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1 IntrodutionInstantons play an important role in at spae gauge �eld theory [45℄. Beingstationary points of the Eulidean ation, they give the dominant ontribu-tion to the Eulidean path integral thus aounting for a variety of importantphenomena in QCD-type theories. In addition, self-dual instantons admit su-persymmetri extensions, whih makes them an important tool for verifyingvarious duality onjetures like the AdS/CFT orrespondene [4℄. More gen-erally, the Eulidean approah has beome the standard method of quantum�eld theories in at spae.Sine the theory of gravity and Yang-Mills theory are somewhat similar, it isnatural to study also gravitational instantons. An impressive amount of workhas been done in this diretion, leading to a number of important disoveries.A thorough study of instanton solutions of the vauum Einstein equationsand also those with a �-term has been arried out [20,17,24℄. These solutionsdominate the path integral of Eulidean quantum gravity, leading to interest-ing phenomena like blak hole nuleation and quantum reation of universes.Perhaps one of the most spetaular ahievements of the Eulidean approahis the derivation of blak hole entropy from the ation of the Shwarzshild in-stanton [22℄. In addition, gravitational instantons are used in the Kaluza-Kleinredutions of string theory.Along with these very suggestive results, the diÆulties of Eulidean quan-tum gravity have been revealed. Apart from the usual problem of the non-renormalizability of gravity, whih an probably be resolved only at the level ofa more fundamental theory like string theory, the Eulidean approah presentsother hallenging problems. In �eld theories in at spae the orrelation fun-tions of �eld operators are holomorphi funtions of the global oordinatesin a domain that inludes negative imaginary values of the time oordinate,t = �i� , where � is real and positive [48℄. This allows one to perform theanalysis in the Eulidean setion and then analytially ontinue the funtionsbak to the Lorentzian setor to obtain the physial preditions. In urvedspae the theorems that would ensure the analytiity of any quantities arisingin quantum gravity are not known. As a result, even if Eulidean alulationsmake sense, it is not in general lear how to relate their result to the Lorentzianphysis.This diÆulty is most strikingly illustrated by the famous problem of the on-formal setor in Eulidean quantum gravity. If one tries evaluating the pathintegral over Riemannian metris, then one disovers that it diverges beausethe Eulidean gravitational ation is not bounded from below and an bemade arbitrarily large and negative by onformal resaling of the metri [25℄.Suh a result is atually expeted, for if the integral did onverge (with some2



regularization), then one ould give a well-de�ned meaning to the anonialensemble of the quantum gravitational �eld. However, the possibility of havinga blak hole auses the anonial ensemble to break down { sine the degen-eray of blak hole states grows faster than the Boltzmann fator dereases.One an, `improve' the Eulidean gravitational ation by analytially ontin-uing the onformal modes, let us all them h, via h ! ih, and this improvesthe onvergene of the integral [25℄. This shows that if there is a well-de�nedEulidean path integral for the gravitational �eld, then the relation to theLorentzian setor is more ompliated than just via t! �i� .Unfortunately, it is unknown at present whether one an in the general ase�nd a physially well-de�ned and onvergent path integral for the gravitational�eld. At the same time, the idea of onstruting it is oneptually simple [46℄:one should start from the Hamiltonian path integral over the physial degreesof freedom of the gravitational �eld. Suh an integral ertainly makes sensephysially and is well-onvergent, sine the Hamiltonian is positive { at leastin the asymptotially at ase. The Hamiltonian approah is not ovariant,but one an ovariantize it by hanging the integration variables, whih leadsto a manifestly ovariant and onvergent path integral for gravity. The mainproblem with this program is that in the general ase it is unlear how to isolatethe physial degrees of freedom of the gravitational �eld. For this reason, sofar the program has been arried out only for weak �elds in the asymptotiallyat ase [46℄. Remarkably, the result has been shown to exatly orrespondto the the standard Eulidean path integral with the onformal modes beingomplex-rotated via h ! ih. This lends support to the Eulidean approahin gravity and allows one to hope that the diÆulties of the method an beonsistently resolved; (see, for example, [7,6℄ for the reent new developmentswithin the lattie approah).One an adopt the viewpoint that Eulidean quantum gravity is a meaningfultheory within its range of appliability, at least at one-loop level, by assum-ing that a onsistent resolution of its diÆulties exists. Then already in itspresent status the theory an be used for alulating ertain proesses, mostnotably for desribing tunneling phenomena, in whih ase the Eulidean am-plitude diretly determines the probability. The analyti ontinuation to theLorentzian setor in this ase is not neessary, apart from when the issue ofthe interpretation of the orresponding gravitational instanton is onsidered.The important example of a tunneling proess in quantum gravity is the re-ation of blak holes in external �elds. Blak holes are reated whenever theenergy pumped into the system is enough in order to make a pair of virtualblak holes real [33℄. The energy an be provided by the heat bath [30,38,5℄, bythe bakground magneti �eld [21,19,16,15℄, by the expansion of the universe[28,10,41℄, by osmi strings [37℄, domain walls [11℄, et; (see also [43,35,36℄).Besides, one an onsider pair reation of extended multidimensional objetslike p-branes due to interation with the bakground supergravity �elds [14℄.3



In all these examples the proess is mediated by the orresponding gravita-tional instanton, and the semilassial nuleation rate for a pair of objets ona given bakground is given by� = A exp f�(Iobj � Ibg)g : (1.1)Here Iobj is the lassial ation of the gravitational instanton mediating re-ation of the objets, Ibg is the ation of the bakground �elds alone, and theprefator A inludes quantum orretions.In most ases the existing alulations of blak hole pair reation proessesonsider only the lassial term in (1.1). This is easily understood, sine loopalulations in quantum gravity for non-trivial bakgrounds are extremelyompliated. To our knowledge, there is only one example of a next-to-leading-order omputation, whih was undertaken in [30℄ by Gross, Perry, and Ya�efor the Shwarzshild instanton bakground. The aim of the present paper isto onsider one more example of a omplete one-loop omputation in quantumgravity.The problem we are interested in is the quantum reation of blak holes in deSitter spae. This problem was onsidered by Ginsparg and Perry [28℄, whoidenti�ed the instanton responsible for this proess, whih is the S2 � S2 so-lution of the Eulidean Einstein equations R�� = �g�� for � > 0. Ginspargand Perry notied that this solution has one negative mode in the physi-al setor, whih renders the partition funtion omplex, thus indiating thequasi-lassial instability of the system. This instability leads to spontaneousnuleation of blak holes in the rapidly inating universe. This is the domi-nant instability of de Sitter spae, sine lassially the spae is stable [28℄. Theenergy neessary for the nuleation is provided by the �-term, whih drivesdi�erent parts of the universe apart thereby drugging the members of a virtualblak hole pair away from eah other. The typial radius of the reated blakholes is 1=p�, while the the nuleation rate is of the order of exp(��=�G),where G is Newton's onstant. As a result, for �G � 1 when ination is fast,the blak holes are produed in abundane but they are small and presumablyalmost immediately evaporate. Large blak holes emerge for �G � 1 whenination slows down, and these an probably exist for a long time, but theprobability of their reation is exponentially small. This senario was furtherstudied in Refs.[10,9,18℄ (see also referenes in [9℄), where the generalizationto the harged ase was onsidered and also the subsequent evolution of thereated blak holes was analyzed. However, the one-loop ontribution so farhas not been omputed.A remarkable feature of the S2 � S2 instanton is its high symmetry. In whatfollows, we shall utilize this symmetry in order to expliitly determine spetraof all relevant utuation operators in the problem. We shall use the �-funtion4



regularization sheme in order to ompute the one-loop determinants, whihwill give us the partition funtion Z[S2�S2℄ for the small utuations aroundthe S2 � S2 instanton. We shall then need to normalize this result. The nor-malization oeÆients is Z[S4℄, the partition funtion for small utuationsaround the S4 instanton, whih is the Eulidean version of the de Sitter spae.The one-loop quantization around the S4 instanton was onsidered by Gib-bons and Perry [27℄, and by Christensen and Du� [13℄, but unfortunately innone of these papers the analysis was ompleted. We shall therefore reonsiderthe problem by rederiving the spetra of utuations around S4 and omput-ing the determinants within the �-funtion sheme, thereby obtaining a losedone-loop expression for Z[S4℄.In our treatment of the path integral we follow the approah of Gibbons andPerry [27℄; (see also [42℄). In order to have ontrol over the results, we work in aone-parameter family of ovariant gauges and perform the Hodge deomposi-tion of the utuations. These are then expanded with respet to the ompletesets of basis harmonis, and the perturbative path integration measure is de-�ned as the square root of the determinant of the metri on the funtion spaeof utuations. To insure the onvergene of the integral over the onformalmodes, whih enter the ation with the wrong sign, we essentially follow thestandard reipe h! ih [25℄; (see also Ref.[42℄, where a slightly disguised formof the same presription was advoated). The subtle issue is that the onfor-mal operator ~�0 = �3r�r��4� has a �nite number, N , of negative modes,and these enter the ation with the orret sign from the very beginning.Our treatment of these speial modes is di�erent from that by Hawking [32℄,who suggests that suh modes should be omplex-rotated twie, the partitionfuntion then aquiring the overall fator of iN . However, the presene of thisfator in the partition funtion would lead to unsatisfatory results, and onthese grounds we are led to not rotating the speial onformal modes at all.The path integral is omputed by integrating over the Fourier expansion o-eÆients, whih leads to in�nite produts over the eigenvalues. The only on-formal modes giving ontribution to the result are the speial negative modesdisussed above. We arefully analyze the resulting produts to make sure thatall modes are taken into aount and that the dependene of the gauge-�xingparameter anels thereby indiating the orretness of the proedure. Wegive a detailed onsideration to the zero modes of the Faddeev-Popov opera-tor, whih arise due to the bakground isometries. The integration over thesemodes requires a non-perturbative extension of the path-integration measure,and we �nd suh a non-perturbative measure in the zero mode setor to beproportional to the Haar measure of the isometry group. Colleting all termsyields the partition funtion for small utuations around a bakground in-stanton on�guration in terms of in�nite produts over eigenvalues of thegauge-invariant operators. We then use the expliitly known spetra of u-tuations around the S2 � S2 and S4 bakgrounds in order to alulate the5



partition funtions.The rest of the paper is organized as follows. In Se.2 we present our deriva-tion of the blak hole nuleation rate within the �nite temperature approah.In Se.3 the path integration proedure is onsidered. The spetra of smallutuations around the S2 � S2 instanton are omputed in Se.4 via a diretsolving of the di�erential equations in the eigenvalue problems. The spetra ofthe utuations around the S4 instanton are rederived in Se.5 with the useof group theoreti arguments. The partition funtions are omputed in Se.6,and Se.7 ontains the �nal expression for the blak hole nuleation rate to-gether with some remarks. We present a detailed analysis of the �-funtionsin the Appendix. We use units where  = �h = kB = 1.2 Blak hole nuleation rateIn this setion we shall derive the basi formula for the blak hole nuleationrate in de Sitter spae, whose di�erent parts will be evaluated in the nextsetions. The existing derivations of the nuleation rate [28,10℄ reover only thelassial fator in (1.1). In addition, it is not always lear to whih volume therate refers. We argue that our formula (2.15) gives the nuleation probabilityper Hubble volume and unit time as measured by a freely falling observer. Thebasi idea of our approah is to utilize the relation between the ination andthermal properties of de Sitter spae. This will allow us to use the standardtheory of deay of metastable thermal states [39,40,3℄.Let us onsider the partition funtion for the gravitational �eldZ = Z D[g��℄ e�I ; (2.2)where the integral is taken over Riemannian metris, and I = I[g��℄ is theEulidean ation for gravity with a positive � terms; see Eq.(3.1) below. Thepath integration proedure will be onsidered in detail in the next setion. Atpresent let us only reall that in the semilassial approximation the integralis approximated by the sum over the lassial extrema of the ation I, that isZ �Xl Zl : (2.3)Here Zl = Z[Ml℄ is the partition funtion for the small gravitational utu-ations around a bakground manifold Ml with a metri gl�� subjet to the6



Eulidean Einstein equations R�� = �g��. Shematially one hasZ �Xl exp(�Il)pDet�l ; (2.4)where Il is the lassial ation for the l-th extremum, and �l is the operatorfor the small utuations around this bakground.The dominant ontribution to the sum in (2.4) is given by the S4 instanton,whih is the four-dimensional sphere with the radius q3=� and the standardmetri. Sine this is a maximally symmetry spae, its ation I = �3�=�G isless than that of any other instanton. Hene,Z � Z[S4℄ = exp(3�=�G)pDet� : (2.5)On the other hand, the S4 instanton desribes the thermal properties of deSitter spae [22,23℄, sine it an be obtained by an analyti ontinuation viat! � = it of the region of the de Sitter solutionds2 = �(1� �3 r2) dt2 + dr21� �3 r2 + r2(d#2 + sin2 #d'2) (2.6)ontained inside the event horizon, r < q3=�. Let us all this region a Hubbleregion. Its boundary, the horizon, has the area A = 12�=�. The temperatureassoiated with this horizon is T = 12�q�3 , the entropy S = A=4G = 3�=�Gand the free energy F = �TS. The same values an be obtained by writingthe partition funtion for the S4 instanton asZ[S4℄ = e��F (2.7)with � = 1=T . Indeed, sine S4 is periodi in all four oordinates, any ofthem an be hosen to be the `imaginary time'. The orresponding period,� = 2�q 3� , an be identi�ed with the proper length of a geodesi on S4,all of whih are irles with the same length. This gives the orret de Sittertemperature. Comparing (2.7) and (2.5) one obtains �F = �3�=�G+ : : : , thedots denoting the quantum orretions, and this again agrees with the resultfor the de Sitter spae. To reapitulate, the partition funtion of quantumgravity with � > 0 is approximatelyZ � e��F ; (2.8)7
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Fig. 1. The leading ontribution to the partition funtion omes from the S4 andS2 � S2 gravitational bubbles, the e�et of the latter being purely imaginary.where 1=� is the de Sitter temperature and F is the free energy in the Hubbleregion.Let us now onsider the ontribution of the other instantons. One hasZ � e��F  1 + 0Xl Z[Ml℄Z[S4℄ ! ; (2.9)where the prime indiates that Ml 6= S4. Now, for �G � 1 all terms inthe sum are exponentially small and an safely be negleted as ompared tothe unity, if only they are real. If there are omplex terms, then they willgive an exponentially small imaginary ontribution. The S2 � S2 instanton isdistinguished by the fat that its partition funtion is purely imaginary dueto the negative mode in the physial setor [28℄. This is the only solution for� > 0 whih is not a loal minimum of the ation in the lass of metris withonstant salar urvature [20℄. Hene (see Fig.1),Z � e��F  1 + Z[S2 � S2℄Z[S4℄ ! � exp ��  F � Z[S2 � S2℄�Z[S4℄ !! ; (2.10)where Z[S2 � S2℄ is purely imaginary. As a result, the partition funtion anstill be represented as Z � e��F , where the real part of F is the free energyof the Hubble region, and the exponentially small imaginary part is given by=(F ) = �Z[S2 � S2℄�Z[S4℄ : (2.11)It is natural to relate this imaginary quantity also to the free energy. We aretherefore led to the onlusion that the free energy of the Hubble region has asmall imaginary part, thus indiating that the system is metastable. The deayof this metastable state will lead to a spontaneous nuleation of a blak hole8



in the Hubble region, whih an be inferred from the geometrial propertiesof the S2 � S2 instanton.The S2 � S2 instanton an be obtained via the analyti ontinuation of theShwarzshild-de Sitter solution [26,28,10℄ds2 = �N dt2 + dr2N + r2(d#2 + sin2 #d'2) : (2.12)HereN = 1� 2Mr ��3 r2, and for 9M2� < 1 this funtion has roots at r = r+ > 0(blak hole horizon) and at r = r++ > r+ (osmologial horizon). One hasN > 0 for r+ < r < r++, and only this portion of the solution an beanalytially ontinued to the Eulidean setor via t ! � = it. The onialsingularity at either of the horizons an be removed by a suitable identi�ationof the imaginary time. However, sine the two horizons have di�erent surfaegravities, the seond onial singularity will survive. The situation improvesin the extreme limit, r+ ! r++ ! 1p� , sine the surfae gravities are thenthe same and both onial singularities an be removed at the same time.Although one might think that the Eulidean region shrinks to zero whenthe two horizons merge, this is not so. The limit r+ ! r++ implies that9M2� = 1�3�2 with �! 0. One an introdue new oordinates #1 and '1 viaos#1 = (p�r � 1)=�+ �=6 and '1 = p� � � . Passing to the new oordinatesand taking the limit �! 0, the result isds2 = 1�� d#12 + sin2 #1 d'12 + d#2 + sin2 # d'2� ; (2.13)and this S2 � S2 metri ful�lls the Einstein equations. Sine the instanton�eld determines the initial value for the reated real time on�guration, oneonludes that the S2�S2 instanton is responsible for the reation of a blakhole in the Hubble region. This blak hole �lls the whole region, sine its sizeis equal to the radius of the osmologial horizon.It is well known that the region r < q3=� of the stati oordinate system in(2.6) overs only a small portion of the de Sitter hyperboloid [47℄; (see Fig.2).In order to over the whole spae, one an introdue an in�nite number of freelyfalling observers and assoiate the interior of the stati oordinate system witheah of them. Hene, the spaetime ontains in�nitely many Hubble regions.It is also instrutive to use global oordinates overing the whole de Sitterspae,ds2 = 3� os2 � � d�2 + d�2 + sin2 � (d#2 + sin2 #d'2)! ; (2.14)where � 2 [��=2; �=2℄ and � 2 [0; �℄. The trajetory of a freely falling observer9
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Fig. 2. Left: The onformal diagram of de Sitter spae in oordinates (2.14).The trajetories �=onst. are timelike geodesis. The diamond-shaped region inthe enter is the Hubble region of the geodesi observer at � = �=2. Althoughthis region ompletely overs the hypersurfae �0, at later times one needs moreobservers to over the hypersurfae �1 with the interiors of their horizons { theHubble regions proliferate. Right: The de Sitter hyperboloid in the embeddingMinkowski spae (with two dimensions suppressed). The Hubble region of theinertial observer moving along the hyperbola x = 0, y > 0 is the portion of thehyperboloid lying to the right from the two shaded strips. This orresponds tothe interior region of the observer's stati oordinate system.is � = �0 (and also # = #0, ' = '0), and the domain of the assoiated statioordinate system, the Hubble region, is the intersetion of the interiors of theobserver's past and future horizons [34℄. Let � be a spaelike hypersurfae,say � = �0. If �0 = 0 then � is ompletely ontained inside the Hubble regionof a single observer with � = �=2 (see Fig.2). However, for late moments oftime, � ! �=2, one needs more and more independent observers in order toompletely over � by the union of their Hubble regions. One an say thatthe Hubble regions proliferate with the expansion of the universe.Sine de Sitter spae onsists of in�nitely many Hubble regions, the blak holenuleation will lead to some of the regions being ompletely �lled by a blakhole, but most of the regions will be empty. The number of the �lled regionsdivided by the number of those without a blak hole is the probability for ablak hole nuleation in one region. This is proportional to =(F ) in (2.11).One an argue that the blak holes are atually reated in pairs [33,36℄,where the two members of the pair are loated at the antipodal points ofthe de Sitter hyperboloid. This an be inferred from the onformal diagramof the Shwarzshild-de Sitter solution, whih ontains an in�nite sequene ofblak hole singularities and spaelike in�nities; see Fig.3. One an identify theasymptotially de Sitter regions in the diagram related by a horizontal shift,10



and the spaetime will then onsist of two blak holes at antipodal pointsof the losed universe. This agrees with the standard piture of partiles inexternal �elds being reated in pairs.
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Fig. 3. The onformal digram for the extreme Shwarzshild-de Sitter solution.The surfae gravity of the extreme Shwarzshild-de Sitter solution is �nitewhen de�ned with respet to the suitably normalized Killing vetor [10℄. Thisgives a non-zero value for the temperature of the nuleated blak holes, whihan be read o� also from the S2�S2 metri: it is the inverse proper length ofthe equator of any of the two spheres, TBH = p�2� . How an it be that this isdi�erent from the temperature of the heat bath, whih is the de Sitter spaewith TdS = 12�q�3 ? For example, in the hot Minkowski spae the nuleatedblak holes have the same temperature as the heat bath [30℄. However, theglobal struture of de Sitter spae is di�erent from that of Minkowski spae.The utuations annot absorb energy from and emit energy into the whole ofde Sitter spae, but an only exhange energy with the Hubble region. Thusthe energy exhange is restrited. As a result, the loal temperature in theviinity of a reated defet may be di�erent from that of the heat bath, butredues to the latter in the asymptoti region far beyond the osmologialhorizon.The relation of the imaginary part of the free energy to the rate of deay of ametastable thermal state � was onsidered in [39,40,3℄. If the deay is only dueto tunneling then � = 2=(F ). Suppose that there is an additional possibilityto lassially jump over the potential barrier. In this ase on top of the barrierthere is a lassial saddle point on�guration whose real time deay rate is de-termined by the saddle negative mode !�. At low temperatures the tunnelingformula is then still orret, while for T > j!�j2� one has � = j!�j�T =(F ). In ourproblem the saddle point on�guration also exists, the S2�S2 instanton, butits real time analog, the Shwarzshild-de Sitter blak hole, is stable. It seemstherefore that there is no lassial ontribution to the proess and the blakhole nuleation is a purely quantum phenomenon. 2 [One an imagine that thee�etive potential barrier is in�nitely high, suh that a lassial transition is2 We do not understand the lassial interpretation of the Eulidean saddle pointsolution suggested in [30℄. The argument uses a family of non-normalizable de-formations of the instanton, and the ation is �nite as long as they are `stati'.11



forbidden, but at the same time so narrow that the tunneling rate is non-zero.℄As a result, the rate of quasilassial deay of the de Sitter spae is given by� = 2=(F ). Using Eq.(2.11),� = �2T Z[S2 � S2℄Z[S4℄ : (2.15)Here T = 12�q�3 is the temperature of the de Sitter heat bath, whih wasoriginally de�ned with respet to the analytially ontinued Killing vetor ��t .Sine t is the proper time of the geodesi observer resting at the origin ofthe stati oordinate system (2.6), we onlude that the formula gives theprobability of a blak hole nuleation per Hubble volume and unit time of afreely falling observer.In order to use the formula (2.15), we should be able to ompute the one-looppartition funtions Z[S2�S2℄ and Z[S4℄. Now we shall alulate them withinthe path integral approah.3 The path integration proedureIn this setion we shall onsider the path integral for utuations around aninstanton solution of the Einstein equations R�� = �g�� in the stationaryphase approximation. We shall largely follow the approah of Gibbons andPerry [27℄.3.1 The seond variation of the ationOur starting point is the ation for the gravitational �eld on a ompat Rie-mannian manifoldM,I[g��℄ = � 116�G ZM (R� 2�)pg d4x ; (3.1)whose extrema, ÆI = 0, are determined by the equationsR�� = �g�� : (3.2)However, if one onsiders a time evolution along suh a family then the ation willbe in�nite, whih shows that the lassial piture does not apply. Even if one usesthe lassial formula for � in this ase, one arrives at the quantum result, sinej!�j=T=onst.� 1. 12



Let g�� be an arbitrary solution, and onsider small utuations around it,g�� ! g�� + h�� . The ation expands asI[g�� + h��℄ = I[g��℄ + Æ2I + : : : ; (3.3)where Æ2I is quadrati in h�� and dots denote the higher order terms. One anexpress Æ2I diretly in terms if h�� . However, it is onvenient to use �rst thestandard deomposition of h�� ,h�� = ��� + 14 h g�� +r��� +r��� � 12 g��r��� : (3.4)Here ��� is the transverse traefree part, r���� = ��� = 0, h is the trae,and the piee due to �� is the longitudinal traefree part. Under the gaugetransformations (general di�eomorphisms) generated by �� one has h�� !h�� +r��� +r��� : The TT-tensor ��� is gauge-invariant, while the trae hhanges as h! h+ 2r���. It follows that~h = h� 2r��� (3.5)is gauge-invariant. For further referenes we note that �� an in turn be de-omposed into its oexat part ��, for whih r��� = 0, the exat part r��,and the harmoni piee �H� ,�� = �� +r��+ �H� : (3.6)The number of square-integrable harmoni vetors is a topologial invariant,whih is equal to the �rst Betti number of the manifold M. Sine the latteris zero if M is simply-onneted, whih is the ase for � > 0, we may safelyignore the harmoni ontribution in what follows.With the deomposition (3.4) the seond variation of the ation in (3.3) isexpressed in terms of the gauge-invariant quantities ��� and ~h alone,Æ2I = 12 h���;�2���i � 116 h~h; ~�0~hi : (3.7)Here and below we onsider the following seond order di�erential operators:the operator for the TT-tensor utuations�2��� = �r�r���� � 2R������� ; (3.8)13



the vetor operator ating on oexat vetors ���1 = �r�r� � � ; (3.9)and the salar operators for h, ~h, and ��0=�r�r� ;~�0=3�0 � 4� ;~�0 =  ~�0 ��0 ; (3.10)with  being a real parameter. Sine for � > 0 the manifold M is ompat,these operators are (formally) self-adjoint with respet to the salar produth���; ���i = 132�G ZM ������pg d4x ; (3.11)similarly for vetors h��; ��i and salars h�; �i.The ation Æ2I in (3.7) ontains only the gauge-invariant amplitudes ��� and ~h,while the dependene on the gauge degrees of freedom �� anels. Pure gaugemodes are thus zero modes of the ation. Fixing of the gauge is thereforeneessary in order to arry out the path integration. To �x the gauge we passfrom the ation Æ2I to the gauge-�xed ationÆ2Igf = Æ2I + Æ2Ig ; (3.12)where, following [27℄, we hoose the gauge-�xing terms asÆ2Ig =  *r�h�� � 1� r�h;r�h�� � 1� r�h+ ; (3.13)with  and � being real parameters. We shall shortly see that it is onvenientto hoose [27℄� = 4 + 1 : (3.14)This hoie, however, implies that Æ2Ig does not vanish for  ! 0. It is oftenonvenient to set  = 1, in whih ase � = 2. However, we shall not �x thevalue of , sine this will provide us with a hek of the gauge-invariane ofour results. 14



Using the deompositions (3.4), (3.6) the gauge-�xing term readsÆ2Ig = h��;�21��i+ 116 h(~h+ 2~�0�);�0(~h + 2~�0�)i : (3.15)Adding this up with Æ2I in (3.7) one obtains the gauge-�xed ation Æ2Igf . Itis now onvenient to pass from the gauge-invariant variable ~h de�ned in (3.5)bak to the trae h, sine with the hoie in (3.14) the resulting ation thenbeomes diagonal:Æ2Igf = 12 h���;�2���i+ h��;�21��i (3.16)+ 14 h�;�0 ~�0 ~�0�i � 116 hh; ~�0hi :This ation generially has no zero modes, but it depends on the arbitraryparameter , whih reets the freedom of hoie of gauge-�xing. In order toanel this dependeny, the ompensating ghost term is needed.3.2 The mode deomposition of the ationWe wish to alulate the path integralZ[g�� ℄ = e�I Z D[h�� ℄DFP exp ��Æ2Igf� ; (3.17)where I = I[g�� ℄ is the lassial ation, and the Faddeev-Popov fator isobtained from1 = DFP Z D[��℄ exp ��Æ2Ig� : (3.18)In order to perform the path integration, we introdue the eigenmodes asso-iated with the operators �2, �1 and �0:�2 �(k)�� = "k �(k)�� ;�1 �(s)� = �s �(s)� ;�0 �(p)=�p �(p): (3.19)Throughout this paper we shall denote the eigenvalues and eigenfuntions ofthe tensor operator �2 by "k and �(k)�� , and those for the vetor operator �1 by�s and �(s)� , respetively. [Later we shall use the symbol s also for the argument15



of the �-funtions, and this will not lead to any onfusion℄. Eigenvalues of thesalar operator will be denoted by �p, and it will be onvenient to split theset f�pg into three subsets, f�pg = f�0; �i; �ng, where �0 = 0, �i = 43�,and �n > 43�; see Eqs.(3.25){(3.27) below. Aordingly, the set of the salareigenfuntions will be split as f�(p)g = f�(0); �(i); �(n)g.Sine the manifold is ompat, we hoose the modes to be orthonormal. Thisallows us to expand all �elds in the problem as��� =Xk C�k�(k)�� ; �� =Xs C�s �(s)� ; (3.20)and � =Xp C�p �(p) ; h =Xp Chp�(p) ; ~h =Xp C~hp�(p) : (3.21)As a result, the ation deomposes into the sum over modes, and the pathintegral redues to integrals over the Fourier oeÆients.a) Vetor and tensor modes.{ Let us onsider the mode deompositionfor the gauge-�xed ation in (3.16). This ation is the sum of four terms. Forthe �rst two terms we obtain12 h��� ;�2���i= 12 Xk "k (C�k )2 ; (3.22) h��;�21��i=  Xs (�s)2(C�s )2 : (3.23)These quadrati forms should be positive de�nite, sine otherwise the integralsover the oeÆients C would be ill-de�ned. We an see that the quadratiform in (3.23) for the vetor modes is indeed non-negative de�nite. Next, theexpression in (3.22) for the gauge-invariant tensor modes is positive-de�niteif all eigenvalues "k are positive. If there is a negative eigenvalue, "� < 0,as in the ase of the S2 � S2 instanton bakground, then it is physiallysigni�ant. The integration over C�� is performed with the omplex ontourrotation, whih renders the partition funtion imaginary thus indiating thequasilassial instability of the system.Let us onsider now the ontribution of the longitudinal vetor piee to theation (3.16). We obtain14 h�;�0 ~�0 ~�0�i = 14 Xp �p~�p~�p (C�p )2 ; (3.24)16



where ~�p = 3�p � 4� and ~�p = ~�p � �p are the eigenvalues of ~�0 and ~�0 ,respetively. We note that while �p � 0, the ~�p and ~�p an be negative andshould therefore be treated arefully. Let us split the salar modes into threegroups aording to the sign of ~�p:�0 �(0) = 0; ) ~�0 = �43 � ; (3.25)�0 �(i) = 43 ��(i); ) ~�i = 0 ; (3.26)�0 �(n) = �n �(n); ) ~�n > 0 : (3.27)First we onsider the onstant mode �(0) in (3.25). This exists for any bak-ground, and for ompat manifolds without boundary this is the only nor-malizable zero mode of �0. Sine this mode is annihilated by �0, it does notontribute to the sum in (3.24).Consider now the salar modes with the eigenvalue 4�=3 in (3.26). In viewof the Lihnerowiz-Obata theorem [49℄, the lowest non-trivial eigenvalue of�0 for � > 0 is bounded from below by 4�=3, and the equality is attained ifonly the bakground is S4. Hene the modes in (3.26) exist only for the S4instanton, and there an be no modes `in between' (3.25) and (3.26). In the S4ase there are �ve salar modes with the eigenvalue 4�=3, and their gradientsare the �ve onformal Killing vetors that do not orrespond to in�nitesimalisometries. If R�� = �g��, a theorem of Yano an Nagano [49℄ states that suhvetors exist only in the S4 ase. Let us all these �ve salar modes `onformalKilling modes'. Notie that these also do not ontribute to the sum in (3.24).To reapitulate, the lowest lying modes in the salar spetrum are the on-stant onformal mode in (3.25), whih exists for any bakground, and also5 `onformal Killing modes' in (3.26) whih exist only for the S4 instantonand generate the onformal isometries. As we shall see, these 1+5 lowest ly-ing modes are physially distinguished, sine they are the only salar modesontributing to the partition funtion. However, they do not enter the sum in(3.24).For the remaining in�nite number of salar modes in (3.27) (these are labeledby n) the eigenvalues �n and ~�n are positive, and it is not diÆult to see thatall the ~�n's are also positive, provided that the gauge parameter  is positiveand large enough. To reapitulate, the ontribution of the longitudinal vetormodes to the ation is given by14 h�;�0 ~�0 ~�0�i = 14 Xn �n~�n~�n (C�n )2 ; (3.28)17



whih is positive de�nite. We shall see that all modes ontributing to this sumare unphysial and anel from the path integral.b) Conformal modes.{ We now turn to the last term in the gauge-�xedation (3.16). Using (3.25){(3.27) we obtain� 116 hh; ~�0hi = �4 (Ch0 )2 + �12 Xi (Chi )2 � 116 Xn ~�n (Chn)2 : (3.29)The expression on the right has a �nite number of positive terms, orrespond-ing to the distinguished lowest lying modes, and in�nitely many negative ones.As a result, an inrease in the oeÆients Chn makes it arbitrarily large andnegative, thus rendering the path integral divergent. This represents the well-known problem of onformal modes in Eulidean quantum gravity [25℄. Aomplete solution of this problem is laking at present, but the origin of thetrouble seems to be understood [46℄. In brief, the problem is not related toany defets of the theory itself, but arises as a result of the bad hoie of thepath integral. If one starts from the fundamental Hamiltonian path integralover the physial degrees of freedom of the gravitational �eld, then one doesnot enounter this problem. The Hamiltonian path integral, however, is non-ovariant and diÆult to work with. One an `ovariantize' it by adding gaugedegrees of freedom, and this leads to the Eulidean path integral desribedabove, up to the important replaement [25℄h! ih : (3.30)The e�et of this is to hange the overall sign in (3.29), suh that the in�nitenumber of negative modes beome positive. Unfortunately, suh a onsistentderivation of the path integral has only been arried out for weak gravitational�elds [46℄ (and for � = 0), sine otherwise it is unlear how to hoose thephysial degrees of freedom. Nevertheless, the rule (3.30) is often used alsoin the general ase [25℄, and it leads to the anellation of the unphysialonformal modes. However, some subtle issues an arise.For � > 0 the expression in (3.29) ontains, apart from in�nitely many nega-tive terms, also a �nite number of positive ones, whih are due to the distin-guished lowest lying salar modes. If we apply the rule (3.30) and hange theoverall sign of the salar mode ation, then the negative modes will beomepositive, but the positive ones will beome negative. As a result, the pathintegral will still be divergent. It was therefore suggested by Hawking that theontour for these extra negative modes should be rotated bak, the partitionfuntion then aquiring the fator iN , where N is the number of suh modes[32℄. As we know, N = 6 for the S4 instanton, and N = 1 for any othersolution of R�� = �g�� with � > 0. 18



Unfortunately, this presription to rotate the ontour twie leads in some asesto physially meaningless results; the examples will be given in a moment. Wesuggest therefore a slightly di�erent sheme: not to touh the positive modesin (3.29) at all and to hange the sign only for the negative modes. The wholeexpression then beomes� 116 hh; ~�0hi = �4 (Ch0 )2 + �12 Xi (Chi )2 + 116 Xn ~�n (Chn)2 : (3.31)We make no attempt to rigorously justify suh a rule. We note, however, thatit is essentially equivalent to the standard reipe (3.30) { up to a �nite numberof modes whih we handle di�erently as ompared to Hawking's presription.We shall now omment on this di�erene.When ompared to Hawking's reipe [32℄, the ultimate e�et of our presrip-tion is to remove the fator iN from the partition funtion. We are unawareof any examples where it would be neessary to insist on this fator beingpresent in the �nal result. On the ontrary, the examples are in favour of thefator being absent. For the S4 instanton one has N = 6, suh that iN = �1,and this would render the partition funtion for hot gravitons in a de Sit-ter universe negative, whih would be physially meaningless. Next, for theS2 � S2 instanton, whih already has one negative mode in the spin-2 setor,one has N = 1. As a result, the fator iN would make the partition funtionreal instead of being imaginary, and there would be no blak hole pair reation!These arguments suggest that Hawking's rule should be somehow modi�ed,and we therefore put forward the presription (3.31). Let us also note that ourrule leads to gauge invariant results { the dependene on the gauge parameter anels after the integration. Finally we note that the lowest lying salarmodes are physially distinguished, and sine they are positive, they shouldbe treated similarly to the physial tensor modes.To reapitulate, the mode expansion of the gauge-�xed ation Æ2Igf is givenby the sum of (3.22), (3.23), (3.28), and (3.31):Æ2Igf = 12 Xk "k (C�k )2 +  Xs (�s)2(C�s )2 + 14 Xn �n~�n~�n (C�n )2+�4 (Ch0 )2 + �12 Xi (Chi )2 + 116 Xn ~�n (Chn)2 : (3.32)In a similar way we obtain the following mode expansion for the gauge-�xingterm Æ2Ig in (3.15): 19



Æ2Ig=  Xs (�s)2(C�s )2 + 1627 �3Xi �C�i � 38�C~hi �2+ 116 Xn �n  2~�nC�n + C~hn!2 : (3.33)This expression is non-negative de�nite.3.3 The path integration measureIn order to ompute the path integrals in (3.17),(3.18) we still need to de-�ne the path-integration measure. The perturbative measure is de�ned as thesquare root of the determinant of the metri on the funtion spae of utua-tions:D[h�� ℄ � qDet(hdh�� ; dh��i) ; D[��℄ � qDet(hd��; d��i) : (3.34)Here it is assumed that the utuations are Fourier-expanded and the di�eren-tials refer to the Fourier oeÆients, while the meaning of the proportionalitysign will beome lear shortly. Let us �rst onsider D[��℄. It follows from(3.4),(3.6) thathh�� ; h��i= h���; ���i+ 2h��;�1��i+ h�;�0 ~�0�i+ 14 hh; hi ;h��; ��i= h��; ��i+ h�;�0�i : (3.35)Expanding the �elds on the right aording to (3.20),(3.21) and di�erentiatingwith respet to the Fourier oeÆients we obtain the metri for the vetorutuationshd��; d��i = hd��; d��i+ hd�;�0d�i =Xs (dC�s )2 + 0Xp �p (dC�p )2 ; (3.36)whih yieldsqDet(hd��; d��)i =  Ys dC�s! 0Yp q�p dC�p! : (3.37)Here the prime indiates that terms with �p = 0 do not ontribute to thesum in (3.36), and should therefore be omitted in the produt in (3.37). To20



obtain the measure D[��℄ we endow eah term in the produts in (3.37) withthe weight fator �2o=p�:D[��℄ =  Ys �2op� dC�s!0�Yi �2op� s4�3 dC�i 1A Yn �2op� q�n dC�n! : (3.38)Suh a normalization implies that1 = Z D[��℄ exp ���4o h��; ��i� : (3.39)Here �o is a parameter with the dimension of an inverse length. In a similarway we obtain the measure D[h��℄, whih is normalized as1 = Z D[h��℄ exp ��2o2 hh��; h��i! ; (3.40)we shall shortly omment on the relative normalization of D[h��℄ and D[��℄.The result isD[h�� ℄ = Yk �op2� dC�k! 0Ys �op2� p2�s dC�s! Yn �op2� q�n~�n dC�n!�  �op2� 12 dCh0! Yi �op2� 12 dChi ! Yn �op2� 12 dChn! : (3.41)Here the prime indiates that the zero modes of the vetor utuation oper-ator do not ontribute to the produt. Notie, however, that these modes doontribute to the measure D[��℄.The following remarks are in order. We use units where all �elds and pa-rameters have dimensions of di�erent powers of a length sale l. One has[1=G℄ = [�℄ = [�2o℄ = [l�2℄. Eigenvalues of all utuation operators have the di-mension [l�2℄. The oordinates x� are dimensionless, while [g��℄ = [h��℄ = [l2℄.For the vetors, [��℄ = [��℄ = [l2℄, and for the salars [h℄ = [l0℄ and [�℄ = [l2℄:We assume that the salar, vetor and tensor eigenfuntions in (3.19) areorthonormal with respet to the salar produt in (3.11). As a result, the di-mensions of the eigenfuntions are [�(k)�� ℄ = [l℄, [�(s)� ℄ = [l0℄, [�(p)℄ = [l�1℄, whihgives for the Fourier oeÆients in (3.20),(3.21) [C�℄ = [Ch℄ = [l℄, [C�℄ = [l2℄,and [C�℄ = [l3℄.The normalization of D[h��℄ an be arbitrary, whih is reeted in the pres-ene of the arbitrary parameter �o in the above formulas. However, the relativenormalization of D[h�� ℄ and D[��℄, whih is de�ned by Eqs.(3.39) and (3.40)21



is �xed by gauge invariane. Had we hosen instead a di�erent relative nor-malization, say dividing eah mode in (3.38) by 2, then the path integralwould aquire a fator of 2 ~N0 , where ~N0 is the `number of eigenvalues' ofthe non-gauge-invariant operator ~�0 . [The issue of relative normalization ofthe utuation and Faddeev-Popov determinants seldom arises, sine in mostases the absolute value of the path integral is irrelevant℄.3.4 Computation of the path integralNow we are ready to ompute the path integrals in (3.17),(3.18). Let us il-lustrate the proedure on the example of Eq.(3.18), whih determines theFaddeev-Popov fator DFP . Using Æ2Ig from Eq.(3.33) and the measure D[��℄from (3.38) we obtain(DFP )�1 =Ys Z �2op� dC�s exp ��(�s)2(C�s )2� (3.42)�Yi Z �2op� s4�3 dC�i exp � 1627 �3 �C�i � 38�C~hi �2!�Yn Z �2op� q�n dC�n exp0�� 116 Xn �n  2~�n C�n + C~hn!21A ;whih gives(DFP )�1 = 
1  0Ys �2op�s! Yi 3p�2o2� ! Yn 2p�2o~�n ! : (3.43)3.4.1 Zero modesThe fator 
1 in (3.43) arises due to the gauge zero modes, for whih �s ��0 = 0 and the integral is non-Gaussian:
1 = Z Yj �2op� dC�0j ; (3.44)with the produt taken over all suh modes. The existene of zero modes ofthe Faddeev-Popov operator indiates that the gauge is not ompletely �xed.This an be related to the global aspets of gauge �xing proedure knownas the Gribov ambiguity. However, Gribov's problem is usually not the issuein the perturbative alulations, where zero modes arise rather due to bak-ground symmetries. This will be the ase in our analysis below. Spei�ally,22



the isometries of the bakground manifoldM form a subgroup H of the fulldi�eomorphism group. Sometimes H is alled the stability group; for the S4and S2�S2 bakgrounds H is SO(5) and SO(3)�SO(3), respetively. Sine theisometries do not hange h�� (in the linearized approximation), their genera-tors, whih are the Killing vetors K�, are zero modes of the Faddeev-Popovoperator.We therefore onlude that the integration in (3.44) is atually performedover the stability group H. Sine the latter is ompat in the ases underonsideration, the integral is �nite. In order to atually ompute the integral,some further analysis is neessary, in whih we shall adopt the approah ofOsborn [44℄. First of all, let us reall that all eigenmodes in our analysis haveunit norm. If we now resale the zero modes suh that the Killing vetorsKj � K�j ��x� beome dimensionless (remember that the oordinates x� arealso dimensionless), then the expression in Eq.(3.44) reads
1 = Z Yj �2op� jjKjjj dCj ; (3.45)where now [jjKjjj℄ = [l2℄ and [Cj℄ = [l0℄. For small values of the parameters Cjthey an be regarded as oordinates on the group manifold H in the viinityof the unit element. Sine H ats on M via x� ! x�(Cj), one has Kj =��Cj � �x��Cj ��x� . However, stritly speaking Cj are not oordinates on the groupmanifold H but rather on its tangent spae at the group unity, suh thattheir range is in�nite. We wish to restrit the range of Cj, and for this weshould integrate not over the tangent spae but over H itself. In other words,to render the integral in (3.45) onvergent we must treat the zero modes non-perturbatively, and for this we should replae the perturbative measure Qj dCjby a non-perturbative one, d�(C).In general it is a diÆult issue to onstrut the non-perturbative path in-tegration measure. However, in the zero mode setor this an be done. Wenote that the measure should be invariant under the group multipliations,d�(CC 0) = d�(C), and this uniquely requires that d�(C) should be the Haarmeasure for H. The normalization is �xed by the requirement that for Cj ! 0the perturbative result (3.45) is reprodued. This unambiguously gives
1 = Z 0�Yj �2op� ���������� ��Cj ����������1A d�(C) ; (3.46)where ��Cj is omputed at Cj = 0 and d�(C) is the Haar measure of theisometry group H normalized suh that d�(C)! Qj dCj as Cj ! 0.23



3.4.2 The path integralNow, using (3.32) and the measure (3.41), we ompute the path integral in(3.17) { �rst without the Faddeev-Popov fator DFP :Z D[h��℄ exp ��Æ2Igf�=
2  0Yk �op�k! 0Ys �op�s!0�Yn p2�oq~�n 1A� �op2�  Yi p3 �op2� !0�Yn p2�oq~�n 1A : (3.47)Here the primes indiate that zero and negative modes should be omitted fromthe produts. Zero vetor modes do not ontribute sine they are not present inthe path-integration measure (3.41), and we assume that there are no negativevetor modes, sine otherwise the metri on the spae of utuations wouldnot be positive de�nite. For tensor utuations negative and zero modes arepresent in the measure (3.41), and their overall ontribution is olleted inthe fator 
2 in (3.47). Let us further assume that there are no zero tensormodes, whih is the ase for the manifolds of interest. If negative modes arealso absent then 
2 = 1. If there is one negative tensor mode with eigenvalue"� < 0, then
2 = �op2� Z dC�� exp��12 "� (C��)2� : (3.48)The integral is omputed via the deformation of the ontour to the omplexplane, whih gives the purely imaginary result
2 = �o2iqj"�j ; (3.49)with the fator of 1/2 arising in the ourse of the analyti ontinuation [12℄.Both the Faddeev-Popov fator in (3.43) and the path integral in (3.47) dependon the gauge parameter . However, the -dependene exatly anels in theirprodut, whih provides a very good onsisteny hek. In partiular, therelative normalization of the integration measures �xed by Eqs.(3.39) and(3.40) is important. If we had divided eah fator in the mode produts in(3.38) by a 6= 1, then the resulting path integral would be proportional to(Qn a) � a�(0) with � being the �-funtion of the -dependent operator ~�0 .Thus, unless a = 1, the result would be gauge-dependent.24



We therefore �nally obtain the following expression for the path integral in(3.17):Z[g�� ℄ = 
2
1 �op2� 0�Yi s2�3 1�o1A 0Ys p�s�o ! 0Yk �op�k! e�I (3.50)Here 
2 is the ontribution of the negative tensor mode, and 
1 is the isometryfator. As we expeted, the ontribution of all unphysial salar modes hasaneled from the result. The only salar modes whih do ontribute are theseveral lowest lying modes whih seem to be physially distinguished. Theseare the onstant onformal mode giving rise to the fator �o=p2�, and the5 `onformal Killing salars' whih exist only in the S4 ase and give rise tothe produt over i. The next two fators in (3.50) is the ontribution of thetransversal vetor modes and the TT-tensor modes. Finally, I = I[g��℄ is thelassial ation.In order to apply the above formula for Z[g��℄ we need the eigenvalues ofthe utuation operators. Now we shall determine the latter for the manifoldsS2 � S2 and S4.4 Spetra of utuation operatorsIn this setion we derive the spetra of small utuations around the S2 � S2and S4 instantons. In the S2 � S2 ase the problem is takled via solvingthe di�erential equations. It turns out that in a suitable basis the system of10 oupled equations for the gravity utuations splits into 10 independentequations. The latter are solved in terms of spin-weighted spherial harmonis.In the S4 ase the equations do not deouple and the diret approah is not sotransparent. However, the problem an be onveniently analyzed with grouptheoreti methods, whih was done some time ago by Gibbons and Perry [27℄.We shall desribe the group theory approah in some detail { with the sameprinipal result as in [27℄.4.1 Flutuations around the S2 � S2 instantonLet us onsider the metri of the S2 � S2 instanton bakground,ds2 = 1�� (d#1)2 + sin2 #1 (d'1)2 + (d#2)2 + sin2 #2 (d'2)2� : (4.1)25



It is onvenient to set � = 1 for the time being; at the end of alulations the�-dependene is restored by multiplying all eigenvalues with �. We introduethe omplex tetrade1 = 1p2 d#1 + isin#1 d'1 ! ; e2 = 1p2 d#1 � isin#1 d'1 ! ;e3 = 1p2 d#2 + isin#2 d'2 ! ; e4 = 1p2 d#2 � isin#2 d'2 ! : (4.2)The metri in (4.1) splits as g�� = ea�eb��ab, where the tetrad metri is
�ab = g��ea�eb� = 0BBBBBBBB� 0 1 0 01 0 0 00 0 0 10 0 1 0

1CCCCCCCCA : (4.3)
4.1.1 Tensor modesFirst we onsider the eigenvalue problem�r�r���� � 2R���� ��� = "��� ; (4.4)wherer���� = 0; ��� = 0 : (4.5)We expand ��� with respet to the omplex basis (4.2),��� = ea�eb��ab ; (4.6)insert this into (4.4) and projet the resulting equation onto the basis (4.2)again. Remarkably, the system of 10 oupled equations splits then into 10 in-dependent equations for the 10 tetrad projetions �ab. A partial explanationof this fat is the existene of two di�erent parity symmetries ating indepen-dently on the two spheres.It is onvenient to introdue the operatorD̂[s; #; '℄ = �2�#2 + ot# ��# + 2is ot#sin# + 1sin2 # �2��2 � s2 ot# ; (4.7)26



whose eigenfuntions are the spin-weighted spherial harmonis sYjm [29℄,D̂[s; #; '℄ sYjm(#; �) = (s2 � j(j + 1)) s Yjm(#; �): (4.8)Here j and m are suh that j � jsj and �j � m � j. One has sYjm = 0for j < jsj. [Notie that we use the bold-faed s for the spin weight.℄ Thefollowing relations between harmonis with di�erent values of the spin weights are useful:L̂�[s; #; '℄ sYjm = �q(j � s)(j � s+ 1) s�1Yjm ; (4.9)wherêL�[s; #; '℄ = ��# � isin# ��� � s ot# : (4.10)The harmonis for a �xed s form an orthonormal set on S2.Using the above de�nitions, Eqs. (4.4) an be represented as�D̂[s1ab; #1; '1℄ + D̂[s2ab; #2; '2℄� (s1ab)2 � (s2ab)2 + 2 + "� �ab = 0 ; (4.11)where 1 � a; b � 4 (no summation over a; b). Here the nonzero elements ofthe symmetri matries s1ab and s2ab ares111 = �s122 = 2; s113 = s114 = �s123 = �s124 = 1 ;s233 = �s244 = 2; s213 = s223 = �s214 = �s224 = 1 : (4.12)The solution to Eqs. (4.11) reads�ab = Cab s1abYj1m1(#1; '1) s2abYj2m2(#2; '2); (4.13)with Cab being integration onstants. The eigenvalue, ", is the same for all�ab: " = j1(j1 + 1) + j2(j2 + 1)� 2 : (4.14)This is essentially the sum of squares of the two SO(3) angular momentumoperators ating independently on the two spheres.Let us now ount the degeneray of the modes. For this one should takeinto aount the additional onditions (4.5), whih gives algebrai onstraints27



for the oeÆients Cab. We onsider �rst the trae ondition ��� = 0. In thelanguage of the tetrad projetions this redues to �12+�34 = 0, or equivalentlyto C12 + C34 = 0 : (4.15)Hene only 9 out of the 10 onstants Cab are independent.Next, we onsider the Lorenz ondition r���� = 0. This impliesL̂�[s1a1; #1; '1℄ �a1 + L̂+[s1a2; #1; '1℄ �a2+ L̂�[s2a3; #2; '2℄ �a3 + L̂+[s2a4; #2; '2℄ �a4 = 0 (4.16)(no summation over a). Inserting the solution (4.13) and using the reurrenerelations in (4.9), these onditions redue to algebrai onstraints�1C11 � �1C12 + �2 (C13 � C14) = 0 ;�1C12 � �1C22 + �2 (C23 � C24) = 0 ;�1 (C13 � C23) + �2 C33 � �2 C34 = 0 ;�1 (C14 � C24) + �2C34 � �2C44 = 0 : (4.17)Here �� = qj�(j� + 1) (with � = 1; 2) and �� = q(j� + 2)(j� � 1) for j� � 1while �� = 0 for j� = 0.For j� � 2 (whih orresponds to quadrupole or higher deformations of eahsphere) none of the oeÆients ��, �� vanish, and the algebrai onstraints(4.17) redue the number of independent oeÆients Cab to �ve. This givesthe degeneray d:j1 � 2; j2 � 2; d = 5 (2j1 + 1)(2j2 + 1) : (4.18)The situation is di�erent for small values of j�. Consider, for example, thej1 = j2 = 0 setor. Sine the harmonis sYjm vanish for j < jsj, we must setin the solution (4.13) all Cab's to zero, apart from C12 = �C34. The Lorenzondition (4.16) is then ful�lled. As a result, there is only one independentintegration onstant, whih yieldsj1 = j2 = 0; d = 1: (4.19)Notie that in this ase " = �2.In a similar way one an onsider the setor where j1 = 0 and j2 = 1 (orj1 = 1 and j2 = 0), in whih ase " = 0. One disovers then that the Lorenz28



onstraints (4.16) require that all non-trivial oeÆients Cab mush vanish. Asa result,j1 = 0; j2 = 1; or j2 = 1; j1 = 0; d = 0; (4.20)whih shows that there are no zero modes.Next,j1 = j2 = 1; d = (2j1 + 1)(2j2 + 1) = 9; (4.21)and �nallyj1 � 2; j2 = 0; d = 2j1 + 1;j1 � 2; j2 = 1; d = 9(2j1 + 1); (4.22)whih onditions are symmetri under interhanging j1 and j2.To reapitulate, the spetrum of the tensor utuations ontains one negativemode and no zero modes.4.1.2 Vetor modesLet us now onsider the eigenvalue problem(�r�r� � �)�� = � �� (4.23)subjet to the onditionr��� = 0 (4.24)for the vetor utuations on the S2 � S2 bakground. We again expand theutuations with respet to the basis (4.2),�� = ea�	a; (4.25)insert this into (4.23), and projet bak to the tetrad. Similarly as in the tensorase, the equations deouple to give(D̂[s1a; #1; '1℄ + D̂[s2a; #2; '2℄ + 1 + �)	a = 0 ; (4.26)29



where 1 � a � 4 (no summation over a), and nonzero oeÆients read s11 =�s12 = s23 = �s24 = 1. The solution is	a = Ca s1aYj1m1(#1; '1) s2aYj2m2(#2; '2); (4.27)with Ca being integration onstants, and the eigenvalue is the same for all 	a:� = j1(j1 + 1) + j2(j2 + 1)� 2 : (4.28)The Lorenz ondition, r��� = 0, readsL̂�[s11; #1; '1℄ 	1 + L̂+[s12; #1; '1℄ 	2+ L̂�[s23; #2; '2℄ 	3 + L̂+[s24; #2; '2℄ 	4 = 0 ; (4.29)whih redues upon inserting (4.27) to the algebrai onditionqj1(j1 + 1) (C1 � C2) +qj2(j2 + 1) (C3 � C4) = 0: (4.30)This allows one to ount the degeneraies:j1 � 1; j2 � 1 (� > 0); d = 3 (2j1 + 1)(2j2 + 1); (4.31)and alsoj1 � 2; j2 = 0 (� > 0); d = j1(j1 + 1);j1 = 1; j2 = 0 (� = 0); d = 3;j1 = 0; j2 = 0 (� = �2); d = 0 : (4.32)These results are symmetri under j1 $ j2, hene there are no negative modes,there are six zero modes orresponding to the six Killing vetors of S2 � S2,and the rest of the spetrum is positive.4.1.3 Salar modes and the orthogonality onditionsThe eigenvalue problem for the salar modes,�r�r�h = � h; (4.33)redues to the equation(D̂[0; #1; '1℄ + D̂[0; #2; '2℄ + �) h = 0 ; (4.34)30



whose solutions areh = Yj1m1(#1; '1)Yj2m2(#2; '2) (4.35)(for s = 0 the spin-weighted spherial harmonis oinide with the usual spher-ial harmonis). The eigenvalues are just� = j1(j1 + 1) + j2(j2 + 1) ; (4.36)and the degeneraies arej1 � 0; j2 � 0; d = (2j1 + 1)(2j2 + 1): (4.37)We have obtained the spetra of all relevant utuation operators. Althoughthe eigenfuntions are omplex, one an pik up their real part in a way thatis onsistent with the orthogonality onditions. For example, for the salarmodes one onsiders<(h) = 1 + ip2 Yj1m1 Yj2m2 + : ; (4.38)and one an easily see that the modes <(h) with di�erent quantum numbers(j1m1j2m2) are orthogonal with respet to the salar produt de�ned in Eq.(3.11).For the vetor modes 	a the proedure is slightly more ompliated, sinethe tetrad metri �ab is not diagonal. In addition, harmonis sYjm for di�er-ent values of the spin weight are not orthogonal. Consider, however, the realombinations<(��) = 1 + ip2 ea�	a + : ; (4.39)where 	a has quantum numbers (j1m1j2m2). Consider <(�(1)� ) and <(�(2)� )with di�erent quantum numbers. Their salar produt (de�ned in Eq. (3.11))an be omputed using the relations�ab = e �a e �b g�� ; Æab = e �a (e �b )� g�� ; (4.40)whih givesh<(�(1)� );<(�(2)�)i =Xa h	(1)a ;	(2)�a i (4.41)+ih	(1)1 ;	(2)2 i+ ih	(1)3 ;	(2)4 i+ ::31



Table 1Spetra of utuations around the S2 � S2 instantonoperator eigenvalue degeneray�2 �2� 12� 9(j(j + 1)� 2)� 2(2j + 1) j � 2j(j + 1)� 18(2j + 1) j � 2(j1(j1 + 1) + j2(j2 + 1)� 2)� 5(2j1 + 1)(2j2 + 1) j1; j2 � 2�1 0 6(j(j + 1)� 2)� 2(2j + 1) j � 2(j1(j1 + 1) + j2(j2 + 1)� 2)� 3(2j1 + 1)(2j2 + 1) j1; j2 � 1�0 (j1(j1 + 1) + j2(j2 + 1))� (2j1 + 1)(2j2 + 1) j1; j2 � 0Here eah term in the sum Pah	(1)a ;	(2)�a i is a bilinear ombination of spin-weighted harmonis with the same value of the spin weight, suh that the or-thogonality relation holds. Next, integrating by parts and using the reurrenerelations (4.9) one an show that the remaining term in the salar produt,ih	(1)1 ;	(2)2 i+ ih	(1)3 ;	(2)4 i+:, vanishes. This shows that vetor modes <(��)with di�erent quantum numbers are orthogonal.A similar proedure an be arried out for the tensor modes. Hene for alleigenmodes onsidered above one an hoose the real part in suh a way thatthe orthogonality ondition holds. This is a manifestation of the fat that theutuation operators are self-adjoint. We �nally restore the dependene on �and summarize the results of this setion in Tab.1. There is one negative modein the spetrum, and this plays a ruial role in our analysis. The orrespondingdeformation inreases the radius of one of the spheres, shrinking at the sametime the seond one.4.2 Flutuations around the S4 instantonThe S4 instanton an be viewed as the four-dimensional sphere with radiusq3=� in �ve-dimensional Eulidean spae E5. Although the orrespondingeigenvalue problem for utuations was onsidered in [27℄, we have reanalyzedit for the sake of ompleteness (with the same result) and shall present belowthe key steps of our analysis. The problem essentially redues to studyingrepresentations of SO(5) [31,1,2,8℄, whose Casimir operator an be relatedto the invariant Laplaians on S4 with the help of the projetion formalism32



[34℄. We shall therefore �rst outline the group theory part by summarizingthe relevant fats about representations of SO(5). We shall work on the unit4-sphere resaling at the end the eigenvalues by the fator �=3.4.2.1 Representations of SO(5)The unit sphere S4 in E5 is de�ned in Cartesian oordinates by the equationP5a=1(xa)2 = 1. It is onvenient to use the omplex oordinates ��1 = (x1 �ix2)=p2, ��2 = (x3�ix4)=p2, �0 = x5. We shall not distinguish between lowerand upper indies, �i = �i. In these new oordinates the de�ning quadratiform reads P2i=�2 �i��i = 1, whih is annihilated by the generators of SO(5):Y ij = �i ���j � ��j ����i ; (4.42)whose ommutation relations are[Y ij ; Y kl ℄ = ÆkjY il � ÆilY kj + Æ�lj Y i�k � Æk�iY �jl � Cpqij;klY pq : (4.43)Sine Y ij = �Y ji , the independent generators an be hosen to be those for�i < j. Y 11 and Y 22 generate the Cartan subalgebra, while Y ij and Y ji for�i < j < i are the raising and lowering operators, respetively. One has[Y ii ; Y kl ℄ = �kl (i)Y kl ; (4.44)where�kl (i) = Æik � Æil + Æi�l � Æi�k (4.45)determine the root vetors with the omponents �kl � (�kl (1); �kl (2)). Theroots orresponding to the four raising operators are �21 = (�1; 1), �20 = (0; 1),�2�1 = (1; 1), and �10 = (1; 0).Irreduible representations of SO(5) are haraterized by two numbers denotedby m � (m1; m2), where m2 � m1 and both m1 and m2 are either integeror half-integer. The highest weight vetor  m is annihilated by all raisingoperators, Y ij  m = 0 for i > j > �i, and it is an eigenvetor of the Cartansubalgebra generators, Y ii  m = mi m, i = 1; 2. Using these properties andalso [Y ij ; Y ji ℄ = Y ii � Y jj � 2Æi�jY i�j, one �nds the eigenvalues of the Casimiroperator,Ĉ m � 12Xi;j Y ij Y ji  m = Cm m ; (4.46)33



whereCm = m1(m1 + 1) +m2(m2 + 3) (4.47)is the same for all vetors of the representation. The dimension of representa-tions is given bydim(m) =Y� h�; r +mi=Y� h�; ri : (4.48)Here the produt is over the four root vetors desribed above, and r =12 P� � = (12 ; 32). One has r+m = (12 +m1; 32 +m2), and h ; i is the salar withrespet to the Cartan metri gij = �Cpqii;klCkljj;pq = 6Æij (here i; j = 1; 2). As aresult,dim(m) = 16 (2m1 + 1)(2m2 + 3)(m2 �m1 + 1)(m1 +m2 + 2) : (4.49)4.2.2 Salar modesUsing Eqs.(4.47),(4.49) one an �nd the spetra of the relevant utuationoperators. It is now onvenient to pass bak to the Cartesian oordinatesxa = xa (a = 1; : : : 5), suh that the sphere S4 is determined by the onditionr � pxaxa = 1. Let na � xa=r be the unit normal to the sphere. The (anti-hermitean) generators of SO(5) in Cartesian oordinates are given by Mab =na�b � nb�a, and the Casimir operator is Ĉ = �12(Mab)2 � �12 Pab(Mab)2.Let us de�ne the projetion operator Pab = Æab� nanb = P ab = P ab , whih anbe thought of as the indued metri on the sphere. In what follows we shall usethe projetion formalism [34℄ to desribe geometrial 4-objets tangent to thesphere in terms of 5-objets of the embedding spae. For example, a 4-vetor�� an be desribed as a 5-vetor �a subjet to the ondition na�a = 0. Theovariant derivative of a tensor is obtained by taking the partial derivativeand then projeting all the indies down to the sphere. For example, ra�b =(�p�q)P paP qb . One has na = na, while for objets tangent to the sphere 5-indiesan be raised and lowered either with Pab or with Æab. The urvature tensor isgiven by Rpsqt = PpqPst � PptPsq.Consider �rst salar utuations. The ovariant Laplaian for a salar �eld han be expressed in terms of the angular momentum operator as2h � P ab�a(P b �h) = 12(Mab)2h = �Ĉh : (4.50)Salars transform aording to the (0; j) representations, whih orrespond to34



the Young tableaux 1 2 j. . . and an be represented in terms of homogeneouspolynomials on S4 ash = h(a1:::aj)na1 : : : naj : (4.51)Hene, the eigenvalues of the Casimir operator in Eq. (4.50) are C(0;j) =j(j+3), whih gives the spetrum of the salar eigenvalue problem, �0h = �hwith �0 � ��32:� = �3 j(j + 3); d = 16 (2j + 3)(j + 2)(j + 1); j � 0: (4.52)4.2.3 Vetor modesConsider a tangent vetor �eld �s = P as �a. The invariant Laplaian reads2�s � P ab�a(P b ��pP pq )P qs = 12(Mab)2�s + 2(�a�a)ns + �s : (4.53)Here the last two terms on the right an be related to the ontribution ofthe spin operator. Under general SO(5) rotations a vetor �(x) transformsinto ~�(x) = R�(R�1x), where R = exp(!abSab) with !ab = �!ba being therotation parameters and Sab � (Sab)pq = ÆpaÆqb�Æpb Æqa. For j!abj � 1 one obtains~��� = !ab(Mab+Sab)�, suh that Sab an be identi�ed with the spin operator:(Sab�)s = (Sab) ps �p. As a result,2�s = �12(Mab + Sab)2 + 3� �s � (�Ĉ + 3) �s ; (4.54)where the Casimir operator is now the square of the total angular momentum.The general vetor harmonis on S4 an be obtained by onsidering the prod-ut of a onstant vetor in E5 with salar harmonis on S4. Suh a produtdeomposes into three irreduible piees, (0; 1)
 (0; j) = (1; j)� (0; j + 1)�(0; j � 1), whih an be visualized as
 1 2 j. . . = 1 2 j. . . � 0 1 j. . . � 1 2 j-1. . . : (4.55)The �rst term on the right here is the (1; j)-piee, and in the language ofhomogeneous polynomials it reads�s = �[sa℄(a1:::aj�1)nana1 : : : naj�2naj�1 ; (4.56)where �[sa℄(a1:::aj�1) is traeless with respet to any pair of indies. This ismanifestly tangential and oexat. As a result, the eigenvalues of the Casimir35



operator are C(1;j) = j(j + 3) + 2, and the spetrum of the vetor eigenvalueproblem �1�s � (��32 � �)�s = ��s in the setor where �a�a = na�a = 0 isgiven by� = �3 (j(j + 3)� 4); d = 12 j(j + 3)(2j + 3); j � 1 : (4.57)One an also diretly verify that the harmoni �s in Eq.(4.56) ful�lls theondition 12(Mab)2�s = �j(j+3)�s. It follows then from Eq. (4.53) that 2�s =�(j(j + 3) � 1)�s, and this again yields the spetrum in Eq. (4.57). Theorret degeneray an be obtained by ounting the independent omponentsof �[sa℄(a1:::aj�1) [31℄.The remaining two piees in (4.55), when represented in terms of the polyno-mials on S4, an be related to the exat tangential and the normal omponentsof the vetor �eld.4.2.4 Tensor modesFor a symmetri tensor hpq = P ap P bqhab a diret alulation gives2hpq + 2Rpsqthst�P ab�a(P b (�h�p�q)P �ppP �qq )P ppP qq + 2(PpqPst � PptPsq)hst= 12(Mab)2hpq + 2np(�ahaq) + 2nq(�ahap) + 2Æpqhaa=�12(Mab + �ab)2 + 6� hpq � (�Ĉ + 6)hpq : (4.58)Here the spin operator is de�ned in the same way as for vetors, whih gives(�abh)pq = (Sab) sp hsq + (Sab) sq hsp. The general tensor harmonis on S4 areobtained by the diret produts (0; 2)
 (0; j) = (0; j+2)� (1; j+1)� (0; j)�(2; j)�(0; j+1)�(1; j�1)�(0; j�2). Again this an be visualized by Young'sdiagrams and represented in the language of homogeneous polynomials. Thetransverse and traefree harmonis tangent to the sphere orrespond to the(2; j) piee, whose expliit representation ishpq = h[pa℄[qb℄(a1:::aj�2)nanbna1 : : : naj�2 : (4.59)Here h[pa℄[qb℄(a1:::aj�2) is traeless with respet to any pair of indies and is sym-metri under interhange of the [pa℄ and [qb℄ pairs. As a result, the eigenval-ues of the Casimir operator are C(2;j) = j(j + 3) + 6. This gives the spe-trum of the tensor eigenvalue problem �2hpq = "hpq in the setor where36



Table 2Spetra of utuations around the S4 instantonoperator eigenvalue degeneray�2 �3 j(j + 3) 56 (j � 1)(j + 4)(2j + 3) j � 2�1 �3 (j(j + 3)� 4) 12j(j + 3)(2j + 3) j � 1�0 �3 j(j + 3) 16 (j + 1)(j + 2)(2j + 3) j � 0�ahab = nahab = haa = 0:" = �3 j(j + 3); d = 56 (j � 1)(j + 4)(2j + 3); j � 2 : (4.60)The same result an be obtained by diretly verifying that hpq in Eq. (4.59)ful�lls the ondition 12(Mab)2hpq = �j(j + 3)hpq.The other tensor harmonis in the expansion of (0; 2) 
 (0; j) orrespond tothe exat and oexat piees of the longitudinal vetor part of the 4-metri,to those of the 4-vetor h5�, and to the trae [27℄.We summarize the results of our analysis in this setion in Tab.2. Notie thatthe salar and tensor eigenvalues are the same (for j � 2), while the vetorspetrum is shifted by a onstant.5 Partition funtionNow we are able to derive the expliit expressions for the one-loop partitionfuntions for utuations around the S2 � S2 and S4 instantons. The orre-sponding formula was obtained in Eq.(3.50) above. It is onvenient to passfrom �o to the dimensionless normalization parameter �0 via the resaling�o = p��0 : (5.1)The one-loop partition funtion for gravity utuations around an Eulideanbakground then readsZ[g�� ℄ = �0p2 
0 
2
1 sDet0�1Det0�2 e�I : (5.2)Here the �rst two fators on the right are the ontributions of the salar modes.The fator �0=p2 is due to the onstant onformal mode, whih is always37



present, and 
0 is the ontribution of the 5 salar modes with eigenvalue4�=3 whih exist only for the S4 instanton (see Tab.2):
0 = 0�s23 1�01A5 : (5.3)For any bakground other than S4 one has 
0 = 1. As was disussed above,other salar modes do not ontribute to the partition funtion.The fator 
2 in (5.2) is the ontribution of the negative tensor mode,
2 = �02iqj"�j : (5.4)For the S2 � S2 instanton there is one suh mode with " = �2, while in theS4 ase all tensor modes are positive and 
2 = 1. Next,
1 = 0�Yj �20p� � ���������� ��Cj ����������1AV ol(H) ; (5.5)is the isometry fator. If the bakground has no isometries then 
1 = 1.The determinants in Eq. (5.2) are the ontributions of the positive vetor andtensor modes. One hasqDet0�1 =  0Ys s �s��20! = exp��12� 01(0)� 12(ln�20) �1(0)� ; (5.6)where the �-funtion for the positive, transverse vetor modes is�1(z) =Xs 0 � ��s�z : (5.7)Similarly for the positive, transverse traeless tensor modes:qDet0�2 =  0Yk s �k��20! = exp��12� 02(0)� 12(ln�20) �2(0)� (5.8)with�2(z) =Xk 0 ���k�z : (5.9)38



The last fator in Eq. (5.2) is the lassial ontribution, with I being the ationfor the bakground. Let us now apply these formulas.5.1 The S2 � S2 instantonThe lassial ation is I[S2 � S2℄ = �2�=�G, and aording to Tab.1,
0 = 1 ; 
2 = �02ip2 : (5.10)Consider now the isometry fator 
1 in (5.5), whih is due to the bak-ground SO(3)�SO(3) symmetry. Eah of the two SO(3) groups an be pa-rameterized by matries Uik = exp("ikjCj). The invariant metri on the SO(3)spae is gik = 12tr(�iU�kU�1) ! Æik for Cj ! 0. The Haar measure isd�(C) = pdetgik dC1dC2dC3, and the volume V ol(SO(3))= R d�(C) = 8�2.For later use, we reprodue this result in a di�erent way. The measure for a(ompat, semi-simple) Lie group G an be represented as the produt of themeasure for the maximal subgroup H and that for the oset G=H. This impliesthatV ol(G) = V ol(H)� V ol(G=H) : (5.11)In partiular, V ol(SO(3))=V ol(SO(2))�V ol(S2), where V ol(SO(2))= 2�, andthe volume of the S2 oset with unit (due to the normalization of the measure)radius is V ol(S2) = 4�. As a result, V ol(SO(3))=2� � 4� = 8�2.When ating on S2, the SO(3) generators ��Cj generate rotations in the threeorthogonal planes of the embedding Eulidean 3-spae. Let ��C3 be the genera-tor of rotations in the XY-plane, suh that the azimuthal angle of the spherialoordinate system hanges as '! '+C3. Then the norm jj ��C3 jj is the squareroot ofh ��'; ��'i = 132�G ZS2�S2 g''pgd4x = �3�3G : (5.12)Obviously, the norms jj ��C1 jj and jj ��C2 jj and those of the generators of theseond SO(3) fator are the same. Hene,
1 =  �20p� � ���������� ��' ����������!6 (V ol(SO(3)))2 = 64�4(�0)1227(�G)3 : (5.13)39



Consider now the positive modes. The �-funtion assoiated with the positivevetor modes is (see Tab.1)�1(s) = 1Xj=2 2(2j + 1)fj(j + 1)� 2gs + 1Xj1=2 1Xj2=2 3(2j1 + 1)(2j2 + 1)fj1(j1 + 1) + j2(j2 + 1)� 2gs :(5.14)This an be represented as�1(s) = 4s (2 �(2;�9js) + 3Z(1;�10js)); (5.15)where the following two funtions have been introdued:�(k; �js)= 1Xj=k 2j + 1f(2j + 1)2 + �gs ; (5.16)Z(k; �js)= 1Xj1=k 1Xj2=k (2j1 + 1) (2j2 + 1)f(2j1 + 1)2 + (2j2 + 1)2 + �gs : (5.17)These funtions are studied in detail in the Appendix. Similarly, using theresults of Tab.1 one obtains the �-funtion for the positive tensor modes�2(s) = 9� 2�s + 4s (2 �(2;�9js) + 18 �(2;�1js) + 5Z(2;�10js)): (5.18)The following relation implied by the de�nitions in (5.16), (5.17), will be useful:Z(1;�10js) = Z(2;�10js) + 6�(2;�1js) + 9� 8�s.5.1.1 The saling behaviourBefore we proeed further, it is very instrutive to pause and hek whetherthe expressions above agree with the general formulas for the saling behaviourof e�etive ations. We shall follow the approah of Christensen and Du� [13℄,who relate this saling behaviour toN0= 1180 (4�)2 Z (R����R���� + 636�2)pg d4x ;N1= 1180 (4�)2 Z (�11R����R���� + 984�2)pg d4x ;N2= 1180 (4�)2 Z (189R����R���� � 756�2)pg d4x : (5.19)Here N0 is the `number of eigenvalues' of the salar operator �0 � 2� atingon a manifold with R�� = �g��. N1 is the number of eigenvalues of the vetor40



operator �1 ating in the spae of all vetors, that is, inluding both trans-verse and longitudinal utuations. Finally, N2 ounts both transverse andlongitudinal eigenstates of the tensor operator �2, with the only requirementthat the utuations must be traeless.Let us apply these formulas to the S2 � S2 bakground. The volume of themanifold is VS2�S2 = (4�)2=�2, while R����R���� = 8�2. As a result,N0 = 16145 ; N1 = 22445 ; N2 = 215 : (5.20)Now let us obtain the same result via a diret evaluation of the �-funtions.First we onsider the salar ase. Using the results of Tab.1, the operator�0�2� has one negative mode, six zero modes, while the rest of the spetrumis positive and gives rise to the �-funtion�0(s) = 4s (2 �(2;�9js) + Z(1;�10js)) : (5.21)Hene the number of all eigenvalues is 7 + �0(0). In order to ompute �0(0),we use the results of the Appendix, where the following values are obtained:�(k; �j0)= 112 � 14 � � k2 ; (5.22)Z(k; �j0)= 132 �2 � 124 � + 2k4 + (12 � � 23) k2 + 13360 : (5.23)This gives for the �-funtions in (5.15), (5.18), (5.21)�0(0) = �15445 ; �1(0) = �185 ; �2(0) = 389 : (5.24)Using these, the number of salar eigenvalues is N0 = 7 � 15445 = 16145 , whihagrees with (5.20).Next, the vetor operator �1 has 6 zero modes, suh that the number of itseigenvalues in the transverse setor is 6 + �1(0). Now, one should take intoaount also the longitudinal vetors, whih are gradients of salars. It is notdiÆult to see that if r�� is an eigenvetor of �1, suh that �1r�� = �r��,then (�0 � 2�)� = ��. We see that the eigenfuntions of �0 � 2� are inone-to-one orrespondene with the longitudinal vetors. The number of thelatter is therefore N0 � 1, where the one is subtrated beause the groundstate salar eigenfuntion is onstant, whih vanishes upon di�erentiation. Wetherefore onlude that N1 = 6 + �1(0) + N0 � 1 = 6 � 185 + 16145 � 1 = 22445 ,whih also agrees with (5.20). 41



Finally, the number of traeless eigenvalues of �2 is 1 + �2(0) (here the oneis the ontribution of the negative mode) plus the number of longitudinaltraeless tensor harmonis �L�� = r��� +r��� � 12 g��r���.Now, if �1�� = ��� then for �L�� assoiated with �� one has �2�L�� = ��L�� .Hene, the number of longitudinal tensors is determined by the number ofvetors, whih gives N2 = 1+ �2(0)+ (N1� 6). Here six is subtrated beausethe six Killing vetors do not ontribute to the tensor spetrum, sine forKilling vetors one has �L�� = 0. We therefore obtain N2 = 1+ 389 + 22445 �6 = 215 ,whih again is in perfet agreement with (5.20).The overall sale dependene of the partition funtion is given by the fator(�0)N2+N0�2N1 . For the S2 � S2 instanton one has N2 +N0 � 2N1 = �9845 , andwe shall shortly see that this agrees with our analysis.5.1.2 The partition funtion Z[S2 � S2℄It is now a simple task to insert the formulas above into the expression for thepartition funtion. We obtainsDet0�1Det0�2 = exp �� 0(0) + ln�20 �(0)� ; (5.25)where�(s) � 12 (�2(s)� �1(s)) = �9� 2�s + 4s Z(2;�10js) : (5.26)Using the values Z(2;�10j0) = 58145 and Z 0(2;�10j0) � � = �18:3118 (seeEq.(A.51) in the Appendix) we �ndsDet0�1Det0�2 = 2 156745 � 352450 e� : (5.27)Finally, taking into aount the ontributions of the negative, zero, and salarmodes omputed in (5.10), together with the lassial term, we obtainZ[S2 � S2℄ = �i 27 (�G)3256 �4�100 sDet0�1Det0�2 eI (5.28)= �i 0:3667� (�G)3�� 98450 exp� 2��G� :This is our �nal result in the S2 � S2 setor.42



5.2 The S4 instantonThe lassial ation is I[S4℄ = �3�=�G. Using the results in Tab.2 we �nd
0 = 0�s23 1�01A5 ; 
2 = 1 : (5.29)Let us onsider the symmetry fator 
1. The isometry group is now H=SO(5),and this an be represented by matries Uik = exp(Cik), where Cik = �Cki,i; k = 1; : : : 5. The 10 generators ��Cik generate rotations of S4 in the 10 orthog-onal planes of the embedding Eulidean 5-spae. Let ��C12 be the generator ofrotations in the XY-plane, suh that the standard azimuthal angle hanges as'! '+ C12. The norm jj ��C12 jj is the square root ofh ��'; ��'i = 132�G ZS4 g''pg d4x = 9�10�3G ; (5.30)whih applies also to the the norms of the remaining 9 generators.The volume of SO(5) an be omputed by diretly onstruting the invari-ant metri and the Haar measure with the use of the matrix representationUik = exp(Cik). The measure should be normalized suh that for Cik ! 0 itredues to Qi<k dCik. However, it is muh simpler to use the oset redutionformula (5.11). One has SO(5)/SO(4)=S4 and SO(4)/SO(3)=S3, suh thatV ol(SO(5))=V ol(S4)�V ol(S3)�V ol(SO(3)). We know that V ol(SO(3))=8�2,while the volumes of unit S3 and S4 are 2�2 and 8�2=3, respetively. As a re-sult, V ol(SO(5))=128�6=3. Summarizing,
1 =  �20p� � ���������� ��' ����������!10 V ol(SO(5)) = � 910�5 128�63 (�0)20(�G)5 : (5.31)Let us onsider the positive modes. The �-funtion assoiated with the positivevetor modes is (see Tab.2)�1(s) = 12 3s 1Xj=2 j(j + 3)(2j + 3)fj(j + 3)� 4gs : (5.32)This an be written as�1(s) = 12 3sQ(1;�4; 0js) ; (5.33)43



where the following funtion has been introduedQ(k; �; js) = 1Xj=k (2j + 3)(j(j + 3) + )fj(j + 3) + �gs ; (5.34)Similarly, using the results of Tab.2, one obtains the �-funtion for the positivetensor modes�2(s) = 56 3sQ(2; 0;�4js) : (5.35)Finally, onsider the salar operator �0�2�. Aording to Tab.2, its eigenval-ues, measured in units of �, are given by (j(j+3)� 6)=3, and the degenerayis (j + 1)(j + 2)(2j + 3)=6 with j � 0. Hene, the �-funtion for the positivesalar modes is�0(s) = 16 3sQ(2;�6;�4js) : (5.36)5.2.1 The saling behaviourLet us again hek the onsisteny with the general formulas for the salingbehaviour of quantum �elds (for utuations around S4 this was done byChristensen and Du� [13℄). Applying again the formulas in (5.19), where nowthe volume of the manifold is VS4 = 24�2=�2, while R����R���� = 8�2=3, onehas N0 = 47990 ; N1 = 35845 ; N2 = �2110 : (5.37)On the other hand, using the result of the Appendix,Q(k; �; j0)=�12 k4 � 2k3 � (+ 12)k2 (5.38)+ (3� 2)k + 32 �2 + 13 � 1115 ;one obtains for the �-funtions in (5.32), (5.33), (5.35)�0(0) = �6190 ; �1(0) = �19130 ; �2(0) = �6190 : (5.39)Now, sine the spetrum of �0� 2� ontains six non-positive modes, one hasN0 = 6 + �0(0) = 6 � 6190 = 47990 , whih agrees with (5.37). Next, �1 has 10zero modes, suh that there are 10 + �1(0) transverse vetor eigenstates, plus44



(N0�1) longitudinal ones (the onstant salar mode gives no ontribution). Asa result, N1 = 10� 19130 + 47990 �1 = 35845 , whih agrees with (5.37). Finally, thereare N2 = �2(0)+N1�15 traeless tensor modes, where 15 is subtrated beause10 Killing vetors and 5 onformal Killing vetors of S4 do not ontribute tothe longitudinal tensor modes. One obtains N2 = �6190+ 35845 �15 = �2110 , whihagain agrees with (5.37).The overall sale dependene of the partition funtions is expeted to be(�0)N2+N0�2N1 , where N2 +N0 � 2N1 = �57145 .5.2.2 The partition funtion Z[S4℄Let us now obtain the partition funtion. One �ndssDet0�1Det0�2 = exp (� 0(0) + ln�0 �(0)) ; (5.40)where�(s) � 12 (�2(s)� �1(s)) = 3s � 512 Q(2; 0;�4js)� 14 Q(2;�4; 0js)� : (5.41)One has �(0) = 50990 and � 0(0) � �1 = 6:1015 (see Eq.(A.36) in the Appendix).This yieldssDet0�1Det0�2 = � 509450 e�1 : (5.42)Finally, olleting the ontributions of the negative, zero, and salar modesomputed in (5.10), together with the lassial term, we obtainZ[S4℄ = p3 55312�6�240 sDet0�1Det0�2 eI= 0:0047� (�G)5�� 571450 exp� 3��G� : (5.43)To our knowledge, this formula has been obtained here for the �rst time, sinein Refs.[27,13℄ a losed expression for Z[S4℄ was not ahieved. In partiular,the isometry fator 
1 was not taken into aount and the derivative of the�-funtion was not omputed. 45



6 SummaryOur last step is to use the expressions for Z[S2 � S2℄ and Z[S4℄ in (5.28) and(5.43) and insert these into Eq.(2.15) to �nd the deay rate�=� 1� s�3 =Z[S2 � S2℄Z[S4℄= 14:338p� (G�)�2(�o�) 47345 exp�� ��G� : (6.1)This is the �nal result of our analysis. This formula gives the rate of semilas-sial deay of de Sitter spae due to the spontaneous nuleation of blak holes.This is the leading mode of deay, sine lassially de Sitter spae is stable [28℄.The numerial oeÆient in the formula originates from the utuation deter-minants evaluated in the �-funtion sheme. The fator p� omes from theheat bath temperature oeÆient in (2.15) and gives � the orret dimensionof an inverse time. The oeÆient (G�)�2 arises due to the ombined e�et ofthe bakground isometries. The power of �o� ontains the e�et of resalings,where we have passed again to the dimensionful renormalization parameter �o.Sine quantum gravity is non-renormalizable, �o remains undetermined, andwe have nothing to say about this problem. For numerial estimates it is rea-sonable to assume that �o � G. The last fator in the formula is the lassialterm. The formula is obtained in the one-loop approximation, whih is good aslong as the lassial term is large ompared to the quantum orretions, thatis for �G� 1. Under this ondition the nuleation rate is exponentially small.Notie that sine the overall power of � is positive, the quantum orretionsprovide an additional suppression of the transition rate for small �.The formula gives the probability of blak hole nuleation per unit propertime of a freely falling observer in his Hubble region. The latter is the regionenlosed inside the observer's osmologial horizon. If a blak hole is reated,then it has the radius 1=p� and �lls the whole Hubble region. This doesnot mean that the whole spae will be eaten by a giant blak hole, sine deSitter spaetime onsists of many Hubble regions, whose number grows as theuniverse expands. Some of these regions will ontain a blak hole but mostof them will be empty. The blak holes are atually born in pairs, where thetwo members of the pair are reated at the opposite sides of the 3-spae. Theinteresting onlusion is that for G� � 1, when ination is `slow', the rateof blak hole nuleation is strongly suppressed, but the reated blak holesare large. This an be understood as a onsequene of the fat that the blakholes are made of the energy ontained inside the Hubble region. As the sizeof the latter is large for small �, the reated blak holes are also large. Onthe other hand, if one is allowed to extrapolate the formula for G� � 1, whenination is fast, then the reated blak holes are small, but they are reated46



in abundane.One an see that for late times the number of blak holes per unit physialvolume will be onstant. Let us hoose for de Sitter spaetime the globaloordinates assoiated with the freely falling observers:ds2 = �d�2 + 3� osh20�s�3 �1A d
23 : (6.2)Here � is the (dimensionful) proper time and d
23 is the volume element ofthe unit 3-sphere. The volume of the global hypersurfae �� of onstant �is V (�) = 2�2 � 3��3=2 osh3 �q�3 �� � �24 � 3��3=2 exp(p3��). The portion of�� ontained inside the future event horizon of any observer has the volumeVH = 4�3 � 3��3=2 (for late �). This is the spatial Hubble volume. [This quantityslightly depends on the hoie of the hypersurfae. Even though for any givenobserver one has � = t, whih is the time assoiated with the observer'soordinate system, one has �� 6= �t, unless � = t = 0, in whih ase thespatial Hubble volume is VH = �2 � 3��3=2℄. As a result, the number of Hubblevolumes on the hypersurfae is NH(�) = V (�)=VH. [One has NH(0) = 2: thede Sitter throat onsists of two ausally disonneted parts belonging to theHubble regions of two antipodal observers [47℄.℄ Multiplying NH(�) by � givesthe blak hole nuleation rate per �� ,dNBHd� = 3�16 exp(p3��) � : (6.3)Integrating with respet to � and dividing by V (�) yields the average volumedensity of reated blak holes on ��,�BH = �12� � ; (6.4)whih does not depend on �.The subsequent real time evolution of these blak holes is an interesting issue.Presumably most of them will immediately evaporate, unless � is very smalland the blak holes are large, in whih ase however the nuleation rate isstrongly suppressed. It was argued in [9℄ that this proess ould dramatiallyhange the global struture of de Sitter spae. For more information on thisissue we refer to [10,9,18℄ and to the papers ited in Ref.[9℄.The following steps have been essential in our analysis. We have derivedEq.(2.15) for the nuleation rate using the thermal properties of de Sitter47



spae. For this we have approximated the partition funtion for Eulideanquantum gravity with � > 0 by the semilassial ontributions of the S4 andS2 � S2 instantons, of whih the �rst yields the free energy F in the Hubblevolume while the ontribution of the seond an be regarded as a purely imag-inary part of F . In a sense one an think of the reated blak holes as beingthe bubbles of the new phase spontaneously reated out of thermal utua-tions via quantum tunneling. We have argued that these bubbles may havetemperature di�erent from that of the heat bath, sine they annot thermalizevia interations with the whole reservoir and only exhange energy inside theHubble region.To ompute the one-loop ontributions of the S4 and S2 � S2 instantons wehave used the standard Faddeev-Popov approah to the path integral. Wehave worked with a one-parameter family of ovariant bakground gauges andemployed the Hodge deomposition of the utuations with their subsequentspetral expansion. In our treatment of the onformal modes we have followedthe standard reipe of omplex rotation, up to several lowest lying modesfor whih a di�erent presription has been applied. In order to integrate overzero modes of the Faddeev-Popov operator arising due to the bakgroundisometries, we have gone beyond the perturbation theory and showed thatthe orresponding integration measure is the Haar measure on the isometrygroup. There are no other zero modes in the problem { for example, thestandard rotational zero modes are absent beause rotations are isometries ofthe bakgrounds under onsideration.We have expliitly determined the spetra of the utuation operators. Forutuations around the S2 � S2 instanton the spetrum was obtained bydiretly solving the di�erential equations, while in the S4 ase group theo-reti methods have been applied, in whih we followed the approah of [27℄.These spetra have been used in order to ompute the funtional determinantswithin the �-funtion regularization sheme, the orresponding �-funtions be-ing studied in detail in the Appendix below. We have heked that our resultsagree with the general formulas for the anomalous saling behaviour. Finally,we have obtained in (5.28), (5.43) the one-loop partition funtions for utu-ations around the S4 and S2 � S2 bakgrounds. To our knowledge, in bothases suh losed expressions have been obtained for the �rst time. The laststep has been to use the resulting partition funtions in order to alulate thenuleation rate �. This desribes a onstant density of reated blak holes perunit physial volume of the expanding 3-spae.After the work of Gross, Perry and Ja�e [30℄, our analysis presents the seondexample of a omplete one-loop omputation on a non-trivial bakground. 33 Note also that the analysis in [30℄ was not quite omplete, sine the spetrumis unknown and the �-funtions have not been omputed, even though the unde-termined quantities an be absorbed into the renormalization parameter. We also48



One may hope that our results an lend further support to the Eulideanapproah to quantum gravity.AknowledgmentsWe thank Mihael Bordag for suggesting the idea to use the Abel-Plan for-mula in the analyti ontinuation of the �-funtions. M.S.V. would also liketo thank Gary Gibbons for disussing the role of the speial onformal modesand Raphael Bousso for interesting onversations. The work of M.S.V. wassupported by the Deutshe Forshungsgemeinshaft, grant Wi 777/4-2.Note added in proof.We would like to thank Dima Vassilevih for bringingto our attention a number of relatively reent papers onsidering one-loopEulidean quantum gravity on S4. Although in none of these papers a losedexpression for the one-loop partition funtion Z[S4℄ is ahieved, it is worthmentioning the work by Allen [50℄, by Polhinski [51℄, and by Taylor andVeneziano [52℄. We refer to the paper by Vassilevih [53℄ for more referenes.Not all papers agree on the saling behaviour of the partition funtion. Thereason is that some authors do not take into aount the ontribution of the 10zero modes due to the bakground isometries, thereby obtaining Z[S4℄ to beproportional to �+ 329450 instead of �� 571450 [52℄. However, sine these zero modes arein the path integration measure, they do ontribute to the anomalous salingon equal footing with all other modes. In fat, the example of at spae gaugetheories [45℄ shows that the bakground symmetry zero modes, when treatednon-perturbatively as was done above, are of vital importane for obtainingthe orret running behaviour of the oupling onstant. Our result for thesaling behaviour agrees with that of Christensen and Du� [13℄ and with thegeneral analysis of Fradkin and Tseytlin [54℄.Appendix. Calulation of �-funtions.In this Appendix we shall study the �-funtionZ(k; �js) = 1Xn=k 1Xm=k (2n+ 1) (2m+ 1)f(2n+ 1)2 + (2m+ 1)2 + �gs ; (A.1)whih is used in the main text for omputing the one-loop utuation term onthe S2 � S2 instanton bakground. Here � is real while k is a positive integerdo not understand their treatment of the bakground isometries and that of thenon-normalizable deformations of the instanton.49



suh that 2(2k + 1)2 + � > 0. It is assumed that <(s) is positive and largeenough to ensure the onvergene of the series. Despite its apparent simpliity,the analysis of this �-funtion is laking in the literature. This is probably dueto the fat that the summation in (A.1) annot be extended to all integers andthe standard Poisson resummation tehniques do not apply. For this reasonwe use other methods, whih are unfortunately rather lengthy. However wethink that it is neessary to desribe the basi steps, espeially in view ofother possible appliations of our results.In what follows we shall perform the analyti ontinuation by �nding theintegral representation for Z(k; �js) that is valid for any s. This will be usedto ompute the values of Z(k; �j0) and ddsZ(k; �js) at s = 0. As a �rst step,we shall onsider the related �-funtion:�(k; �js) = 1Xn=k (2n+ 1)f(2n+ 1)2 + �gs (A.2)with (2k + 1)2 + � > 0. The integral representation for this funtion will beuseful. In addition, we shall study the �-funtionQ(k; �; js) = 1Xj=k (2j + 3)(j(j + 3) + )fj(j + 3) + �gs ; (A.3)where k(k + 3) + � > 0, and shall �nd its value and its s-derivative at s = 0.This funtion is needed in the analysis of utuations around the S4 instanton.A.1 Computation of Z(k; �j0) and �(k; �j0).First we shall ompute the values of these funtions at s = 0 using the stan-dard heat kernel tehnique. These values determine the saling properties ofthe system. Later we shall rederive the same values by using the integral rep-resentations for Z(k; �js) and �(k; �js), and this will provide us with a goodonsisteny hek. For Q(k; �; js) we shall onsider only the integral repre-sentation, sine the values of Q(k; �; j0) have been omputed in [13℄.A �-funtion related to a seond order ellipti operator with a positive spe-trum an be expressed as�(s) = 1�(s) 1Z0 ts�1�(t) dt : (A.4)On ompat spaes the heat kernel �(t) vanishes exponentially fast for large50



t, while for small t there is the asymptoti expansion�(t) �Xr Cr tr ; (A.5)with r assuming in general both integer and half-integer values. It is notdiÆult to see that�(0) = C0 : (A.6)The problem therefore redues to determining the asymptoti expansion ofthe heat kernel. The heat kernels in our problem are given by�(k; �jt) = ��(t)� �(kjt) �2 e��t (A.7)for Z(k; �js) and�(k; �jt) = ��(t)� �(kjt) � e��t (A.8)for �(k; �js), where�(t) = 1Xn=0 (2n+ 1) e�t (2n+1)2 (A.9)and �(kjt) = k�1Xn=0 (2n+ 1) e�t (2n+1)2 : (A.10)The only diÆulty is to �nd the asymptoti expansions for small t for thefuntion �(t) in (A.9) 4 . �(t) is a partition funtion for a two-dimensionalrotator at temperature 1=t. We wish therefore to �nd its high-temperatureexpansion, and for this we shall onstrut the integral representation for �(t).Let us onsider the \generating funtion"�(t; �) = 1Xn=0 e�t (2n+1)2+i� (2n+1) (A.11)4 We note that �(t) annot be expressed in terms of theta-funtions in a simpleway, and that the Poisson resummation formula does not diretly apply.51



suh that�(t) = �i lim�!0 ��� �(t; �) : (A.12)�(t; �) ful�lls the di�erential equation���t = �2���2 : (A.13)This has the speial solution~�(t; �) = 1p4�t exp �(� � �0)24t ! (A.14)with the property ~�(0; �) = Æ(���0), whih allows us to represent the generalsolution of (A.13) as�(t; �) = 1Z�1 ~�(t; �0)�(0; �0) d�0 : (A.15)The initial value �(0; �0) is obtained diretly from the de�nition (A.11):�(0; �0) = 1Xn=0 ei�0 (2n+1) = i2 sin�0 ; (A.16)where we assume that �0 has a small positive imaginary part in order to ensureonvergene of the geometrial series. We an now insert this into (A.15) andthe result into (A.12). Introduing the new variable x = �20=4 we obtain thesought for integral representation�(t) = 1p4�t3 1Z0 e�x=t dxsin(2px) : (A.17)Here we should remember that x has a small imaginary part, suh that theintegration is atually performed along a ontour parallel to the positive realaxis and approahing it from above.It is now a straightforward task to �nd the asymptoti expansion of the integralin (A.17) for small t, sine the only non-trivial ontribution omes from a smallneighbourhood of x = 0:�(t) � 14t �1 + 13 t+ 730 t2 +O(t3)� : (A.18)52



Inserting this into (A.7) and (A.8) gives the asymptoti expansions for the heatkernels �(k; �jt) and �(k; �jt), whose oeÆients C0 determine the �-funtionsat s = 0:Z(k; �j0) = 132 �2 � 124 � + 12 k2� + 2k4 � 23 k2 + 13360 ; (A.19)and �(k; �j0) = 112 � 14 � � k2 : (A.20)To hek these results we note that the de�nitions in (A.1) and (A.2) implythatZ(k1; �js)=Z(k2; �js) + 2 k2�1Xm=k1(2m+ 1)�(k2; � + (2m + 1)2js)+ k2�1Xn=k1 k2�1Xm=k1 (2n+ 1) (2m+ 1)f(2n+ 1)2 + (2m+ 1)2 + �gs ; (A.21)with k2 > k1. Setting here s = 0 we obtain a non-trivial relation for Z(k; �j0)and �(k; �j0), and this is ful�lled by the expressions in (A.19) and (A.20).Finally we use (A.19), (A.20) to obtain the values used in the main text:Z(2;�10j0) = 58145 ; �(2;�9j0) = �53 ; �(2;�1j0) = �113 : (A.22)A.2 Computation of �(k; �js), and Q(k; �; js).It is usually more diÆult to determine the derivative of a �-funtion at s = 0than the value of the funtion itself, sine the knowledge of its behaviour in aneighbourhood of s = 0 is required. We shall perform the analyti ontinuationof the �-funtions de�ned by Eqs. (A.1), (A.2) and (A.3) to arbitrary valuesof s with the use of the relation sometimes alledA.2.1 The Abel-Plan formula.This an be derived using the obvious relation1Xn=k f(n) = ZC f(z)e2�iz � 1 dz ; (A.23)53



where the ontour C enompasses the part of the real axis with Re(z) � k(see Fig.4) and f(z) is analyti for Re(z) � k. The idea is to split C into threeparts, C1+C2 +C3, as shown in Fig.4. For the �rst part, C1, the integral anbe written asZC1 � 11� e�2�iz � 1� f(z) dz = 1Zk f(t) dt+ ZC1 f(z)1� e�2�iz dz ; (A.24)where in the integral over C1 on the right the ontour is then rotated to theposition �C1 as shown in Fig.4. Suh a rotation is possible if only f(z) tendsto zero fast enough for Re(z) � k and jzj ! 1.
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but it onverges for any s. Let us �rst apply the Abel-Plan formula to the�-funtions in (A.2) and (A.3).A.2.2 Analyti ontinuation of �(k; �js).Applying (A.25) to the series for �(k; �js) in (A.2), we havef(z) = 2z + 1f(2z + 1)2 + �gs ; (A.26)whih is analyti for <(z) > �1=2 and deays fast enough for jzj ! 1provided that <(s) is large enough. As a result, we an use the Abel-Planformula, whih gives�(k; �js) = �k + 12� 1f(2k + 1)2 + �gs + 14(s� 1) 1f(2k + 1)2 + �gs�1+ 1Z0 idte2�t � 1  2k + 1 + 2itf(2k + 1 + 2it)2 + �gs � 2k + 1� 2itf(2k + 1� 2it)2 + �gs! : (A.27)This representation is �nite for all s, apart from s = 1, where the pole isloated. The remaining integral here onverges uniformly for jsj < 1, whihallows us to di�erentiate with respet to s. If we set s = 0, then the integralan be easily omputed. We �nd �(k; �j0) = 112� 14 ��k2, and this agrees withthe value obtained above in (A.20).Similarly, we an di�erentiate (A.27) with respet to s and then set s = 0.This gives� 0(k; �j0) = 14W (lnW � 1)� �k + 12� lnW+2 1Z0 dte2�t � 1 (t lnA+ (2k + 1)	) ; (A.28)where W = (2k + 1)2 + � andA = (W � 4t2)2 + 16(2k + 1)2t2 ; 	 = artan 4(2k + 1) tW � 4t2 : (A.29)For any k and � the integral in (A.28) is onvergent and an be evaluatednumerially. Notie that � 0(k; �j0) is not needed in the main body of the paper,and for this reason we do not quote the atual number here.55



A.2.3 Analyti ontinuation of Q(k; �; js).The proedure is exatly the same as above. Denotingf(z) = (2z + 3)(z(z + 3) + )fz(z + 3) + �gs (A.30)the diret appliation of the Abel-Plan formula (A.25) yieldsQ(k; �; js) = �k + 32� (k(k + 3) + )W�s + 1s� 2W 2�s+� �s� 1 W 1�s + 1Z0 dte2�t � 1 i(f(k + it)� f(k � it)) ; (A.31)where W = k(k + 3) + �. Setting s = 0 the integral an be easily omputedleading toQ(k; �; j0)=�12 k4 � 2k3 � �+ 12� k2 (A.32)+ (3� 2) k + 12 �2 + �43 � �� � 1115 :Next, di�erentiating (A.30) with respet to s and setting s = 0 givesQ0(k; �; j0) = ��k + 32� (W + � �) lnW+ 12 �lnW � 12�W 2 + (� �) (lnW � 1)W + G : (A.33)Here G = 1Z0 dte2�t � 1 ft (6k(k + 3) + 2+ 9� 2t2) lnA+(4k3 + 18k2 + (18 + 4) k + 6� 6 (2k + 3) t2)	g (A.34)withA = t4 + (2W � 4� + 9) t2 +W 2 ; 	 = artan (2k + 3) tW � t2 : (A.35)Evaluating the integral numerially, the two values used in the main text areQ0(2; 0;�4j0) = 3:72344 ; Q0(2;�4; 0j0) = 6:65246 : (A.36)56



Finally, for the funtion �(s) = 3s( 512Q(2; 0;�4js) � 14Q(2;�4; 0js)) used inEq.(5.41) in the main text one obtains with the help of (A.32) and (A.36)�(0) = 50990 ; � 0(0) � �1 = 6:10158 : (A.37)A.3 Computation of Z(k; �js)Let us not turn to our main task { the evaluation of the double-sum funtionZ(k; �js), whih has been de�ned for large values of <(s) by (A.1). The ideais to express it in terms of the single-sum funtion �(k; �js).It follows from the de�nitions (A.1) and (A.2) thatZ(k; �js) = 1Xn=k (2n+ 1)�(k; � + (2n+ 1)2js) : (A.38)Here we an use the integral representation (A.27) for �(k; � + (2n + 1)2js).Indeed, if � is real and (2k + 1)2 + � > 0 then the same remains true uponreplaement � ! �+(2n+1)2, and the formula (A.27) therefore applies. Now,replaing in (A.27) � by � + (2n+ 1)2 and assuming for a moment that <(s)is large and positive, the integral in (A.27) onverges uniformly with respetto n for n ! 1. This allows us, upon insertion of (A.27) into (A.38), tointerhange the orders of summation and integration. The result then an beextended to any s by analyti ontinuation. This givesZ(k; �js) = �k + 12� 1Xn=k 2n + 1f(2k + 1)2 + � + (2n+ 1)2gs ++ 14(s� 1) 1Xn=k 2n + 1f(2k + 1)2 + � + (2n+ 1)2gs�1+ 1Z0 id�e2�� � 1  (2k + 1 + 2i�) 1Xn=k 2n+ 1f(2k + 1 + 2i�)2 + � + (2n+ 1)2gs�(2k + 1� 2i�) 1Xn=k 2n+ 1f(2k + 1� 2i�)2 + � + (2n+ 1)2gs! : (A.39)One an see that all sums here are exatly the same as in the de�nition of�(k; �js) in (A.2) { up to the replaements � ! �+(2k+1)2 and � ! �(�) �� + (2k + 1 + 2i�)2. Sine the de�nition in (A.2) makes sense for arbitraryvalues of � (the series always onverges for <(s) big enough), we an expressthe sums in (A.39) in terms of �(k; �+(2k+1)2js) and �(k; �(�)js). This leadsto the the following formula: 57



Z(k; �js) = �k + 12� �(k; � + (2k + 1)2js) (A.40)+ 14(s� 1)�(k; � + (2k + 1)2js� 1) + 1Z0 i d�e2�� � 1 fF(�)� F(��)g ;with F(�) = (2k+1+2i�) �(k; �(�)js). In this formula the �rst two terms onthe right are determined by the integral representation (A.27) for arbitrary s.We are left with omputing the remaining integral over � . The problem hereis that the parameter �(�) is omplex, and for this reason we annot diretlyapply the integral representation (A.27) to ompute �(k; �(�)js).Let us reall that the formula (A.27) was derived assuming that the funtionf(z) in Eq.(A.26) had no poles for <(z) > k. This allowed us to rotate theintegration ontour as shown in the left part of Fig.4 without intersetingsingularities. Let us now replae � by �(�) � � + (2k + 1+ 2i�)2. As a result,f(z) in Eq.(A.26) is replaed byf(z) = 2z + 1f(2z + 1)2 + �(�)gs = 2z + 1f4(z � z+(�))(z � z�(�))gs ; (A.41)with z�(�) = 12(�1 � iq�(�)). For � = 0 one has <(z�(0)) = �12 . As �inreases, the point z+(�) moves to the right in the omplex plane (while z�(�)moves to the left), but as long as <(z+(�)) < k one an still use the formula(A.27). However, for large enough values of � the pole at z = z+(�) enters theregion of interest, that is the part of the omplex plane with <(z) > k, andwe an no longer use the formula (A.27).To takle the problem we notie that the pole of f(z) at z = z+(�) is abranhing point, and one an hoose the ut in the omplex plane as shownin the right part of Fig.4. We then repeat the steps leading to the Abel-Plan formula and the additional problem we enounter is the following: whenwe rotate the integration ontour as we did before, the ontour will wraparound the ut as shown in Fig.4. The resulting ontour will then onsist oftwo disonneted piees. The �rst piee will be the same as the old ontour�C1+C2 + �C3 (see Fig.4). The seond piee is the ontour ~C wrapping aroundthe ut. Integrating around suh a ombined ontour, the result will onsistof two parts,�(k; �(�)js) = �old(k; �(�)js) + �(� � ��) Z~C f(z)e2�iz � 1dz : (A.42)Here the �rst term on the right, �old(k; �(�)js), is the funtion given by theprevious expression in (A.27) with � being replaed by �(�). The seond term,58



with f(z) given by (A.41) and the ontour ~C as shown in the right part ofFig.4, is the ontribution of the ut. The step funtion �(� � ��) reets thefat that the ut ontributes only for large enough � when the pole entersthe region <(z) > k. Here �(x) = 0 for x < 0 and �(x) = 1 for x � 0, and<(z+(��)) = k.The representation (A.42) applies for all values of s and for any � > 0. Sim-ilarly, one an obtain �(k; �(��)js) (the ut then resides in the upper half-plane). As a result, the funtion F(�)�F(��) in the integrand in Eq.(A.40)is de�ned for any � > 0, and the integral onverges due to the damping expo-nential fator. This �nally gives Z(k; �js) for any s.Let us �rst hek our result by omputing Z(k; �j0). For s = 0 the funtionf(z) has no poles and the ontribution of the ut vanishes. The remainingintegrals then an be easily omputed, whih gives for Z(k; �j0) exatly thesame expression as in Eq.(A.19).Let us now ompute Z 0(k; �j0). Sine all integrals in (A.40),(A.41) onvergeuniformly with respet to s (at least for jsj < 1), we an di�erentiate theintegrands with respet to s and then set s = 0. The result an be representedin the following form:Z 0(k; �j0) = H + 2 1Z0 dte2�t � 1 G(t)+ 1Z0 d�e2�� � 1 1Z0 dte2�t � 1W(�; t) + S: (A.43)Here H = ��2k4 + (2� �2) k2 + k + 132 (4 + 4� � �2)� ln( 2 (2k + 1)2 + �)+3k4 + 2k3 + 34 (� � 2) k2 + 14 (� � 6) k + 164 (3�2 � 4� � 20) : (A.44)In addition,G(t)= t2 (4t2 � 16k2 � 12k � 2� �) lnP (A.45)+ (2k + 1)(6t2 � 2k (2k + 1)� �2)� ;where we have usedP = �2 + (4(2k + 1)2 � 8t2) � + 4(2k + 1)4 + 16t4 ;59



�=Phase[(2k + 1)2 + �=2� 2t2 + i 2(2k + 1)t℄ ; (A.46)and �� <Phase[x + iy℄ � � is the phase of the omplex number. Next,W(�; t)= f((2k + 1)2 � 4 t �) lnQ (A.47)+ 4 (t� �)(2k + 1)	g � f(t; �)$ (t;��)g (A.48)withQ=16 (t2 + � 2)2 + (� + 2)2 � 8� (t2 + � 2) + 128 (k2 + k + 14) t �+16 k(k + 1) � + 32 k(k + 1)(2k2 + 2k + 1);	=Phase[(2k + 1)2 + �=2� 2 (t2 + � 2) + i 2 (2k + 1)(t� �)℄ : (A.49)Finally, the ontribution of the ut isS = 4� 1Z�� d�e2�� � 1 1Z0 = (2k + 1� 2i�)(2z(�) + 1 + 2it)e2�(t�iz(�)) � 1 dt ; (A.50)where z(�) = �12 +q4� 2 � (2k + 1)2 � � + 4i(2k + 1)� , and <(z(��)) = k.We now use the formulas above in order to evaluate Z 0(2;�10j0), whih valueis needed in the main text. Setting k = 2 and � = �10 we obtain for the�rst term on the right in (A.43) H = 1:9445. The seond term, ontainingthe integral over t, is evaluated numerially to give �19:9469. The numerialvalue of the term ontaining the double integral is �0:1294. As for the lastterm, S, it is exponentially small and is of the order of 10�12. This is beause,as one an see from (A.50), the value of S is suppressed by the fator ofexpf�2�(�� + =(z(��))g = expf�4�p5g.Summing everything up, we obtain� � Z 0(2;�10j0) = �18:3118 : (A.51)Referenes[1℄ S. Adler. Massless, Eulidean quantum eletrodynamis on the 5-dimensionalunit hypersphere. Phys.Rev., 6, 3445{3461, 1972.[2℄ S. Adler. Massless eletrodynamis on the 5-dimensional unit hypersphere, anamplitude-integral formulation. Phys.Rev., 8, 2400{2418, 1973.60
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