = 2 is only possible if spaeadmits a K�ahler struture, and N =4, if it admits a hyper-K�ahler struture. Analogousonditions are derived for the bakground gauge �eld.6



3.2.1 Square Roots of H = � =D2In this subsetion we haraterize a lass of �rst order di�erential operators whih squareto H = � =D2. Our ansatz is motivated by previous results in [16, 17, 18, 19℄ and thesimple observation that both the free Dira operator =� on at spae andIMN�N�Mhave the same square for any orthogonal matrix I. Thus, we are lead to the followingansatz for the superharge in a gravitational and gauge �eld bakground,Q(I) = i IMN�NrM � i(I�)MrM ; (25)where I is a real tensor �eld with omponents IMN .This onstrution is lose in spirit to the one presented in [9℄. The algebrai approahthere is applied to the partiular situation of a Dira operator, and this will allow us tointerpret all quantities in [9℄ as geometrial ones, like onnetions, urvature et.To derive the onditions on I and the bakground suh that Q(I)2=H, we �rst onsiderthe antiommutator of two operators with di�erent I,fQ(I); Q(J)g = �12(IJT + JIT )MNfrM ;rNg � 12�MN �ITFJ + JTFI�MN��(I�)PrP (J�)Q + (J�)PrP (I�)Q	rQ; (26)where, for example(IJT )MN = IMPJNP and (ITFJ)MN =IPMFPQJQN :After setting I=J we see that Q(I) squares to the Hamiltonian H in (23) if and only ifthe following three onditions are satis�ed,GMN = (IIT )MN ; (27)FMN = (ITFI)MN ; (28)0 = rMIPQ: (29)By interpreting the IMN as omponents of a map I between setions of the tangentbundle, the ondition (27) just means that I is an isometry,G(IX; IY ) = G(X;Y ):In view of our remarks above it should not be surprising that the omponents IAB withrespet to an orthonormal vielbein form an orthogonal matrix.The ondition (29) means, that the tensor �eld I must be ovariantly onstant. WithRMNAB = RABMN = �RNMAB the orresponding integrability onditions read0 = IRM [rA;rB ℄IRN = IRMRRSABISN �RMNABor RMN = (ITRI)MN ;7



and (28) simpli�es to the same ondition with FMN replaed by the gauge �eld strengthFMN . Thus we end up with the followingLemma: The harge Q(I) = i IMN�NrM ; IMN (x) 2 R; (30)is Hermitian and squares to H in (23) if and only if the following onditions hold:rI = 0; IIT = 1 and [I; F ℄ = 0: (31)The hermitiity follows from rI = 0, whih in turn implies that the IMN�N ommutewith the ovariant derivative. Beause of the seond ondition in (31) the last one isequivalent to (28) with F replaed by F .A trivial solution is of ourse I =1 in whih ase Q beomes the Dira operator itself.Let us now assume that there is a seond square root Q(I) antiommuting with theDira operator Q(1). With rI=0 and (26) these two harges antiommute iffQ(1); Q(I)g = �12(IMN + INM )frM ;rNg � 12�MN �ITF + FI�MN != 0;and this shows that the map I must be antisymmetri. Beause of (27) it squares to�1. Hene it de�nes an almost omplex struture. Sine it is ovariantly onstant, themanifold is K�ahler with omplex struture I. Thus we have shown that H admits twosupersymmetries generated by Q(1) and Q(I) if the manifold is K�ahler with omplexstruture I and if the gauge �eld strength F ommutes with this struture.Now we are ready to generalize to N superhargesQ(1) and Q(Ii); i = 1; : : : ;N � 1:From our general result (26) we onludeLemma: The N hargesQ(1) = i =D and Q(Ii) = i IMi N�NrM ; i = 1; : : : ;N � 1 (32)are Hermitian and generate an extended superalgebra (1), if and only iffIi; Ijg = �2Æij1D; ITi = �Ii; (33)rIi = 0; [Ii; F ℄ = 0: (34)The ovariantly onserved omplex strutures form a D-dimensional real representationof the Eulidean Cli�ord algebra with N�1 gamma-matries. We all a representation
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irreduible, if only 1 ommutes with all those matries. Irreduible representations areknown to exist for N � 1 = 8n; 6 + 8n; 7 + 8n;D = 16n; 8 � 16n; 8 � 16n; (35)with n 2 N0. In these ases, only trivial gauge �elds on at spae are possible. Wefurther observe that, if fI1; : : : ; Ik; Fg satisfy the onditions in the above lemma, thenalso fI1; : : : ; Ik; Ik+1 = I1 � � � Ik; Fg do, providedk = 2 + 4n:It follows, for example, that the superalgebra with 7 superharges fQ(1); Q(Ii)g analways be extended to a superalgebra with 8 superharges. In addition, sine for N�1 =8n the Eulidean gamma-matries may be hosen real and hiral, one an onstrutthe orresponding omplex strutures out of the omplex strutures ~Ii of the N = 8nsupersymmetry, Ii = �0 ~Ii~Ii 0� and I8n = � 0 1�1 0� :For irreduible Ii one an onstrut systems withN = 8n and N = 8n+ 1 (36)independent real superharges in this way. Note, however, that there may exist D-dimensional matries Ii whih do not generate all of GL(D) and hene do not belong toa real irreduible representation of the Cli�ord algebra. These are the most interestingases sine they admit nontrivial bakground �elds ommuting with all Ii, as requiredin our lemma above. Below we will disuss suh systems with N = 4 + 8n.3.2.2 N =2 and Partile-Number OperatorOn any K�ahler manifold the Dira operator admits an extended N =2 supersymmetryif the �eld strength ommutes with the omplex struture. With respet to a suitablyhosen orthonormal frame the struture has the form (IAB) = i�2
1n. The harge Q(I)on a K�ahler manifold with omplex struture I squares to H and ommutes with theDira operator if and only if[I; F ℄ = 0 or (FAB) = � U V�V U� ; UT = �U; V T = V:The omplex nilpotent harge in (8) takes the simple formQ = 12Q(1) + i2Q(I) = i ArA (37)9



with operators  A = PAB�B; PAB = 12(1+ iI)AB: (38)P projets onto the n-dimensional I-eigenspae orresponding to the eigenvalue �i, itsomplex onjugate �P onto the n-dimensional eigenspae +i. The two eigenspaes areomplementary and orthogonal, P + �P =1 and P �P =0. The  A and their adjoints forma fermioni algebra,f A;  Bg = f Ay;  Byg = 0 and f A;  Byg = 2PAB : (39)At this point it is natural to introdue the number operatorN = 12 yA A = 14 �D + iIAB�AB� ; (40)whose eigenvalues are lowered and raised by  A and  Ay, respetively,[N; Ay℄ = PAB By =  Ay;[N; A℄ = �PAB B = � A: (41)Sine only n = rankP of the 2n reation operators are linearly independent we haveinserted a fator 12 in the de�nition of the number operator N in (40). This operatorommutes with the ovariant derivative, beause rI = 0 is equivalent to[rM ; N ℄ = �MN + [
M ; N ℄ = 0; (42)and therefore Q dereases N by one, while its adjoint Qy inreases it by one,[N;Q℄ = �Q and [N;Qy℄ = Qy: (43)The orresponding real superharges are given byQ(1) = Q+Qy = i =D;Q(I) = i(Qy �Q) = i[N; i =D℄: (44)Finally, we observe that the Hermitian matrix� = N � 14D = i4IAB�AB 2 spin(D)generates a U(1) subgroup of Spin(D). This is the R-symmetry of the superalgebra,�Q(1)Q(I)� �! � os� sin�� sin� os���Q(1)Q(I)� :Next, we introdue the Cli�ord vauum j0i, whih is annihilated by all annihilationoperators  A and hene has partile number N =0. The orresponding Cli�ord spae
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C is the Fok spae built over this vauum state. Sine only n reation operators arelinearly independent, we obtain the following grading of the Cli�ord spae,C = C0 � C1 � : : :� Cn; dimCp = �np�; (45)with subspaes labelled by their partile number,N ��Cp = p � 1: (46)In partiular, the one-dimensional subspae C0 is spanned by j0i and the n-dimensionalsubspae C1 by the linearly dependent states  yAj0i. Along with the Cli�ord spae theHilbert spae of all square integrable spinor �elds deomposes asH = H0 �H1 � : : :�Hn with N jHp = p � 1: (47)Compared to the standard Fok spae onstrution, f. e.g. [20℄, the number operatorN in (40) ommutes with the Hamiltonian even in urved spae and in the presene ofgauge �elds. Thus, N leaves Hp invariant. The nilpotent harge Q maps Hp into Hp�1and its adjoint Qy maps Hp into Hp+1.The raising and lowering operators  Ay and  A are linear ombinations of �A andtherefore antiommute with � in (19). Hene they map left- into right-handed spinorsand vie versa. Sine �j0i is annihilated by all  A, A��j0i� = �� Aj0i = 0;and sine the Cli�ord vauum j0i is unique, we onlude that j0i has de�nite hirality.It follows that all states with even N have the same hirality as j0i, and all states withodd N have opposite hirality, � = �(�)N : (48)3.2.3 N = 3 and N = 4 SuperalgebrasIf fI1; I2g satisfy the onditions (33,34), then fI1; I2; I3 = �I1I2g do so as well. For thisreason N = 3 supersymmetry implies automatially N = 4 supersymmetry. Hene, itsuÆes to onsider systems with 4 superharges. This should be ompared to the resultsin [13℄, where systems with N = 3 but N 6= 4 are possible, the reason for this being thatin [13℄ a more general algebra than (1) has been studied.The dimension of the matries Ii (whih equals the dimension of the manifold) must bea multiple of 4, D=4n. In this setion we hoose the selfdual or anti-selfdual matries,SD: ~I1 = i�0 
 �2; ~I2 = i�2 
 �3; ~I3 = i�2 
 �1 = �~I1 ~I2;ASD: ~I1 = i�3 
 �2; ~I2 = i�2 
 �0; ~I3 = i�1 
 �2 = ~I1 ~I2; (49)11



and de�ne Ii = ~Ii 
 1n. They generate two ommuting so(3) subalgebras of so(4n).The onditions (33,34) imply that the urvature tensor (RAB) and gauge �eld strength(FAB) ommute with all three Ii. For example, in 4 dimensions both must be selfdual oranti-selfdual. A 4-dimensional manifold with (anti-)selfdual urvature is hyper-K�ahler.More generally, a 4n-dimensional manifold is hyper-K�ahler if it admits three ovariantlyonstant and antiommuting omplex strutures. We see, that � =D2 admits 4 super-symmetries if and only if the underlying spae M is hyper-K�ahler and the gauge �eldstrength ommutes with the three omplex strutures.For eah omplex struture Ii there exists an assoiated number operatorNi = N(Ii) = 14D +�(Ii); �(I) = i4IAB�AB ; (50)and the 4 real superharges take the formQ(1) = i =D and Q(Ii) = i[Ni; i =D℄: (51)However, the 3 number operators do not ommute, beause[�(Ii);�(Ij)℄ = i� ([Ii; Ij ℄) ; (52)and the antisymmetri matries Ii, together with 14n, form a 4n-dimensional real rep-resentation of the non-ommutative quaternioni algebra,IiIj = �Æij14n � �ijkIk: (53)The three matries �(Ii) generate an SO(3)-subgroup of Spin(4n) whih rotates the realsuperharges. This is proven with the help of the simple identitiesi[�(I); Q(1)℄ = Q(I) and i[�(I); Q(J)℄ = Q(JI):Now it follows at one, that the selfdual (anti-selfdual) SO(3)-subgroup of the SO(4)R-symmetry is implemented by the exponentiated ation of the �(Ii),U(~�)QmU�1(~�) = RmnQn; whereU(~�) = exp (i�(�iIi)) ; R(~�) = exp(�i ~Ii):The ~Ii are the 4-dimensional selfdual (anti-selfdual) matries in (49), and Ii = ~Ii 
 1nare 4n-dimensional omplex strutures with respet to a suitable orthonormal base. TheQm are the four real superharges,fQ0; Q1; Q2; Q3g � fQ(1); Q(I1); Q(I2); Q(I3)g:Let us remark, that other hoies for the omplex strutures than those obtained from(49) are possible.
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3.2.4 N = 7 and N = 8 SuperalgebrasAording to (35) we an �nd 6 or 7 real and antisymmetri matries Ii, for examplethe 8-dimensional (irreduible) matries~I1 = i�1 
 �0 
 �2; ~I3 = i�2 
 �1 
 �0; ~I5 = i�0 
 �2 
 �1;~I2 = i�3 
 �0 
 �2; ~I4 = i�2 
 �3 
 �0; ~I6 = i�0 
 �2 
 �3; (54)~I7 = ~I1 ~I2 ~I3 ~I4 ~I5 ~I6 = �i�2 
 �2 
 �2;tensored with 1n. Thus we an satisfy (33) in 8n dimensions and a N =7 superalgebraan always be extended to a N = 8 superalgebra, sine if fI1; : : : ; I6; Fg satisfy theonditions (33,34) then fI1; : : : ; I6; I7 = I1 � � � I6; Fg do so as well.In 8 dimensions there is no non-trivial solution to[Ii;F ℄ = 0; i = 1; : : : ; 7;sine the only matrix ommuting with all Ii in (54) is the identity matrix. Hene themanifold must be at and the gauge �eld strength must vanish. In 8 dimensions, only thefree Dira operator admits an N =8 supersymmetry. However, in 8n dimensions withn= 2; 3; : : : ; there are nontrivial solutions to the onstraints in (33,34). For example,every �eld strength (FAB) = 18 
 ~F with antisymmetri ~F ommutes with the Ii listedin (54). In the ase of extended supersymmetry one an de�ne a set fN01; N23; N45; : : :gof partile-number operators that ommute with eah other and with the Hamiltonian.Here the Nij are de�ned asNij = N(IiIj) = 14D +�(IiIj); where I0 = 1: (55)4 Superpotentials on K�ahler ManifoldsThe super-Hamiltonian � =D2 admits an extended supersymmetry if it ommutes with anumber operator or if the omplex superharge is nilpotent and dereases the partilenumber by one. Then the manifold is K�ahler and the omplex struture ommutes withthe gauge �eld strength. Now we shall see that this in turn is the ondition for theexistene of a superpotential g from whih the spin onnetion and gauge potential anbe derived.K�ahler manifolds of real dimension D = 2n are partiular omplex manifolds and wemay introdue omplex oordinates (z�; �z��) with �; �� = 1; : : : ; n [21℄. The real andomplex oordinate di�erentials are related as followsdz� = �z��xM dxM � f�MdxM ; d�z�� = ��z���xM dxM � f ��MdxM ;�� = �xM�z� �M � fM��M ; ��� = �xM��z�� �M � fM���M : (56)13



The integrability onditions for the dz� to be di�erentials of omplex oordinate fun-tions z� are automatially satis�ed on a K�ahler manifold.The f� and f� are left and right eigenvetors of the omplex struture,f�MIMN = �if�N and IMNfN� = �ifM�; � = 1; : : : ; n: (57)Sine IMN is antisymmetri with respet to the salar produt (A;B)=AMGMNBN , theeigenvetors with di�erent eigenvalues are orthogonal in the following sense,GMNf�Mf�N = GMNfM�fN� = 0: (58)Identity and omplex struture possess the spetral deompositionsÆMN = fM�f�N + fM��f ��N ; (59)iIMN = fM�f�N � fM��f ��N ; (60)and the relations �z�=�z�=Æ�� and �z�=��z�� = 0 translate intof�MfM� = Æ�� and f�MfM�� = 0: (61)With (58) the line element takes the formds2 = GMNdxMdxN = 2h���dz�d�z�� ; h��� = h��� = GMNfM� fN�� ; (62)where the h��� are derived from a real K�ahler potential K as follows,h��� = �2K�z���z�� � �����K: (63)Covariant and exterior derivatives split into holomorphi and antiholomorphi piees,r = dz�r� + d�z��r��;d = dz��� + d�z����� = � + ��; (64)and the only non-vanishing omponents of the Christo�el symbols are���� = h�����h��� = h��������K; (65)������� = h������h��� = h���������K: (66)Along with the derivatives the forms split into holomorphi and antiholomorphi parts.For example, the �rst Chern lass 1 = (2�i)�1h���dz�d�z�� is a (1; 1)-form and the gaugepotential A = A�dz�+A��d�z�� a sum of a (1; 0)- and a (0; 1)-form. With the help of (65)the ovariant derivative of a (1; 0)-vetor �eld an be written asr�(B���) = ���B� + ����B����= ���B� + h���(��h���)B���� (67)= h�����(h���B�)��:14



Let us introdue omplex vielbeins e�=e���� and e�=e��dz�, suh that h��� = 12Æ���e����e�� .The omponents of the omplex onnetion an be related to the metri h��� and thevielbeins with the help of Leibniz' rule and (65) as follows,!���e� � r�e� = r�(e����) = (��e��)�� + e��������= (��e��)�� + e��h�����(h���)�� = h�����(e��h���)�� = e��h�����(e��h���)e� :Comparing the oeÆients of e� yields the onnetion oeÆients !���. The remainingoeÆients are obtained the same way, and one �nds altogether!��� = e�����e���; ! ����� = e������e����;! ������ = e��� ����e���; !���� = e�� ����e��; (68)where, for example, e���=h���e�� .Now we are ready to rewrite the Dira operator in omplex oordinates. For that weinsert the ompleteness relation (59) in i =D = i�NÆMNrM and obtaini =D = Q+Qy � 2i �r� + 2i y��r��; (69)where we are led to the independent fermioni raising and lowering operators, � = 12f�M�M ;  y�� = 12f ��M�M ; (70)and the omplex ovariant derivativesr� = fM�rM ; r�� = fM��rM : (71)Of ourse, the superharge Q in (69) is just the harge in (37) rewritten in omplexoordinates. Contrary to the annihilation operators  A, the fermioni operators  � areindependent. They ful�ll the antiommutation relationsf �;  �g = f y��;  y��g (58)= 0; f �;  y��g = 12h��� ; (72)where h��� = f�Mf ��M is the inverse of h��� in (62). This an be seen as follows,h���h��� = f ��Mf�M � fN�fN �� (58)= f ��M �fN�f�M + fN��f ��M� fN ��(59)= f ��MfM �� (61)= Æ���� :The operators  � lower the value of the Hermitian number operatorN = 2h��� y�� � (73)by one, while the  y�� raise it by one. The proof is simple,[N; � ℄ = 2h��� [ y�� � ;  � ℄ = �2h���f y��;  �g � = �h���h��� � = � �:15



With (59,60) the fermioni operators in (38) and (70) are related as follows, M = 12(1+ iI)MN�N = 2fM� �; yM = 12(1� iI)MN�N = 2fM�� y��; (74)and we onlude that the number operators in (40) and (73) are indeed equal,12 yM M = 2GMNfM��fN� y�� � = 2h��� y�� � :Now we are ready to prove that in ases where =D admits an extended supersymmetrythere exists a superpotential for the spin and gauge onnetions. Indeed, if spaetime isK�ahler and the gauge �eld strength ommutes with the omplex struture,FMN = (ITFI)MN ; (75)then the omplex ovariant derivatives ommute[r�;r� ℄ = F�� = fM�fN�FMN = 0: (76)One just needs to insert (60) and use (61). Alternatively, one may use Q2=0 with theomplex superharge in (69). Equation (76) is just the integrability ondition (f. Yang'sequation [22℄) for the existene of a superpotential g suh that the omplex ovariantderivative an be written asr� = g��g�1 = �� + g ���g�1� = �� + !� +A�: (77)This useful property is true for any (possibly harged) tensor �eld on a K�ahler manifoldprovided (75) holds. If the K�ahler manifold admits a spin struture, as for example CP nfor odd n, then (77) holds true for a (possibly harged) spinor �eld.Of ourse, the superpotential g depends on the representation aording to whih the�elds transform under the gauge and Lorentz group. One of the more severe tehnialproblems in appliations is to obtain g in the representation of interest. It onsists oftwo fators, g = gAg!. The �rst fator gA is the path-ordered integral of the gaugepotential. Aording to (68) and (77) the matrix g! in the vetor representation is justthe vielbein e���. If one sueeds in rewriting this g! as the exponential of a matrix, thenthe transition to any other representation is straightforward: one ontrats the matrixin the exponent with the generators in the given representation. This will be done forthe omplex projetive spaes in the following setion.Now let us assume that we have found the superpotential g. Then we an rewrite theomplex superharge in (69) as follows,Q = 2i �r� = 2igQ0g�1; Q0 =  �0 ��;  �0 = g�1 �g: (78)The annihilation operators  � are ovariantly onstant,r� � = �� � + ���� � + [!�;  � ℄ = 0; (79)16



and this translates into the following property of the onjugate operators,�� �0 = g�1 ��� � + [ g��g�1;  � ℄� g (77)= g�1 (�� � + [!�;  � ℄) g= ����� g�1 �g (65)= �h��� (��h���) �0 :This implies the following simple equation,�� (h��� �0) = 0; (80)stating that the transformed annihilation operators  0�� are antiholomorphi. Indeed,one an show that they are even onstant.The relation (78) between the free superharge Q0 and the g-dependent superharge Qis the main result of this setion. It an be used to determine zero modes of the Diraoperator. With (44) we �ndi =D� = 0 () Q� = 0; Qy� = 0: (81)In setors with partile number N =0 or N =n one an easily solve for all zero modes.For example, Qy annihilates all states in the setor with N = n, suh that zero modesonly need to satisfy Q� = 0. Beause of (78), the general solution of this equation reads� = �f(�z)g y�1 � � � y�nj0i; (82)where �f(�z) is some antiholomorphi funtion. Of ourse, the number of normalizablesolutions depends on the gauge and gravitational bakground �elds enoded in the su-perpotential g. With the help of the novel result (82) we shall �nd the expliit form ofthe zero modes on CP n in the following setion.5 The Dira Operator on CP nThe ubiquitous two-dimensional CP n models possess remarkable similarities with non-Abelian gauge theories in 3+1 dimensions [23℄. They are frequently used as toy modelsdisplaying interesting physis like fermion-number violation analogous to the eletroweaktheory [24℄ or spin exitations in quantum Hall systems [25℄. Their instanton solutionshave been studied in [26℄, and their N =2 supersymmetri extensions desribe integrablesystems with known sattering matries.It would be desirable to onstrut manifestly supersymmetri extensions of these modelson a spatial lattie. To this end we reonsider the Dira operator on the symmetriK�ahler manifolds CP n. We shall alulate the superpotential g in (77) and the expliitzero modes of the Dira operator.
17



5.1 Complex Projetive SpaesFirst we briey reall those properties of the omplex projetive spaes CP n whih arerelevant for our purposes. The spae CP n onsists of omplex lines in Cn+1 intersetingthe origin. Its elements are identi�ed with the following equivalene lasses of pointsu = (u0; : : : ; un) 2 Cn+1nf0g, [u℄ = fv = �uj� 2 C�g;suh that CP n is identi�ed with (Cn+1nf0g)=C�. In eah lass there are elements withunit norm, �u �u =P �ujuj=1, and thus there is an equivalent haraterization as a osetspae of spheres, CP n = Sn+1=S1. The u's are homogeneous oordinates of CP n. Wede�ne the n+1 open setsUk = �u 2 Cn+1juk 6= 0	 � Cn+1nf0g; (83)the lasses of whih over the projetive spae. The n+1 maps'k : Cn �! [Uk℄; z 7! [z1; : : : ; 1; : : : ; zn℄;where the kth oordinate is 1, de�ne a omplex analyti struture. The line element onCn+1, ds2 = nXj=0 dujd�uj = du � d�u; (84)an be restrited to S2n+1=S1 and has the following representation on the kth hart,ds2 = � �u�z�dz� + �u��z��d�z��� � � ��u�z�dz� + ��u��z��d�z��� :We shall use the (loal) oordinatesu = '0(z) = 1� (1; z) 2 U0; where �2 = 1 + �z � z = 1 + r2; (85)for representatives with non-vanishing u0. With these oordinates the line element takesthe form ds2 = 1�2dz � d�z � 1�4 (�z � dz)(z � d�z); (86)and is derived from a K�ahler potential K=ln�2. This onludes our summary of CP n.To ouple fermions to the gravitational bakground �eld we must �nd a omplex or-thonormal vielbein, ds2 = e�Æ���e ��, and write it as the exponential of a matrix. Weobtained the following representation for the vielbein of the Fubini-Study metri (86),e� = e��dz� = ��1 �P�� + ��1Q���dz�;e� = e���� = � (P�� + �Q��) ��: (87)18



Here, we have introdued the matriesP = 1� zzyr2 and Q = zzyr2 ; z = �z1 : : : zn�T : (88)They satisfyP2 = P; Q2 = Q; PQ = QP = 0; Py = P; Qy = Q; (89)and hene are orthogonal projetion operators. For the partiular spae CP 2, the viel-beins are known, and an be found in [27℄. These known ones are related to those in (87)by a loal Lorentz transformation. We have not seen expliit formulae for the vielbeinsfor n > 2 in the literature. Expressing the vielbeins in terms of projetion operators asin (87) allows us to relate the superpotentials in di�erent representations. From (68)and (87) we obtain the onnetion (1,0)-form!��� = � �z��2 �12P�� +Q���+ 1� ��r2 P���z�:5.2 Zero Modes of the Dira OperatorIn this subsetion we want to determine the zero modes of the Dira operator i =D onCP n. We use the method proposed at the end of Setion 4. Atually, only for oddvalues of n a spin bundle S exists on CP n. We an tensor S with Lk=2, where L is thegenerating line bundle, and k takes on even values. In the language of �eld theory thismeans that we ouple fermions to a U(1) gauge potential A. For even values of n, thereis no spin struture, so S does not exist globally. Similarly, for odd values of k, Lk=2is not de�ned globally. There is, however, the possibility to de�ne a generalized spinbundle S whih is the formal tensor produt of S and Lk=2, k odd [28℄. Again, in thelanguage of �eld theory, we ouple fermions to a suitably hosen U(1) gauge potentialwith half-integer instanton number. In both ases, the gauge potential readsA = k2 �u � du = k4 (� � ��)K = gA�g�1A + gy�1A ��gyA; gA = e�kK=4 = (1 + r2)� k4 ; (90)with orresponding �eld strengthF = dA = (� + ��)A = k2 ���K: (91)gA is the part of the superpontential g that gives rise to the gauge onnetion A. Itremains to determine the spin onnetion part g! of g � g!gA.When using (87,88), the equation (68) an be written in matrix notation as (!�)�� =�S��S�1���, whereS = �(P+ �Q) (89)= exp �P ln�+Q ln�2� = exp�(1+Q) ln��: (92)19



From the matrix form of S in (92) we read of the superpotential g! in the spinor repre-sentation, g! = exp�14(Æ��� +Q���)���� ln�� ; (93)where we have introdued���� � 12[���;��℄ = 2[ y��;  � ℄; ��� = 2 y��; �� = 2 � : (94)Next, we study zero modes of Q and Qy in the gauge �eld bakground (90). In the setorof interest with N=n, the superpotential g! in the spinor representation simpli�es asg!��N=n = (1 + r2)n+14 ; sine ������N=n = 2Æ���: (95)All states in the N = n setor are annihilated by Qy. Zero modes � satisfy in addition0 = Q� = 2i �r�� = 2i �g��g�1�; g = gAg!: (96)Using (90) and (95) we onlude that� = g �f(�z) y�1 � � � y�nj0i = (1 + r2)n+1�k4 �f(�z) y�1 � � � y�nj0i; (97)with some antiholomorphi funtion �f . Normalizability of � will put restritions on theadmissible funtions �f . Sine the operators �z����� (no sum) ommute with �� and witheah other, we an diagonalize them simultaneously on the kernel of ��. Thus, we arelet to the following most general ansatz�fm = (�z�1)m1 � � � (�z�n)mn ; nXi=1 mi = m: (98)There are �m+n�1n�1 � independent funtions of this form. The solution � in (97) is square-integrable if and only ifk�k2 = Z dvol (det h) �y�(97)/ Z d
Z dr r2m+2n�1(1 + r2)�n+k+12 <1; (99)so normalizable zero modes in the N = n setor exist form = 0; 1; 2; : : : ; q � 12(k � n� 1): (100)Note, that q is always integer-valued, sine k is odd (even) if n is even (odd). Alsonote, that there are no zero modes in this setor for k < n+ 1 or equivalently q < 0. Inpartiular, for odd n and vanishing gauge potential there are no zero modes, in agreementwith [29℄. 20



For q � 0, the total number of zero modes in the N=n setor isqXm=0�m+ n� 1n� 1 � = 1n! (q + 1)(q + 2) : : : (q + n): (101)Similar onsiderations show that there are no normalizable zero modes in the N = 0setor for q0 < 0, where q0 = 12(�k � n � 1). For q0 � 0 there are zero modes in theN = 0 setor, and their number is given by (101) with q replaed by q0.Observe, that the states in the N = 0 setor are of the same (opposite) hirality as thestates in the N = n setor for even (odd) n. The ontribution of the zero modes in thosesetors to the index of i =D is given by1n! (q + 1)(q + 2) : : : (q + n); q = 12(k � n� 1); (102)for all q 2 Z.On the other hand, the index theorem on CP n reads [30℄ind i =D = ZCPn h(L�k=2)Â(CP n) = 1n! (q + 1)(q + 2) : : : (q + n); (103)where h and Â are the Chern harater and the Â-genus, respetively. Note, that thisindex oinides with (102). This leads us to onjeture, that for positive (negative) k allnormalizable zero modes of the Dira operator on the omplex projetive spaes CP nwith Abelian gauge potential (90) reside in the setor with N = n (N = 0) and have theform (97).We an prove this onjeture in the partiular ases n = 1 and n = 2. For CP 1 we haveonstruted all zero modes. The same holds true for CP 2 for the following reason: Letus assume that there are zero modes in the N = 1 setor. Aording to (48) they haveopposite hirality as ompared to the states in the N = 0 and N = 2 setors. Hene,the index would be less than the number of zero modes in the extreme setors. On theother hand, aording to the index theorem, the index (103) is equal to this number.We onlude that there an be no zero modes in the N = 1 setor.ConlusionsWe have analyzed D-dimensional quantum mehanial systems that exhibit ertainamounts of supersymmetry. Taking the Hamiltonian to be the square of the Diraoperator, H = � =D2, on a urved manifold and with bakground gauge �elds, we haveonstruted a set of inequivalent `square roots' of H. This set inludes, of ourse, theoriginal Dira operator as well as additional superharges Q(Ii). We have shown howthese an be obtained from omplex strutures Ii. Therefore, the existene of a higher21



amount of supersymmetry puts restritions on the admissible geometries and gauge on-�gurations. In even dimensions, N = 1 gives no restritions on the bakground �elds,while N =2 requires the manifold to be K�ahler and the �eld strength to ommute withthe omplex struture. The N = 4 extended supersymmetry further requires spae tobe hyper-K�ahler and the gauge �eld strength to ommute with all three omplex stru-tures. In four dimensions this is equivalent to the �eld strength being (anti-)selfdual.In 8; 12; 16; : : : dimensions this requirement is muh less restritive. In 8 spae dimen-sions, N =8 has only trivial solutions, namely at spae without gauge �elds. Again, in16; 24; 32; : : : dimensions there are non-trivial bakgrounds admitting an extended N =8supersymmetry.Our onstrution is similar to the one given in [9℄. However, our approah has the advan-tage that all objets an be given a geometri interpretation, like onnetions, urvatureet. In addition, we found the following new aspets: for bakgrounds admitting ex-tended supersymmetries (in partiular N =2) we an de�ne partile-number operatorsN ommuting with the super-Hamiltonian (even in urved spae and in the presene ofgauge �elds). The omplex nilpotent superharges Q and Qy at as lowering and raisingoperators for the number operator. The ondition Q2=0 translates into the existeneof a superpotential g for the (spin)onnetion as well as the gauge potential.As an appliation, we have deformed the Dira operator on CP n with the help of g intoits free ounterpart and solved the Dira equation, for all zero modes of i =D.As already mentioned in the introdution, partiular higher dimensional quantum me-hanial systems an be interpreted as supersymmetri �eld theoretial models on aspatial lattie. The results obtained in this paper will turn out to be very useful toonstrut supersymmetri sigma-models on a spatial lattie. This is work in progress,and we are on�dent to report on these developments in the near future.AknowledgementsWe thank A. Kotov for many useful disussions, T. Heinzl for a areful reading of themanusript and the anonymous referee, for many helpful omments and for bringingthe most interesting paper [9℄ to our attention. A.K. aknowledges support by theStudienstiftung des Deutshen Volkes.Referenes[1℄ N. Seiberg and E. Witten, Eletri-Magneti Duality, Monopole Condensation,and Con�nement in N =2 Supersymmetri Yang-Mills Theory, Nul. Phys. B426(1994) 19.
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