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tThe Nf -
avour S
hwinger Model on a �nite spa
e 0 � x1 � L and subje
t to bag-typeboundary-
onditions at x1 = 0 und x1 = L is solved at �nite temperature T = 1=�. Theboundary 
onditions depend on a real parameter � and break the axial 
avour symmetry.We argue that this approa
h is more appropriate to study the broken phases than intro-du
ing small quark masses, sin
e all 
al
ulations 
an be performed analyti
ally.In the imaginary time formalism we determine the thermal 
orrelators for the fermion-�elds and the determinant of the Dira
-operator in arbitrary ba
kground gauge-�elds. Weshow that the boundary 
onditions indu
e a CP -odd �-term in the e�e
tive a
tion.The 
hiral 
ondensate, and in parti
ular its T - and L- dependen
e, is 
al
ulated for Nffermions. It is seen to depend on the order in whi
h the two lengths � = 1=T and L aresent to in�nity.



1 Introdu
tionOver the past de
ades the S
hwinger model [1℄ has proved to be an ex
ellent laboratory for�eld theory be
ause it turned out to shed some light on a 
ouple of questions whi
h naturallyarise in realisti
 gauge-�eld theories, but lead to immense diÆ
ulties as soon as one tries toatta
k them dire
tly. Longstanding problems of this type are the wellknown U(1)A-problem[30℄, the question whether QCD in the 
hiral limit shows a spontaneous breakdown of the
hiral symmetry and the question about the nature of the 
hiral phase transition at � 200MeV [2, 31℄.The S
hwinger model is known to be the most simple model �eld theory whi
h exhibits
hiral symmetry breaking. However the quantization on the plane su�ers from the de�
it,that a naive 
al
ulation of the 
ondensates h  i and h 
5 i gives zero results and the 
orre
tvalues 
an be derived only a posteriori by using the 
lustering theorem [6℄. Whenever asymmetry is expe
ted to be broken it is most re
ommendable to break it expli
itly and totry to determine how the system behaves in the limit when the external trigger is softlyremoved. Thus it is most natural for both the S
hwinger model and QCD to break expli
itlythe axial 
avour symmetry and to investigate how observables do behave in the limit wherethe symmetry is restored.The most dire
t way to do this is to introdu
e small fermion masses and to try to determinehow the 
hiral 
orrelators behave in the limit where these fermion masses tend to be negligibleas 
ompared to the intrinsi
 energy s
ale of the gauge-intera
tion. On
e these 
al
ulationsdo predi
t nonvanishing 
hiral 
ondensates in the thermodynami
 limit one 
an be sure thata spontaneous breaking of the axial 
avour symmetry SU(Nf )A really takes pla
e - howeverthis is not a 
onditio sine qua non. There is however a te
hni
al obsta
le to this approa
h: thevalue of the 
hiral 
ondensates is related to the mean level density of the eigenvalues of theDira
 operator [7℄ in the infrared. Unfortunately, the spe
tral density of the massive Dira
operator is only known for very spe
ial ba
kground gauge-�elds.In this paper we shall break the 
hiral symmetry expli
itly by boundary 
onditions forthe fermions instead of giving them a small mass. Although this version seems at �rst sightless natural, it has many advantages - both 
on
eptual and 
al
ulational in nature. Themost important point is 
learly the fa
t that it allows for an entirely analyti
al treatment.In a previous paper [5℄ we investigated QCD-type theories with Nf massless 
avours on aneven-dimensional (d=2n) eu
lidean manifold M with boundary �M on whi
h the boundary
onditions studied by Hrasko and Balog [4℄ have been applied. These 
hirality-breaking-(CB-) boundary-
onditions relate the di�erent spin 
omponents of one 
avour on �M andare neutral with respe
t to ve
tor-
avour transformations - so that the (gauge-invariant)fermioni
 determinant is the same for all 
avours. For a simply 
onne
ted M , e.g. a ball, theinstanton number, whi
h in four dimensions takes the formq = 132�2 Z F a�� ~F a�� d4x; (1)is not quantized and may take any real value [5℄. Contrary to the situation on a 
ompa
tmanifold without boundary, on whi
h q is integer [10℄, the 
on�guration spa
e is topologi
allytrivial (i.e. without dis
onne
ted instanton se
tors) [5℄. In addition there are no fermioni
zero modes [5, 11℄ whi
h usually tend to 
ompli
ate the quantization 
onsiderably [3℄.Our previously 
ited work fo
used on the eu
lidean Nf -
avour U(N
)- or SU(N
)- gauge-theories inside 2n-dimensional balls of radius R. We 
omputed that part of the e�e
tive1



a
tion re
e
ting the intera
tion of the parti
les with the boundary S2n�1R . Here we investigatewhether the approa
h of breaking the SU(Nf )A symmetry by boundary 
onditions 
an beextended to gauge-systems in thermal equilibrium states. In the imaginary time formalismspa
etime is then a 
ylindri
al manifolds M = [0; �℄ � fspa
eg and (anti)periodi
 boundary
onditions for the (fermi)bose-�elds in the eu
lidean time x0 with period � = 1=T are imposed.Note that at �nite temperature it is only the boundary of spa
e and not of spa
e-timewhere 
hirality is broken and it is a priori an open question whether this is suÆ
ient to trigger a
hiral symmetry breaking even in the one 
avour 
ase. In addition there is a te
hni
al obsta
leto extending the CB-boundary-
ondition approa
h to non-simply 
onne
ted manifolds, e.g a
ylinder. On 
ylinders the standard de
omposition for the Dira
 operator, on whi
h theanalyti
 treatment heavily relies, must be modi�ed. The present paper is a te
hni
al one -mostly devoted to show how this diÆ
ulty 
an be over
ome. From the physi
al point of viewit is our aim to investigate how the breakdown of the 
hiral symmetry - when triggered byboundary 
onditions - in the one- and the multi-
avour 
ases is a�e
ted by �nite temperaturee�e
ts.Here we shall quantize the S
hwinger Model with a
tionS[A; y;  ℄ = SB [A℄ + SF [A; y;  ℄SB = 14 RM F��F�� ; SF = NfPn=1 RM  yniD=  n (2)on the manifold M = [0; �℄ � [0; L℄ 3 (x0; x1) (3)with volume V = �L. At �nite temperature the �elds A and  are periodi
 and antiperiodi
in eu
lidean time with period � and hen
e x0 = 0 and x0 = � are identi�ed. This means that[0; �℄ � [0; L℄ is a 
ylinder with 
ir
umferen
e � = 1=T . At the spatial ends of the 
ylinder(i.e. at x1 = 0 and x1 = L) spe
i�
 CB-boundary-
onditions are applied. Then there are nofermioni
 zero modes (see next se
tion) and the generating fun
tional for the fermions in agiven gauge-�eld ba
kground A is given by the textbook formulaZF [A; �y; �℄ = det(iD=) e R �y(iD=)�1�: (4)We shall see that these CB-boundary-
onditions indeed generate 
hiral 
ondensates forany �nite length L of the 
ylinder. However in the limit � ! 1; L ! 1 the 
ondensateswill only survive for the one 
avour 
ase and this only if the limit � !1 is taken before thelimit L!1.During the 
al
ulations the following abbreviations are used for notational simpli
ity:� = �2L ; � = x1 + y1L ; � = x1L : (5)This paper is organized as follows : In se
tion 2 we dis
uss the CB-boundary-
onditionsto be applied together with some immediate 
onsequen
es for the spe
trum of the Dira
operator iD=. Se
tion 3 is devoted to the question of how to de
ompose an arbitrary gauge-�eld on a 
ylinder. In se
tion 4 we 
ompute the fermioni
 Green's fun
tion with respe
t toCB-boundary-
onditions in arbitrary external �elds. In se
tion 5 we determine the e�e
tivea
tion after the fermions have been integrated out. Using the results of the two previous steps2



the 
hiral 
ondensates are 
al
ulated in se
tion 6. In se
tion 7 we show that the value of the
hiral 
ondensate 
ru
ially depends not only on the number of 
avours but also on the orderin whi
h the two limits � ! 1 and L ! 1 are performed. Finally we 
ompare our resultwith the 
ondensate generated by fra
tons on a torus of identi
al size and with analogousresults of non
ommutativity of the limits m! 0, L!1 in the the usual small-quark-massapproa
h. In the appendi
es we derive the boundary Seeley-DeWitt 
oeÆ
ient used in thebody of the paper.2 Chirality Breaking Boundary ConditionsIn this se
tion we shall shortly review the boundary 
onditions as dis
ussed by Hrasko andBalog [4℄ together with their most important 
onsequen
es [5, 26℄.Sin
e ZF should be real we want iD= to be symmetri
 under the s
alar produ
t(�; ) := ZM �y from whi
h we get the 
ondition(�; iD= ) � (iD=�;  ) = i I�M �y
n � 0 : (6)Imposing lo
al linear boundary 
onditions whi
h ensure this requirement amounts to have�y
n = 0 on �M for ea
h pair, whi
h is a
hieved by = B on �M with By
nB = �
n ; B2 = 1; (7)where 
n = (
; n) = n�
� = n= and n� is the outward oriented normal ve
tor�eld on �M .We shall 
hoose the one-parametri
 family of boundary operators [4℄B � B� :� i
5e�
5
n (8)whi
h is understood to a
t as the identity in 
avour spa
e. These CB-boundary-
onditionsbreak the 
5 invarian
e of the theory, making the Nf 
avour theory invariant under SU(Nf )Vinstead of SU(Nf )L � SU(Nf )R. Later they will be supplemented by suitable boundary
onditions for the gauge-�eld. These boundary 
onditions imply that there is no net U(1)-
urrent leaking through the boundary, sin
e n � j =  y
n = 0 on �M .In the following we shall make use of a Feynman Hellmann [16℄ boundary formula, whi
hmay be derived from (6,7,8) [5℄dd��k = i2 I  yk(
 � n)
5 k = ��k( k; 
5 k) ; (9)where the �k denote the eigenvalues of iD=.We 
hoose the 
hiral representation 
0 = �1; 
1 = �2 and 
5 = �3 . Then the boundaryoperators at the two ends of the 
ylinder readBL = � 0 e�e�� 0 ! (at x1=0) and BR = + 0 e�e�� 0 ! (at x1=L) : (10)3



The most important properties of these boundary 
onditions are summarized as follows [5℄:(1) The Dira
 operator has a purely dis
rete real spe
trum whi
h is not symmetri
 with respe
tto zero.(2) The Dira
 operator has no zero modes.(3) The instanton number q = 14� R ���F�� = 12� R E is not quantized . The se
ond propertyallows us to 
al
ulate expe
tation values of gauge-invariant operators ashOi = Z hOiA d��[A℄; where (11)d��[A℄ = 1ZF det�(iD= ) e�SB [A℄ D[A℄: (12)Here D[A℄ is assumed to 
ontain the gauge-�xing fa
tor in
luding the 
orresponding Fadeev-Popov determinant and hOiA denotes the expe
tation value of O in a �xed ba
kgroundhOiA = 1det�(iD=) � Z D yD O e� R  yiD=  : (13)Throughout � is the free parameter in boundary operators (10). We shall see that the �-dependen
e of the fermioni
 determinant det�(iD=) 
an be 
al
ulated analyti
ally.3 De
omposition and Deformation te
hniquesIn this se
tion we present the de
omposition and deformation te
hniques needed to determinethe fun
tional determinant of the Dira
 operator on the 
ylinder with CB-boundary-
onditionsas given by (7) and (10) .On simply 
onne
ted regions we have the de
omposition eA� = �������+ ��� su
h thateF01 = 4�. On the 
ylinder there is a one to one 
orresponden
e between � and eF01 if �obeys Diri
hlet boundary 
onditions at the two ends of the 
ylinder. But 
ylinders are notsimply 
onne
ted, �1(M) = Z, and as a result the Polyakov-loop operatorseie R �0 A0 dx0 =: e2�i
;i.e. e R �0 A0 mod 2�, are gauge-invariant. On the other hand, using the �-periodi
ity of� and the Diri
hlet boundary 
onditions on �, the above de
omposition would imply thatR �0 R L0 A0 = 0, a 
ondition whi
h does not hold in general (take a 
onstant A0). This simpleobservation already indi
ates, that the 
orre
t de
omposition of A� on the 
ylinder readseA0 = ��1�+ �0� +2�� 
eA1 = +�0�+ �1�; (14)where � obeys Diri
hlet boundary 
onditions at x1 = 0; L and � ful�lls �(0) + �(L) = 0 and
 2 [0; 1[ is the 
onstant harmoni
 part. To prove (14) one Fourier de
omposes the various�elds and 
arefully handles the zero-modes of the Lapla
ian. The harmoni
 part 
an then bere
onstru
ted from its values on the boundaries.The Dira
 operator iD= = i
�(�� � ieA�) may be fa
torized a

ording toiD= = GyiD= 0G; where iD= 0 = 
0(i�0 + 2�
=�) + 
1i�1; (15)4



and G =  g��1 00 g ! ; g :� e�(�+i�): (16)The prepotential g is an element of the 
omplexi�ed gauge-group U(1)� = S1 �R+. Now wedeform the prepotential and Dira
 operator asg� :� e��(�+i�) and iD=� = Gy� iD= 0 G� (17)su
h the deformed operator interpolates between the free and full ones: iD=�=1 = iD= andiD=�=0 = iD= 0. By usingdd�G� = �G�H ; H =  �h� 00 h ! = ��
5 + i�I : (18)one �nds for the �-variation of the integrated heatkernel of (iD=�)2dd� ( tr fetD=2�g) = 2t tr fetD=2�(H +Hy)(iD=�)2g = 2t ddt ( tr fet(D=�)22�
5g) (19)and this formula will prove to be useful in se
tion 5.4 Fermioni
 Propagator w.r.t. Boundary ConditionsIn order to 
al
ulate the 
ondensates we need the Green's fun
tion S� of the Dira
 operatoriD= on the 
ylinder subje
t to the CB-boundary 
onditions. This Green's fun
tion obeys(iD= S�)(x; y) = Æ(x � y) (20)S�(x0+�; x1; y) = �S�(x; y) (21)(BL S�)(x0; x1=0; y) = S�(x0; x1=0; y) (22)(BR S�)(x0; x1=L; y) = S�(x0; x1=L; y) (23)plus the adjoint relations with respe
t to y. The dependen
e of the gauge-potential has notbeen made expli
it and the boundary operator BL=R is the one de�ned in (10). From thefa
torization property (15) for the Dira
 operator it follows at on
e, that S� is related to theGreen's fun
tion ~S� of iD= 0 asS�(x; y) = G�1(x) ~S�(x; y)Gy �1(y) : (24)Indeed, sin
e the �eld � obeys Diri
hlet boundary 
onditions at the ends of the 
ylinder, g isunitary there and the boundary 
onditions (21-23) transform into the identi
al ones for~S�(x; y) =  ~S++ ~S+�~S�+ ~S�� ! ;where the indi
es refer to 
hirality.The free Green's fun
tion on the 
ylinder of in�nite length~Sther(x; y) = 12�i Xn2Z(�1)ne2�i
(�0�n�)=� �0B� 0 1�0 + i�1 � n�1�0 � i�1 � n� 0 1CA ;5



where �� = x��y�, is purely o�-diagonal and thus 
hirality preserving, as expe
ted, sin
e ther-mal boundary 
onditions are 
hirality-neutral. To implement the 
hirality-breaking boundary
onditions at the ends of the 
ylinder on 
an either augment ~Sther by pie
es built from the zeromodes (whi
h themselves 
annot obey the L/R 
onditions simultaneously) or by exploitinganalyti
ity arguments. In either 
ase we end up with~S�(x; y) = i2� � Xm;n2Z�Z(�1)(m+n) � e2�i
(�0=��n) � � e�=rnm �(1=snm)�(1=�snm) e��=�rnm � ; (25)where rnm = �0+ i�� (n�+2imL) and snm is the same expression with � � x1+ y1 repla
edby �1. From this expli
it expression one sees at on
e that the o�-diagonal elements onlydepend on x��y� and be
ome singular for x! y , whereas the diagonal elements depend onboth x� and y� separately but are regular at 
oin
iding points inside the 
ylinder. The sumover m respe
tively n in (25) 
an be performed by using [27℄XZ (�1)m eimxm+ ia = � i�sinha�eax (�� � x � �) (26)with the results~S�(x; y) = ie2�i
�0=�4L �XZ (�1)ne�2�in
 �0BB� e�sinh(�rn0=2L) � 1sinh(�sn0=2L)� 1sinh(��sn0=2L) e��sinh(��rn0=2L) 1CCA ; (27)or ~S�(x; y) = ie2�i
�0=�2� �XZ (�1)m �0BB� e�e�2�i
r0m=�sin(�r0m=�) � e�2�i
s0m=�sin(�s0m=�)� e�2�i
�som=�sin(��s0m=�) e��e�2�i
�rom=�sin(��r0m=�) 1CCA : (28)valid for 
 2 [�12 ; 12 ℄. For 
al
ulating the 
hiral 
ondensates we shall need the ++ and ��elements at 
oin
iding points inside the 
ylinder. From (27) we �nd the expression~S�(x; x)�� = �e��4L Xn2Z(�)n e�2in�
sin(�[� � in� ℄) : (29)whi
h rapidly 
onverges for low temperature, and from (28) the alternative form~S�(x; x)�� = �e��2� Xm2Z(�)m e�2�
(�+m)=�sinh(�[� +m℄=�) (30)whi
h is adequate for high temperature.With (24) we end up with the following expressions for 
hirality violating entries of thefermioni
 Green's fun
tion on the diagonalS�(x;x)�� = e�2�(x) ~S�(x;x)�� : (31)The free Green's fun
tions ~S�� have been 
omputed in (29) and (30). They depend only onthe harmoni
 part 
 in the de
omposition (14) of the gauge-potential.6



5 Fermioni
 Determinant w.r.t. Boundary ConditionsIn this se
tion we shall 
ompute the �-dependen
e of the fermioni
 determinant. We shallsee that the s
attering of the fermions o� the boundary generates a CP-odd �-term in thee�e
tive a
tion for the gauge-bosons.5.1 Zetafun
tion De�nitionThe Dira
 operator and the boundary 
onditions are both 
avour neutral. Thus the deter-minant is the same for all 
avours and it is suÆ
ient to 
al
ulate it for one 
avour. For theexpli
it 
al
ulations we shall use the gauge-invariant �-fun
tion de�nition of the determinant[17, 18℄ log det �(iD=) :� 12 log det �(�D=2) :� �12 dds ����s=0��(�D=2; s) (32)and 
al
ulate the �-dependen
e of the �-fun
tion by means of the boundary Feynman Hell-mann formula (9). Denoting f�kjk 2 Ng the (positive) eigenvalues of �D=2, the 
orresponding�-fun
tion is de�ned and rewritten as a Mellin transform in the usual way��(s) :� ��(�D=2; s) :�Xk ��sk = 1�(s) 1Z0 ts�1 tr �(e�t(�D=2)) dt (33)for Re(s) > d=2 = 1 and its analyti
 
ontinuation to Re(s) � 1.5.2 Stepwise Cal
ulationWe will study how det�(iD=�;
) varies with �, � and 
 to 
ompute the normalized determinantdet�(iD=)det0(i�=) � det�(iD=�=1;
)det0(iD=�=0;0) : (34)The 
al
ulation is done in three steps. We shall 
al
ulate all three fa
tors indet�(iD=�=1;
)det0(iD=�=0;0) � det�(iD=�=1;
)det0(iD=�=1;
) � det0(iD=�=1;
)det0(iD=�=0;
) � det0(iD=�=0;
)det0(iD=�=0;0) (35)in turn.From the generalized Feynman-Hellmann formula (9) and the fa
t that iD= has no zeromodesso that the various partial integrations are justi�ed, the �-variation of (33) is found to bedd���(s) = 2s�(s) 1Z0 ts�1 tr �(etD=2
5) : (36)Now one 
an use the asymptoti
 small-t-expansion for etD=2f , where f is a testfun
tion,tr �(etD=2f) = 12�t Xm=0;1;::: tm=2 tr � �Z am=2(f) + I bm=2(f)� ; (37)and where the am=2; bm=2 denote the 
orresponding volume and boundary Seeley DeWitt
oeÆ
ients respe
tively. Plugging this into the expression (36) yields [19, 20, 21℄dd� 12 log det �(�D=2) = � 14� Z tr (a1(
5))� 14� I tr (b1(
5)) : (38)7



For the squared Dira
 operator �D=2 that part of a1 whi
h leads to a nonvanishing 
5-tra
e isknown [22℄ to be eF01=2�, i.e. independent of �. On the other hand H b1(:), whi
h dependson the boundary 
onditions, is 
al
ulated expli
itly in the appendix to beI b1(f) = I 12� 1 00 1 !� log(e�)sinh(�)  e� �1�1 e�� !� �nf (39)and does not 
ontribute for f = 
5.Integrating with respe
t to � yields the following �rst fa
tor in (35)det�(iD=�=1;
)det0(iD=�=1;
) = expf� �2� Z F01g = expf� �2� Z 4�g: (40)To �nd the �-variation leading to the se
ond fa
tor we use (19) in (33) with the resultdd���(�D=2�;
; s) = � 2s�(s) 1Z0 ts�1 tr �(etD=2�2�
5); (41)where we integrated by parts. Again we use the small-t-expansion (37) of the heat kernel,but now with test fun
tion f = 2�
5. Thusdd� 12 log det �(�D=2�;
) = 14� Z tr (a1(2�
5)) + 14� I tr (b1(2�
5)) (42)where the universal a1(:) yields the wellknown S
hwinger term [22℄. Sin
e now the normalderivative of the testfun
tion on the boundary in non-zero, the last surfa
e term 
ontributes.Using (39) we end up withdd� 12 log det �(�D=2�;
) = 14� ZM 2�4�� 12� I�M log(e�) �n�: (43)Setting � = 0 and integrating with respe
t to � yields the following se
ond fa
tor in (35):det0(iD=�=1;
)det0(iD=�=0;
) = e 12� R �4�: (44)We are left with the task to 
al
ulate the third fa
torlog det0(iD=�=0;
)det0(iD=�=0;0) = �12 
Z0 dds ����s=0 dd~
 �0(�D=2�=0;~
 ; s) d~
 : (45)For that we 
omputed the heatkernel of the operator�D= 2�=0;~
 = ��(�0 � 2�i~
=�)2 + �21�I2for � = 0. The expli
it result isK(t; x; y) = 14�t XZ�Z(�1)m+ne�(�0�n�)2=4te2�i~
(�0�n�)=� e�(�1�2mL)2=4t �e�(��2mL)2=4t�e�(�+2mL)2=4t e�(�1+2mL)2=4t ! (46)8



whi
h results in the tra
e (V = �L)ZM tr�=0 (K(t; x; x)) = V2�t�1 +X0(�1)m+ne� (n�)2+(2mL)24t 
os(2�n~
)� ; (47)where the prime denotes the omission of the (m;n) = (0; 0) term. The ~
-derivative of theMellin transform, after substituting t! 1=t, readsdd~
�0(�D=2�=0;~
 ; s) = V2��(s) 1Z0 X0(�1)m+ne�t[(n�=2)2+(mL)2 ℄ dd~
 
os(2�n~
) t�s dt (48)whi
h may be integrated by parts (for s > 0) to givedd~
�0(�D=2�=0;~
 ; s) = �2V� s�(s) 1Z0 X0(�1)m+n e�t [(n�=2)2+(mL)2℄[(n�)2 + 4(mL)2℄ dd~
 
os(2�n~
) t�s�1 dt :Only the pole of order one of the integral at s = 0 
an 
ontribute to the s-derivative at s = 0of the �-fun
tion. Sin
e this pole entirely stems from the lower limit of the integral we maysplit the latter into two partsdd~
�0(�D=2�=0;~
 ; s # 0) = �2V� s�(s)(Z �0 : : : + Z 1� : : :)= 2V� (s+
s2+: : :) �X0(�1)m+n dd~
 
os(2�n~
)[(n�)2 + 4(mL)2℄��s + : : :to obtain dds ����s=0 dd~
�0(�D=2�=0;~
; s) = 2V� X0(�1)m+n dd~
 
os(2�n~
)(n�)2 + (2mL)2 : (49)Plugging this result into (45) we end up with the expression��(
) � log det0(iD=�=0;
)det0(iD=�=0;0) = �V� X0(�1)m+n 
os(2�n
)� 1(n�)2 + (2mL)2 (50)for the third fa
tor of the fun
tional determinant (34) in the fa
torization (35). With thehelp of Im(�)� X0 e2�i(ma1+na2)jm+ �nj2 = �2 log ��� 1�(�)� " 12 + a1a2 # ���this result 
an be rewritten as [29℄e��(
) = det0(iD=�=0;
)det0(iD=�=0;0) = 8>><>>: �3(
;i�)�3(0;i�)e��
2=� �3(i
=�;i=�)�3(0;i=�) : (51)These two equivalent forms will be useful in the low- and high- temperature expansion of the
ondensates.
9



5.3 E�e
tive A
tionNow we 
an 
ombine the 
lassi
al (eu
lidean) a
tion of the photon �eld, rewritten in the newvariables (14) 14F��F�� = 12e24�4� � : SB[�℄ (52)with our expli
it result for the fun
tional determinant (34). Colle
ting the 
ontributions(40,44,51) and adding the 
lassi
al a
tion (52) we end up with the e�e
tive a
tion� � ��[
; �℄ � Nf�(
) + ��[�℄ (53)where �(
) has been given in (51) and ��[�℄ is��[�℄ � 12e2�ZM �42�� �2ZM �4�+ � � �2 ZM 4�� (54)and � : � sNfe2� (55)is the analog of the �0-mass in QCD. We have used that the fun
tional determinant is thesame for all 
avours. The fun
tional measure takes the formd��[A℄ = 1Z� e��� [
;�℄ d
 D� Æ(�) D� : (56)We have taken into a

ount that the gauge-variation of the Lorentz gauge-
onditionF :� ��A� = 4�and the Ja
obian of the transformation from fAg to the new variables f�; 
; �g are indepen-dent of the �elds. A
tually, the 
orresponding determinants 
an
el ea
h other.We 
on
lude that the expe
tation value of any gauge-invariant operator O (whi
h will notdepend on �) is given by hOi = R d
 D� O e���[
;�℄R d
 D� e��� [
;�℄ (57)with ��[
; �℄ from (53,54).6 Chiral CondensatesOur result (57) may be applied to 
al
ulate the 
hiral 
ondensates ash y(x)P� (x)i = R d
D� S�(x; x)�� e���[
;�℄R d
D� e���[
;�℄ (58)with S� from (31) and �� from (53). Both the (exponentiated) a
tion and the Green's fun
tionfa
torize into parts whi
h only depend on 
 and on �, respe
tively. Thus (58) fa
torizes ash y(x)P� (x)i = C�(x) �D�(x) (59)with x0-independent fa
torsC�(x1) = R d
 ~S�(x; x)�� e�Nf�(
)R d
 e�Nf�(
) ; D�(x1) = R D� e�2�(x)��� [�℄R D� e��� [�℄ (60)whi
h depend on the parameters �;Nf ; �; L. Here and below the 
-integrals extend over oneperiod, e.g. [�1=2; 1=2℄. 10



6.1 Harmoni
 IntegralNow we shall see, how far we 
an evaluate the �rst fa
tor in (59) whi
h 
ontains the integralsover the harmoni
 part of the gauge-�eld.Plugging in the Green's fun
tion (25,31) as well as (50) we obtain the unevaluated expres-sionC�(x1) = � e��4�L XZ�Z(�1)m+n �+m(�+m)2+(n�)2 � 1=2R�1=2 
os(2�n
)e�Nf2� P0(�1)k+l 
os(2�l
)�1k2=�+l2�� d
1=2R�1=2 e�Nf2� P0(�1)k+l 
os(2�l
)�1k2=�+l2�� d
 :(61)To investigate the low-temperature expansion we use (29) and the upper line in (51) andarrive at C�(x1) = �e��4L Xn2Z (�1)nsin(�[� � in� ℄) � R d
 e�2�in
 �Nf3 (
; i�)R d
 �Nf3 (
; i�) ; (62)Alternatively, for the high-temperature expansion we use (30) and the lower line in (51), sothatC�(x1) = �e��2� Xm2Z (�1)msinh(�[� +m℄=�) � R d
 e��
[Nf
�2(�+m)℄=� �Nf3 (i
=�; i=�)R d
 e��
2Nf=� �Nf3 (i
=�; i=�) : (63)For one 
avour the 
-integral in (62) is easily 
al
ulated and one �ndsC�(x1) = �e��4L Xn2Z (�1)ne���n2sin(�[� � in� ℄) : (64)6.2 Nonharmoni
 IntegralNow we shall 
ompute the se
ond fa
tor in (59) as de�ned in (60). We re
all that theintegration extends over �elds �, whi
h are periodi
 in the x0 and satisfy Diri
hlet boundary
onditions at the ends of the 
ylinder, i.e. at x1 = 0; L.Doing the gaussian integrals one ends up withD�(x1) = expn 2�NfK�2(x; x)o � expn� �2 �Z 40K�2(x; x0)� �2 �Z 40K�2(x0; x)o (65)where the integration is over x0 and the kernelK�2(x; y) = hxj �2�4(�4+ �2) jyi = hxj 1�4jyi � hxj 1�4+ �2 jyi (66)is with respe
t to Diri
hlet boundary 
onditions. Being the di�eren
e of two Green's fun
tionswith the same singular behaviour it is �nite at 
oin
iding arguments.The expli
it form of the kernel isK�2(x; y) = V�2 X 0m;n2Z � 1(2mL)2+(n�)2 � 1(2mL)2+(n�)2+(�V=�)2� �
os �2�m�0� � sin��nx1L � sin��ny1L � ; (67)11



where the prime indi
ates the omission of the term withm = n = 0. For 
oin
iding argumentsK be
omes x0-independent as required by translational invarian
e. For performing either thesum over m or over n in (67) one uses the formulaXj2Z 
os(jx)j2 + a2 = �a 
osh(a(� � x))sinh(a�) (x 2 [0; 2�℄)to end up either with the expressionK�2(x; x) = 12� Xn�1�
th(n��)n � (n! qn2 + (�L=�)2)��1� 
os(2�n�)� ; (68)whi
h is useful for the low temperature expansion, or alternatively with the expressionK�2(x; x) = 12� Xm�1 
osh(m�=�) � 
osh(m�(1� 2�)=�)m sinh(m�=�) � (m! qm2 + (��=2�)2)+ �(1� �)2� + 
osh(�L(1� 2�)) � 
osh(�L)2�� sinh(�L) ; (69)whi
h is useful for the high temperature expansion. Both expressions (68) and (69) do indeedvanish as x1 rea
hes the boundary in a

ordan
e with the imposed boundary 
onditions.On
e we have the expli
it formula (67) at hand we 
an 
ompute in a straightforward waythe expression Z 4zK�2(z; x) dz = � 4� Xn=1;3;::: ( 1n � nn2 + (�L=�)2 ) sin(�n�): (70)Applying the formulaXn=1;3;::: n sin(nx)n2 + a2 = �4 sh(a(� � x)) + sh(ax)sh(a�) ( x 2 ℄0; �[ ) (71)the expression (70) is seen to take the simple formZ 4zK�2(z; x) dz = sinh(�L(1� �)) + sinh(�L�)sinh(�L) � 1 : (72)6.3 Final ResultNow all pie
es to 
ompute the 
hiral 
ondensate (59) have been 
al
ulated. For C� we havethe two alternative forms (62) and (63), and D� is given by (65) wherein we 
an use one ofthe equivalent representations (68) or (69) for K�2 together with (72). Thus we haveh yP� i(x1) = � 14L Xn2Z (�1)nsin(�[� � in� ℄) � R d
 e�2�in
 �Nf3 (
; i�)R d
 �Nf3 (
; i�) �expf 1Nf Xn�1�
th(n��)n � (n! sn2 + (�L� )2)��1� 
os(2�n�)�g �
12



expf�� � sinh(�L(1� �)) + sinh(�L�)sinh(�L) g (73)h yP� i(x1) = � 12� Xm2Z (�1)msinh(�[� +m℄=�) � R d
 e��
[Nf
�2(�+m)℄=� �Nf3 (i
=�; i=�)R d
 e��
2Nf=� �Nf3 (i
=�; i=�) �expf 1Nf Xm�1 
osh(m�=�)� 
osh(m�(1�2�)=�)m sinh(m�=�) � (m! sm2+(��2� )2)g �expf 2�Nf ��(1� �)2� + 
osh(�L(1� 2�))� 
osh(�L)2�� sinh(�L) �g �expf�� � sinh(�L(1� �)) + sinh(�L�)sinh(�L) g (74)with ex
ellent 
onvergen
e properties in the low- and high-temperature regime, respe
tively.This result is one of the two main results of this arti
le. To simplify the analysis we shallnow study the 
ondensates at the midpoints of the 
ylinder.6.4 h yP� i at MidpointsIf a 
ondensate survives at the midpoints when the boundaries are taken to in�nity then the
hiral symmetry is broken.For x1 = L=2 the formulas (62), (63) simplify toC�(L2 ) = �e��4L  1 + 2Xn�1(�1)n R 
os(2�n
) �Nf3 (
; i�)d

osh(n��) R �Nf3 (
; i�) d
 ! (75)C�(L2 ) = �e��� Xm�0(�1)m R 
osh((2m+1)�
=�) e��Nf 
2=��Nf3 (i
=�; i=�) d
sinh((2m+1)�=2�)R e��Nf 
2=��Nf3 (i
=�; i=�) d
 : (76)The formulas (68) and (69) simplify toK�2(L2 ) = 1� Xn=1;3;:::�
th(n��)n � (n! sn2 + (�L� )2 )� (77)K�2(L2 ) = 12� Xm�1�
h(m�=�)� 1m sh(m�=�) � (m! sm2 + (��2� )2 )�+ 18� � 12�� 
h(�L)� 1sh(�L) : (78)Depending on whi
h one of the equivalent forms (68) and (69) for K�2 on the diagonal is usedthe fa
tor D� at the midpoints is found to readD�(L2 ) = expn 2Nf Xn=1;3;::: 
th(n��)n � (n! sn2 + (�L� )2 )o �expn� ��1� 1=
h(�L=2)�o (79)D�(L2 ) = expn 1Nf Xm�1 th(m�=2�)m � (m! sm2 + (��2� )2 )o �expn �Nf � 14� � th(�L=2)�� �o � expn� ��1� 1=
h(�L=2)�o (80)whi
h 
an be used to derive the low and high temperature expansions, respe
tively.13



7 Non
ommutativity of the Limits ��1! 0 and L!1In this se
tion we show that the 
ondensates at the midpoints, h yP� i�(L2 ), depend on theorder in whi
h the limits � !1 and L!1 are taken; for Nf = 1 the 
ondensates surviveonly if we �rst let � !1.7.1 Limit � !1 for �nite spatial length LHere we derive the low temperature limit, i.e. the 
ondensates for � large 
ompared to the�xed spatial length L and the indu
ed mass �.From the expli
it expression (75) we see at on
e thatC�(L2 ) = �e��4L (1 +O(e�2���=2L)) (81)for any number of 
avours.In order to get the 
orresponding limit for the se
ond fa
tor D�(L2 ) in (59) we use (79)and perform the asymptoti
 expansion of the 
oth to getD�(L2 ) = expn 2Nf Xn=1;3;:::� 1n � 1pn2 + (�L=�)2�o �expn 4Nf Xn=1;3;:::Xk�1�e�2k�n��2Ln � e�2kpn2+(�L=�)2 ��2Lpn2 + (�L=�)2 �o �expn� �(1� 1=
h(�L=2))o (82)adapted to � � L as an intermediate result. Using the identity [27℄Xn=1;3::: 1n � 1pn2 + (x=�)2 = 
2 + 12 ln(x� )�Xj�1(�)jK0(jx) (83)valid for x > 0, where 
 denotes the Euler Mas
eroni 
onstant and K0 the zeroth Besselfun
tion the se
ond fa
tor 
an be rewritten asD�(L2 ) = e
=Nf��L=��1=Nf expn� 2Nf Xj�1(�1)jK0(j�L)o �expn� �(1� 1=
h(�L=2))o � O(exp( 4Nf e�2���=2L)) : (84)Combining (81) and (84) we get the resulth yP� i�(L2 ) = � 14L(�L2� )1=Nf e
=Nf expn� 2Nf Xj�1(�1)jK0(j�L) o �expn� �=
h(�L=2)o � (1 +O(e�2���=2L)) (85)where the � dependen
ies are found to 
an
el up to exponentially small remainders. Inparti
ular we have found a nonzero value for h yP� i for midpoints at zero temperature forany Nf for �nite spatial length L. 14



7.2 Limit L!1 for �nite temperatureHere we give the large volume expansion of (59) valid for length L whi
h is large as 
omparedto the �xed inverse temperature � and ��1.The �rst task is to derive the high temperature asymptoti
s for the �rst fa
tor C� in (59).By a variety of manipulations in
luding in�nite produ
t representations for the exponentialfa
tors 
onstituting the measure we arrived at the asymptoti
 result [24℄C�(L2 ) = 8>>>>>>>>><>>>>>>>>>:
� e��� � p��p2Le� 52 �L� (Nf = 1)� e��� � 2e�3�L� (Nf = 2)� e��� � 4e�2 2Nf�1Nf �L� (Nf � 3) (86)whi
h is an exponential de
ay whi
h goes faster as the number of 
avours in
reases.Also, we performed the asymptoti
 expansions of the hyperboli
 fun
tions in (80) andarrived at D�(L2 ) = expn 1Nf �
 + ��� + ln(��4� )� 2Xj�1K0(j��)�o �expn 2Nf Xm�1Xl�1(�1)l�e�l m�=�m � e�l�pm2+(��=2)2=�pm2 + (��=2)2 �o �expn 1Nf �4� �1� 1 + 2 Pl�1(�1)le�l�L�L=2 �o �expn� � � 2�Xl�0(�1)le�(2l+1)�L=2o (87)where everything is at least exponentially suppressed as 
ompared to the growing fa
tor inthe se
ond-last line.Combining (86) and (87) we end up with the resulth yP� i(L2 ) = � 8>>>><>>>>: 1�p2�L � e� 52 �L� (Nf = 1)2� � e�3�L� (Nf = 2)4� � e�2 2Nf�1Nf �L� (Nf � 3) 9>>>>=>>>>; � e 1Nf �L2� � e
=Nf � ���4� �1=Nfexpn� 2Nf Xj�1K0(j��)o �O� expn� 2Nf e�2�L=�o� � (88)expn� 1Nf 2���Xl�1(�1)le�l�Lg � expn� 2�Xl�0(�1)le�(2l+1)�L=2owhi
h gives a de
ay h yP� i(L2 ) � 8>>><>>>: �
onst � 1pLe�2�L� (Nf = 1)�
onst � e� 8Nf�52Nf �L� (Nf � 2) (89)
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for spatial lengths L whi
h are large 
ompared to the inverse temperature � and the inverse
harge e�1.7.3 Non
ommutativity of the limits � !1 and L!1Using the results of the previous subse
tions it is easy to show that the two limits � ! 1and L!1 do not 
ommute.Re
all that h yP� i(L2 ) is a shorthand for h yP� i�;Nf ;�;L(x1 := L2 ).Now the formulas (85), (89) implylimL!1 lim�!1 h yP� i(L2 ) = 8><>: � 14�e
q Nf e2� (Nf = 1)0 (Nf � 2) (90)lim�!1 limL!1 h yP� i(L2 ) = 0 ( 8 Nf � 1) (91)respe
tively, whi
h is the other main result of this paper.From a physi
al point of view this means that the system under 
onsideration shows adistin
tive hysteresis phenomenon: When both of � and L are sent to in�nity, the one-
avoursystem keeps the knowledge of whi
h limit was performed �rst in the a
tual value of its 
hiral
ondensate. Obviously there is no su
h non-
ommutativity for �nite 
hanges of the lengths� and L. We shall further 
omment on this interesting behaviour in the 
on
lusions.8 Dis
ussion and Con
lusionsIn this paper we have performed in a fun
tional framework the quantization of the Nf 
avoureu
lidean S
hwinger model inside a �nite temperature 
ylinder with SU(Nf )A breaking lo
alboundary 
onditions at the two spatial ends to trigger 
hiral symmetry breaking. We havedetermined the e�e
tive a
tion for the bosoni
 subsystem subje
t to these boundary 
ondi-tions, whi
h arises after integrating out the fermions. We have shown the way the expe
tationvalue of an arbitrary gauge-invariant operator 
an be 
omputed and in parti
ular we haveperformed the 
al
ulation of the 
ondensates h yP� i(x) (to be used as the most simple orderparameters) for any point x inside the 
ylinder and any value of the inverse temperature �and spatial length L.The quantization was greatly simpli�ed by the fa
t that the boundary 
onditions 
hosen(the CB-boundary-
onditions) 
ompletely ban the zero modes. On
e more we emphasize thefa
t that our results have been obtained purely analyti
ally and without doing 'instantonphysi
s'. The te
hni
al aspe
ts are rather di�erent as those one en
ounters when quantizingthe theory on a sphere [15℄ or on a torus [3, 14, 23℄.Nevertheless our results are in full agreement with the earlier instanton-type and small-quark-mass 
al
ulations. Thus it seems that the CB-boundary-
onditions applied at the twospatial ends of the 
ylinder give a perfe
t substitute for introdu
ing small quark masses totrigger the 
hiral symmetry breaking and a real alternative to the study of torons [12℄ orfra
tons [8℄ or singular gauge-�elds on S4 [13℄. The real advantage is of 
ourse the fa
tthat they 
onstitute almost exa
tly the border of what 
an be 
al
ulated analyti
ally. Thefun
tional integral over the prepotential is gaussian, whereas, in general, the integration over16



the harmoni
 part of the gauge-potential is not. However the latter redu
es to gaussianintegrals in the low and high temperature expansions.In the low temperature limit ��1 = 1=qNfe2=� � L� � = T�1 we found for the 
hiral
ondensate the asymptoti
 valueh yP� i(L2 ) = � 14Le
=Nf��L� �1=Nf = � 14Le
=Nf�qNfe2=� L� �1=Nf (92)whi
h, when restri
ted to the two-
avour 
ase redu
es toh yP� i(L2 ) = ��e
p2e2=�16�L �1=2 : (93)This expression is identi
al to the result of Shifman and Smilga [8℄, who allowed for fra
ton
on�gurations on the torus.In the high temperature limit T = ��1 � qNfe2=� � L�1 we found for the 
hiral
ondensate an exponential de
ay with T .For intermediate temperatures T = ��1 ' qNfe2=� and �nite L one has to retreatto numeri
al methods to evaluate the remaining sum and the integrals in (75) and (79) orequivalently in (76) and (80). One realizes that the observable h P� i viewed as a fun
tion ofT strongly resembles the behaviour of an order parameter in a system whi
h su�ers a se
ondorder phase transition for the 
ase Nf � 2. However, the 
hiral 
ondensate does not reallyvanish at any �nite temperature, it is just exponentially 
lose to zero for temperatures largerthan the indu
ed mass � = qNfe2=�. Thus, in a stri
t sense, the 
hiral symmetry remainsbroken even for Nf � 2 at all �nite temperatures as long as L stays �nite, as has been arguedto be a general fa
t by Dolan and Ja
kiw [9℄. However, if L is sent to in�nity for �nite �, the
ondensate exponentially drops to zero.Our main result is the fa
t that the limits � ! 1 and L ! 1 do not 
ommute for theobservable h yP� i in the Nf =1 
ase, sin
elimL!1 lim�!1 h yP� i(L2 ) = � 14�e
se2� (Nf = 1) (94)lim�!1 limL!1h yP� i(L2 ) = 0 ( 8 Nf � 1) (95)whi
h implies that there is no unique in�nite volume limit. Thus it seems that the 
ombinationof �nite-temperature and CB- boundary 
onditions provides an interesting tool for drivingthis system either into the true or the wrong va
uum state. The result (94,95) is ratherremarkable, sin
e it means that the one-
avour system shows some hysteresis phenomenon:As far as we are aware of the literature, su
h phenomena are known for spin systems but theyare rather untypi
al for analyti
ally solvable �eld theories. However one of the interestingnew results in this respe
t is the work by Hetri
k, Hosotani and Iso about the massive multi-
avour S
hwinger model on the zero temperature 
ylinder [25℄. They analyzed the situationfor small quark masses and �nite (
y
li
) spatial length L. In parti
ular they found that thetwo limits m ! 0 and L ! 1 fail to 
ommute. Thus we 
on
lude that 
hirality breakingboundary 
onditions give an interesting alternative to introdu
ing small quark masses.17
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it Constru
tion of the Fermioni
 Heat KernelIn this appendix we sket
h the 
onstru
tion of the heat kernel of the squared Dira
 operator(iD= j�=0)2 = (i�= + 2�
=�
0)2 on a thermal manifold, whi
h allows to 
ompute the relevantSeeley DeWitt 
oeÆ
ient, a task, whi
h itself is postponed to appendix B. For that we 
on-stru
t the heat kernel ~K on the �nite 
ylinder f(x0; x1) j x0 2 [0; �[ ; x1 � 0 g whi
h obeys(besides the usual heat kernel relations) the boundary 
onditions(B� ~K)(t; x0; 0; y) = ~K(t; x0; 0; y) (96)(B�i�= ~K)(t; x0; 0; y) = (i�= ~K)(t; x0; 0; y) (97)~K(t; x0+�; x1; y) = � ~K(t; x0; x1; y) (98)as well as the adjoint relations with respe
t to y, where B� is a shorthand for BL(�) de�nedin (10).The tri
k is to start 
onsiderations on the half plane f(x0; x1) j x1 � 0g, sin
e here the abovesquared Dira
 operator 
an be de
omposed as(i�=x + 2�
=� � �1)2 = e2�i
x0=�(i�=x)2e�2�i
x0=� (99)and 
orrespondingly the free heat kernel takes the simple form14�te�((�0)2+(�1)2)=4te2�i
�0=� = 14�te�((�0�4�i
t=�)2+(�1)2)=4te�4�2
2t=�2 (100)where �0 = x0� y0; �1 = x1� y1. Using that the kernel 
an be Fourier transformed and fromthe mirror prin
iple one is led to 
onsider the expression1(2�)2 1Z�1 1Z�1 e�(k20+k21)teik0�0+ik1�1 dk0dk1+ 1(2�)2 1Z�1 1Z�1 e�(k20+k21)t  f(k0; k1) g(k0; k1)g(k0; k1) h(k0; k1) ! eik0�0+ik1� dk0dk1as an ansatz for the heat kernel of the operator (i�=)2 = �� � I2 on the half plane. Theboundary 
ondition at x1 = 0 immediately transforms into an algebrai
 relation among f; g; hwhi
h is solved by the expressionsf(k0; k1) = �e2�(k0�ik1)� (k0�ik1)e2�(k0+ik1)� (k0�ik1)g(k0; k1) = � 2e� ik1e2�(k0+ik1)� (k0�ik1)h(k0; k1) = �e2�(k0+ik1)� (k0+ik1)e2�(k0+ik1)� (k0�ik1) :18



The resulting integrals 
an be done in two steps. First only the numerators of the fun
tionsf; g; h are taken into a

ount and the resulting expressions are integrated over. Se
ond thefull expressions have to be read as di�erential equations in x0; x1 in the manner indi
ated bythe previously omitted denominators of the fun
tions f; g; h. There is a unique solution tothis pro
edure whi
h falls o� in both x0 plus the positive x1 dire
tions (note � 2 R) :14�t e� (�0)2+(�1)24t + 14�t  e�sh� �
h��
h� �e��sh� ! e� (�0)2+�24t+ i8�1=2t3=2  e�sh� �sh��sh� e��sh� ! � ��0
h� + i� sh�� �e� (�0
h�+i� sh�)24t � �1 + erf( i�0sh��� 
h�2t1=2 )� :Sin
e on the half-plane the operator (i�= + 2�
�1=�)2 has the de
omposition (99) this im-mediately yields its heat kernel ( to be denoted ~K ) by just in
luding a fa
tor e2�i
�0=� inea
h term. Finally the �nite temperature boundary 
ondition (98) is taken into a

ount bysubstituting �0 by �0�n�, in
luding an additional (�1)n and performing the sum over n 2 Z.The heat kernel ~K�=0 of (iD= j�=0)2 = (i�=+2�
�1=�)2 subje
t to the boundary 
onditions(96) - (98) on the half 
ylinder f (x0; x1) j x02 [0; �[ ; x1 � 0 g takes the �nal form~K = X(�1)n 14�t e� (�0�n�)2+(�1)24t e2�i
(�0�n�)=�+ X(�1)n 14�t  e�sh� �
h��
h� �e��sh� ! e� (�0�n�)2+�24t e2�i
(�0�n�)=�+ X(�1)n i8�1=2t3=2  e�sh� �sh��sh� e��sh� ! � �(�0�n�)
h� + i� sh�� �e�((�0�n�)
h�+i� sh�)24t �  1 + erf( i(�0�n�)sh��� 
h�2t1=2 )! (101)where the sums run over n2Z and 
an be seen to 
onverge absolutely and thus uniformely.B Extra
tion of the Relevant Heat Kernel CoeÆ
ientsIn this appendix we shall 
ompute the surfa
e Seeley DeWitt 
oeÆ
ient b1 of the operator�D=2 whi
h enters the 
al
ulation of it's fun
tional determinant. We �rst note that in generalH tr (bm(')) with a smooth test fun
tion ' on a d dimensional manifoldM has the expansionI�M tr (bm(')) = d�1Xp=0 I�M tr (bm:p(R;�; F::) � �pn') ;where bm:p is a gauge-invariant and Lorentz-
ovariant lo
al polynomial in the intrinsi
 andextrinsi
 
urvatures of the boundary as well as in the �eld strength and its 
ovariant derivativeson the boundary. Here �pn' denotes the p fold derivative of the test fun
tion ' along the19



(outward oriented) normal of the boundary. In the 
ase of a two dimensional manifold withHrasko Balog boundary 
onditions (10) the expansion of H tr (b1(')) simpli�es toI tr (b1(')) = I tr (b1:0(�)� � ') + I tr (b1:1(�) � �n') :For our purposes it is suÆ
ient to know the 
oeÆ
ient b1:1, sin
e the �rst term does not
ontribute to (42) (due to ' :� H+Hy = 0 on �M) and in (38) it would yield an uninteresting
onstant whi
h �nally 
an
els in expe
tation values of gauge-invariant operators. The fun
tionb1:1 
an be determined from the heat kernel on the diagonal, K(t; x; x) of �D=2 = �D=2j�=1whi
h is identi
al to ~K(t; x; x) of �D=2j�=0 by 
al
ulatingZM K(t; x; x) � '(x) = ZM ~K(t; x; x) � '(x) � 1Z0 ~K(t; x; x) � �'(x0; 0) + x1 � �1'(x0; 0) + :::� dx1where ~K denotes the heat kernel (101) 
al
ulated in appendix A. In writing this expansion wehave anti
ipated that for small t the heat kernel on the diagonal is sharply peaked about theboundary whereupon it is justi�ed to expand the test fun
tion ' about x1 = 0. Using thisresult and denoting '0(x0; :) the �rst derivative of ' with respe
t to it's se
ond argument onehas to 
ompute an expression whose �rst few terms in the small t expansion take the formXn2Z(�1)n  1 00 1 ! � 14�t e�n2�24t e�2�in
 � 1Z0 '(x0; x) dx+Xn2Z(�1)n  e�sh �
h�
h �e��sh ! � 14�t e�n2�24t e�2�in
 � 1Z0 e�x2=tdx � '(x0; 0)+Xn2Z(�1)n  e�sh �
h�
h �e��sh ! � 14�t e�n2�24t e�2�in
 � 1Z0 x e�x2=tdx � '0(x0; 0)+Xn2Z(�1)n  e�sh �sh�sh +e��sh ! � 1Z0 1 
hn� � 2ishx8�1=2it3=2 e� (
hn��2ishx)24t ��1� erf(
h2x+ ishn�2t1=2 )� e�2�in
 dx � '(x0; 0)+Xn2Z(�1)n  e�sh �sh�sh +e��sh ! � 1Z0 x 
hn� � 2ishx8�1=2it3=2 e� (
hn��2ishx)24t ��1� erf(
h2x+ ishn�2t1=2 )� e�2�in
 dx � '0(x0; 0)where the �rst line gives the usual a0 
oeÆ
ient whereas the remaining four integrals 
ontaininformation about the b1=2 and b1 
oeÆ
ients. Here and below we use the abbreviationssh = sh�; 
h = 
h�.The �rst and se
ond integrals are easily evaluated using the formulasI1 := 1Z0 e�x2t dx = p�t2 ; I2 := 1Z0 x � e�x2t dx = t2 :20



The third and fourth integrals are handled using the formulasI3 : = 1Z0 
hn� � 2ishx8�1=2it3=2 e� (
hn��2ishx)24t (1� erf(
h2x+ ishn�2t1=2 )) dx= � 18�1=2t1=2 
hsh e�n2�24t + 18�1=2t1=2 1sh � e� 
h2 n2�24t erf
( ishn�2t1=2 )I4 : = 1Z0 x 
hn� � 2ishx8�1=2it3=2 e� (
hn��2ishx)24t (1� erf(
h2x+ ishn�2t1=2 )) dx= � 18� 
hsh e�n2�24t + 18�1=2t1=2 1sh � 1Z0 e� (
hn��2ishx)24t erf
(
h2x+ ishn�2t1=2 ) dxwhi
h result in the small t asymptoti
sI3 �= 8>>>>><>>>>>: � 18�1=2t1=2 
hsh e�n2�24t � i4�sh2 e�n2�24t (1 +O(t)) (n > 0)� 18�1=2t1=2 
hsh + 18�1=2t1=2 1sh (n = 0)� 18�1=2t1=2 
hsh e�n2�24t + i4�sh2 e�n2�24t (1 +O(t)) (n < 0) (102)
I4 �= 8>>>>>><>>>>>>: � 18� 
hsh e�n2�24t � it1=28�1=2sh2n� e�n2�24t (1 +O(t1=2)) (n > 0)� 18� 
hsh + 18� log(
h+sh)�log(
h�sh)2sh2 (n = 0)� 18� 
hsh e�n2�24t � it1=28�1=2sh2n� e�n2�24t (1 +O(t1=2)) (n < 0) (103)where the result for I3 immediately follows from the asymptoti
 expansion [28℄p� z ez2erf
(z) �= 1 + 1Xk=1(�1)k 1 � 3 � : : : � (2k�1)(2kz2k) (z !1; jargzj < 3�4 ) (104)whereas the expression for I4 results from a 
omputation establishing the asymptoti
 be-haviour f(w) = 1Z0 e�(
hw�ishx)2erf
(
hx+ ishw)dx= e�w2�� i2sh � 1w + 
h2�1=2sh2 � 1w2 + i4sh � 1w3 +O( 1w4 )� (105)for w � 1.Putting everything together we arrive at the small t expansion of the heat kernelZM K(t; x; x)'(x) dx �O(t1=2) = (106)

21



+ 14�t � �PZ (�1)ne�n2�24t 
os(2�n
)� � R '(x0; x1) d2x+ 18�1=2t1=2 � �� �1 00 �1 �PZ (�1)ne�n2�24t 
os(2�n
) + � e� �1�1 e�� �� � R '(x0; 0) dx0+ 12� � � 1sh(�)� e� �1�1 e�� � Pn�1(�1)ne�n2�24t sin(2�n
)� � R '(x0; 0) dx0+ 18� � �� �1 00 �1 �PZ (�1)ne�n2�24t 
os(2�n
) + ln(e�)sh(�) � e� �1�1 e�� �� � R '0(x0; 0) dx0whi
h is used to determine the e�e
tive a
tion (53). This formula resolves also the appar-ent paradox that the �-term in the e�e
tive a
tion (53) is linear, whereas the whole modelwas de�ned through hyperboli
 fun
tions of �, thus there must be an invarian
e under therepla
ement �! � + 2�i.Referen
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