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1 IntrodutionBoundary terms may play an important role in quantum osmology and in par-tiular in onnetion with the quantum state of the universe [1℄. That is why,starting from the 80'ties [7℄, there has been a ontinued interest to study bound-ary divergenes (see, for example, [2-6,8℄ and referenes therein). In [5, 6℄ somemisprints of previous alulations have been orreted and the surfae diver-genes have been found in a form of onformal anomalies for various boundaryonditions.In [9℄ the running surfae ouplings have been introdued. The motivationto do it was the fat that in order to make a theory multipliatively renor-malizable in urved spaetime with boundary one has to inlude the surfaeLagrangian with arbitrary oupling onstants in the total Lagrangian. Whenthe renormalization group is onstruted, eah oupling beomes a running ef-fetive oupling. A similiar idea has been persued in [10℄, where running surfaeouplings have been disussed in spaetime with boundaries and have been re-lated to the �nite size e�ets. It is quite well-known that running ouplings havedi�erent physial appliations. It is the purpose of this work to disuss the run-ning surfae ouplings for di�erent theories and to look for the onsequenes towhih they may lead.In the next setion we disuss the self-interating salar theory on urvedspaetime with boundary using Dirihlet boundary onditions. The expliitexpressions for the volume and running surfae ouplings are given. The pro-edure to onstrut the RG improved e�etive ation in suh a spaetime isdisussed. In the setion 3 we �nd the RG improved e�etive ation in a spher-ial ap and show how boundary terms beome relevant in the e�etive �eldequations. For the example of a dis we show the possible inuene of bound-ary terms to symmetry breaking phenomena. In setion 4, we show how theabove disussion an be generalized to arbitrary GUTs, and in partiular tothe asymptotially free SU(2) gauge theory with salars and spinors, in urvedspaetime with boundary. Some disussions are presented in the last setion.2 Self-interating salar theory in urved spaewith boundary.Consider the self-interating salar theory in urved spaetime M with bound-ary �M. The renormalization of the theory maybe done in lose analogy withthe renormalization in urved spaetime without boundary (for a general intro-dution see [11℄). The boundary onditions for salar �elds maybe hosen to beof Dirihlet type 2



�(x) = 0 , x 2 �M (1)or Robin type ( + n�r�)�(x) = 0 , x 2 �M: (2)Here n� is the outward normal on �M and  is an arbitrary salar funtion.The eulidean ation orresponding to a massless multipliatively renormal-izable theory maybe written as the following:S = SM + SV + SS ; (3)where SM = Z d4xpgn12g����'��'+ 12�R'2 + �'44! o ;SV = Z d4xpgna1R2 + a2C2���� + a3G+ a42Ro; (4)and C���� is the Weyl tensor, G the Gauss-Bonnet invariant and a1; a2; a3; a4are oupling onstants in the external �elds setor.In the disussion of the surfae ation we will limit ourselves to Dirihletboundary onditions. We use two invariants of dimension L�3 expressed interms of R���� and the extrinsi urvature of the boundary K�� [3, 6℄q = 83K3 + 163 K �� K �� K �� � 8KK��K�� + 4KR� 8R��(Kn�n� +K��) + 8R����K��n�n� ;g = K �� K �� K �� �KK��K�� + 29K3: (5)Then, the surfae ation maybe rewritten asSS = Z�M d3xp LSwith LS = �Dq + �Dg + DRK + ÆDn�r�R+ �DC����K��n�n� ; (6)where �� is the indued metri of the boundary and �D; : : : ; �D are surfaeoupling onstants. In the same way one an write SS for other boundaryonditions.Now, from the point of view of the renormalization group, eah ouplingonstant has the orrespondent e�etive oupling onstant. Using the well-3



known results for the one-loop divergenes of the volume terms one easily �ndsthe running volume ouplings:�(t) = ��(t) ; �(t) = 16 + ��� 16��(t)� 13a1(t) = a1 � 12���� 16�2��(t) 13 � 1� ; a2(t) = a2 + t120(4�)2a3(t) = a3 � t360(4�)2 ; a4(t) = a4 � t180(4�)2 � �� 1612� ��(t) 23 � 1�; (7)where t is renormalization group parameter and�(t) = 1� 3�t(4�)2 :Using the expliit results for the boundary onterterms [3, 6℄ we an write downthe expliit expressions for the running surfae ouplings in theory (3) [9, 10℄:�D(t) = �D � t360(4�)2 ; �D(t) = �D + 2t35(4�)2D(t) = D + D(t)3 ; ÆD(t) = ÆD + D(t)2 ; �D = �D + t15(4�)2 (8)where D(t) = �� 162� ��(t)2=3 � 1�:As usually the t ! 1 limit de�nes the theory at very high energies (stronggravitational �eld). As we see from Eqs. (8) there is already some mixture ofthe volume with the surfae ouplings when they are running.Now, after this overview of the situation with running surfae ouplings inurved spaetime, the interesting question is { what new phenomena may beenountered using the renormalization group. In partiular, as it was alreadymentioned, the boundary e�ets are expeted to be important in quantum os-mology. Hene it is interesting to understand the relevane of renormalizationgroup in this respet.Let us onsider the situation where the volume Lagrangian (as well as LS)is independent of one of the oordinates. Then, in the volume ation we mayintegrate expliitly over this oordinate and as a result we an write the ation(assuming that there is only a gravitational bakground �eld) asSgrav: = Z d3pg nl1LV + l2LSo; (9)where l1; l2 are some dimensionful onstants, for example, l1 = R dx (where x is4



the variable on whih the Lagrangean does not depend). Due to the fat thatthe theory is multipliatively renormalizable, we may now write expliitly theRG equation for e�etive Lagrangian:(� ��� + �i ���i � i�i ÆÆ�i ) Le� (�; �i ; �i) = 0; (10)where � is a mass parameter, �i are volume and surfae oupling onstants withorresponding beta-funtions �i and �i are the �elds. For an alternative deriva-tion of (10), where � is replaed by the inverse diameter of the spaetime Msee [10℄.Solving Eq.(10) by the method of harateristis, with Lagrangean (9) asinitial ondition at t = 0 and assuming a gravitational bakground �eld only(the other bakground �elds are set to zero) we �nd the following ontributionto Leff Leff (�; �i; �i) = Leff (�et; �i(t); �i(t))= l1na1(t)R2 + a2(t)C2���� + a3(t)G + a4(t)2Ro+l2n�D(t)q + �D(t)g + D(t)RK + ÆD(t)n�r�R+�D(t)C����K��n�n�o; (11)where the running volume and surfae ouplings are given by eqs.(7,8). Theabove disussion whih yielded the RG improved Lagrangian in urved spaeis very similar to standard RG improvement of the e�etive potential in at[12, 13℄ or in urved spae [14, 15℄. The problem now is the hoie of RGparameter t. Motivated by the one-loop onsiderations of the theory underdisussion, the natural hoie is (let R be positive)t = 12 log R�2 : (12)With this hoie, we get the improved e�etive Lagrangian (the summation overall leading logarithms of perturbation theory). In that sense the result is be-yond one-loop order. The important impliation of (11,12) is that due to theRG, the surfae terms ease to be surfae terms. They give ontributions tothe equations of motion, and hene, they inuene quantum osmology dynam-ially. Classially the surfae terms maybe dropped. On the quantum level,however, these terms are important, as after RG improvement they ontributeto the equations of motion. We give an expliit example in the next setion.
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3 RG improved Lagrangian in salar theory onfour-sphere with boundaryIn what follows we will limit ourselves to the spaes of the type R�� = �g��whih are of interest for quantum osmology as they desribe the ination-ary Universes. In this ase the struture of the initial Lagrangian signi�allysimpli�es.Consider as an example a spherial ap C, i.e. region of the four-sphere withmaximum olatitude �. Then, the RG improved ation isSeff = ZM d4xpg SV;eff + Z�M d3xp SS;eff= 24�2(h16a1(t) + 83a3(t)i � h12 � 34 os � + 14 os3 �i+ os3 �h2�D(t)i+ 92 os � sin2 ��D(t)	); (13)
where t = 12 log 4��2 . We supposed Dirihlet boundary onditions for the salar�eld. One may onsider other onditions as well. The alulation of onformalanomaly in above-desribed situationes has been given in [6℄. For omparisonwe may give the RG improved ation in ase of the 4-sphere(for the disussionof the e�etive ation in De Sitter spae see, also [16℄ and [18℄)Seff = 24�2�16a1(t) + 83a3(t)�: (14)The e�etive equations of motion are given by�Seff�� = 0: (15)Classially a1 and a3 are onstant and the osmologial onstant is not deter-mined. On quantum level we get from from (14,15)8��� 16�2�(t)�2=3 � 1135 = 0;where �(t) has been introdued below (7), the selfonsistent quantum solution12 log 4��2 = (4�)23� (1� h8 � 135(�� 16)2i3=2):Hene, the e�etive osmologial onstant is de�ned from the bak-reation ofthe quantum matter on the geometry. The orresponding non-singular universeis a De-Sitter spaetime (for free theory see also[21℄).6



Let us now onsider a universe whih is a spherial ap C. Its RG improvedgravitational ation is given by (13). The e�etive equation is found to beh8(�� 16)2�(t)�2=3 � 1135ih12 � 34 os � + 14 os3 �i�2 os3 �360 � 32 os � sin2 �(�� 16)�(t)�1=3 = 0: (16)This e�etive equation of motion in whih the boundary e�ets have been takeninto aount, annot be solved expliitly. Assuming �t (on whih � depends)to be small and keeping only terms whih are linear in this parameter we getthe quantum solution�12 log 4��2 = (h8(�� 16)2 � 1135ih12 � 3 os �4 + os3 �4 i�os3 �180 � 32 os � sin2 �(�� 16))�(16(�� 16 )2�(4�)2 h12 � 3 os �4 + os3 �4 i� 32 os � sin2 �(�� 16) �(4�)2)�1: (17)As one sees the boundary terms play an important role. They hange the stru-ture of the self-onsistent e�etive equation qualitatively. Our onsiderationsprovides an example how through the RG the boundary terms may beomerelevant in quantum osmology.Moreover, this feature is quite general and maybe extended to any renor-malizable theory - this only hanges the oeÆients in (13) and possibly (t).One may further admit a salar bakground �eld in whih ase Leff beomesquite ompliated and leads to two sets of e�etive equations of motion.As another appliation one an onsider the wave funtion of the Universe[1℄ whih is de�ned (in our example) as path integral with a spherial ap asboundary surfae  (�) = e�Seff : (18)The solution of the �eld equations is given by (17) and yields the urvatureR = 4� of suh a spaetime or equivalently its radius R = 1a2 . The e�etiveation is the obtained by substituting (17) into (13) and with (18) yields to thewave funtion of the system and to the probability distribution on the set ofboundary onditions.As an another interesting example let us onsider a ball D, i.e. the regionin at spaetime bounded by a three-sphere. We suppose that the salar bak-ground is non-zero and onstant. Then we may alulate Seff in (11) as the7



follows: Seff = V4 � n�(t)'44! � 21�D(t)o (19)where V4 is 'volume' of the ball and 1 is a dimensionless onstant. It isevident that in this ase t = 12 log'2=�2, as in Coleman-Weinberg approah[12℄. Now one may disuss the symmetry breaking indued by boundary e�ets(for the �rst study of symmetry breaking under external urvature ,see [22℄).Solving the equation of motion ÆSÆ' = 0 to �rst order in � we get'4 = 1120�(4�)2 : (20)Classially ' = 0, and no symmetry breaking ours. This simple exampleshows how boundary e�ets may trigger the spontaneous symmetry breaking.Now we turn to the disussion of more ompliated theories.4 Running surfae onstants in GUTs.Let us show now that one an easily generalize the above piture to the (forsimpliity) massless GUT's in urved spaetime. We will onsider an arbitraryasymptotially free GUT (for a list of suh GUTs, see for example [19℄). In thisase, we have for running gauge, Yukawa and salar ouplingsg2(t) = g21 + a2g2t ; h2(t) = k2g2(t) and f(t) = k1g2(t); (21)where for Yukawa and salar ouplings k1 and k2 are onstant matries. Thesalar-gravitational running oupling is generally of the form [11℄�(t) = 16 + (�� 16)(1 + a2g2t)B ; (22)where B maybe positive or negative, depending on the detailed �eld-ontent ofthe theory. The running volume ouplings have the struture similar as thosein setion 1 (powers of terms onneted with � are hanging aording to (22)),so we will not present them here (for details, see [11℄). As regards to the run-ning surfae ouplings they maybe easily found using the general results of refs.[3, 6℄. To be more spei� let us onsider the asymptotially free SU(2) gaugetheory with one salar and two spinor triplets [19℄. Imposing the boundary on-ditions of refs. [17, 10℄ for the fermions and absolute boundary onditions forthe salars and gauge �elds and assuming Rab = �gab we �nd now the boundaryation 8



SS = Z�M d3xp LSLS = �1�K + �2K3 + �3KK��K��+�4K �� K �� K �� + �5C����K��n�n� ; (23)where the orresponding running ouplings are�1(t) = �1 � t(4�)2 (62nA135 � 11nF135 )� 4(�� 16 )3(4�)2(B + 1)a2 [(1 + a2t)B+1 � 1℄�2(t) = �2 + t(4�)2 (ns27 + 17nF945 � 338nA945 )�3(t) = �3 + t(4�)2 (ns45 + 13nF315 + 58nA63 )�4(t) = �4 + t(4�)2 (4ns135 � 116nF945 � 436nA945 )�5(t) = �5 + t(4�)2 (2ns45 � 7nF45 � 26nA45 ); (24)
where for the SU(2) model nA = 3; ns = 3; nF = 3 or nF = 6 and [20℄�(t) = 16 + ��� 16)(1 + a2g2t��� 12� 53 k1�8k2b2 �:Here b2 is onstant and k1; k2 an be found in [19℄. For nF = 3 we have�12� 53k1 � 8k2b2 � < 0and for nF = 6 we have B > 0. The running surfae ouplings in other GUTsan be found similarly as for the salar theory onsidered in the previous setion.They lead to orretions of the quantum states in quantum osmology.5 Conlusion.We have disussed RG improved e�etive ation in urved spaetime withboundaries. The running surfae ouplings are getting important in this ap-proah as they maybe relevant in di�erent physial appliations. Among ex-amples given in this work we have studied the inuene of the boundary termsto the e�etive �eld equations, possible appliation to quantum osmology andsymmetry breaking. Note that we have studied all these questions using thee�etive ation on onstant urvature spaes. Nevertheless, one may apply sim-ilar tehnique to the non-loal e�etive ation and blak hole physis where9



boundary e�ets may also play an important role. We hope to return to someof these questions in near future.
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