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1. Introdu
tionDue to their intimate relationship with Lie algebras, the various one- and two-dimensional Toda systems are among the most important models of the theory of in-tegrable non-linear equations [1-19℄. In parti
ular, the standard 
onformal Toda �eldtheories, whi
h are given by the LagrangeanLToda(') = �2� lXi;j=1 12j�ij2Kij��'i��'j � lXi=1m2i expn12 lXj=1Kij'jo� ; (1:1)where � is a 
oupling 
onstant, Kij is the Cartan matrix and the �i are the simpleroots of a simple Lie algebra of rank l, have been the subje
t of many studies [1,3,4,8-13,19℄. It has been �rst shown by Leznov and Saveliev [1,3℄ that the Euler-Lagrangeequations of (1.1) 
an be written as a zero 
urvature 
ondition, are exa
tly integrable,and possess interesting non-linear symmetry algebras [3,4,10,11,13,19℄. These symmetryalgebras are generated by 
hiral 
onserved 
urrents, and are polynomial extensions ofthe 
hiral Virasoro algebras generated by the tra
eless energy-momentum tensor. The
hiral 
urrents in question are 
onformal primary �elds, whose 
onformal weights aregiven by the orders of the independent Casimirs of the 
orresponding simple Lie algebra.Polynomial extensions of the Virasoro algebra by 
hiral primary �elds are generally knownas W-algebras [20℄, whi
h are expe
ted to play an important role in the 
lassi�
ationof 
onformal �eld theories and are in the fo
us of 
urrent investigations [20-29℄. Theimportan
e of Toda systems in two-dimensional 
onformal �eld theory is in fa
t greatlyenhan
ed by their realizing the W-algebra symmetries.It has been dis
overed re
ently that the 
onformal Toda �eld theories 
an be nat-urally viewed as Hamiltonian redu
tions of the Wess-Zumino-Novikov-Witten (WZNW)theory [12,13℄. The main feature of the WZNW theory is its aÆne Ka
-Moody (KM)symmetry, whi
h underlies its integrability [30,31℄. The WZNW theory provides themost `e
onomi
al' realization of the KM symmetry in the sense that its phase spa
e isessentially a dire
t produ
t of the left � right KM phase spa
es. The WZNW ! TodaHamiltonian redu
tion is a
hieved by imposing 
ertain �rst 
lass, 
onformally invari-ant 
onstraints on the KM 
urrents, whi
h redu
e the 
hiral KM phase spa
es to phasespa
es 
arrying the 
hiral W-algebras as their Poisson bra
ket stru
ture [12,13℄. Thusthe W-algebra is related to the phase spa
e of the Toda theory in the same way as theKM algebra is related to the phase spa
e of the WZNW theory. In the above manner,the W-symmetry of the Toda theories be
omes manifest by des
ribing these theories as3



redu
ed WZNW theories. This way of looking at Toda theories has also numerous otheradvantages, des
ribed in detail in [13℄.The 
onstrained WZNW (KM) setting of the standard Toda theories (W-algebras)allows for generalizations, some of whi
h have already been investigated [14-18,26-29℄.An important re
ent development is the realization that it is possible to asso
iate ageneralized W-algebra to every embedding of the Lie algebra sl(2) into the simple Liealgebras [16-18℄. The standard W-algebra, o

urring in Toda theory, 
orresponds to theso 
alled prin
ipal sl(2). In fa
t, these generalized W-algebras 
an be obtained fromthe KM algebra by 
onstraining the 
urrent to the highest weight gauge, whi
h hasbeen originally introdu
ed in [13℄ for des
ribing the standard 
ase. Another interestingdevelopment is the W ln-algebras introdu
ed by Bershadsky [26℄ and further studied in[28℄. It is known that the simplest non-trivial 
ase W 23 , whi
h was originally proposed byPolyakov [27℄, falls into a spe
ial 
ase of theW-algebras obtained by the sl(2) embeddingsmentioned above. It has not been 
lear, however, as to whether the two 
lasses of W-algebras are related in general, or to what extent one 
an further generalize the KMredu
tion to a
hieve new W-algebras.In the present paper, we undertake the �rst systemati
 study of the Hamiltonianredu
tions of the WZNW theory, aiming at un
overing the general stru
ture of the redu
-tion and, at the same time, try to answer the above question. Various di�erent questionsarising from this main problem are also addressed (see Contents), and some of them
an be examined on its own right. As this provides our motivation and in fa
t most ofthe later developments originate from it, we wish to re
all here the main points of theWZNW ! Toda redu
tion before giving a more detailed outline of the 
ontent.To make 
onta
t with the Toda theories, we 
onsider the WZNW theory*SWZ(g) = �2 Z d2x ��� Tr (g�1��g)(g�1��g)� �3 ZB3 Tr (g�1dg)3 ; (1:2)for a simple, maximally non-
ompa
t, 
onne
ted real Lie group G. In other words, weassume that the simple Lie algebra, G, 
orresponding to G allows for a Cartan de
om-position over the �eld of real numbers. The �eld equation of the WZNW theory 
an bewritten in the equivalent forms��J = 0 or �+ ~J = 0 ; (1:3)* The KM level k is �4��. The spa
e-time 
onventions are: �00 = ��11 = 1 andx� = 12 (x0 � x1). The WZNW �eld g is periodi
 in x1 with period 2�r.4



where J = ��+g � g�1 ; and ~J = ��g�1��g : (1:4)These equations express the 
onservation of the left- and right KM 
urrents, J and ~J ,respe
tively. The general solution of the WZNW �eld equation is given by the simpleformula g(x+; x�) = gL(x+) � gR(x�) ; (1:5)where gL and gR are arbitrary G-valued fun
tions, i.e., 
onstrained only by the boundary
ondition imposed on g.Let now M�, M0 and M+ be the standard generators of the prin
ipal sl(2) subalge-bra of G [32℄. By 
onsidering the eigenspa
es Gm ofM0 in the adjoint of G, adM0 = [M0; ℄,one 
an de�ne a grading of G by the eigenvaluesm. Under the prin
ipal sl(2) this gradingis an integral grading, in fa
t the spins o

urring in the de
omposition of the adjoint ofG are the exponents of G, whi
h are related to the orders of the independent Casimirsby a shift by 1. It is also worth noting that the grade 0 part ofG = G+ + G0 + G� ; G� = NXm=1G�m ; (1:6)is a Cartan subalgebra, and (by using some automorphism of the Lie algebra) one 
anassume that the generatorM0 is given by the formulaM0 = 12P�>0H�, where H� is thestandard Cartan generator 
orresponding to the positive root �, and the generators M�are 
ertain linear 
ombinations of the step operators E��i 
orresponding to the simpleroots �i, i = 1; : : : ; rankG.The basi
 observation of [12,13℄ has been that the standard Toda theory 
an beobtained from the WZNW theory by imposing �rst 
lass 
onstraints whi
h restri
t the
urrents to take the following form:J(x) = �M� + j(x); with j(x) 2 (G0 + G+) ; (1:7a)and ~J(x) = ��M+ + ~j(x); with ~j(x) 2 (G0 + G�) : (1:7b)(For 
larity, we note that one should in prin
iple in
lude some dimensional 
onstantsin M� whi
h are dimensionless, but su
h 
onstants are always put to unity in thispaper, for simpli
ity.) To derive the Toda theory (1.1) from the WZNW theory (1.2),one uses the generalized Gauss de
omposition g = g+ � g0 � g� of the WZNW �eld g,5



where g0;� are from the subgroups G0;� of G 
orresponding to the Lie subalgebras G0;�,respe
tively. In this framework the Toda �elds 'i are given by the middle-pie
e of theGauss de
omposition, g0 = exp[ 12Pli=1 'iHi℄, whi
h is invariant under the triangularKM gauge transformations belonging to the �rst 
lass 
onstraints (1.7). Note that herethe elements Hi 2 G0 are the standard Cartan generators asso
iated to the simple roots.In fa
t, the Toda �eld equation 
an be derived dire
tly from the WZNW �eld equationby inserting the Gauss de
omposition of g into (1.3) and using the 
onstraints (1.7).The e�e
tive a
tion of the redu
ed theory, (1.1), 
an also be obtained in a natural way,by using the Lagrangean, gauged WZNW implementation of the Hamiltonian redu
tion[13℄. In their pioneering work [1,3℄, Leznov and Saveliev proved the exa
t integrability ofthe 
onformal Toda systems by exhibiting 
hiral quantities by using the �eld equationand the spe
ial graded stru
ture of the Lax potential A�, in terms of whi
h the Todaequation takes the zero 
urvature form[�+ �A+ ; �� �A�℄ = 0 : (1:8)In our framework the exa
t integrability of Toda systems is seen as an immediate 
on-sequen
e of the obvious integrability of the WZNW theory, whi
h survives the redu
tionto Toda theory. In other words, the 
hiral �elds underlying the integrability of the Todaequation are available from the very beginning, that is, they 
ome from the �elds enteringthe left � right de
omposition of the general WZNW solution (1.5). Furthermore, theToda Lax potential itself emerges naturally from the trivial, 
hiral Lax potential of theWZNW theory. To see this one �rst observes that the WZNW �eld equation is a zero
urvature 
ondition, sin
e one 
an write for example the �rst equation in (1.3) as[�+ � J ; �� � 0℄ = 0 : (1:9)Using the 
onstraints of the redu
tion, the Toda zero 
urvature 
ondition (1.8) of [1,3℄arises from (1.9) by 
onjugating this equation by g�1+ (x+; x�), namely by the inverse ofthe upper triangular pie
e of the generalized Gauss de
omposition of the WZNW �eld g[18℄.The W-symmetry of the Toda theory appears in the WZNW setting in a very dire
tand natural way. Namely, one 
an interpret the W-algebra as the KM Poisson bra
ketalgebra of the gauge invariant di�erential polynomials of the 
onstrained 
urrents in (1.7).Con
entrating on the left se
tor, the gauge transformations a
t on the 
urrent a

ording6



to J(x)! ea(x+) J(x) e�a(x+) + �(ea(x+))0 e�a(x+); (1:10)where a(x+) 2 G+ is an arbitrary 
hiral parameter fun
tion.* The 
onstraints (1.7) are
hosen in su
h a way that the following Virasoro generatorLM0(x) � LKM(x)� Tr (M0J 0(x)); where LKM(x) = 12�Tr(J2(x)); (1:11)is gauge invariant, whi
h ensures the 
onformal invarian
e of the redu
ed theory.One obtains an equivalent interpretation of the W-algebra by identifying it withthe Dira
 bra
ket algebra of the di�erential polynomials of the 
urrent 
omponents in
ertain gauges, whi
h are su
h that a basis of the gauge invariant di�erential polynomialsredu
es to the independent 
urrent 
omponents after the gauge �xing. We 
all the gaugesin question Drinfeld-Sokolov (DS) gauges [13℄, sin
e su
h gauges has been used also in[5℄. They have the ni
e property that any 
onstrained 
urrent J(x) 
an be brought to thegauge �xed form by a unique gauge transformation depending on J(x) in a di�erentialpolynomial way. The most important DS gauge is the highest weight gauge [13℄, whi
his de�ned by requiring the gauge �xed 
urrent to be of the following form:Jred(x) = �M� + jred(x) ; jred(x) 2 Ker(adM+) ; (1:12)where Ker(adM+) is the kernel of the adjoint of M+. In other words, jred(x) is restri
tedto be an arbitrary linear 
ombination of the highest weight ve
tors of the sl(2) subalgebrain the adjoint of G. The spe
ial property of the highest weight gauge is that in this gaugethe 
onformal properties be
ome manifest. Of 
ourse, the quantity Lred(x) obtainedby restri
ting LM0(x) in (1.11) to the highest weight gauge generates a Virasoro algebraunder Dira
 bra
ket. (Note that in our 
ase Lred(x) is proportional to theM+-
omponentof jred(x).) The important point is that, with the ex
eption of the M+-
omponent, thespin s 
omponent of jred(x) is in fa
t a primary �eld of 
onformal weight (s + 1) withrespe
t to Lred(x) under the Dira
 bra
ket. Thus the highest weight gauge automati
allyyields a primary �eld basis of the W-algebra, from whi
h one sees that the spe
trum of
onformal weights is �xed by the sl(2) 
ontent of the adjoint of G [13℄.In the above we arrived at the des
ription of theW-algebra as a Dira
 bra
ket algebraby gauge �xing the �rst 
lass system of 
onstraints 
orresponding to (1.7). However, it is* Throughout the paper, the notation f 0 = 2�1f is used for every fun
tion f , in
ludingthe spatial Æ-fun
tions. For a 
hiral fun
tion f(x+) one has then f 0 = �+f .7




lear now that it would have been possible to de�ne the W-algebra as the Dira
 bra
ketalgebra of the 
omponents of jred in (1.12) in the �rst pla
e. On
e this point is realized,a natural generalization arises immediately [16-18℄. Namely, one 
an asso
iate a 
lassi
alW-algebra to any sl(2) subalgebra S = fM�; M0; M+g of any simple Lie algebra G, byde�ning it to be the Dira
 bra
ket algebra of the 
omponents of jred in (1.12), where onesimply substitutes the generators M� of the arbitrary sl(2) subalgebra S for those of theprin
ipal sl(2). As we shall see in this paper, this Dira
 bra
ket algebra is a polynomialextension of the Virasoro algebra by primary �elds, whose 
onformal weights are relatedto the spins o

urring in the de
omposition of the adjoint of G under S by a shift by 1, in
omplete analogy with the 
ase of the prin
ipal sl(2). We shall designate the generalizedW-algebra asso
iated to the sl(2) embedding S as WGS .With the main features of the WZNW ! Toda redu
tion and the above de�nitionof the WGS -algebras at our disposal, now we sket
h the philosophy and the outline ofthe present paper. We start by giving the most important assumption underlying ourinvestigations, whi
h is that we 
onsider those redu
tions whi
h 
an be obtained byimposing �rst 
lass KM 
onstraints generalizing the ones in (1.7). To be more pre
ise,our most general 
onstraints restri
t the 
urrent to take the following form:J(x) = �M + j(x); with j(x) 2 �? ; (1:13)where M is some 
onstant element of the underlying simple Lie algebra G, and �? is thesubspa
e 
onsisting of the Lie algebra elements tra
e orthogonal to some subspa
e � of G.We note that earlier in (1.7a) we have 
hosen � = G+ and M =M�, but we do not needany sl(2) stru
ture here. The whole analysis is based on requiring the �rst-
lassness ofthe system of linear KM 
onstraints 
orresponding the pair (�;M) a

ording to (1.13).However, this �rst-
lassness assumption is not as restri
tive as one perhaps might thinkat �rst sight. In fa
t, as far as we know, our �rst 
lass method is 
apable of 
overing allHamiltonian redu
tions of the WZNW theory 
onsidered to date. The many te
hni
aladvantages of using purely �rst 
lass KM 
onstraints will be apparent.The investigations in this paper are organized a

ording to three distin
t levels ofgenerality. At the most general level we only make the �rst-
lassness assumption anddedu
e the following results. First, we give a 
omplete Lie algebrai
 analysis of the
onditions on the pair (�;M) imposed by the �rst-
lassness of the 
onstraints. We shallsee that � in (1.13) has to be a subalgebra of G on whi
h the Cartan-Killing form vanishes,and that every su
h subalgebra is solvable. The Lie subalgebra � will be referred to asthe `gauge algebra' of the redu
tion. For a given �, the �rst-
lassness imposes a further8




ondition on the elementM , and we shall des
ribe the spa
e of the allowedM 's. Se
ond,we establish a gauged WZNW implementation of the redu
tion, generalizing the onefound previously in the standard 
ase [13℄. This gauged WZNW setting of the redu
tionwill be �rst seen 
lassi
ally, but it will be also established in the quantum theory by
onsidering the phase spa
e path integral of the 
onstrained WZNW theory. Third, thegauged WZNW framework will be used to set up the BRST formalism for the quantumHamiltonian redu
tion in the general 
ase. Fourth, by making the additional assumptionthat the left and right gauge algebras are dual to ea
h other with respe
t to the Cartan-Killing form, we will be able to give a detailed lo
al analysis of the e�e
tive theoriesresulting from the redu
tion. This duality assumption will also be related to the parityinvarian
e of the e�e
tive theories, whi
h is satis�ed in the standard Toda 
ase where theleft and right gauge algebras are G+ and G� in (1.6), respe
tively. In general, the WZNWredu
tion not only allows us to make 
onta
t with known theories, like the Toda theoryin (1.1), where the simpli
ity and the large symmetry of the `parent' WZNW theory arefully exploited for analyzing them, but also leads to new theories whi
h are `integrableby 
onstru
tion'.At the next level of generality, we study the 
onformally invariant redu
tions. Thebasi
 idea here is that one 
an guarantee the 
onformal invarian
e of the redu
ed theoryby exhibiting a Virasoro density su
h that the 
orresponding 
onformal a
tion preservesthe 
onstraints in (1.13). Generalizing (1.11), we assume that this Virasoro density is ofthe form LH(x) = LKM(x)� Tr (HJ 0(x)) ; (1:14)where H is some Lie algebra element, to be determined from the 
ondition that LHweakly 
ommutes with the �rst 
lass 
onstraints. We shall des
ribe the relations whi
hare imposed on the triple of quantities (�;M;H) by this requirement, and thereby obtaina Lie algebrai
 suÆ
ient 
ondition for 
onformal invarian
e.At the third level of generality, we deal with polynomial redu
tions andW-algebras.The above mentioned suÆ
ient 
ondition for 
onformal invarian
e is a guarantee for LHbeing a gauge invariant di�erential polynomial. We shall provide an additional 
onditionon the triple of quantities (�;M;H) whi
h allows one to 
onstru
t out of the 
urrentin (1.13) a 
omplete set of gauge invariant di�erential polynomials by means of a poly-nomial gauge �xing algorithm. The KM Poisson bra
ket algebra of the gauge invariantdi�erential polynomials yields a polynomial extension of the Virasoro algebra generatedby LH . The most important appli
ation of our suÆ
ient 
ondition for polynomiality
on
erns the WGS -algebras mentioned previously.9



Let us remember that, for an arbitrary sl(2) subalgebra S of G, the WGS -algebra 
anbe de�ned as the Dira
 bra
ket algebra of the highest weight 
urrent in (1.12) realizedby purely se
ond 
lass 
onstraints. However, we shall see in this paper that these se
ond
lass 
onstraints 
an be repla
ed by purely �rst 
lass 
onstraints even in the 
ase ofarbitrary, integral or half-integral, sl(2) embeddings. Sin
e the �rst 
lass 
onstraintssatisfy our suÆ
ient 
ondition for polynomiality, we 
an realize the WGS -algebra as theKM Poisson bra
ket algebra of the 
orresponding gauge invariant di�erential polynomials.After having our hands on �rst 
lass KM 
onstraints leading to the WGS -algebras, weshall immediately apply our general 
onstru
tion to exhibiting redu
ed WZNW theoriesrealizing these W-algebras as their 
hiral algebras for arbitrary sl(2)-embeddings. Inthe non-trivial 
ase of half-integral sl(2)-embeddings, these generalized Toda theoriesrepresent a new 
lass of integrable models, whi
h will be studied in some detail. It is alsoworth noting that realizing the WGS -algebra as a KM Poisson bra
ket algebra of gaugeinvariant di�erential polynomials should in prin
iple allow for quantizing it through theKM representation theory, for example by using the general BRST formalism whi
h willbe set up in this paper. As a �rst step, we shall give a 
on
ise formula for the Virasoro
entre of this algebra in terms of the level of the underlying KM algebra.The existen
e of purely �rst 
lass KM 
onstraints leading to the WGS -algebra mightbe perhaps surprizing to the reader, sin
e earlier in [16℄ it was 
laimed to be inevitablyne
essary to use at least some se
ond 
lass 
onstraints from the very beginning, whenredu
ing the KM algebra toWGS in the 
ase of a half-integral sl(2) embedding. Contraryto their 
laim, we will demonstrate that it is possible and in fa
t easy to obtain theappropriate �rst 
lass 
onstraints whi
h lead to WGS . Roughly speaking, this will bea
hieved by dis
arding `half' of those 
onstraints whi
h form the se
ond 
lass part in themixed system of the 
onstraints imposed in [16℄. The mixed system of 
onstraints 
anbe re
overed by a partial gauge �xing of our purely �rst 
lass KM 
onstraints. Similarly,Bershadsky's 
onstraints [26℄, used to de�ne the W ln-algebra, are also a mixed system inthe above sense, i.e., it 
ontains both �rst and se
ond 
lass parts. We 
an also repla
ethese 
onstraints by purely �rst 
lass ones without 
hanging the �nal redu
ed phasespa
e. In this pro
edure we shall un
over the hidden sl(2) stru
ture of the W ln-algebras,namely, we shall identify them in general as further redu
tions of parti
ularWGS -algebras.The study of WZNW redu
tions embra
es various subje
ts, su
h as integrable mod-els, W-algebras and their �eld theoreti
 realizations. We hope that the readers withdi�erent interests will �nd relevant results throughout this paper, and �nd an interplayof general 
onsiderations and investigations of numerous examples.10



2. General stru
ture of KM and WZNW redu
tionsThe purpose of this 
hapter is to investigate the general stru
ture of those redu
tionsof the KM phase spa
e and 
orresponding redu
tions of the full WZNW theory whi
h
an be de�ned by imposing �rst 
lass 
onstraints setting 
ertain 
urrent 
omponentsto 
onstant values. In the rest of the paper, we assume that the WZNW group, G,is a 
onne
ted real Lie group whose Lie algebra, G, is a non-
ompa
t real form of a
omplex simple Lie algebra, G
. We shall �rst un
over the Lie algebrai
 impli
ationsof the 
onstraints being �rst 
lass, and also dis
uss a suÆ
ient 
ondition whi
h may beused to ensure their 
onformal invarian
e. In parti
ular, we shall see why the 
ompa
treal form is outside our framework. We then set up a gauged WZNW theory whi
hprovides a Lagrangean realization of the WZNW redu
tion, for the 
ase of general �rst
lass 
onstraints. Finally, we shall des
ribe the e�e
tive �eld theories resulting from theredu
tion in some detail in an important spe
ial 
ase, namely when the left and rightKM 
urrents are 
onstrained for su
h subalgebras of G whi
h are dual to ea
h other withrespe
t to the Cartan-Killing form.2.1. First 
lass and 
onformally invariant KM 
onstraintsHere we analyze the general form of the KM 
onstraints whi
h will be used sub-sequently to redu
e the WZNW theory. The analysis applies to ea
h 
urrent J and ~Jseparately so we 
hoose one of them, J say, for de�niteness. To �x the 
onventions, we�rst note that the KM Poisson bra
ket readsfhu; J(x)i ; hv; J(y)igjx0=y0 = h[u; v℄; J(x)iÆ(x1 � y1) + �hu; viÆ0(x1 � y1); (2:1)where u and v are arbitrary generators of G and the inner produ
t hu ; vi = Tr (u � v) isnormalized so that the long roots of G
 have length squared 2. This normalization meansthat in terms of the adjoint representation one has hu ; vi = 12g tr (adu � adv), where gis the dual Coxeter number. It is worth noting that hu ; vi is the usual matrix tra
ein the de�ning, ve
tor representation for the 
lassi
al Lie algebras Al and Cl, and itis 12 � tra
e in the de�ning representation for the Bl and Dl series. We also wish topoint out that the KM Poisson bra
ket together with all the subsequent relations whi
hfollow from it hold in the same form both on the usual 
anoni
al phase spa
e and on the11



spa
e of the 
lassi
al solutions of the theory. This is the advantage of using equal timePoisson bra
kets and spatial Æ-fun
tions even on the latter spa
e, where J(x) dependson x = (x0; x1) only through x+ (see the footnote on page 7).The KM redu
tion we 
onsider is de�ned by requiring the 
onstrained 
urrent to beof the following spe
ial form:J(x) = �M + j(x) ; with j(x) 2 �? ; (2:2)where � is some linear subspa
e andM is some element of G. Equivalently, the 
onstraints
an be given as �
(x) = h
 ; J(x)i � �h
 ; Mi = 0 ; 8 
 2 � : (2:3)In words, our 
onstraints set the 
urrent 
omponents 
orresponding to � to 
onstantvalues. It is 
lear both from (2.2) and (2.3) that M 
an be shifted by an arbitraryelement from the spa
e �? without 
hanging the a
tual 
ontent of the 
onstraints. Thisambiguity is unessential, sin
e one 
an �x M , for example, by requiring that it is fromsome given linear 
omplement of �? in G, whi
h 
an be 
hosen by 
onvention.In our method we assume that the above system of 
onstraints is �rst 
lass, andnow we analyze the 
ontent of this 
ondition. Immediately from (2.1), we have*f��(x); ��(y)g = �[�;�℄(x)Æ(x1 � y1) + !M (�; �)Æ(x1 � y1) + h�; �iÆ0(x1 � y1); (2:4)where the se
ond term 
ontains the restri
tion to � of the following anti-symmetri
 2-formof G: !M (u; v) � hM ; [u ; v℄i ; 8u ; v 2 G : (2:5)It is evident from (2.4) that the 
onstraints are �rst 
lass if, and only if, we have[� ; �℄ 2 �; h� ; �i = 0 and !M (� ; �) = 0; for 8� ; � 2 �: (2:6)This means that the linear subspa
e � has to be a subalgebra on whi
h the Cartan-Killing form and !M vanish. It is easy to see that the three 
onditions in (2.6) 
an beequivalently written as[� ; �?℄ � �?; � � �? and [M ; �℄ � �? ; (2:7)* For simpli
ity, we set � to 1 in the rest of the paper, ex
ept in Chapter 5, where �o

urs in the formula of the Virasoro 
entre.12



respe
tively. Subalgebras � satisfying � � �? exist in every real form of the 
omplexsimple Lie algebras ex
ept the 
ompa
t one, sin
e for the 
ompa
t real form the Cartan-Killing inner produ
t is (negative) de�nite.We note that for a given � the third 
ondition and the ambiguity in 
hoosingM 
anbe 
on
isely summarized by the (equivalent) statement thatM 2 [� ; �℄?=�? : (2:8)The 
onstraints de�ned by the zero element of this fa
tor-spa
e are in a sense trivial.It is 
lear that, for a subalgebra � su
h that � � �?, the above fa
tor-spa
e 
ontainsnon-zero elements if and only if [�;�℄ 6= �. A
tually this is always so be
ause � � �?implies that � is a solvable subalgebra of G. To prove this, we �rst note that if � isnot solvable then, by Levi's theorem [33℄, it 
ontains a semi-simple subalgebra, in whi
hone 
an �nd either an so(3; R) or an sl(2; R) subalgebra. From this one sees that thereexists at least one generator � of � for whi
h the operator ad� is diagonalizable with realeigenvalues. It 
annot be that all eigenvalues of ad� are 0 sin
e G is a simple Lie algebra,and from this one gets that h� ; �i 6= 0, whi
h 
ontradi
ts � � �?. Therefore one 
an
on
lude that � is ne
essarily a solvable subalgebra of G.The se
ond 
ondition in (2.6) 
an be satis�ed for example by assuming that every
 2 � is a nilpotent element of G. This is true in the 
on
rete instan
es of the redu
tionstudied in Chapters 3 and 4. We note that in this 
ase � is a
tually a nilpotent Liealgebra, by Engel's theorem [33℄. However, the nilpoten
y of � is not ne
essary forsatisfying � � �?. In fa
t, a solvable but not nilpotent � 
an be found in Appendix A.The 
urrent 
omponents 
onstrained in (2.3) are the in�nitesimal generators of theKM transformations 
orresponding to the subalgebra �, whi
h a
t on the KM phasespa
e as J(x) �! eai(x+)
i J(x) e�ai(x+)
i + (eai(x+)
i)0 e�ai(x+)
i ; (2:9)where the ai(x+) are parameter fun
tions and there is a summation over some basis
i of �. Of 
ourse, the �rst 
lass 
onditions are equivalent to the statement that the
onstraint surfa
e, 
onsisting of 
urrents of the form (2.2), is left invariant by the abovetransformations. From the point of view of the redu
ed theory, these transformationsare to be regarded as gauge transformations, whi
h means that the redu
ed phase spa
e
an be identi�ed as the spa
e of gauge orbits in the 
onstraint surfa
e. Taking this intoa

ount, we shall often refer to � as the gauge algebra of the redu
tion.13



We next dis
uss a suÆ
ient 
ondition for the 
onformal invarian
e of the 
onstraints.We assume that M =2 �? from now on. The standard 
onformal symmetry generatedby the Sugawara Virasoro density LKM(x) is then broken by the 
onstraints (2.3), sin
ethey set some 
omponent of the 
urrent, whi
h has spin 1, to a non-zero 
onstant. Theidea is to 
ir
umvent this apparent violation of 
onformal invarian
e by 
hanging thestandard a
tion of the 
onformal group on the KM phase spa
e to one whi
h does leavethe 
onstraint surfa
e invariant. One 
an try to generate the new 
onformal a
tion by
hanging the usual KM Virasoro density to the new Virasoro densityLH(x) = LKM(x)� hH; J 0(x)i; (2:10)where H is some element of G. The 
onformal a
tion generated by LH(x) operates onthe KM phase spa
e asÆf;H J(x) �� Z dy1 f(y+) fLH(y) ; J(x)g= f(x+)J 0(x) + f 0(x+)�J(x) + [H; J(x)℄�+ f 00(x+)H ; (2:11)for any parameter fun
tion f(x+), 
orresponding to the 
onformal 
oordinate transfor-mation Æf x+ = �f(x+). In parti
ular, j(x) in (2.2) transforms under this new 
onformala
tion a

ording toÆf;H j(x) = f(x+)j0(x) + f 00(x+)H + f 0(x+)�j(x) + [H; j(x)℄ + ([H;M ℄ +M)�; (2:12)and our 
ondition is that this variation should be in �?, whi
h means that this 
onformala
tion preserves the 
onstraint surfa
e. From (2.12), one sees that this is equivalent tohaving the following relations:H 2 �?; [H;�?℄ � �? and ([H;M ℄ +M) 2 �? : (2:13)In 
on
lusion, the existen
e of an operator H satisfying these relations is a suÆ
ient
ondition for the 
onformal invarian
e of the KM redu
tion obtained by imposing (2.3).The 
onditions in (2.13) are equivalent to LH(x) being a gauge invariant quantity, indu
-ing a 
orresponding 
onformal a
tion on the redu
ed phase spa
e. Obviously, the se
ondrelation in (2.13) is equivalent to [H;�℄ � � : (2:14)An element H 2 G is 
alled diagonalizable if the linear operator adH possesses a
omplete set of eigenve
tors in G. By the eigenspa
es of adH , su
h an element de�nes a14



grading of G, and below we shall refer to a diagonalizable element as a grading operator ofG. In the examples we study later, 
onformal invarian
e will be ensured by the existen
eof a grading operator subje
t to (2.13).If H is a grading operator satisfying (2.13) then it is always possible to shift M bysome element of �? (i.e., without 
hanging the physi
s) so that the new M satis�es[H;M ℄ = �M ; (2:15)instead of the last 
ondition in (2.13). It is also 
lear that if H is a grading operator thenone 
an take graded bases in � and �?, sin
e these are invariant subspa
es under adH .On re-inserting (2.15) into (2.12) it then follows that all 
omponents of j(x) are primary�elds with respe
t to the 
onformal a
tion generated by LH(x), with the ex
eption ofthe H-
omponent, whi
h also survives the 
onstraints a

ording to the �rst 
ondition in(2.13).As an example, let us now 
onsider some arbitrary grading operator H and denoteby Gm the eigensubspa
e 
orresponding to the eigenvalue m of adH . Then the gradedsubalgebra G�n, whi
h is de�ned to be the dire
t sum of the subspa
es Gm for all m � n,will qualify as a gauge algebra � for any n > 0 from the spe
trum of adH . In this 
ase�? = G>�n and the fa
tor spa
e [�;�℄?=�?, whi
h is the spa
e of the allowed M 's, 
anbe represented as the dire
t sum of G�n and that graded subspa
e of G<�n whi
h isorthogonal to [�;�℄. It is easy to see that one obtains 
onformally invariant �rst 
lass
onstraints by 
hoosing M to be any graded element from this fa
tor spa
e. Indeed, ifthe grade of M is �m then LH=m yields a Virasoro density weakly 
ommuting with the
orresponding 
onstraints.In summary, in this se
tion we have seen that one 
an asso
iate a �rst 
lass systemof KM 
onstraints to any pair (�,M) subje
t to (2.6) by requiring the 
onstrained 
urrentto take the form (2.2), and that the 
onformal invarian
e of this system of 
onstraintsis guaranteed if one 
an �nd an operator H su
h that the triple (�,M ,H) satis�es the
onditions in (2.13).2.2. Lagrangean realization of the Hamiltonian redu
tionWe shall exhibit here a gauged WZNW theory providing the Lagrangean realizationof those Hamiltonian redu
tions of the WZNW theory whi
h 
an be de�ned by imposing15



�rst 
lass 
onstraints of the type (2.3) on the KM 
urrents J and ~J of the theory. Itshould be noted that, in the rest of this 
hapter, we do not assume that the 
onstraintsare 
onformally invariant.To de�ne the WZNW redu
tion, we 
an 
hoose left and right 
onstraints 
ompletelyindependently. We shall denote the pairs 
onsisting of an appropriate subalgebra and a
onstant matrix 
orresponding to the left and right 
onstraints as (�;M) and (~�;� ~M),respe
tively. The redu
ed theory is obtained by �rst 
onstraining the WZNW phasespa
e by setting�i = h
i ; Ji � h
i ; Mi = 0; and ~�i = �h~
i ; ~Ji � h~
i ; ~Mi = 0; (2:16)where the 
i and the ~
i form bases of � and ~�, respe
tively, and then fa
torizing the
onstraint surfa
e by the 
anoni
al transformations generated by these 
onstraints. One
an apply this redu
tion either to the usual 
anoni
al phase spa
e or to the spa
e ofsolutions of the 
lassi
al �eld equation. These are equivalent pro
edures sin
e the twospa
es in question are isomorphi
. For later purpose we note that the 
onstraints generatethe following 
hiral gauge transformations on the spa
e of solutions:g(x+; x�) �! e
(x+) � g(x+; x�) � e�~
(x�) ; (2:17)where 
(x+) and ~
(x�) are arbitrary � and ~� valued fun
tions.For 
ompleteness, we wish to mention here how the above way of redu
ing theWZNW theory �ts into the general theory of Hamiltonian (symple
ti
) redu
tion ofsymmetries [34℄. In general, the Hamiltonian redu
tion is obtained by setting the phasespa
e fun
tions generating the symmetry transformations through Poisson bra
ket (inother words, the 
omponents of the momentum map) to some 
onstant values. Theredu
ed phase spa
e results by fa
torizing this 
onstraint surfa
e by the subgroup ofthe symmetry group respe
ting the 
onstraints. The symmetry group we 
onsider is theleft � right KM group generated by � � ~� and our Hamiltonian redu
tion is spe
ial inthe sense that the full symmetry group preserves the 
onstraints. Of 
ourse, the latterfa
t is just a reformulation of the �rst-
lassness of our 
onstraints.We now 
ome to the main point of the se
tion, whi
h is that the redu
ed WZNWtheory, de�ned in the above by using the Hamiltonian pi
ture, 
an be identi�ed as thegauge invariant 
ontent of a 
orresponding gauged WZNW theory. This gauged WZNWinterpretation of the redu
tion was pointed out in the 
on
rete 
ase of the WZNW !standard Toda redu
tion in [13℄, and we below generalize that 
onstru
tion to the presentsituation. 16



The gauged WZNW theory we are interested in is given by the following a
tionfun
tional: I(g; A�; A+) � SWZ(g)+Z d2x �hA�; �+gg�1 �Mi+hA+; g�1��g � ~Mi+ hA�; gA+g�1i� ; (2:18)where the gauge �elds A�(x) and A+(x) vary in � and ~�, respe
tively. The main propertyof this a
tion is that it is invariant under the following non-
hiral gauge transformations:g ! �g~��1; A� ! �A���1 + ��� ��1; A+ ! ~�A+~��1 + (�+~�)~��1 ; (2:19a)where � = e
(x+;x�) and ~� = e~
(x+;x�) ; (2:19b)for any 
(x+; x�) 2 � and ~
(x+; x�) 2 ~�. The proof of the invarian
e of (2.18) under(2.19) 
an pro
eed along the same lines as for the spe
ial 
ase in [13℄. In the proof onerewrites SWZ(�g~��1) by using the well-known Polyakov-Wiegmann identity [35℄, and inthis step one uses the fa
t that the WZNW a
tion vanishes for �elds in the subgroupsof G with Lie algebras � or ~�. This is an obvious 
onsequen
e of the relations � � �?and ~� � ~�?. The other 
ru
ial point is that the terms in (2.18) 
ontaining the 
onstantmatri
es M and ~M are separately invariant under (2.19). It is easy to see that thisfollows from the third 
ondition in (2.6). For example, under an in�nitesimal gaugetransformation belonging to � ' 1 + 
, the term hA�;Mi 
hanges byÆ hA�;Mi = �h��
;Mi+ !M (
;A�) ; (2:20)whi
h is a total divergen
e sin
e the se
ond term vanishes, as both A� and 
 are from�. The Euler-Lagrange equation derived from (2.18) by varying g 
an be written equiv-alently as��(�+gg�1 + gA+g�1) + [A�; �+gg�1 + gA+g�1℄ + �+A� = 0 ; (2:21a)or �+(g�1��g + g�1A�g)� [A+; g�1��g + g�1A�g℄ + ��A+ = 0 ; (2:21b)and the �eld equations obtained by varying A� and A+ are given byh
 ; �+gg�1 + gA+g�1 �Mi = 0; 8 
 2 � ; (2:21
)17



and h~
 ; g�1��g + g�1A�g � ~Mi = 0; 8 ~
 2 ~� ; (2:21d)respe
tively. We now note that by making use of the gauge invarian
e, A+ and A� 
anbe set equal to zero simultaneously. The important point for us is that, as is easy tosee, in the A� = 0 gauge one re
overs from (2.21) both the �eld equations (1.3) of theWZNW theory and the 
onstraints (2.16). Furthermore, one sees that setting A� to zerois not a 
omplete gauge �xing, the residual gauge transformations are exa
tly the 
hiralgauge transformations of equation (2.17).The above arguments tell us that the spa
e of gauge orbits in the spa
e of 
lassi
alsolutions of the gauged WZNW theory (2.18) 
an be naturally identi�ed with the redu
edphase spa
e belonging to the Hamiltonian redu
tion of the WZNW theory determined bythe �rst 
lass 
onstraints (2.16). It 
an be also shown that the Poisson bra
ket indu
ed onthe redu
ed phase spa
e by the Hamiltonian redu
tion is the same as the one determinedby the gauged WZNW a
tion (2.18). In summary, we see that the gauged WZNW theory(2.18) provides a natural Lagrangean implementation of the WZNW redu
tion.2.3. E�e
tive �eld theories from left-right dual redu
tionsThe aim of this se
tion is to des
ribe the e�e
tive �eld equations and a
tion fun
-tionals for an important 
lass of the redu
ed WZNW theories. This 
lass of theories isobtained by making the assumption that the left and right gauge algebras � and ~� aredual to ea
h other with respe
t to the Cartan-Killing form, whi
h means that one 
an
hoose bases 
i 2 � and ~
j 2 ~� so thath
i; ~
ji = Æij : (2:22)This te
hni
al assumption allows for having a simple general algorithm for disentanglingthe 
onstraints:�i = h
i; �+g g�1 �Mi = 0; and ~�i = h~
i; g�1��g � ~Mi = 0; (2:23)whi
h de�ne the redu
tion. We shall 
omment on the physi
al meaning of the assumptionat the end of the se
tion, here we only point out that it holds, e.g., if one 
hooses � and18



~� to be the images of ea
h other under a Cartan involution* of the underlying simple Liealgebra.For 
on
reteness, let us 
onsider the maximally non-
ompa
t real form whi
h 
anbe de�ned as the real span of a Chevalley basis Hi, E�� of the 
orresponding 
omplexLie algebra G
, and in the 
ase of the 
lassi
al series An, Bn, Cn and Dn is given bysl(n + 1; R), so(n; n + 1; R), sp(2n;R) and so(n; n;R), respe
tively. In this 
ase theCartan involution is (�1)� transpose, operating on the Chevalley basis a

ording toHi �! �Hi E�� �! �E�� : (2:24)It is obvious that hv ; vti > 0 for any non-zero v 2 G and from this one sees that �t isdual to � with respe
t to the Cartan-Killing form, i.e., (2.22) holds for ~� = �t. It shouldalso be mentioned that there is a Cartan involution for every non-
ompa
t real form ofthe 
omplex simple Lie algebras, as explained in detail in [36℄.Equation (2.22) implies that the left and right gauge algebras do not interse
t, andthus we 
an 
onsider a dire
t sum de
omposition of G of the formG = � + B + ~� ; (2:25a)where B is some linear subspa
e of G. Here B is in prin
iple an arbitrary 
omplementaryspa
e to (� + ~�) in G, but one 
an always make the 
hoi
eB = (� + ~�)? ; (2:25b)whi
h is natural in the sense that the Cartan-Killing form is non-degenerate on thisB. Choosing B a

ording to (2.25b) is espe
ially well-suited in the 
ase of the parityinvariant e�e
tive theories dis
ussed at the end of the se
tion. We note that it mightalso be 
onvenient if one 
an take the spa
e B to be a subalgebra of G, but this is notne
essary for our arguments and is not always possible either.We 
an asso
iate a `generalized Gauss de
omposition' of the group G to the dire
tsum de
omposition (2.25), whi
h is the main tool of our analysis. By `Gauss de
omposing'an element g 2 G a

ording to (2.25), we mean writing it in the formg = a � b � 
 ; with a = e
 ; b = e� and 
 = e~
 ; (2:26)* A Cartan involution � of the simple Lie algebra G is an automorphism for whi
h�2 = 1 and hv; �(v)i < 0 for any non-zero element v of G.19



where 
, � and ~
 are from the respe
tive subspa
es in (2.25).There is a neighbourhood of the identity in G 
onsisting of elements whi
h allow aunique de
omposition of this sort, and in this neighbourhood the pie
es a, b and 
 
anbe extra
ted from g by algebrai
 operations. (A
tually it is also possible to de�ne b asa produ
t of exponentials 
orresponding to subspa
es of B, and we shall make use ofthis freedom later, in Chapter 4.) We make the assumption that every G-valued �eld ween
ounter is de
omposable as g in (2.26). It is easily seen that in this `Gauss de
ompos-able se
tor' the 
omponents of b(x+; x�) provide a 
omplete set of gauge invariant lo
al�elds, whi
h are the lo
al �elds of the redu
ed theory we are after. Below we explainhow to solve the 
onstraints (2.23) in the Gauss de
omposable se
tor of the WZNWtheory. More exa
tly, for our method to work, we restri
t ourselves to 
onsidering those�elds whi
h vary in su
h a Gauss de
omposable neighbourhood of the identity where thematrix Vij(b) = h
i; b~
jb�1i (2:27)is invertible. Due to the assumptions, the analysis given in the following yields a lo
aldes
ription of the redu
ed theories. It is 
lear that for a global des
ription one shoulduse pat
hes on G obtained by multiplying out the Gauss de
omposable neighbourhoodof the identity, but we do not deal with this issue here.First we derive the �eld equation of the redu
ed theory by implementing the 
on-straints dire
tly in the WZNW �eld equation ��(�+gg�1) = 0. (This is allowed sin
e theWZNW dynami
s leaves the 
onstraint surfa
e invariant, i.e., the WZNW Hamiltonianweakly 
ommutes with the 
onstraints.) By inserting the Gauss de
omposition of g into(2.23) and making use of the 
onstraints being �rst 
lass, the 
onstraint equations 
anbe rewritten as h
i; �+bb�1 + b(�+

�1)b�1 �Mi = 0 ;h~
i; b�1��b+ b�1(a�1��a)b� ~Mi = 0 : (2:28)With the help of the inverse of Vij(b) in (2.27), one 
an solve these equations for �+

�1and a�1��a in terms of b,�+

�1 = b�1T (b)b; and a�1��a = b ~T (b)b�1; (2:29a)where T (b) =Xij V �1ij (b)h
j; M � �+bb�1ib~
ib�1;~T (b) =Xij V �1ij (b)h~
i; ~M � b�1��bib�1
jb : (2:29b)20



It is easy to obtain the e�e
tive �eld equation for the �eld b(x+; x�) by using this expli
itform of the 
onstraints. This 
an be a
hieved for example by noting that, by applyingthe operator Ada�1 to equation (1.9) (i.e., by 
onjugating it by a�1) the WZNW �eldequation 
an be written in the form[�+ �A+ ; �� �A�℄ = 0 (2:30)with A+ = �+b b�1 + b(�+

�1)b�1 and A� = �a�1��a : (2:31)Thus, by inserting the 
onstraints (2.29) into the above form of the WZNW equation,we see that the �eld equation of the redu
ed theory is the zero 
urvature 
ondition ofthe following Lax potential:A+(b) = �+b b�1 + T (b) and A�(b) = �b ~T (b)b�1 : (2:32)More expli
itly, the e�e
tive �eld equation reads��(�+bb�1) + [b ~T (b)b�1; T (b)℄ + ��T (b) + b(�+ ~T (b))b�1 = 0: (2:33)The expression on the left-hand-side of (2.33) in general varies in the full spa
e G, butnot all the 
omponents represent independent equations. The number of the independentequations is the number of the independent 
omponents of the WZNW �eld equationminus the number of the 
onstraints in (2.23), sin
e the 
onstraints automati
ally implythe 
orresponding 
omponents of the WZNW equation. Thus there are exa
tly as manyindependent equations in (2.33) as the number of the redu
ed degrees of freedom. Infa
t, the independent �eld equations 
an be obtained by taking the Cartan-Killing innerprodu
t of (2.33) with a basis of the linear spa
e B in (2.25), and the inner produ
t of(2.33) with the 
i and the ~
i vanishes as a 
onsequen
e of the 
onstraints in (2.23) togetherwith the independent �eld equations. To see this one �rst re
alls that the left-hand-side of(2.33) is, upon imposing the 
onstaints, equivalent to a�1(��J)a. Thus the inner produ
tof this with �, and similarly that of 
(�+ ~J)
�1 with ~�, vanishes as a 
onsequen
e of the
onstraints. From this, by using the identity a�1(��J)a = �b
(�+ ~J)
�1b�1, one 
an
on
lude that the inner produ
t of a�1(��J)a with ~� also vanishes as a 
onsequen
e ofthe 
onstraints and the independent �eld equations.At this point we would like to mention 
ertain spe
ial 
ases when the above equationssimplify. First we note that if one has[B ; �℄ � � and [B ; ~�℄ � ~� ; (2:34)21



then T (b) =M � �~�(�+bb�1) and ~T (b) = ~M � ��(b�1��b) ; (2:35)where we introdu
ed the operators�� =Xi j
iih~
ij and �~� =Xi j~
iih
ij ; (2:36)whi
h proje
t onto the spa
es � and ~�, and assumed thatM 2 ~� and ~M 2 �. (The latterassumption 
an be done without loss of generality due to the duality 
ondition (2.22)).One obtains (2.35) from (2.29) by taking into a

ount that in this 
ase Vij(b) in (2.27) isthe matrix of the operator Adb a
ting on ~�, and thus the inverse is given by Adb�1 . Theni
est possible situation o

urs when B = (�+ ~�)? is a subalgebra of G and also satis�es(2.34). In this 
ase one simply has T =M and ~T = ~M and thus (2.33) simpli�es to��(�+bb�1) + [b ~Mb�1 ; M ℄ = 0 : (2:37)The derivative term is now an element of B and by 
ombining the above assumptions withthe �rst 
lass 
onditions [M;�℄ � �? and [ ~M; ~�℄ � ~�? one sees that the 
ommutatorterm in (2.37) also varies in B, whi
h ensures the 
onsisten
y of this equation.The e�e
tive �eld equation (2.33) is in general a non-linear equation for the �eldb(x+; x�), and we 
an give a pro
edure whi
h 
an in prin
iple be used for produ
ing itsgeneral solution. We are going to do this by making use of the fa
t that the spa
e ofsolutions of the redu
ed theory is the spa
e of the 
onstrained WZNW solutions fa
torizedby the 
hiral gauge transformations, a

ording to equation (2.17). Thus the idea is to�nd the general solution of the e�e
tive �eld equation by �rst parametrizing, in terms ofarbitrary 
hiral fun
tions, those WZNW solutions whi
h satisfy the 
onstraints (2.23),and then extra
ting the b-part of those WZNW solutions by algebrai
 operations. Inother words, we propose to derive the general solution of (2.33) by looking at the originof this equation, instead of its expli
it form.To be more 
on
rete, one 
an start the 
onstru
tion of the general solution by�rst Gauss-de
omposing the 
hiral fa
tors of the general WZNW solution g(x+; x�) =gL(x+) � gR(x�) asgL(x+) = aL(x+) � bL(x+) � 
L(x+); gR(x�) = aR(x�) � bR(x�) � 
R(x�): (2:38)Then the 
onstraint equations (2.23) be
ome�+
L
�1L = b�1L T (bL)bL and a�1R ��aR = bR ~T (bR)b�1R : (2:39)22



In addition to the the purely algebrai
 problems of 
omputing the quantities T and ~T andextra
ting b from g = gL � gR = a � b � 
, these �rst order systems of ordinary di�erentialequations are all one has to solve to produ
e the general solution of the e�e
tive �eldequation. If this 
an be done by quadrature then the e�e
tive �eld equation is alsointegrable by quadrature. In general, one 
an pro
eed by trying to solve (2.39) for thefun
tions 
L(x+) and aR(x�) in terms of the arbitrary `input fun
tions' bL(x+) andbR(x�). Clearly, this involves only a �nite number of integrations whenever the gaugealgebras � and ~� 
onsist of nilpotent elements of G. Thus in this 
ase (2.33) is exa
tlyintegrable, i.e., its general solution 
an be obtained by quadrature.We note that in 
on
rete 
ases some other 
hoi
e of input fun
tions, instead of the
hiral b's, might prove more 
onvenient for �nding the general solutions of the systemsof �rst order equations on gL and gR given in (2.39) (see for instan
e the derivation ofthe general solution of the Liouville equation given in [12℄).It is natural to ask for the a
tion fun
tional underlying the e�e
tive �eld theoryobtained by imposing the 
onstraints (2.23) on the WZNW theory. In fa
t, the e�e
tivea
tion is given by the following formula:Ie�(b) = SWZ(b)� Z d2x hb ~T (b)b�1 ; T (b)i: (2:40)One 
an derive the following 
ondition for the extremum of this a
tion:hÆbb�1; ��(�+bb�1) + [b ~T (b)b�1; T (b)℄ + ��T (b) + b(�+ ~T (b))b�1i = 0: (2:41)It is straightforward to 
ompute this, the only thing to remember is that the obje
tsb ~Tb�1 and b�1Tb introdu
ed in (2.29) vary in the gauge algebras � and ~�. The arbitraryvariation of b(x) is determined by the arbitrary variation of �(x) 2 B, a

ording tob(x) = e�(x), and thus we see from (2.41) that the Euler-Lagrange equation of the a
tion(2.40) yields exa
tly the independent 
omponents of the e�e
tive �eld equation (2.33),whi
h we obtained previously by imposing the 
onstraints dire
tly in the WZNW �eldequation.The e�e
tive a
tion given above 
an be derived from the gauged WZNW a
tionI(g; A�; A+) given in (2.18), by eliminating the gauge �elds A� by means of their Euler-Lagrange equations (2.21
-d). By using the Gauss de
omposition, these Euler-Lagrangeequations be
ome equivalent to the relationsa�1D�a = b ~T (b)b�1 ; and 
D+
�1 = �b�1T (b)b ; (2:42)23



where the quantities T (b) and ~T (b) are given by the expressions in (2.29b) andD� denotesthe gauge 
ovariant derivatives, D� = �� � A�. Now we show that Ie�(b) in (2.40) 
anindeed be obtained by substituting the solution of (2.42) for A� ba
k into I(g; A�; A+)with g = ab
. To this �rst we rewrite I(ab
; A�; A+) by using the Polyakov-Wiegmannidentity [35℄ asI(ab
 ; A�; A+) = SWZ(b)� Z d2x�ha�1D�a ; b(
D+
�1)b�1i+ hb�1��b ; 
D+
�1i � h�+bb�1 ; a�1D�ai+ hA�;Mi+ hA+; ~Mi�: (2:43)This equation 
an be regarded as the gauge 
ovariant form of the Polyakov-Wiegmannidentity, and all but the last two terms are manifestly gauge invariant. The e�e
tivea
tion (2.40) is derived from (2.43) together with (2.42) by noting, for example, thath��aa�1 ; Mi is a total derivative, whi
h follows from the fa
ts that a(x) 2 e� andM 2 [� ; �℄?, by (2.8).Above we have used the �eld equations to eliminate the gauge �elds from the gaugedWZNW a
tion (2.18) on the ground that A� and A+ are not dynami
al �elds, but`Lagrange multiplier �elds' implementing the 
onstraints. However, it should be notedthat without further assumptions the Euler-Lagrange equation of the a
tion resultingfrom (2.18) by means of this elimination pro
edure does not always give the e�e
tive�eld equation, whi
h 
an always be obtained dire
tly from the WZNW �eld equation.One 
an see this on an example in whi
h one imposes 
onstraints only on one of the 
hiralse
tors of the WZNW theory. From this point of view, the role of our assumption on theduality of the left and right gauge algebras is that it guarantees that the e�e
tive a
tionunderlying the e�e
tive �eld equation 
an be derived from I(g; A�; A+) in the abovemanner. To end this dis
ussion, we note that for g = ab
 the non-degenera
y of Vij(b)in (2.27) is equivalent to the non-degenera
y of the quadrati
 expression hA� ; gA+g�1iin the 
omponents of A� = Ai�
i and A+ = Ai+~
i. This quadrati
 term enters into thegauged WZNW a
tion given by (2.18), and its non-degenera
y is 
learly important inthe quantum theory, whi
h we 
onsider in Chapter 5.We mentioned at the beginning of the se
tion that, 
onsidering a maximally non-
ompa
t G, one 
an make sure that the duality assumption expressed by (2.22) holdsby 
hoosing � and ~� to be the transposes of ea
h other. Here we point out that thisparti
ular left-right related 
hoi
e of the gauge algebras 
an also be used to ensure theparity invarian
e of the e�e
tive �eld theory. To this �rst we noti
e that, in the 
ase of amaximally non-
ompa
t 
onne
ted Lie group G, the WZNW a
tion SWZ(g) is invariant24



under any of the following two `parity transformations' g �! Pg:(P1g)(x0; x1) � gt(x0;�x1) ; and (P2g)(x0; x1) � g�1(x0;�x1): (2:44)If one 
hooses ~� = �t and ~M = M t to de�ne the WZNW redu
tion then the paritytransformation P1 simply inter
hanges the left and right 
onstraints, � and ~� in (2.23),and thus the 
orresponding e�e
tive �eld theory is invariant under the parity P1. Thespa
e B = (� + ~�)?, i.e., the 
hoi
e in (2.25b), is invariant under the transpose in this
ase, and thus the gauge invariant �eld b transforms in the same way under P1 as gdoes in (2.44). Of 
ourse, the parity invarian
e 
an also be seen on the level of thegauged a
tion I(g; A�; A+). Namely, I(g; A�; A+) is invariant under P1 if one extendsthe de�nition in (2.44) to in
lude the following parity transformation of the gauge �elds:(P1A�)(x0; x1) � At�(x0;�x1) : (2:45)The P1-invariant redu
tion pro
edure does not preserve the parity symmetry P2, but it ispossible to 
onsider redu
tions preserving just P2 instead of P1. In fa
t, su
h redu
tions
an be obtained by taking ~� = � and ~M =M .Finally, it is obvious that to 
onstru
t parity invariant WZNW redu
tions in general,for some arbitrary but non-
ompa
t real form G of the 
omplex simple Lie algebras, one
an use �� instead of the transpose, where � is a Cartan involution of G.
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3. Polynomiality in KM redu
tions and the WGS -algebrasIn the previous 
hapter we des
ribed the 
onditions for (2.2) de�ning �rst 
lass
onstraints and for LH(J) in (2.10) being a gauge invariant quantity on this 
onstraintsurfa
e. It is 
lear that the KM Poisson bra
kets of the gauge invariant di�erential poly-nomials of the 
urrent always 
lose on su
h polynomials and Æ-distributions. The algebraof the gauge invariant di�erential polynomials is of spe
ial interest in the 
onformally in-variant 
ase when it is a polynomial extension of the Virasoro algebra. In Se
tion 3.1 weshall give an additional 
ondition on the triple (�;M;H) whi
h allows one to 
onstru
tout of the 
urrent in (2.2) a 
omplete set of gauge invariant di�erential polynomials bymeans of a di�erential polynomial gauge �xing algorithm. We 
all the KM redu
tionpolynomial if su
h a polynomial gauge �xing algorithm is available, and also 
all the
orresponding gauges Drinfeld-Sokolov (DS) gauges, sin
e our 
onstru
tion is a general-ization of the one given in [5℄. The KM Poisson bra
ket algebra of the gauge invariantdi�erential polynomials be
omes the Dira
 bra
ket algebra of the 
urrent 
omponents inthe DS gauges, whi
h we 
onsider in Se
tion 3.2. The extended 
onformal algebra WGSmentioned in the Introdu
tion is espe
ially interesting in that its primary �eld basis ismanifest and given by the sl(2) stru
ture, as we shall see in Se
tion 3.3. One of our mainresults is that we shall �nd here �rst 
lass KM 
onstraints underlying this algebra, su
hthat they satisfy our suÆ
ient 
ondition for polynomiality. Thus we 
an represent WGSas a KM Poisson bra
ket algebra of gauge invariant di�erential polynomials, whi
h inprin
iple allows for its quantization through the KM representation theory. The impor-tan
e of the WGS -algebras is 
learly demonstrated by the result of Se
tion 3.4, where weshow that the W ln-algebras of [26℄ 
an be interpreted as further redu
tions of parti
ularWGS -algebras. This makes it possible to exhibit primary �elds for the W ln-algebras andto des
ribe their stru
ture in detail in terms of the 
orresponding WGS -algebras, whi
h isthe subje
t of [37℄.3.1. A suÆ
ient 
ondition for polynomialityLet us suppose that (�;M;H) satisfy the previously given 
onditions, (2.6) and(2.13), for J(x) =M + j(x) ; j(x) 2 �? (3:1)26



des
ribing the 
onstraint surfa
e of 
onformally invariant �rst 
lass 
onstraints, where His a grading operator and M is subje
t to[H;M ℄ = �M ; M =2 �? : (3:2)Then, as we shall show, the following two additional 
onditions:� \ KM = f0g ; where KM = Ker(adM ) ; (3:3)and �? � G>�1 ; (3:4a)allow for establishing a di�erential polynomial gauge �xing algorithm whereby one 
an
onstru
t out of J(x) in (3.1) a 
omplete set of gauge invariant di�erential polynomials.Before proving this result, we dis
uss some 
onsequen
es of the 
onditions, whi
hwe shall need later. In the present situation �, �? and G are graded by the eigenvaluesof adH , and �rst we note that (3.4a) is equivalent toG�1 � � : (3:4b)Indeed, this follows from the fa
t that the spa
es Gh and G�h are dual to ea
h other withrespe
t to the Cartan-Killing form, whi
h is a 
onsequen
e of its non-degenera
y andinvarian
e under adH . Of 
ourse, here and below the grading is the one de�ned by H,and we note that G�1 are non-trivial be
ause of (3.2). The 
ondition given by (3.4a) playsa te
hni
al role in our 
onsiderations, but perhaps it 
an be argued for also physi
ally,on the basis that it ensures that the 
onformal weights of the primary �eld 
omponentsof j(x) in (3.1) are non-negative with respe
t to LH (2.10). Se
ond, let us observe thatin our situation M satisfying (3.2) is uniquely determined, that is, there is no possibilityof shifting it by elements from �?, simply be
ause there are no grade �1 elements in �?,on a

ount of (3.4a). Equation (3.3) means that the operator adM maps � into �? in aninje
tive manner, and for this reason we refer to (3.3) as the non-degenera
y 
ondition.Combining the non-degenera
y 
ondition with (3.2), (3.4a) and (2.7) we see that ourgauge algebra � 
an 
ontain only positive grades:� � G>0 : (3:5)This implies that every 
 2 � is represented by a nilpotent operator in any �nite dimen-sional representation of G, and that G�0 � �? : (3:6)27



It follows from (3.2) that [H;KM ℄ � KM , whi
h is telling us that KM is also graded, andwe see from (3.3) and (3.4b) that KM � G<1 : (3:7)Finally, we wish to establish a 
ertain relationship between the dimensions of G and KM .For this purpose we 
onsider an arbitrary 
omplementary spa
e TM to KM , de�ning alinear dire
t sum de
omposition G = KM + TM : (3:8)It is easy to see that for the 2-form !M we have !M (KM ;G) = 0, and the restri
tion of!M to TM is a symple
ti
 form, in other words:!M (TM ; TM ) is non�degenerate : (3:9)(We note in passing that TM 
an be identi�ed with the tangent spa
e at M to the
oadjoint orbit of G through M , and in this pi
ture !M be
omes the Kirillov-Kostantsymple
ti
 form of the orbit [34℄.) The non-degenera
y 
ondition (3.3) says that one 
an
hoose the spa
e TM in (3.8) in su
h a way that � � TM . One then obtains the inequalitydim(�) � 12dim(TM ) = 12�dim(G)� dim(KM )� ; (3:10)where the fa
tor 12 arises sin
e !M is a symple
ti
 form on TM , whi
h vanishes, by (2.6),on the subspa
e � � TM .After the above 
lari�
ation of the meaning of 
onditions (3.3) and (3.4), we nowwish to show that they indeed allow for exhibiting a 
omplete set of gauge invariantdi�erential polynomials among the gauge invariant fun
tions. Generalizing the argumentsof [5,13,15℄, this will be a
hieved by demonstrating that an arbitrary 
urrent J(x) subje
tto (3.1) 
an be brought to a 
ertain normal form by a unique gauge transformation whi
hdepends on J(x) in a di�erential polynomial way.A normal form suitable for this purpose 
an be asso
iated to any graded subspa
e� � G whi
h is dual to � with respe
t to the 2-form !M . Given su
h a spa
e �, it ispossible to 
hoose bases 
ih and �jk in � and � respe
tively su
h that!M (
lh; �ik) = ÆilÆhk; (3:11)where the subs
ript h on 
lh denotes the grade, and the indi
es i and l denote theadditional labels whi
h are ne
essary to spe
ify the base ve
tors at �xed grade. It is28



to be noted that, by de�nition, the subsript k on elements �jk 2 � does not denote thegrade, whi
h is (1�k). The normal (or redu
ed) form 
orresponding to � is given by thefollowing equation:Jred(x) =M + jred(x) where jred(x) 2 �? \�? : (3:12)In other words, the set of redu
ed 
urrents is obtained by supplementing the �rst 
lass
onstraints of equation (2.3) by the gauge �xing 
ondition��(x) = hJ(x); �i � hM; �i = 0 ; 8� 2 � : (3:13)We 
all a gauge whi
h 
an be obtained in the above manner a Drinfeld-Sokolov (DS)gauge. It is not hard to see that the spa
e V = �? \ �? is a graded subspa
e of �?whi
h is disjoint from the image of � under the operator adM and is in fa
t 
omplementaryto the image, i.e., one has �? = [M;�℄ + V : (3:14)It also follows from the non-degenera
y 
ondition (3.3) that any graded 
omplement Vin (3.14) 
an be obtained in the above manner, by means of using some �. Thus it ispossible to de�ne the DS normal form of the 
urrent dire
tly in terms of a 
omplementaryspa
e V as well, as has been done in spe
ial 
ases in [5,13,18℄.As the �rst step in proving that any 
urrent in (3.1) is gauge equivalent to one inthe DS gauge, let us 
onsider the gauge transformation by gh(x+) = exp[Pl alh(x+)
lh℄for some �xed grade h. Suppressing the summation over l, it 
an be written as*j(x)! jgh(x) = eah�
h(j(x) +M)e�ah�
h + (eah�
h)0e�ah�
h �M : (3:15)Taking the inner produ
t of this equation with the basis ve
tors �ik in (3.11) for all k � h,we see that there is no 
ontribution from the derivative term. We also see that the only
ontribution from eah�
hj(x)e�ah�
h = j(x) + [ah(x+) � 
h; j(x)℄ + : : : (3:16)* Throughout the 
hapter, all equations involving gauge transformations, Poissonbra
kets, et
., are to be evaluated by using a �xed time, sin
e they are all 
onsequen
esof equation (2.1). By this 
onvention, they are valid both on the 
anoni
al phase spa
eand on the 
hiral KM phase spa
e belonging to spa
e of solutions of the theory.29



is the one 
oming from the �rst term, sin
e all 
ommutators 
ontaining the elements 
lhdrop out from the inner produ
t in question as a 
onsequen
e of the following 
ru
ialrelation: [
lh; �ik℄ 2 �; for k � h; (3:17)whi
h follows from (3.4b) by noting that the grade of this 
ommutator, (1+ h� k), is atleast 1 for k � h. Taking these into a

ount, and 
omputing the 
ontribution from thosetwo terms in jgh(x) whi
h 
ontain M by using (3.11), we obtainh�ik; jgh(x)i = h�ik; j(x)i � aih(x+)Æhk; for all k � h: (3:18)We see from this equation thath�ik; j(x)i = 0 () h�ik; jgh(x)i = 0 ; for k < h ; (3:19)and aih(x+) = h�ih; j(x)i ) h�ih; jgh(x)i = 0 ; for k = h: (3:20)These last two equations tell us that if the gauge-�xing 
ondition h�ik; j(x)i = 0 is satis�edfor all k < h then we 
an ensure that the same 
ondition holds for jgh(x) for the extendedrange of indi
es k � h, by 
hoosing aih(x+) to be h�ih; j(x)i. From this it is easy to seethat the DS gauge (3.13) 
an be rea
hed by an iterative pro
ess of gauge transformations,and the gauge-parameters aih(x+) are unique polynomials in the 
urrent at ea
h stage ofthe iteration.In more detail, let us write the general element g(a(x+)) 2 e� of the gauge group asa produ
t in order of des
ending grades, i.e., asg(a(x+)) = ghn � ghn�1 � � �gh1 ; with ghi(x+) = eahi (x+)�
hi ; (3:21a)where hn > hn�1 > : : : > h1 (3:21b)is the list of grades o

urring in �. Let us then insert this expression intoj ! jg = g(j +M)g�1 + g0g�1 �M ; (3:22a)and 
onsider the 
ondition jg(x) = jred(x) ; (3:22b)with jred(x) in (3.12), as an equation for the gauge-parameters ah(x+). One sees fromthe above 
onsiderations that this equation is uniquely soluble for the 
omponents of30



the ah(x+) and the solution is a di�erential polynomial in j(x). This implies that the
omponents of jred(x) 
an also be uniquely 
omputed from (3.22), and the solution yieldsa 
omplete set of gauge invariant di�erential polynomials of j(x), whi
h establishes therequired result. The above iterative pro
edure is in fa
t a 
onvenient tool for 
omputingthe gauge invariant di�erential polynomials in pra
ti
e [15℄. We remark that, of 
ourse,any unique gauge �xing 
an be used to de�ne gauge invariant quantities, but they are ingeneral not polynomial, not even lo
al in j(x).We also wish to note that an arbitrary linear subspa
e of G whi
h is dual to V in(3.14) with respe
t to the Cartan-Killing form 
an be used in a natural way as the spa
eof parameters for des
ribing those 
urrent dependent KM transformations whi
h preservethe DS gauge. In fa
t, it is possible to give an algorithm whi
h 
omputes the W-algebraand its a
tion on the other �elds of the 
orresponding 
onstrained WZNW theory by�nding the gauge preserving KM transformations implementing the W-transformations.This algorithm presupposes the existen
e of su
h gauge invariant di�erential polynomialswhi
h redu
e to the 
urrent 
omponents in the DS gauge, whi
h is ensured by the abovegauge �xing algorithm, but it works without a
tually 
omputing them. This issue istreated in detail in [13,18℄ in spe
ial 
ases, but the results given there apply also to thegeneral situation investigated in the above.3.2. The polynomiality of the Dira
 bra
ketIt follows from the polynomiality of the gauge �xing that the 
omponents of thegauge �xed 
urrent jred in (3.12) generate a di�erential polynomial algebra under Dira
bra
ket. In our proof of the polynomiality we a
tually only used that the graded subspa
e� of G is dual to the graded gauge algebra � with respe
t to !M and satis�es the 
ondition([� ; �℄)�1 � � ; (3:23)whi
h is equivalent to the existen
e of the bases 
lh and �ik satisfying (3.11) and (3.17).We have seen that this 
ondition follows from (3.3) and (3.4), but it should be noted thatit is a more general 
ondition, sin
e the 
onverse is not true, as is shown by an exampleat the end of this se
tion.Below we wish to give a dire
t proof for the polynomiality of the Dira
 bra
ket31



algebra belonging to the se
ond 
lass 
onstraints:
� (x) = h� ; J(x)�Mi = 0 where � 2 f
lhg [ f�ikg : (3:24)The proof will shed a new light on the polynomiality 
ondition. We note that for 
ertainpurposes se
ond 
lass 
onstraints might be more natural to use than �rst 
lass ones sin
ein the se
ond 
lass formalism one dire
tly deals with the physi
al �elds. For example, theWGS -algebra mentioned in the Introdu
tion is very natural from the se
ond 
lass pointof view and 
an be realized by starting with a number of di�erent �rst 
lass systems of
onstraints, as we shall see in the next se
tion.We �rst re
all that, by de�nition, the Dira
 bra
ket algebra of the redu
ed 
urrentsis fjured(x);jvred(y)g� = fjured(x); jvred(y)g�X�� Z dz1dw1fjured(x); 
�(z)g���(z; w)f
�(w); jvred(y)g ; (3:25)where, for any u 2 G, jured(x) = hu; jred(x)i is to be substituted by hu; J(x)�Mi underthe KM Poisson bra
ket, and ���(z; w) is the inverse of the kernelD��(z; w) = f
�(z); 
�(w)g ; (3:26)in the sense that (on the 
onstraint surfa
e)X� Z dx1���(z; x)D��(x;w) = Æ��Æ(z1 � w1): (3:27)To establish the polynomiality of the Dira
 bra
ket, it is useful to 
onsider the matrixdi�erential operator D��(z) de�ned by the kernel D��(z; w) in the usual way, i.e.,X� D��(z)f�(z) =X� Z dw1D��(z; w)f�(w) ; (3:28)for a ve
tor of smooth fun
tions f�(z), whi
h are periodi
 in z1. From the stru
ture ofthe 
onstraints in (3.24), 
� = (�
 ; ��), one sees that D��(z) is a �rst order di�erentialoperator possessing the following blo
k stru
tureD�� = �D
~
 D
�D~�~
 D~�� � = � 0 E�Ey F � ; (3:29)where Ey is the formal Hermitian 
onjugate of the matrix E, (Ey)�
 = (E
�)y. It is 
learthat the Dira
 bra
ket in (3.25) is a di�erential polynomial in jred(x) and Æ(x1 � y1)32



whenever the inverse operatorD�1(z), whose kernel is ���(z; w), is a di�erential operatorwhose 
oeÆ
ients are di�erential polynomials in jred(z). On the other hand, we see from(3.29) that the operator D is invertible if and only if its blo
k E is invertible, and in that
ase the inverse takes the form(D�1)�� = � (Ey)�1FE�1 �(Ey)�1E�1 0 � : (3:30)Sin
e E(z) and F (z) are polynomial (even linear) in jred(z) and in �z and the inverseof F (z) does not o

ur in D�1(z), it follows that D�1(z) is a polynomial di�erentialoperator if and only if E�1(z) is a polynomial di�erential operator.To show that E�1 exists and is a polynomial di�erential operator we note that interms of the basis of (� + �) in (3.24) the matrix E is given expli
itly by the followingformula: E
mh ;�nk (z) = ÆhkÆmn + h[
mh ; �nk ℄; jred(z)i+ h
mh ; �nk i�z : (3:31)The 
ru
ial point is that, by the grading and the property in (3.17), we haveE
mh ;�nk (z) = ÆhkÆnm ; for k � h : (3:32)The matrix E has a blo
k stru
ture labelled by the (blo
k) row and (blo
k) 
olumnindi
es h and k, respe
tively, and (3.32) means that the blo
ks in the diagonal of E areunit matri
es and the blo
ks below the diagonal vanish. In other words, E is of the formE = 1 + ", where " is a stri
tly upper triangular matrix. It is 
lear that su
h a matrixdi�erential operator is polynomially invertible, namely by a �nite series of the formE�1 = 1� "+ "2 + : : :+ (�1)N"N ; ("N+1 = 0); (3:33)whi
h �nishes our proof of the polynomiality of the Dira
 bra
ket in (3.25). One 
an usethe arguments in the above proof to set up an algorithm for a
tually 
omputing the Dira
bra
ket. The proof also shows that the polynomiality of the Dira
 bra
ket is guaranteedwhenever E is of the form (1+") with " being nilpotent as a matrix. In our 
ase this wasensured by a spe
ial grading assumption, and it appears an interesting question whetherpolynomial redu
tions 
an be obtained at all without using some grading stru
ture.The zero blo
k o

urs in D�1 in (3.30) be
ause the se
ond 
lass 
onstraints originatefrom the gauge �xing of �rst 
lass ones. We note that the presen
e of this zero blo
kimplies that the Dira
 bra
kets of the gauge invariant quantities 
oin
ide with theiroriginal Poisson bra
kets, namely one sees this from the formula of the Dira
 bra
ket by33



keeping in mind that the gauge invariant quantities weakly 
ommute with the �rst 
lass
onstraints.Finally, we want to show that 
ondition (3.23) is weaker than (3.3-4). This is bestseen by 
onsidering an example. To this let now G be the maximally non-
ompa
t realform of a 
omplex simple Lie algebra. If fM�;M0;M+g is the prin
ipal sl(2) embeddingin G, with 
ommutation rules as in (3.34) below, we simply 
hoose the one-dimensionalgauge algebra � � fM+g and take M � M�. The !M -dual to M+ 
an be taken tobe � = M0, and then (3.23) holds. To show that 
onditions (3.3-4) 
annot be satis�ed,we prove that a grading operator H for whi
h [H;M�℄ = �M� and GH�1 � �, does notexist. First of all, [H;M�℄ = �M� and hM�;M+i 6= 0 imply [H;M+℄ = M+, and thus�H�1 = fM+g. Furthermore, writing H = (M0 +�), we �nd from [H;M�℄ = �M� that� must b e an sl(2) singlet in the adjoint of G. However, in the 
ase of the prin
ipalsl(2) embedding, there is no su
h singlet in the adjoint, and hen
e H = M0. But thenthe 
ondition GM0�1 � � is not ful�lled.3.3. First 
lass 
onstraints for the WGS -algebrasLet S = fM� ; M0 ; M+g be an sl(2) subalgebra of the simple Lie algebra G:[M0;M�℄ = �M� ; [M+;M�℄ = 2M0 : (3:34)We argued in the Introdu
tion that it is natural to asso
iate an extended 
onformalalgebra, denoted as WGS , to any su
h sl(2) embedding [16,18℄. Namely, we de�ned theWGS -algebra to be the Dira
 bra
ket algebra generated by the 
omponents of the 
on-strained KM 
urrent of the the following spe
ial form:Jred(x) =M� + jred(x) ; with jred(x) 2 Ker(adM+) ; (3:35)whi
h means that jred(x) is a linear 
ombination of the sl(2) highest weight states in theadjoint of G. This de�nition is indeed natural in the sense that the 
onformal propertiesare manifest, sin
e, as we shall see below, with the ex
eption of the M+-
omponentthe spin s 
omponent of jred(x) turns out to be a primary �eld of 
onformal weight(s+ 1) with respe
t to LM0 . Before showing this, we shall 
onstru
t here �rst 
lass KM
onstraints underlying the WGS -algebra, whi
h will be used in Chapter 4 to 
onstru
tgeneralized Toda theories whi
h realize the WGS -algebras as their 
hiral algebras. We34



expe
t the WGS -algebras to play an important organizing role in des
ribing the (primary�eld 
ontent of) 
onformally invariant KM redu
tions in general, and shall give argumentsin favour of this idea later.We wish to �nd a gauge algebra � for whi
h the triple (�; H = M0;M = M�)satis�es our suÆ
ient 
onditions for polynomiality and (3.35) represents a DS gauge forthe 
orresponding 
onformally invariant �rst 
lass 
onstraints. We start by noti
ing thatthe dimension of su
h a � has to satisfy the relationdimKer(adM+) = dimWGS = dimG � 2dim� : (3:36)From this, sin
e the kernels of adM� are of equal dimension, we obtain thatdim� = 12dimG � 12dimKer(adM�) ; (3:37)whi
h means by (3.10) that we are looking for a � of maximal dimension. By the repre-sentation theory of sl(2), the above equality is equivalent todim� = dimG�1 + 12dimG 12 ; (3:38)where the grading is by the, in general half-integral, eigenvalues of adM0 . We also know,(3.4b) and (3.5), that for our purpose we have to 
hoose the graded Lie subalgebra � ofG in su
h a way that G�1 � � � G>0. Observe that the non-degenera
y 
ondition (3.3)is automati
ally satis�ed for any su
h � sin
e in the present 
ase Ker(adM�) � G�0, andM0 2 �? is also ensured, whi
h guarantees the 
onformal invarian
e, see (2.13).It is obvious from the above that in the spe
ial 
ase of an integral sl(2) subalgebra,for whi
h G 12 is empty, one 
an simply take� = G�1 : (3:39)For grading reasons, !M�(G�1;G�1) = 0 (3:40)holds, and thus one indeed obtains �rst 
lass 
onstraints in this way.One sees from (3.38) that for �nding the gauge algebra in the non-trivial 
ase of ahalf-integral sl(2) subalgebra, one should somehow add half of G 12 to G�1, in order tohave the 
orre
t dimension. The key observation for de�ning the required halving of G 12
onsists in noti
ing that the restri
tion of the 2-form !M� to G 12 is non-degenerate. This35




an be seen as a 
onsequen
e of (3.9), but is also easy to verify dire
tly. By the wellknown Darboux normal form of symple
ti
 forms [34℄, there exists a (non-unique) dire
tsum de
omposition G 12 = P 12 +Q 12 (3:41)su
h that !M� vanishes on the subspa
es P 12 and Q 12 separately. The spa
es P 12 andQ 12 , whi
h are the analogues of the usual momentum and 
oordinate subspa
es of thephase spa
e in analyti
 me
hani
s, are of equal dimension and dual to ea
h other withrespe
t to !M� . The point is that the �rst-
lassness 
onditions in (2.6) are satis�ed ifwe de�ne the gauge algebra to be � = G�1 + P 12 ; (3:42)by using any symple
ti
 halving of the above kind. It is obvious from the 
onstru
tionthat the �rst 
lass 
onstraints,J(x) =M� + j(x) with j(x) 2 �? ; (3:43)obtained by using � in (3.42) satisfy the suÆ
ient 
onditions for polynomiality given inSe
tion 3.1. With this � we have �? = G�0 +Q� 12 ; (3:44a)where Q� 12 is the subspa
e of G� 12 given byQ� 12 = [M�;P 12 ℄ : (3:44b)By 
ombining (3.42) and (3.44) one also easily veri�es the following dire
t sum de
om-position: �? = [M�;�℄ + Ker(adM+) ; (3:45)whi
h is just (3.14) with V = Ker(adM+). This means that (3.35) is indeed nothing butthe equation of a parti
ular DS gauge for the �rst 
lass 
onstraints in (3.43), as required.This spe
ial DS gauge is 
alled the highest weight gauge [13℄. Similarly as for any DSgauge, there exists therefore a basis of gauge invariant di�erential polynomials of the
urrent in (3.43) su
h that the base elements redu
e to the 
omponents of jred(x) in (3.35)by the gauge �xing. The KM Poisson bra
ket algebra of these gauge invariant di�erentialpolynomials is 
learly identi
al to the Dira
 bra
ket algebra of the 
orresponding 
urrent36




omponents, and we 
an thus realize the WGS -algebra as a KM Poisson bra
ket algebraof gauge invariant di�erential polynomials.The se
ond 
lass 
onstraints de�ning the highest weight gauge (3.35) are natural inthe sense that in this 
ase � in (3.24) runs over the basis of the spa
e TM� = [M+ ; G℄whi
h is a natural 
omplement of KM� = Ker(adM�) in G, eq. (3.8).In the se
ond 
lass formalism, the 
onformal a
tion generated by LM0 on the WGS -algebra is given by the following formula:Æ�f;M0 jred(x) � � Z dy1 f(y+) fLM0(y) ; jred(x)g� ; (3:46)where the parameter fun
tion f(x+) refers to the 
onformal 
oordinate transformationÆf x+ = �f(x+), 
f. (2.11), and jred(x) is to be substituted by J(x)�M� when evaluatingthe KM Poisson bra
kets entering into (3.46), like in (3.25). To a
tually evaluate (3.46),we �rst repla
e LM0 by the obje
tLmod(x) = LM0(x)� 12hM+ ; J 00(x)i ; (3:47)whi
h is allowed under the Dira
 bra
ket sin
e the di�eren
e (the se
ond term) vanishesupon imposing the 
onstraints. The 
ru
ial point to noti
e is that Lmod weakly 
ommuteswith all the 
onstraints de�ning (3.35) (not only with the �rst 
lass ones) under the KMPoisson bra
ket. This implies that with Lmod the Dira
 bra
ket in (3.46) is in fa
tidenti
al to the original KM Poisson bra
ket and by this observation we easily obtainÆ�f;M0 jred(x) = f(x+) j0red(x) + f 0(x+)�jred(x) + [M0; jred(x)℄)� 12f 000(x+)M+: (3:48)This proves that, with the ex
eption of the M+-
omponent, the sl(2) highest weight
omponents of jred(x) in (3.35) transform as 
onformal primary �elds, whereby the 
on-formal 
ontent of WGS is determined by the de
omposition of the adjoint of G under Sin the aforementioned manner. We end this dis
ussion by noting that in the highestweight gauge LM0(x) be
omes a linear 
ombination of the M+-
omponent of jred(x) anda quadrati
 expression in the 
omponents 
orresponding to the singlets of S in G. Fromthis we see that LM0(x) and the primary �elds 
orresponding to the sl(2) highest weightstates give a basis for the di�erential polynomials 
ontained in WGS , whi
h is thus indeeda (
lassi
al) W-algebra in the sense of the general idea in [20℄.In the above we proposed a `halving pro
edure' for �nding purely �rst 
lass 
on-straints for whi
h WGS appears as the algebra of the 
orresponding gauge invariant dif-ferential polynomials. We now wish to 
larify the relationship between our method and37



the 
onstru
tion in a re
ent paper by Bais et al [16℄, where the WGS -algebra has been de-s
ribed, in the spe
ial 
ase of G = sl(n), by using a di�erent method. We re
all that theWGS -algebra has been 
onstru
ted in [16℄ by adding to the �rst 
lass 
onstraints de�nedby the pair (G�1;M�) the se
ond 
lass 
onstraintshu ; J(x)i = 0 ; for 8 u 2 G 12 : (3:49)Clearly, we re
over these 
onstraints by �rst imposing our 
omplete set of �rst 
lass
onstraint belonging to (�;M�) with � in (3.42), and then partially �xing the gauge byimposing the 
ondition hu ; J(x)i = 0 ; for 8 u 2 Q 12 : (3:50)One of the advantages of our 
onstru
tion is that by using only �rst 
lass KM 
onstraintsit is easy to 
onstru
t generalized Toda theories whi
h possessWGS as their 
hiral algebra,for any sl(2) subalgebra, namely by using our general method of WZNW redu
tions. Thiswill be elaborated in the next 
hapter. We note that in [16℄ the authors were a
tuallyalso led to repla
ing the original 
onstraints by a �rst 
lass system of 
onstraints, inorder to be able to 
onsider the BRST quantization of the theory. For this purpose theyintrodu
ed unphysi
al `auxiliary �elds' and thus 
onstru
ted �rst 
lass 
onstraints in anextended phase spa
e. However, in that 
onstru
tion one has to 
he
k that the auxiliary�elds �nally disappear from the physi
al quantities. Another important advantage ofour halving pro
edure is that it renders the use of any su
h auxiliary �elds 
ompletelyunne
essary, sin
e one 
an start by imposing a 
omplete system of �rst 
lass 
onstraintson the KM phase spa
e from the very beginning. We study some aspe
ts of the BRSTquantization in Chapter 5, and we shall see that the Virasoro 
entral 
harge given in [16℄agrees with the one 
omputed by taking our �rst 
lass 
onstraints as the starting point.The �rst 
lass 
onstraints leading toWGS are not unique, for example one 
an 
onsideran arbitrary halving in (3.41) to de�ne �. We 
onje
ture that these W-algebras alwayso

ur under 
ertain natural assumptions on the 
onstraints. To be more exa
t, let ussuppose that we have 
onformally invariant �rst 
lass 
onstraints determined by thepair (�;M�) where M� is a nilpotent matrix and the non-degenera
y 
ondition (3.3)holds together with equation (3.37). By the Ja
obson-Morozov theorem, it is possibleto extend the nilpotent generator M� to an sl(2) subalgebra S = fM�;M0;M+g. It isalso worth noting that the 
onjuga
y 
lass of S under the automorphism group of G isuniquely determined by the 
onjuga
y 
lass of the nilpotent element M�. For this andother questions 
on
erning the theory of sl(2) embeddings into semi-simple Lie algebras38



the reader may 
onsult refs. [32,33,38,39℄. We expe
t that the above assumptions on(�;M�) are suÆ
ient for the existen
e of a 
omplete set of gauge invariant di�erentialpolynomials and their algebra is isomorphi
 to WGS , where M� 2 S. We are not yet ableto prove this 
onje
ture in general, but below we wish to sket
h the proof in an importantspe
ial 
ase whi
h illustrates the idea.Let us assume that we have 
onformally invariant �rst 
lass 
onstraints des
ribedby (�;M�; H) subje
t to the suÆ
ient 
onditions for polynomiality given in Se
tion 3.1,su
h that H is an integral grading operator of G. We note that these are exa
tly theassumptions satis�ed by the 
onstraints in the non-degenerate 
ase of the generalizedToda theories asso
iated to integral gradings [18℄. In this 
ase equation (3.37) is a
tuallyautomati
ally satis�ed as a 
onsequen
e of the non-degenera
y 
ondition (3.3). One 
analso show that it is possible to �nd an sl(2) algebra S = fM�;M0;M+g for whi
h inaddition to [H;M�℄ = �M� one has[H;M0℄ = 0 and [H;M+℄ =M+ ; (3:51)and that for this sl(2) algebra the relationKer(adM+) � GH�0 (3:52)holds, where the supers
ript indi
ates that the grading is de�ned by H. For the sl(2)subje
t to (3.51) the latter property is in fa
t equivalent to Ker(adM�) � GH�0, whi
h isjust the non-degenera
y 
ondition as in our 
ase � = GH>0. The proof of these statementsis given in Appendix B.We introdu
e a de�nition at this point, whi
h will be used in the rest of the paper.Namely, we 
all an sl(2) subalgebra S = fM�;M0;M+g an H-
ompatible sl(2) fromnow on if there exists an integral grading operator H su
h that [H;M�℄ = �M� issatis�ed together with the non-degenera
y 
ondition. The non-degenera
y 
ondition 
anbe expressed in various equivalent forms, it 
an be given for example as the relation in(3.52), and its (equivalent) analogue for M�.Turning ba
k to the problem at hand, we now point out that by using the H-
ompatible sl(2) we have the following dire
t sum de
omposition of �? = GH�0:GH�0 = [M�;GH>0℄ + Ker(adM+): (3:53)This means that the set of 
urrents of the form (3.35) represents a DS gauge for thepresent �rst 
lass 
onstraints. This implies the required result, that is that the W-algebra belonging to the 
onstraints de�ned by � = GH>0 together with a non-degenerate39



M� is isomorphi
 to WGS with M� 2 S. In this example both LH(x) and LM0(x) aregauge invariant di�erential polynomials. Although the spe
trum of adH is integral byassumption, in some 
ases the H-
ompatible sl(2) is embedded into G in a half-integralmanner, i.e., the spe
trum of adM0 
an be half-integral in 
ertain 
ases. We shall returnto this point later. We further note that in general it is 
learly impossible to build su
han sl(2) out of M� for whi
h H would play the role ofM0. It is possible to prove that inthose 
ases there is no full set of primary �elds with repe
t to LH whi
h would 
ompletethis Virasoro density to a generating set of the 
orresponding di�erential polynomialW-algebra. We have seen that su
h a 
onformal basis is manifest for WGS , whi
h seems toindi
ate that in the present situation the 
onformal stru
ture de�ned by the sl(2), LM0 ,is preferred in 
omparison to the one de�ned by LH .We also would like to mention an interesting general fa
t about the WGS -algebras,whi
h will be used in the next se
tion. Let us 
onsider the de
omposition of G under thesl(2) subalgebra S. In general, we shall �nd singlet states and they span a Lie subalgebrain the Lie subalgebra Ker(adM+) of G. Let us denote this zero spin subalgebra as Z. Itis easy to see that we have the semi-dire
t sum de
ompositionKer(adM+) = Z +R; [Z;R℄ � R; [Z;Z℄ � Z; (3:54)where R is the linear spa
e spanned by the rest of the highest weight states, whi
h havenon-zero spin. It is not hard to prove that the subalgebra of the original KM algebrawhi
h belongs to Z, survives the redu
tion to WGS . In other words, the Dira
 bra
kets ofthe Z-
omponents of the highest weight gauge 
urrent, jred in (3.35), 
oin
ide with theiroriginal KM Poisson bra
kets, given by (2.1). Furthermore, this Z KM subalgebra a
tson the WGS -algebra by the 
orresponding original KM transformations, whi
h preservethe highest weight gauge:Jred(x)! eai(x+)�i Jred(x) e�ai(x+)�i + (eai(x+)�i)0 e�ai(x+)�i ; (3:55)where the �i form a basis of Z. In parti
ular, one sees that the WGS -algebra inherites thesemi-dire
t sum stru
ture given by (3.54) [16℄. The point we wish to make is that it ispossible to further redu
e theWGS -algebra by applying the general method of 
onformallyinvariant KM redu
tions to the present Z KM symmetry. In prin
iple, one 
an generatea huge number of new 
onformally invariant systems out of the WGS -algebras in thisway, i.e., by applying 
onformally invariant 
onstraints to their singlet KM subalgebras.For example, if one 
an �nd a subalgebra of Z on whi
h the Cartan-Killing form of Gvanishes, then one 
an 
onsider the obviously 
onformally invariant redu
tion obtained40



by 
onstraining the 
orresponding 
omponents of jred in (3.35) to zero. We do not explorethese `se
ondary' redu
tions of the WGS -algebras in this paper. However, their potentialimportan
e will be highlighted by the example of the next se
tion.Finally, we note that, for a half-integral sl(2), one 
an 
onsider (instead of using� in (3.42)) also those 
onformally invariant �rst 
lass 
onstraints whi
h are de�ned bythe triple (�;M0;M�) with any graded � for whi
h G�1 � � � (G�1 + P 12 ) . Thepolynomiality 
onditions of Se
tion 3.1 are 
learly satis�ed with any su
h non-maximal�, and the 
orresponding extended 
onformal algebras are in a sense between the KMand WGS -algebras.3.4. The WGS interpretation of the W ln-algebrasThe W ln-algebras are 
ertain 
onformally invariant redu
tions of the sl(n;R) KMalgebra introdu
ed by Bershadsky [26℄ using a mixed set of �rst 
lass and se
ond 
lass
onstraints. It is known [16℄ that the simplest non-trivial 
ase W 23 , originally proposedby Polyakov [27℄, 
oin
ides with the WGS -algebra belonging to the highest root sl(2) ofsl(3; R). The purpose of this se
tion is to understand whether or not these redu
ed KMsystems �t into our framework, whi
h is based on using purely �rst 
lass 
onstraints, andto un
over their possible 
onne
tion with the WGS -algebras in the general 
ase. (In thisse
tion, G = sl(n;R).) In fa
t, we shall 
onstru
t here purely �rst 
lass KM 
onstraintsleading to theW ln-algebras. The 
onstru
tion will demonstrate that theW ln-algebras 
anin general be identi�ed as further redu
tions of parti
ular WGS -algebras. The se
ondaryredu
tion pro
ess is obtained by means of the singlet KM subalgebras of the relevantWGS -algebras, in the manner mentioned in the previous se
tion.By de�nition [26℄, the KM redu
tion yielding the W ln-algebra is obtained by 
on-straining the 
urrent to take the following form:JB(x) =M� + jB(x); jB(x) 2 �?; (3:56)where � denotes the set of all stri
tly upper triangular n� n matri
es andM� = el+1;1 + el+2;2 + :::+ en;n�l; (3:57)the e's being the standard sl(n;R) generators (l � n � 1), i.e., M� has 1's all alongthe l-th slanted line below the diagonal. The 
urrent in (3.56) 
orresponds to imposing41



the 
onstraints �Æ(x) = 0 for all Æ 2 �, like in (2.3). Generally, these 
onstraints
omprise �rst and se
ond 
lass parts, where the �rst 
lass part is the one belonging tothe subalgebra D of � de�ned by the relation !M�(D;�) = 0, (see (2.4)). The se
ond
lass part belongs to the 
omplementary spa
e, C, of D in �. In fa
t, for l = 1 the
onstraints are the usual �rst 
lass ones whi
h yield the standard W-algebras, but these
ond 
lass part is non-empty for l > 1. The above KM redu
tion is so 
onstru
tedthat it is 
onformally invariant, sin
e the 
onstraints weakly 
ommute with the Virasorodensity LHl(x), see (2.10), where Hl = 1lH1 and H1 is the standard grading operator ofsl(n;R), for whi
h [H1 ; eik℄ = (k � i)eik.We start our 
onstru
tion by extending the nilpotent generator M� in (3.57) to ansl(2) subalgebra S = fM�;M0;M+g. In fa
t, parametrizing n = ml + r with m = �nl �and 0 � r < l, we 
an takeM0 = diag� r timesz }| {m2 ; � � �; (l�r) timesz }| {m� 12 ; � � �; � � � ; r timesz }| {�m2 ; � � ��; (3:58)where the mutipli
ities, r and (l� r), o

ur alternately and end with r. The meaning ofthis formula is that the fundamental of sl(n;R) bran
hes into l irredu
ible representationsunder S, r of spin m2 and l � r of spin m�12 . The expli
it form of M+ is a 
ertain linear
ombination of the eik's with (k � i) = l, whi
h is straightforward to 
ompute.We des
ribe next the �rst and the se
ond 
lass parts of the 
onstraints in (3.56) inmore detail by using the grading de�ned by M0. We observe �rst that in terms of thisgrading the spa
e � admits the de
omposition� = �0 + G 12 + G1 + G>1 : (3:59)From this and the de�nition of !M� , the subalgebra D 
omprising the �rst 
lass part
an also be de
omposed into D = D0 +D1 + G>1 ; (3:60)where D0 = Ker (adM�) \�0 (3:61)is the set of the sl(2) singlets in �, and D1 is a subspa
e of G1 whi
h we do not needto spe
ify. By 
ombining (3.59) and (3.60), we see that the 
omplementary spa
e C, towhi
h the se
ond 
lass part belongs, has the stru
tureC = Q0 + G 12 + P1 ; (3:62)42



where the subspa
e Q0 is 
omplementary to D0 in �0, and P1 is 
omplementary to D1in G1. The 2-form !M� is non-degenerate on C by 
onstru
tion, and this implies by thegrading that the spa
es Q0 and P1 are symple
ti
ally 
onjugate to ea
h other, whi
h isre
e
ted by the notation.We shall 
onstru
t a gauge algebra, �, so that Bershadsky's 
onstraints will be re
ov-ered by a partial gauge �xing from the �rst 
lass ones belonging to �. As a generalizationof the halving pro
edure of the previous se
tion, we take the following ansatz:� = D + P 12 + P1 ; (3:63)where P 12 is de�ned by means of some symple
ti
 halving G 12 = P 12 +Q 12 , like in (3.41).It is important to noti
e that this equation 
an be re
asted into� = D0 + P 12 + G�1 ; (3:64)whi
h would be just the familiar formula (3.42) if D0 was not here. By using (3.57) and(3.58), D0 
an be identi�ed as the set of n�n blo
k-diagonal matri
es, �, of the followingform: � = blo
k-diagf�0; �0;�0; :::::;�0; �0;�0g; (3:65)where the �0's and the �0's are identi
al 
opies of stri
tly upper triangular r � r and(l � r)� (l � r) matri
es respe
tively. This implies thatdimD0 = 14[l(l� 2) + (l� 2r)2℄ ; (3:66)whi
h shows that D0 is non-empty ex
ept when l = 2; r = 1, whi
h is the 
ase of W 2nwith n = odd. The fa
t that D0 is in general non-empty gives us a trouble at this stage,namely, we have now no guarantee that the above � is a
tually a subalgebra of G. Byusing the grading and the fa
t that D0 is a subalgebra, we see that � in (3.64) be
omesa subalgebra if and only if [D0 ; P 12 ℄ � P 12 : (3:67)We next show that it is possible to �nd su
h a `good halving' of G 12 for whi
h P 12 satis�es(3.67).For this purpose, we use yet another grading here. This grading is provided by usingthe parti
ular diagonal matrix, H 2 G, whi
h we 
onstru
t out of M0 in (3.58) by �rstadding 12 to its half-integral eigenvalues, and then substra
ting a multiple of the unitmatrix so as to make the result tra
eless. In the adjoint representation, we then have43



adH = adM0 on the tensors, and adH = adM0 � 1=2 on the spinors. We noti
e fromthis that the H-grading is an integral grading. In fa
t, the relationship between the twogradings allows us to de�ne a good halving of G 12 as follows:P 12 � G 12 \ GH1 ; and Q 12 � G 12 \ GH0 : (3:68)Sin
eM� is of grade �1 with respe
t to both gradings, the spa
es given by (3.68) 
learlyyield a sympe
ti
 halving of G 12 with respe
t to !M� . That this is a good halving, i.e.,it ensures the 
ondition (3.67), 
an also be seen easily by observing that D0 has grade0 in the H-grading, too. Thus we obtain the required subalgebra � of G by using thisparti
ular P 12 in (3.64).Let us 
onsider now the �rst 
lass 
onstraints 
orresponding to the above 
onstru
tedgauge algebra �, �
(x) = 0 for 
 2 �, whi
h bring the 
urrent into the formJ�(x) =M� + j�(x) ; j�(x) 2 �? : (3:69)It is easy to verify that the original 
onstraint surfa
e (3.56) 
an be re
overed from (3.69)by a partial gauge �xing in su
h a way that the residual gauge transformations are exa
tlythe ones belonging to the spa
e D. In fa
t, this is a
hieved by �xing the gauge freedom
orresponding to the pie
e (P 12 + P1) of �, (3.63), by imposing the partial gauge �xing
ondition �qi(x) = 0 ; qi 2 (Q0 +Q 12 ); (3:70)where the qi form a basis of the spa
e (Q0 +Q 12 ) and the �q's are de�ned like in (2.3).This implies that the redu
ed phase spa
e de�ned by the 
onstraints in (3.69) is the sameas the one determined by the original 
onstraints (3.56). In 
on
lusion, our purely �rst
lass 
onstraints, (3.69), have the same physi
al 
ontent as Bershadsky's original mixedset of 
onstraints, (3.56).Finally, we give the relationship between Bershadsky's W ln-algebras and the sl(2)systems. Having seen that the redu
ed KM phase spa
es 
arrying the W ln-algebras 
anbe realized by starting from the �rst 
lass 
onstraints in (3.69), it follows from (3.64)that the W ln-algebras 
oin
ide with parti
ular WGS -algebras if and only if the spa
e D0 isempty, i.e., for W 2n with n = odd. In order to establish the WGS interpretation of W ln inthe general 
ase, we point out that the redu
ed phase spa
e 
an be rea
hed from (3.69)by means of the following two step pro
ess based on the sl(2) stru
ture. Namely, one
an pro
eed by �rst �xing the gauge freedom 
orresponding to the pie
e (P 12 +G�1) of �,and then �xing the rest of the gauge freedom. Clearly, the 
onstraint surfa
e resulting in44



the �rst step is the same as the one obtained by putting to zero those 
omponents of thehighest weight gauge 
urrent representingWGS whi
h 
orrespond to D0. The �nal redu
edphase spa
e is obtained in the se
ond step by �xing the gauge freedom generated by the
onstraints belonging to D0, whi
h we have seen to be the spa
e of the upper triangularsinglets of S. Thus we 
an 
on
lude that W ln 
an be regarded as a further redu
tion ofthe 
orresponding WGS , where the `se
ondary redu
tion' is of the type mentioned at theend of Se
tion 3.3. One 
an exhibit primary �eld bases for the W ln-algebras and des
ribetheir stru
ture in detail in terms of the underlying WGS -algebras by further analysing these
ondary redu
tion, but this is outside the s
ope of the present paper, see [37℄.
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4. Generalized Toda theoriesLet us remind ourselves that, as has been detailed in the Introdu
tion, the standard
onformal Toda �eld theories 
an be naturally regarded as redu
ed WZNW theories, andas a 
onsequen
e these theories possess the 
hiral algebras WGS � ~WGS as their 
anoni
alsymmetries, where S is the prin
ipal sl(2) subalgebra of the maximally non-
ompa
t realLie algebra G. It is natural to seek for WZNW redu
tions leading to e�e
tive �eld theorieswhi
h would realize WGS � ~WGS as their 
hiral algebras for any sl(2) subalgebra S of anysimple real Lie algebra. The main purpose of this 
hapter is to obtain, by 
ombining theresults of se
tions 2.3 and 3.3, generalized Toda theories meeting the above requirementin the non-trivial 
ase of the half-integral sl(2) subalgebras of the simple Lie algebras.Before turning to des
ribing these new theories, next we brie
y re
all the main featuresof those generalized Toda theories, asso
iated to the integral gradings of the simple Liealgebras, whi
h have been studied before [3,4,14-18℄. The simpli
ity of the latter theorieswill motivate some subsequent developments.4.1. Generalized Toda theories asso
iated with integral gradingsThe WZNW redu
tion leading to the generalized Toda theories in question is set upby 
onsidering an integral grading operator H of G, and taking the spe
ial 
ase� = GH�1 and ~� = GH��1 ; (4:1)and any non-zero M 2 GH�1 and ~M 2 GH1 ; (4:2)in the general 
onstru
tion given in Se
tion 2.3. We note that by an integral gradingoperator H 2 G we mean a diagonalizable element whose spe
trum in the adjoint of G
onsists of integers and 
ontains �1, and that GHn denotes the grade n subspa
e de�nedby H. In the present 
ase B in (2.25b) is the subalgebra GH0 of G, and, be
ause of thegrading stru
ture, the properties expressed by equation (2.34) hold. Thus the e�e
tive�eld equation reads as (2.37) and the 
orresponding a
tion is given by the simple formulaIHe� (b) = SWZ(b)� Z d2x hb ~Mb�1;Mi ; (4:3)46



where the �eld b varies in the little group GH0 of H in G.Generalized, or non-Abelian, Toda theories of this type have been �rst investigatedby Leznov and Saveliev [1,3℄, who de�ned these theories by postulating their Lax poten-tial, AH+ = �+b � b�1 +M ; AH� = �b ~Mb�1 ; (4:4)whi
h they obtained by 
onsidering the problem that if one requires a G-valued pure-gauge Lax potential to take some spe
ial form, then the 
onsisten
y of the system ofequations 
oming from the zero 
urvature 
ondition be
omes a non-trivial problem. In
omparison, we have seen in Se
tion 2.3 that in the WZNW framework the Lax potentialoriginates from the 
hiral zero 
urvature equation (1.9), and the 
onsisten
y and theintegrability of the e�e
tive theory arising from the redu
tion is automati
.It was shown in [3,4,16℄ in the spe
ial 
ase when H, M and ~M are taken to bethe standard generators of an integral sl(2) subalgebra of G, that the non-Abelian Todaequation allows for 
onserved 
hiral 
urrents underlying its exa
t integrability. These
urrents then generate 
hiralW-algebras of the typeWGS , for integrally embedded sl(2)'s.By means of the argument given in Se
tion 3.3, we 
an establish the stru
ture of the
hiral algebras of a wider 
lass of non-Abelian Toda systems [18℄. Namely, we see that ifM and ~M in (4.2) satisfy the non-degenera
y 
onditionsKer(adM ) \ GH�1 = f0g and Ker(ad ~M ) \ GH��1 = f0g ; (4:5)then the left�right 
hiral algebra of the 
orresponding generalized Toda theory is isomor-phi
 to WGS� � ~WGS+ , where S� (S+) is an sl(2) subalgebra of G 
ontaining the nilpotentgenerator M ( ~M), respe
tively. The H-
ompatible sl(2) algebras S� o

urring here arenot always integrally embedded ones. Thus for 
ertain half-integral sl(2) algebras WGS
an be realized in a generalized Toda theory of the type (4.3). As we would like to havegeneralized Toda theories whi
h possess WGS as their symmetry algebra for an arbitrarysl(2) subalgebra, we have to ask whether the theories given above are already enoughfor this purpose or not. This leads to the te
hni
al question as to whether for everyhalf-integral sl(2) subalgebra S = fM�;M0;M+g of G there exists an integral gradingoperator H su
h that S is an H-
ompatible sl(2), in the sense introdu
ed in Se
tion 3.3.The answer to this question is negative, as proven in Appendix C, where the relationshipbetween integral gradings and sl(2) subalgebras is studied in detail. Thus we have to�nd new integrable 
onformal �eld theories for our purpose.47



4.2. Generalized Toda theories for half-integral sl(2) embeddingsIn the following we exhibit a generalized Toda theory possessing the left � right
hiral algebra WGS � ~WGS for an arbitrarily 
hosen half-integral sl(2) subalgebra S =fM� ; M0 ; M+g of the arbitrary but non-
ompa
t simple real Lie algebra G. Clearly, ifone imposes �rst 
lass 
onstraints of the type des
ribed in Se
tion 3.3 on the 
urrents ofthe WZNW theory then the resulting e�e
tive �eld theory will have the required 
hiralalgebra. We shall 
hoose the left and right gauge algebras in su
h a way to be dual toea
h other with respe
t to the Cartan-Killing form.Turning to the details, �rst we 
hoose a dire
t sum de
omposition of G 12 of the typein (3.41), and then de�ne the indu
ed de
omposition G� 12 = P� 12 +Q� 12 to be given bythe subspa
esQ� 12 � P?12 \ G� 12 = [M� ; P 12 ℄ and P� 12 � Q?12 \ G� 12 = [M� ; Q 12 ℄ : (4:6)It is easy to see that the 2-form !M+ vanishes on the above subspa
es of G� 12 as a
onsequen
e of the vanishing of !M� on the 
orresponding subspa
es of G 12 . Thus we
an take the left and right gauge algebras to be� = (G�1 + P 12 ) and ~� = (G��1 + P� 12 ) ; (4:7)with the 
onstant matri
es M and ~M entering the 
onstraints given by M� and M+,respe
tively. The duality hypothesis of Se
tion 2.3 is obviously satis�ed by this 
onstru
-tion.In prin
iple, the a
tion and the Lax potential of the e�e
tive theory 
an be obtainedby spe
ializing the general formulas of Se
tion 2.3 to the present parti
ular 
ase. In our
ase B = Q 12 + G0 +Q� 12 ; (4:8)and the physi
al modes, whi
h are given by the entries of b in the generalized Gaussde
omposition g = ab
 with a 2 e� and 
 2 e~�, are now 
onveniently parametrized asb(x) = exp[q 12 (x)℄ � g0(x) � exp[q� 12 (x)℄ ; (4:9)where q� 12 (x) 2 Q� 12 and g0(x) 2 G0, the little group of M0 in G. Next we introdu
esome notation whi
h will be useful for des
ribing the e�e
tive theory.48



The operator Adg0 maps G� 12 to itself and, by writing the general element u of G� 12as a two-
omponent 
olumn ve
tor u = (u1 u2)t with u1 2 P� 12 and u2 2 Q� 12 , we 
andesignate this operator as a 2� 2 matrix:Adg0 jG� 12 = �X11(g0) X12(g0)X21(g0) X22(g0)� ; (4:10)where, for example, X11(g0) and X12(g0) are linear operators mapping P� 12 and Q� 12 toP� 12 , respe
tively. Analogously, we introdu
e the notationAdg�10 jG 12 = �Y11(g0) Y12(g0)Y21(g0) Y22(g0)� ; (4:11)whi
h 
orresponds to writing the general element of G 12 as a 
olumn ve
tor, whose upperand lower 
omponents belong to P 12 and Q 12 , respe
tively.The a
tion fun
tional of the e�e
tive �eld theory resulting from the WZNW redu
-tion at hand reads as follows:ISe�(g0; q 12 ;q� 12 ) = SWZ(g0)� Z d2x hg0M+g�10 ; M�i+ Z d2x �h��q 12 ; g0�+q� 12 g�10 i+ h� 12 ; X�111 � �� 12 i� ; (4:12a)where the obje
ts �� 12 2 P� 12 are given by the formulae� 12 = [M+; q� 12 ℄ + Y12 � ��q 12 and �� 12 = [M�; q 12 ℄�X12 � �+q� 12 : (4:12b)The Euler-Lagrange equation of this a
tion is the zero 
urvature 
ondition of the followingLax potential: AS+ =M� + �+g0 � g�10 + g0(�+q� 12 +X�111 � �� 12 )g�10 ;AS� =� g0M+g�10 � ��q 12 + Y �111 � � 12 : (4:13)The above new (
onformally invariant) e�e
tive a
tion and Lax potential are amongthe main results of the present paper. Clearly, for an integrally embedded sl(2) thisa
tion and Lax potential simplify to the ones given by equation (4.3) and (4.4).The derivation of the above formulae is not 
ompletely straightforward, and nextwe wish to sket
h the main steps. First, let us remember that, by (2.29a), to spe
ializethe general e�e
tive a
tion given by (2.40) and the Lax potential given by (2.32) to oursituation, we should express the obje
ts �+

�1 and a�1��a in terms of b by using the49




onstraints on J and ~J , respe
tively. (In the present 
ase it would be tedious to 
omputethe inverse matrix of Vij in (2.27), whi
h would be needed for using dire
tly (2.29b).)For this purpose it turns out to be 
onvenient to parametrize the WZNW �eld g by usingthe grading de�ned by the sl(2), i.e., asg = g+ � g0 � g� where g+ = a � exp[q 12 ℄; g� = exp[q� 12 ℄ � 
 : (4:14)We re
all that the �elds a, 
, g0 and q� 12 have been introdu
ed previously by means ofthe parametrization g = ab
, with b in (4.9). Also for later 
onvenien
e, we write g� asg+ = exp[r�1 + p 12 + q 12 ℄ and g� = exp[r��1 + p� 12 + q� 12 ℄ : (4:15)Note that here and below the subs
ript denotes the grade of the variables, and p� 12 2P� 12 . In our 
ase this parametrization of g is advantageous, sin
e, as shown below, theuse of the grading stru
ture fa
ilitates solving the 
onstraints.For example, the left 
onstraint are restri
tions on J<0, for whi
h we haveJ<0 = (g+g0Ng�10 g�1+ )<0 with N = �+g� � g�1� : (4:16)By 
onsidering this equation grade by grade, starting from the lowest grade, it is easy tosee that the 
onstraints 
orresponding to G�1 � � are equivalent to the relationN��1 = g�10 M�g0 : (4:17)The remaining left 
onstraints set the P� 12 part of J� 12 to zero, and to unfold these
onstraints �rst we note thatJ� 12 = [p 12 + q 12 ; M�℄ + g0 �N� 12 � g�10 ; with N� 12 = �+p� 12 + �+q� 12 : (4:18)By using the notation introdu
ed in (4.10), the vanishing of the proje
tion of J to P� 12is written as [q 12 ; M�℄ +X11 � �+p� 12 +X12 � �+q� 12 = 0 ; (4:19)and from this we obtain�+p� 12 = X�111 � �[M� ; q 12 ℄�X12 � �+q� 12	 : (4:20)Combining our previous formulae, �nally we obtain that on the 
onstraint surfa
e of theWZNW theoryN = g�10 M�g0 + �+q� 12 +X�111 (g0) � �[M� ; q 12 ℄�X12(g0) � �+q� 12	 : (4:21)50



A similar analysis applied to the right 
onstraints yields that they are equivalent to thefollowing equation:�g�1+ � ��g+ = �g0M+g�10 � ��q 12 + Y �111 (g0) � �[M+ ; q� 12 ℄ + Y12(g0) � ��q 12	 : (4:22)By using the relations established above, we 
an at this stage easily 
ompute b�1Tb =�+

�1 and b ~Tb�1 = a�1��a as well, and substituting these into (2.40), and using thePolyakov-Wiegmann identity to rewrite SWZ(b) for b in (4.9), results in the a
tion in(4.12) indeed. The Lax potential in (4.13) is obtained from the general expression in(2.32) by an additional `gauge transformation' by the �eld exp[�q 12 ℄, whi
h made the�nal result simpler. Of 
ourse, for the above analysis we have to restri
t ourselves to aneighbourhood of the identity where the operators X11(g0) and Y11(g0) are invertible.The 
hoi
e of the 
onstraints leading to the e�e
tive theory (4.12) guarantees that the
hiral algebra of this theory is the required one,WGS � ~WGS , and thus one should be able toexpress theW-
urrents in terms of the lo
al �elds in the a
tion. To this �rst we re
all thatin Se
tion 3.1 we have given an algorithm for 
onstru
ting the gauge invariant di�erentialpolynomials W (J). The point we wish to make is that the expression of the gaugeinvariant obje
t W (J) in terms of the lo
al �elds in (4.12) is simply W (�+b b�1+ T (b)),where b is given by (4.9). Applying the reasoning of [40,18℄ to the present 
ase, this followssin
e the fun
tion W is form-invariant under any gauge transformation of its argument,and the quantity (�+b b�1 + T (b)) is obtained by a (non-
hiral) gauge transformationfrom J , namely by the gauge transformation de�ned by the �eld a�1 2 e�, see equations(2.31-2). (In analogy, when 
onsidering a right moving W-
urrent one gauge transformsthe argument ~J by the �eld 
 2 e~�.) We 
an in prin
iple 
ompute the obje
t T (b), asexplained in the above, and thus we have an algorithm for �nding the formulae of theW 's in terms of the lo
al �elds g0 and q� 12 .The 
onformal symmetry of the e�e
tive theory (4.12) is determined by the left andright Virasoro densities LM0(J) and L�M0( ~J), whi
h survive the redu
tion. To see this
onformal symmetry expli
itly, it is useful to extra
t the Liouville �eld � by means of thede
omposition g0 = e�M0 �ĝ0, where ĝ0 
ontains the generators from G0 orthogonal toM0.One 
an easily rewrite the a
tion in terms of the new variables and then its 
onformalsymmetry be
omes manifest sin
e e� is of 
onformal weight (1; 1), ĝ0 is 
onformal s
alar,and the �elds q� 12 have 
onformal weights (12 ; 0) and (0; 12 ), respe
tively. This assignmentof the 
onformal weights 
an be established in a number of ways, one 
an for examplederive it from the 
orresponding 
onformal symmetry transformation of the WZNW �eldg in the gauged WZNW theory, see eq. (5.30). We also note that the a
tion (4.12) 
an be51



made generally 
ovariant and thereby our generalized Toda theory 
an be re-interpretedas a theory of two-dimensional gravity sin
e � be
omes the gravitational Liouville mode[14℄.We would like to point out the relationship between the generalized Toda theorygiven by (4.12) and 
ertain non-linear integrable equations whi
h have been asso
iatedto the half-integral sl(2) subalgebras of the simple Lie algebras by Leznov and Saveliev,by using a di�erent method. (See, e.g., equation (1.24) in the review paper in J. Sov.Math. referred to in [3℄.) To this we note that, in the half-integral 
ase, one 
an also
onsider that WZNW redu
tion whi
h is de�ned by imposing the left and right 
onstraints
orresponding to the subalgebras G�1 and G��1 of � and ~� in (4.7). In fa
t, the Laxpotential of the e�e
tive �eld theory 
orresponding to this WZNW redu
tion 
oin
ideswith the Lax potential postulated by Leznov and Saveliev to set up their theory. Thus,in a sense, their theory lies between the WZNW theory and our generalized Toda theorywhi
h has been obtained by imposing a larger set of �rst 
lass KM 
onstraints. Thismeans that the theory given by (4.12) 
an also be regarded as a redu
tion of theirtheory.There is a 
ertain freedom in 
onstru
ting a �eld theory possessing the required
hiral algebra WGS , for example, one has a freedom of 
hoi
e in the halving pro
edureused here to set up the gauge algebra. The theories in (4.12) obtained by using di�erenthalvings in equation (3.41) have their 
hiral algebras in 
ommon, but it is not quiteobvious if these theories are always 
ompletely equivalent lo
al Lagrangean �eld theoriesor not. We have not investigated this `equivalen
e problem' in general.A spe
ial 
ase of this problem arises from the fa
t that one 
an expe
t that in some
ases the theory in (4.12) is equivalent to one of the form (4.3). This is 
ertainly so inthose 
ases when for the half-integral sl(2) ofM0 andM� one 
an �nd an integral gradingoperator H su
h that: (i) [H ; M�℄ = �M�, (ii) P 12 + G�1 = GH�1, (iii) P� 12 + G��1 =GH��1, (iv) Q� 12 + G0 + Q 12 = GH0 , where one uses the M0 grading and the H-gradingon the left- and on the right hand sides of these 
onditions, respe
tively. By de�nition,we 
all the halving G 12 = P 12 + Q 12 an H-
ompatible halving if these 
onditions aremet. (We note in passing that an sl(2) whi
h allows for an H-
ompatible halving isautomati
ally an H-
ompatible sl(2) in the sense de�ned in Se
tion 3.3, but, as shown inAppendix C, not every H-
ompatible sl(2) allows for an H-
ompatible halving.) Thosegeneralized Toda theories in (4.12) whi
h have been obtained by using H-
ompatiblehalvings in the WZNW redu
tion 
an be rewritten in the simpler form (4.3) by means52



of a renaming of the variables, sin
e in this 
ase the relevant �rst 
lass 
onstraints are inthe overlap of the ones whi
h have been 
onsidered for the integral gradings and for thehalf-integral sl(2)'s to derive the respe
tive theories. Sin
e the form of the a
tion in (4.3)is mu
h simpler than the one in (4.12), it appears important to know the list of thosesl(2) embeddings whi
h allow for an H-
ompatible halving, i.e., for whi
h 
onditions(i) : : : (iv) 
an be satis�ed with some integral grading operator H and halving. We studythis group theoreti
 question for the sl(2) subalgebras of the maximally non-
ompa
treal forms of the 
lassi
al Lie algebras in Appendix C. We show that the existen
e of anH-
ompatible halving is a very restri
tive 
ondition on the half-integral sl(2) subalgebrasof the symple
ti
 and orthogonal Lie algebras, where su
h a halving exists only for thespe
ial sl(2) embeddings listed at the end of Appendix C. In 
ontrast, it turns out thatfor G = sl(n;R) an H-
ompatible halving 
an be found for every sl(2) subalgebra, sin
ein this 
ase one 
an 
onstru
t su
h a halving by pro
eeding similarly as we did in Se
tion3.4 (see (3.68)). This means that in the 
ase of G = sl(n;R) any 
hiral algebra WGS 
anbe realized in a generalized Toda theory asso
iated to an integral grading.It is interesting to observe that those theories whi
h 
an be alternatively written inboth forms (4.3) and (4.12) allow for several 
onformal stru
tures. This is so sin
e in this
ase at least two di�erent Virasoro densities, namely LH and LM0 , survive the WZNWredu
tion.4.3. Two examples of generalized Toda theoriesWe wish to illustrate here the general 
onstru
tion of the previous se
tion by workingout two examples. First we shall des
ribe a generalized Toda theory asso
iated to thehighest root sl(2) of sl(n + 2; R). This is a half-integral sl(2) embedding, but, as weshall see expli
itly, the theory (4.12) 
an in this 
ase be re
asted in the form (4.3), sin
ethe 
orresponding halving is H-
ompatible. We note that the W-algebras de�ned bythese sl(2) embeddings have been investigated before by using auxiliary �elds in [29℄. Itis perhaps worth stressing that our method does not require the use of auxiliary �eldswhen redu
ing the WZNW theory to the generalized Toda theories whi
h possess theseW-algebras as their symmetry algebras, see also Se
tion 5.3. A

ording to the grouptheoreti
 analysis in Appendix C, the simplest 
ase when a WGS -algebra de�ned by ahalf-integral sl(2) embedding 
annot be realized in a theory of the type (4.3) is the 
ase53



of G = sp(4; R). As our se
ond example, we shall elaborate on the generalized Todatheory in (4.12) whi
h realizes the W-algebra belonging to the highest root sl(2) ofsp(4; R).i) Highest root sl(2) of sl(n+ 2; R)In the usual basis where the Cartan subalgebra 
onsists of diagonal matri
es, thesl(2) subalgebra S is generated by the elementsM0 = 12 0� 1 � � � 00 0n 00 � � � �11A and M+ =M t� = 0� 0 � � � 10 0n 00 � � � 01A : (4:23)Note that here and below dots mean 0's in the entries of the various matri
es. Theadjoint of sl(n+ 2) de
omposes into one triplet, 2n doublets and n2 singlets under thisS. It is 
onvenient to parametrize the general element, g0, of the little group of M0 asg0 = e�M0 � e T �0� 1 : : : 00 ~g0 00 � � � 11A ; where T = 12 + n 0�n � � � 00 �2In 00 � � � n1A (4:24)is tra
e orthogonal to M0 and ~g0 is from sl(n). We note that T and M0 generate the
entre of the 
orresponding subalgebra, G0. We 
onsider the halving of G� 12 whi
h isde�ned by the subspa
es P� 12 and Q� 12 
onsisting of matri
es of the following form:p 12 = 0� 0 pt 00 0n 00 � � � 01A ; q 12 = 0� 0 � � � 00 0n q0 � � � 01A ;p� 12 = 0� 0 � � � 0~p 0n 00 � � � 01A ; q� 12 = 0� 0 � � � 00 0n 00 ~q t 01A ; (4:25)where q and ~p are n-dimensional 
olumn ve
tors and pt and ~q t are n-dimensional rowve
tors, respe
tively. One sees that the P and Q subspa
es of G� 12 are invariant underthe adjoint a
tion of g0, whi
h means that the blo
k-matri
es in (4.10) and (4.11) arediagonal, and thus �� 12 = [M�; q� 12 ℄. One 
an also verify that X11 = e� 12�� ~g0, andthat using this the e�e
tive a
tion (4.12) 
an be written as follows:Ie�(g0; q 12 ; q� 12 ) = SWZ(g0)� Z d2x he��e� 12�+ (�+~q)t � ~g�10 � (��q)+e 12�+ ~qt � ~g�10 � qi; (4:26)54



where dot means usual matrix multipli
ation. With respe
t to the 
onformal stru
turede�ned by M0, e� has weights (1; 1), the �elds q and ~q have half-integer weights ( 12 ; 0)and (0; 12 ), respe
tively,  and ~g0 are 
onformal s
alars. In parti
ular, we see that � isthe Liouville mode with respe
t to this 
onformal stru
ture.In fa
t, the halving 
onsidered in (4.25) 
an be written like the one in (3.68), byusing the integral grading operator H given expli
itly asH =M0 + 12T = 1n+ 2 �n+ 1 00 �In+1 � : (4:27)It is an H-
ompatible halving as one 
an verify that it satis�es the 
onditions (i) : : : (iv)mentioned at the end of Se
tion 4.2, see also Appendix C. It follows that our redu
edWZNW theory 
an also be regarded as a generalized Toda theory asso
iated with theintegral grading H. In other words, it is possible to identify the e�e
tive a
tion (4.26)as a spe
ial 
ase of the one in (4.3). To see this in 
on
rete terms, it is 
onvenient toparametrize the little group of H asb = exp(q 12 ) � g0 � exp(q� 12 ); where g0 = e�H � e�S �0� 1 � � � 00 ~g0 00 � � � 11A ; (4:28)and S =M0� (n+22n )T is tra
e orthogonal to H. It is easy to 
he
k that by inserting thisde
omposition into the e�e
tive a
tion (4.3) and using the Polyakov-Wiegmann identityone re
overs indeed the e�e
tive a
tion (4.26), with� = �+ � and  = 12�� 2 + n2n �: (4:29)The 
onformal stru
ture de�ned by H is di�erent from the one de�ned by M0. In fa
t,with respe
t to the former 
onformal stru
ture � is the Liouville mode and all other�elds, in
luding q and ~q, are 
onformal s
alars.ii) Highest root sl(2) of sp(4; R)We use the 
onvention when the symple
ti
 matri
es have the formg = �A BC �At� ; where B = Bt ; C = Ct ; (4:30)55



and the Cartan subalgebra is diagonal. The sl(2) subalgebra S 
orresponding to thehighest root of sp(4; R) is generated by the matri
esM0 = 12(e11 � e33); M+ = e13 ; and M� = e31 ; (4:31)where eij denotes the elementary 4 � 4 matrix 
ontaining a single 1 in the ij-position.The adjoint of sp(4) bran
hes into 3 + 2 � 2 + 3 � 1 under S. The three singlets generatean sl(2) subalgebra di�erent from S, so that the little group of M0 is GL(1) � SL(2).GL(1) is generated by M0 itself and the 
orresponding �eld is the Liouville mode. Usingusual Gauss-parameters for the SL(2), we 
an parametrize the little group of M0 asg0 = e�M0 0B� 1 0 0 00 e + ��e� 0 �e� 0 0 1 00 �e� 0 e� 1CA : (4:32)We de
ompose the G� 12 subspa
es (spanned by the two doublets) into their P and Qparts as followsp 12 + q 12 = 0B� 0 p 0 q0 0 q 00 0 0 00 0 �p 01CA ; p� 12 + q� 12 = 0B� 0 0 0 0~p 0 0 00 ~q 0 �~p~q 0 0 0 1CA : (4:33)Now the little group, or more pre
isely the SL(2) generated by the three singlets, mixesthe P and Q subspa
es of G� 12 so that the matri
es Xij and Yij in (4.10) and (4.11)possess o�-diagonal elements:Xij = e� 12� � e + ��e� �e� �e� e� � ; Yij = Xji: (4:34)Inserting this into (4.12) yields the following e�e
tive a
tion:ISe�(g0; q; ~q) =SWZ(g0)� Z d2x"e� � 2e� 12�� (��q) � (�+~q)+ 2e 12� �~q + e� 12�� ���q� � �q + e� 12�� ��+~q�e + ��e� #; (4:35)for the Liouville mode �, the 
onformal s
alars  ; �; � and the �elds q, ~q with weights(12 ; 0) and (0; 12 ), respe
tively.It is easy to see dire
tly from its formula that it is impossible to obtain the abovea
tion as a spe
ial 
ase of (4.3). Indeed, if the expression in (4.35) was obtained from(4.3) then the non-derivative term � ~q q(e + ��e� )�1 
ould only be gotten from these
ond term in (4.3), but, sin
e g0 and b are matri
es of unit determinant, this term
ould never produ
e the denominator in the non-derivative term in (4.35).56



5. Quantum framework for WZNW redu
tionsIn this 
hapter we study the quantum version of the WZNW redu
tion by using thepath-integral formalism and also re-examine some of the 
lassi
al aspe
ts dis
ussed inthe previous 
hapters. We �rst show that the 
on�guration spa
e path-integral of the
onstrained WZNW theory 
an be realized by the gauged WZNW theory of Se
tion 2.2.We then point out that the e�e
tive a
tion of the redu
ed theory, (2.40), 
an be derivedby integrating out the gauge �elds in a 
onvenient gauge, the physi
al gauge, in whi
hthe gauge degrees of freedom are frozen. A nontrivial feature of the quantum theory mayappear in the path-integral measure. We shall �nd that for the generalized Toda theoriesasso
iated with integral gradings the e�e
tive measure takes the form determined fromthe symple
ti
 stru
ture of the redu
ed theory. This means that in this 
ase the quantumHamiltonian redu
tion results in the quantization of the redu
ed 
lassi
al theory; in otherwords, the two pro
edures, the redu
tion and the quantization, 
ommute. We shall alsoexhibit the W-symmetry of the e�e
tive a
tion for this example. By using the gaugedWZNW theory, we 
an 
onstru
t the BRST formalism for the WZNW redu
tion inthe general 
ase. For 
onformally invariant redu
tions, this allows for 
omputing the
orresponding Virasoro 
entre expli
itly. In parti
ular, we derive here a ni
e formulafor the Virasoro 
entre of WGS for an arbitrary sl(2) embedding. We shall verify thatour result agrees with the one obtained in [16℄, in spite of the apparent di�eren
e in thestru
ture of the 
onstraints.5.1. Path-integral for 
onstrained WZNW theoryIn this se
tion we wish to set up the path-integral formalism for the 
onstrainedWZNW theory. For this, we re
all that 
lassi
ally the redu
ed theory has been obtainedby imposing a set of �rst-
lass 
onstraints in the Hamiltonian formalism. Thus what weshould do is to write down the path-integral of the WZNW theory �rst in phase spa
ewith the 
onstraints implemented and then �nd the 
orresponding 
on�guration spa
eexpression. The phase spa
e path-integral 
an formally be de�ned on
e the 
anoni
alvariables of the theory are spe
i�ed. A pra
ti
al way to �nd the 
anoni
al variables is thefollowing [41℄. Let us start from the WZNW a
tion SWZ(g) in (1.2) and parametrize thegroup element g 2 G in some arbitrary way, g = g(�). We shall regard the parameters57



�a, a = 1; :::; dimG, as the 
anoni
al 
oordinates in the theory. To �nd the 
anoni
almomenta, we introdu
e the 2-form A = 12Aab(�) d�ad�b to rewrite the Wess-Zumino termas 13Tr (dg g�1)3 = dA: (5:1)The 2-form A is well-de�ned only lo
ally on G, sin
e the Wess-Zumino 3-form is 
losedbut not exa
t. Fortunately we do not need to spe
ify A expli
itly below. We next de�neNab(�) by � �g��a� g�1 = Nab(�)T b; (5:2)where T b are the generators of G. The matrix N is easily shown to be non-singular,detN 6= 0. Upon writing SWZ(g) = R d2xL(g), the 
anoni
al momentum 
onjugate to �ais found to be �a = �L��0�a = �hNab(�)(�0g g�1)b �Aab(�)�1�bi: (5:3)The Hamiltonian of the WZNW theory is then given by H = R dx1H withH = �a�0�a � L = 12�Tr �P 2 + (��1g g�1)2�; (5:4)where P a = (N�1)ab(�b + �Ab
�1�
): (5:5)Sin
e P = ��0g g�1 in the original variables, the Hamiltonian density takes the usualSugawara form as expe
ted.Classi
ally, the 
onstrained WZNW theory has been de�ned as the usual WZNWtheory with its KM phase spa
e redu
ed by the set of 
onstraints given by (2.16), whi
hin the 
anoni
al variables read�i = h
i; P + �(�1g g�1 �M)i = 0;~�i = h~
i; g�1Pg � �(g�1�1g + ~M)i = 0; (5:6)with the bases 
i 2 �, ~
i 2 ~�. As in Se
tion 2.2, no relationship is assumed here betweenthe two subalgebras, � and ~�. Now we write down the phase spa
e path-integral for the
onstrained WZNW theory. A

ording to Faddeev's pres
ription [42℄ it is de�ned asZ = Z d�d� Æ(�)Æ(~�)Æ(�)Æ(~�) det jf�; �gj det jf~�; ~�gj� exp� i Z d2x (�a�0�a �H)�; (5:7)58



where we implement the �rst 
lass 
onstraints by inserting Æ(�) and Æ(~�) in the path-integral. The Æ-fun
tions of � and ~� refer to gauge �xing 
onditions 
orresponding tothe 
onstraints, � and ~�, whi
h a
t as generators of gauge symmetries. By introdu
ingLagrange-multiplier �elds, A� = Ai�
i and A+ = Ai+~
i, (5.7) 
an be written asZ = Z d�d�dA+dA�Æ(�)Æ(~�) det jf�; �gj det jf~�; ~�gj� exp� i Z d2x �Tr (��0� +A��+A+ ~�)�H��: (5:8)By 
hanging the momentum variable from �a to P a in (5.5), the measure a
quires adeterminant fa
tor, d� = dP detN , and the integrand of the exponent in (5.8) be
omesTr (��0� + A��+ A+ ~�)�H= �Tr h�12�1�P �2 + 1�P (A� + gA+g�1 + �0g g�1)�N�1A �1�(�0g g�1)� 12(�1g g�1)2 + A�(�1g g�1 �M)� A+(g�1�1g + ~M)i: (5:9)Sin
e the matrix N(�) is independent of P , we 
an easily perform the integration overP provided that the remaining Æ-fun
tions and the determinant fa
tors are also P -independent. We 
an 
hoose the gauge �xing 
onditions, � and ~�, so that this is true.(For example, the physi
al gauge whi
h we will 
hoose in the next se
tion ful�lls thisdemand.) Then we end up with the following formula of the 
on�guration spa
e path-integral:Z = Z d� detN dA+dA�Æ(�)Æ(~�) det jf�; �gj det jf~�; ~�gj eiI(g;A�;A+); (5:10)where I(g; A�; A+) is the gauged WZNW a
tion (2.18). We note that the measure forthe 
oordinates in this path-integral is the invariant Haar measure,d�(g) =Ya d�a detN =Ya (dg g�1)a: (5:11)This is a 
onsequen
e of the fa
t that the phase spa
e measure in (5.7) is invariant under
anoni
al transformations to whi
h the group transformations belong.The above formula for the 
on�guration spa
e path-integral means that the gaugedWZNW theory provides the Lagrangian realization of the Hamiltonian redu
tion, whi
hwe have already seen on the basis of a 
lassi
al argument in Se
tion 2.2.59



5.2. E�e
tive theory in the physi
al gaugeHaving seen how the 
onstrained WZNW theory is realized as the gauged WZNWtheory, we next dis
uss the e�e
tive theory whi
h arises when we eliminate all the un-physi
al degrees of freedom in a parti
ularly 
onvenient gauge, the physi
al gauge. Weshall rederive, in the path-integral formalism, the e�e
tive a
tion whi
h appeared in the
lassi
al 
ontext earlier in this paper. For this purpose, within this se
tion we restri
tour attention to the left-right dual redu
tions 
onsidered in Se
tion 2.3. It, however,should be noted that this restri
tion is not absolutely ne
essary to get an e�e
tive a
-tion by the method given below. In this respe
t, it is also worth noting that Polyakov's2-dimensional gravity a
tion in the light-
one gauge 
an be regarded as an e�e
tive a
-tion in a non-dual redu
tion, whi
h is obtained by imposing a 
onstraint only on theleft-
urrent for G = SL(2) [43,12℄. We will not pursue the non-dual 
ases here.To eliminate all the unphysi
al gauge degrees of freedom, we simply gauge themaway from g, i.e., we gauge �x the Gauss de
omposed g in (2.25) into the formg = ab
! b: (5:12)More spe
i�
ally, with the parametrization a(x) = exp [�i(x)
i℄, 
(x) = exp [~�i(x)~
i℄ wede�ne the physi
al gauge by �i = �i = 0; ~�i = ~�i = 0: (5:13)We here note that for this gauge the determinant fa
tors in (5.8) are a
tually 
onstants.Now the e�e
tive a
tion is obtained by performing the A� integrations in (5.10). Theintegration of A� gives rise to the delta-fun
tion,Yi Æ�h
i; bA+b�1 + �+b b�1 �Mi�; (5:14)with 
i 2 � normalized by the duality 
ondition (2.22). One then noti
es that the delta-fun
tion (5.14) implies exa
tly 
ondition (2.29) with �+
 
�1 repla
ed by A+. Hen
e,with the help of the matrix Vij(b) in (2.27) and T (b) in (2.29), it 
an be rewritten as(detV )�1 Æ�A+ � b�1T (b)b�: (5:15)Finally, the integration of A+ yieldsZ = Z d�e�(b) eIeff(b); (5:16)60



where Ie�(b) is the e�e
tive a
tion (2.40)*, and d�e�(b) is the e�e
tive measure given byd�e�(b) = (detV )�1 d�(g)Æ(�)Æ(~�) = (detV )�1 d�(g)d�d~� �����=~�=0: (5:17)Of 
ourse, as far as the e�e
tive a
tion is 
on
erned, the path-integral approa
hshould give the same result as the 
lassi
al one, be
ause the integration of the gauge�elds is Gaussian and hen
e equivalent to the 
lassi
al elimination of the gauge �eldsby their �eld equations. However, a non-trivial feature may arise at the quantum levelwhen the e�e
tive path-integral measure (5.17) is taken into a

ount. Let us examine thee�e
tive measure in the simple 
ase where the spa
e B = (� + ~�)?, with whi
h b 2 eB,forms a subalgebra of G satisfying (2.34), and thus the e�e
tive a
tion in (5.16) simpli�esto Ie�(b) = SWZ(b)� � Z d2x hb ~Mb�1;Mi: (5:18)In this 
ase, the 1-form appearing in the measure d�(g) of (5.11),dg g�1 = da a�1 + a(db b�1)a�1 + ab(d
 
�1)b�1a�1; (5:19)turns out, in the physi
al gauge, to bedg g�1���=~�=0 = 
id�i + db b�1 + Vij(b)~
id~�j : (5:20)As a result, the determinant fa
tor in (5.17) is 
an
elled by the one 
oming from (5.20),and the e�e
tive measure admits a simple form:d�e�(b) = db b�1: (5:21)The point is that this is exa
tly the measure whi
h is determined from the symple
ti
stru
ture of the e�e
tive theory (5.18) obtained by the 
lassi
al Hamiltonian redu
tion.This tells us that in this 
ase the quantum Hamiltonian redu
tion results in the quanti-zation of the redu
ed 
lassi
al theory. In parti
ular, sin
e the above assumption for B issatis�ed for the generalized Toda theories asso
iated with integral gradings, we 
on
ludethat these generalized Toda theories are equivalent to the 
orresponding 
onstrained* A
tually, the e�e
tive a
tion always takes the form (2.40) if one restri
ts the WZNW�eld to be of the form g = ab
 with a 2 e�, 
 2 e~� and b su
h that Vij(b) is invertible.The duality between � and ~� is not ne
essary but 
an be used to ensure this te
hni
alassumption. 61



(gauged) WZNW theories even at the quantum level, i.e., in
luding the measure. Thisresult has been established before in the spe
ial 
ase of the standard Toda theory (1.1)in [44℄, where the measure d�e�(b) is simply given by Qi d'i.We end this se
tion by noting that it is not 
lear whether the measure determinedfrom the symple
ti
 stru
ture of the redu
ed 
lassi
al theory is identi
al to the e�e
tivemeasure (5.17) in general. In the general 
ase both measures in question 
ould be
omequite involved and thus one would need some geometri
 argument to see if they areidenti
al or not.
5.3. The W-symmetry of the generalized Toda a
tion IHe�(b)In the previous se
tion we have seen the quantum equivalen
e of the generalizedToda theories given by (4.3) and the 
orresponding 
onstrained WZNW theories. Itfollows from their WZNW origin that the generalized Toda theories possess 
onservedW-
urrents. It is thus natural to expe
t that their e�e
tive a
tions, IHe� in (4.3) and ISe� in(4.12), allow for symmetry transformations yielding the W-
urrents as the 
orrespondingNoether 
urrents. We demonstrate below that this is indeed the 
ase on the example ofthe theories asso
iated with integral gradings, when the a
tion takes a simple form. Wehowever believe that there are symmetries of the e�e
tive a
tion 
orresponding to the
onserved 
hiral 
urrents inherited from the KM algebra for any redu
ed WZNW theory.Let us 
onsider a gauge invariant di�erential polynomial W (J) in the 
onstrainedWZNW theory giving rise to the e�e
tive theory des
ribed by the a
tion in (4.3). In termsof the generalized Toda �eld b(x), this 
onserved W-
urrent is given by the di�erentialpolynomial We�(�) =W (M + �); where � � �+b b�1: (5:22)This equality [34,15℄ holds be
ause the 
onstrained 
urrent J and (M + �) (whi
h is,in
identally, just the Lax potential AH+ in (4.4)) are related by a gauge transformation,as we have seen. By 
hoosing some test fun
tion f(x+), we now asso
iate to We� (�) thefollowing transformation of the �eld b(x):ÆW b(y) = hZ d2x f(x+)ÆWe�(x)Æ�(y) i � b(y) ; (5:23)and we wish to show that ÆW b is a symmetry of the a
tion IHe�(b). Before proving this, we62



noti
e, by 
ombining the de�nition in (5.23) with (5.22), that (ÆW b)b�1 is a polynomialexpression in f , � and their �+-derivatives up to some �nite order.We start the proof by noting that the 
hange of the a
tion under an arbitraryvariation Æb is given by the formulaÆIHe�(b) = � Z d2y hÆb b�1(y) ; b(y) ÆIHe�Æb(y)i= � Z d2y hÆb b�1(y) ; ���(y) + [b(y) ~Mb�1(y);M ℄i : (5:24)In the next step, we use the �eld equation to repla
e ��� by �[b ~Mb�1;M ℄ in the obviousequality ��We�(x) = Z d2y hÆWe�(x)Æ�(y) ; ���(y)i; (5:25)and then, from the fa
t that ��We� = 0 on-shell, we obtain the following identity:Z d2y hÆWe�(x)Æ�(y) ; [b(y) ~Mb�1(y);M ℄i = 0 ; (5:26)Of 
ourse, the previous argument only implies that (5.26) holds on-shell. However, wenow make the 
ru
ial observation that (5.26) is an o�-shell identity, i.e., it is valid for any�eld b(x) not only for the solutions of the �eld equation. This follows by noti
ing thatthe obje
t in (5.26) is a lo
al expression in b(x) 
ontaining only x+-derivatives. In fa
t,any su
h obje
t whi
h vanishes on-shell has to vanish also o�-shell, be
ause one 
an �ndsolutions of the �eld equation for whi
h the x+-dependen
e of the �eld b is pres
ribed inan arbitrary way at an arbitrarily 
hosen �xed value of x�.By using the above observation, it is easy to show that ÆW b in (5.23) is indeed asymmetry of the a
tion. First, simply inserting (5.23) into (5.24), we haveÆW IHe�(b) = � Z d2x f(x+) Z d2y hÆWe�(x)Æ�(y) ; ���(y) + [b(y) ~Mb�1(y);M ℄i: (5:27)We then rewrite this equation asÆW IHe�(b) = � Z d2x f(x+)��We� (x); (5:28)with the aid of the identities (5.26) and (5.25). This then proves thatÆW IHe�(b) = 0 ; (5:29)63



sin
e the integrand in (5.28) is a total derivative, thanks to ��f = 0. One 
an alsosee, from equation (5.23), that We� is the Noether 
harge density 
orresponding to thesymmetry transformation ÆW b of IHe�(b).5.4. BRST formalism for WZNW redu
tionsSin
e the 
onstrained WZNW theory 
an be regarded as the gauged WZNW theory(2.18), one is naturally led to 
onstru
t the BRST formalism for the theory as a basis forquantization. Below we dis
uss the BRST formalism based on the gauge symmetry (2.19)and thus return to the general situation of Se
tion 5.1 where no relationship between thetwo subalgebras, � and ~�, is supposed.Prior to the 
onstru
tion we here note how the 
onformal symmetry is realized inthe gauged WZNW theory when there is an operator H satisfying the 
ondition (2.13).(For simpli
ity, in what follows we dis
uss the symmetry asso
iated to the left-movingse
tor.) In fa
t, with su
h H and a 
hiral test fun
tion f+(x+) one 
an de�ne thefollowing transformation, Æg = f+�+g + �+f+Hg;ÆA� = f+�+A� + �+f+[H;A�℄;ÆA+ = f+�+A+ + �+f+A+; (5:30)
whi
h leaves the gauged WZNW a
tion I(g; A�; A+) invariant. This 
orresponds exa
tlyto the 
onformal transformation in the 
onstrained WZNW theory generated by theVirasoro density LH in (2.10), as 
an be 
on�rmed by observing that (5.30) implies the
onformal a
tion (2.11) for the 
urrent with f(x+) = f+(x+). We shall derive later theVirasoro density as the Noether 
harge density in the BRST system.Turning to the 
onstru
tion of the BRST formalism, we �rst 
hoose the spa
e �� � Gwhi
h is dual to � with respe
t to the Cartan-Killing form (and similarly ~�� dual to ~�).Following the standard pro
edure [45℄ we introdu
e two sets of ghost, anti-ghost andNakanishi-Lautrup �elds, f
 2 �; �
+; B+ 2 ��g and fb 2 ~�; �b�; B� 2 ~��g. The BRSTtransformation 
orresponding to the (left-se
tor of the) lo
al gauge transformation (2.19)64



is given by ÆBg = �
g;ÆBA� = D�
;ÆB
 = �
2; ÆB�
+ = iB+;ÆBB+ = 0;ÆB(others) = 0; (5:31)with D� = ��� [A�; ℄. After de�ning the BRST transformation �ÆB for the right-se
torin an analogous way, we write the BRST a
tion by adding a gauge �xing term and aghost term to the gauged a
tion,IBRST = I(g; A�; A+) + Igf + Ighost: (5:32)The additional terms 
an be 
onstru
ted by the manifestly BRST invariant expression,Igf+Ighost = �i�(ÆB + �ÆB) Z d2x �h�
+; A�i+ h�b�; A+i�= � Z d2x �hB+; A�i+ hB�; A+i+ ih�
+; D�
i+ ih�b�; D+bi�; (5:33)where we have 
hosen the gauge �xing 
onditions as A� = 0. Then the path-integral forthe BRST system is given byZ = Z d�(g) dA+dA�d
 d�
+db d�b�dB+dB� eiIBRST ; (5:34)whi
h, upon integration of the ghosts and the Nakanishi-Lautrup �elds, redu
es to (5.10).(Stri
tly speaking, for this we have to generalize the gauge �xing 
onditions in (5.10) tobe dependent on the gauge �elds.) By this 
onstru
tion the nilpoten
y, Æ2B = 0, and theBRST invarian
e of the a
tion, ÆBIBRST = 0, are easily 
he
ked.It is, however, 
onvenient to deal with the simpli�ed BRST theory obtained byperforming the trivial integrations of A� and B� in (5.34),IBRST(g; 
; �
+; b;�b�) = SWZ(g) + i� Z d2x �h�
+; ��
i+ h�b�; �+bi�: (5:35)We note that this e�e
tive BRST theory is not merely a sum of a free WZNW se
tor andfree ghost se
tor as it appears, but rather it 
onsists of the two interrelated se
tors inthe physi
al spa
e spe
i�ed by the BRST 
harge de�ned below. At this stage the BRSTtransformation whi
h leaves the simpli�ed BRST a
tion (5.35) invariant readsÆBg = �
g;ÆB
 = �
2; ÆB�
+ = ����hi(�+g g�1 �M�) + (
�
+ + �
+
)i;ÆB(others) = 0; (5:36)65



where ��� = Pi j
�i ih
ij is the proje
tion operator onto the dual spa
e �� with thenormalized bases, h
i; 
�j i = Æij . From the asso
iated 
onserved Noether 
urrent, ��jB+ =0, the BRST 
harge QB is de�ned to beQB = Z dx+jB+(x) = Z dx+h
; �+g g�1 �M � 
�
+i: (5:37)The physi
al spa
e is then spe
i�ed by the 
ondition,QBjphysi = 0: (5:38)In the simple 
ase of the WZNW redu
tion whi
h leads to the standard Toda theory, theBRST 
harge (5.37) agrees with the one dis
ussed earlier [46℄.In the 
ase where there is an H operator whi
h guarantees the 
onformal invarian
e,the BRST system also has the 
orresponding 
onformal symmetry,Æg = f+�+g + �+f+Hg;Æ
 = f+�+
+ �+f+[H; 
℄;Æ�
+ = f+�+�
+ + �+f+(�
+ + [H; �
+℄); Æb = f+�+b;Æ�b� = f+�+�b�; (5:39)inherited from the one (5.30) in the gauged WZNW theory. If the H operator furtherprovides a grading, one �nds from (5.39) that the 
urrents of grade �h have the (left-)
onformal weight 1�h, ex
ept the H-
omponent, whi
h is not a primary �eld. Similarly,the ghosts 
, �
+ of grade h, �h have the 
onformal weight h, 1�h, respe
tively, whereasthe ghosts b, �b are 
onformal s
alars. Now we de�ne the total Virasoro density operatorLtot from the asso
iated Noether 
urrent, ��jC+ = 0, byZ dx+jC+(x) = 1� Z dx+f+(x+)Ltot(x): (5:40)The (on-shell) expression is found to be the sum of the two parts, Ltot = LH + Lghost,where LH is indeed the Virasoro operator (2.10) for the WZNW part, andLghost = i��h�
+; �+
i+ �+hH; 
�
+ + �
+
i�; (5:41)is the part for the ghosts. The 
onformal invarian
e of the BRST 
harge, ÆQB = 0, orequivalently, the BRST invarian
e of the total 
onformal 
harge, ÆBLtot = 0, are readily
on�rmed. 66



Let us �nd the Virasoro 
entre of our BRST system. The total Virasoro 
entre 
totis given by the sum of the two 
ontributions, 
 from the WZNW part and 
ghost from theghost one. The Viraso 
entre from LH is given by
 = k dimGk + g � 12khH;Hi; (5:42)where k is the level of the KM algebra and g is the dual Coxeter number. On the otherhand, the ghosts 
ontribute to the Virasoro 
entre by the usual formula,
ghost = �2X� �1 + 6h(h� 1)�; (5:43)where the summation is performed over the eigenve
tors of adH in the subalgebra �.(One 
an 
on�rm (5.43) by performing the operator produ
t expansion with Lghost in(5.41).)5.5. The Virasoro 
entre in two examplesBy elaborating on the general result of the previous se
tion, we here derive expli
itformulas for the total Virasoro 
entre in two important spe
ial 
ases of the WZNWredu
tion.i) The generalized Toda theory IHe�(b)In this 
ase the summation in (5.43) is over the eigenstates of adH with eigenvaluesh > 0, sin
e � = GH>0. We 
an establish a 
on
ise formula for 
tot, (5.46) below, by usingthe following group theoreti
 fa
ts.First, we 
an assume that the grading operator H 2 G is from the Cartan subalgebraof the 
omplex simple Lie algebra G
 
ontaining G. Se
ond, the s
alar produ
t h ; ide�nes a natural isomorphism between the Cartan subalgebra and the spa
e of roots,and we introdu
e the notation ~Æ for the ve
tor in root spa
e 
orresponding to H underthis isomorphism. More 
on
retely, this means that we set H = Pi ÆiHi by usingan orthonormal Cartan basis, hHi; Hji = Æij . Third, we re
all the strange formula ofFreudenthal-deVries [47℄, whi
h (by taking into a

ount the normalization of h ; i andthe duality between the root spa
e and the Cartan subalgebra) readsdimG = 12g j~�j2 ; (5:44)67



where ~� is the Weyl ve
tor, given by half the sum of the positive roots. Fourth, we 
hoosethe simple positive roots in su
h a way that the 
orresponding step operators, whi
h arein general in G
 and not in G, have non-negative grades with respe
t to H.By using the above 
onventions, it is straightforward to obtain the following expres-sions Xh>0 1 = dim� = 12(dimG � dimGH0 ); Xh>0h = 2(~� � ~Æ);Xh>0h2 = 12tr (adH)2 = ghH;Hi = gj~Æj2; (5:45)for the 
orresponding terms in (5.43). Substituting these into (5.43) and also (5.44) into(5.42),one 
an �nally establish the following ni
e formula of the total Virasoro 
entre [14℄:
tot = 
+ 
ghost = dimGH0 � 12���pk + g ~Æ � 1pk + g ~����2: (5:46)In parti
ular, in the 
ase of the redu
tion leading to the standard Toda theory (1.1) theresult (5.46) is 
onsistent with the one dire
tly obtained in the redu
ed theory [8,10℄.ii) The WGS -algebra for half-integral sl(2) embeddingsFor sl(2) embeddings the role of the H is played by M0 and in the half-integral 
asewe have � = G�1 + P 12 = G>0 � Q 12 . It follows that the value of the total Virasoro
entre 
an now be obtained by substra
ting the 
ontribution of the `missing ghosts'
orresponding to Q 12 , whi
h is 12dimG 12 , from the expression in (5.46). We thus obtainthat in this 
ase 
tot = Nt � 12Ns � 12���pk + g ~Æ � 1pk + g ~����2; (5:47a)where Nt = dimG0 ; and Ns = dimG 12 ; (5:47b)are the number of tensor and spinor multiplets in the de
omposition of the adjoint of Gunder the sl(2) subalgebra S, respe
tively. We note that, as proven by Dynkin [39℄, it ispossible to 
hoose a system of positive simple roots so that the grade of the 
orrespondingstep operators is from the set f0; 12 ; 1g, and that ~Æ is (12�) the so 
alled de�ning ve
torof the sl(2) embedding in Dynkin's terminology.As has been mentioned in Se
tion 3.3, Bais et al [16℄ (see also [29℄) studied a similarredu
tion of the KM algebra for half-integral sl(2) embeddings where all the 
urrent68




omponents 
orresponding to G>0 are 
onstrained from the very beginning. In theirsystem, the 
onstraints (3.49) of G 12 , being inevitably se
ond-
lass, are modi�ed into�rst-
lass by introdu
ing an auxiliary �eld to ea
h 
onstraint of G 12 . A

ordingly, theauxiliary �elds give rise to the extra 
ontribution �12dimG 12 in the total Virasoro 
entre.It is 
lear that adding this to the sum of the WZNW and ghost parts (whi
h is of theform (5.46) withM0 substituted for H), renders the total Virasoro 
entre of their systemidenti
al to that of our system, given by (5.47). This result is natural if we re
all the fa
tthat their redu
ed phase spa
e (after 
omplete gauge �xing) is a
tually identi
al to ours.It is obvious that our method, whi
h is based on purely �rst-
lass KM 
onstraints anddoes not require auxiliary �elds, provides a simpler way to rea
h the identi
al redu
edtheory.
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6. Dis
ussionThe main purpose of this paper has been to study the general stru
ture of theHamiltonian redu
tions of the WZNW theory. Considering the number of interestingexamples resulting from the redu
tion, this problem appears important for the theory oftwo-dimensional integrable systems and in parti
ular for 
onformal �eld theory.Our most important result perhaps is that we established the gauged WZNW settingof the Hamiltonian redu
tion by �rst 
lass 
onstraints in full generality. It was then usedhere to set up the BRST formalism in the general 
ase, and for obtaining the e�e
tivea
tions for the left-right dual redu
tions. We hope that the general framework we set upwill be useful for further studies of this very ri
h problem.The other major 
on
ern of the paper has been to investigate the W-algebras andtheir �eld theoreti
 realizations arising from the WZNW redu
tion. We found �rst 
lassKM 
onstraints leading to the WGS -algebras whi
h allowed us to 
onstru
t generalizedToda theories realizing these interesting extended 
onformal algebras. We believe thatthe sl(2)-embeddings underlying the WGS -algebras are to play an important organizingrole in general for understanding the stru
ture, espe
ially the primary �eld 
ontent, ofthe 
onformally invariant redu
ed KM systems. We illustrated this idea by showingthat the W ln-algebras are nothing but further redu
tions of WGS -algebras belonging toparti
ular sl(2)-embeddings (see also [37℄). In our study of W-algebras we employedtwo (apparently) new methods, whi
h are likely to have a wider range of appli
abilitythan what we exploited here. The �rst is the method of symple
ti
 halving whereby we
onstru
ted purely �rst 
lass KM 
onstraint for the WGS as well as for the W ln-algebras.The se
ond is what we 
all the sl(2)-method, whi
h 
an be summarized by saying thatif one has 
onformally invariant �rst 
lass 
onstraints given by some (�;M�) with M�nilpotent, then one should build the sl(2) 
ontaining M� and try to analyse the systemin terms of this sl(2). We used this method to investigate, in the non-degenerate 
ase,the generalized Toda sytems belonging to integral gradings, and also to provide theWGS -interpretation of the W ln-algebras.We wish to remark here that, as far as we know, the te
hni
al problem 
on
erningthe inequivalen
e of those WGS -algebras whi
h belong to group theoreti
ally inequivalentsl(2) embeddings has not been ta
kled yet.It is well known [22℄ that the standard W-algebras 
an be identi�ed as the se
ond70



Poisson bra
ket stru
ture of the generalized KdV hierar
hies of Drinfeld-Sokolov [5℄. Asimilar relationship between W-algebras and KdV type hierar
hies has been establishedvery re
ently in more general 
ases [28,48,49℄. In parti
ular, the W ln-algebras have beenrelated to the so 
alled fra
tional KdV hierar
hies. It would be 
learly worthwhile tostudy in general the relationship between the generalized Drinfeld-Sokolov hiera
hies of[48℄ and the WGS -algebras together with their further redu
tions, see also [16,17℄.We gave a general lo
al analysis of the e�e
tive theories arising in the left-rightdual 
ase of the redu
tion, and investigated in parti
ular the generalized Toda theoriesobtained by the redu
tion in some detail. In the 
ase of the generalized Toda theoriesasso
iated with the integral gradings we exhibited the way in whi
h the W-symmetryoperates as an ordinary symmety of the a
tion, and demonstrated that the quantumHamiltonian redu
tion is 
onsistent with the 
anoni
al quantization of the redu
ed 
las-si
al theory. It would be ni
e to have the analogous problems under 
ontrol also in moregeneral 
ases. In our analysis we restri
ted the 
onsiderations to Gauss-de
omposable�elds. The fa
t that the Gauss de
omposition may break down 
an introdu
e apparentsingularities in the lo
al des
ription of the e�e
tive theories, but the WZNW des
riptionis inherently global and remains valid for non Gauss-de
omposable �elds as well [12,13℄.It is hen
e an interesting problem to further analyze the global (topologi
al) aspe
ts ofthe phase spa
e of the redu
ed WZNW theories.We should also note that it is possible to remove the te
hni
al assumption of left-right duality. In parti
ular, the study of purely 
hiral WZNW redu
tions 
ould be ofimportan
e, as they are likely to give natural generalizations of Polyakov's 2d gravitya
tion [43,12℄.In this paper we assumed the existen
e of a gauge invariant Virasoro density LH , ofthe form given by (2.10), for obtaining 
onformally invariant redu
tions. Based on thisassumption, we 
ame to realize that, when H provides a grading of � and M , the sl(2)built out of M = M� plays an important role. However, the example of Appendix Aindi
ates that there is another 
lass of 
onformally invariant redu
tions where the formof the surviving Virasoro density is di�erent from that of an LH . The study of this novelway of preserving the 
onformal invarian
e may open up a new perspe
tive on 
onformalredu
tions of the WZNW theory as well as on W-algebras.There are many further interesting questions related to the Hamiltonian redu
tionsof the WZNW theory, whi
h we 
ould not mention in this paper. We hope to be able topresent those in future publi
ations. 71
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Appendix A: A solvable but not nilpotent gauge algebraIn all the 
ases of the redu
tion we 
onsidered in Chapters 3 and 4, the gauge algebra� was a graded nilpotent subalgebra of G. On the other hand, we have seen in Se
tion2.1 that the �rst-
lassness of the 
onstraints imply that � is solvable. We want hereto dis
uss a 
onstrained WZNW model for whi
h the gauge algebra is solvable but notnilpotent. Interestingly enough, it turns out that in this example no H satisfying (2.13)exists whi
h would render the 
onstraints 
onformally invariant. However, 
onformalinvarian
e 
an still be maintained, showing 
learly that the existen
e of su
h an H isonly a suÆ
ient but not a ne
essary 
ondition.We 
hoose the Lie algebra G to be sl(3; R) and the gauge algebra � as generated bythe following three generators
1 = E�1 = 0� 0 1 00 0 00 0 01A ; 
2 = E�1+�2 = 0� 0 0 10 0 00 0 01A ; (A:1a)
3 = 1p3(2H1 +H2) + 12(E�2 � E��2) = 0B� 1p3 0 00 � 12p3 120 � 12 � 12p3 1CA ; (A:1b)where the Cartan-Weyl generators are normalized by [Hi; E��i℄ = �E��i and[E�i ; E��i℄ = 2Hi, for the simple positive roots �i. Note that, being diagonalizableover the 
omplex numbers, 
3 is not a nilpotent operator. The algebra of � is[
1; 
2℄ = 0; [
1; 
3℄ = �p32 
1 + 12
2; [
2; 
3℄ = �12
1 � p32 
2: (A:2)It is easy to verify that � is a solvable, not-nilpotent Lie algebra. It quali�es as a gaugealgebra sin
e Tr (
i 
j) = 0.It is readily 
he
ked that the spa
es �? and [�;�℄? are given by�? = spanfH2; E�1 ; E�1+�2 ; 2H1 +p3E�2 ; 2H1 �p3E��2g;[�;�℄? = spanfH1; H2; E�1 ; E�1+�2 ; E�2; E��2g: (A:3)Thus [�;�℄?=�?, whi
h is the spa
e of the M 's leading to �rst 
lass 
onstraints, isone-dimensional, and we 
an takeM = �Y � �p3(4H1 + 2H2) = �p3 0� 2 0 00 �1 00 0 �11A (A:4)73



without loss of generality.The next question is the 
onformal invarian
e. As dis
ussed in Se
tion 2.1, a suf-�
ient 
ondition for 
onformal invarian
e is provided by the existen
e of a (modi�ed)Virasoro density LH = LKM � �xhH; J(x)i weakly 
ommuting with the 
onstraints. Forthis to work, the generator H must satisfy the three 
onditions in (2.13). However, it isan easy matter to show that those 
onditions are 
ontradi
tory in the present 
ase, andtherefore no su
h H exists.The above analysis 
an also be 
arried out for the simpler gauge algebra spannedby 
3 only. This gauge algebra is obviously nilpotent, sin
e it is Abelian. Nevertheless,the previous 
on
lusions remain: There exists no H whi
h would render the �rst 
lass
onstraints 
onformally invariant, for any M 6= 0 from [�;�℄?=�?. This shows theimportan
e of the gauge generators being nilpotent operators, rather than the gaugealgebra being nilpotent. It would be interesting to know whether there is always an Hsatisfying (2.13) for gauge algebras 
onsisting of nilpotent operators.Although there is no H su
h that the 
onstraints are preserved by LH , we 
annevertheless 
onstru
t another Virasoro density � whi
h does preserve the 
onstraints.It is given by �(x) = LKM (x)� �h
t3; J(x)i: (A:5)For M given in (A.4), the 
onstraints readh
1; J(x)i = h
2; J(x)i = 0 ; h
3; J(x)i = � ; (A:6)and are 
he
ked to weakly 
ommute with �: f�(x); h
i; J(y)ig � 0 on the 
onstraintsurfa
e (A.6). (Note that, when going from LKM to �, we have not 
hanged the 
onformal
entral 
harge, whi
h is 
lassi
ally zero.) Therefore we expe
t the redu
ed theory to beinvariant under the 
onformal transformation generated by � being its Noether 
hargedensity. We now pro
eed to show that it is indeed the 
ase. Before doing this, we displaythe form of � on the 
onstraint surfa
e:�(x) = T 21 (x) + T 22 (x) ; (A:7a)T1 = 12 hE�2 + E��2 ; Ji ; T2 = hH2; Ji: (A:7b)Following the analysis of Se
tion 2.3, we take the left and right gauge algebras to bedual to ea
h other (h
i; ~
ji = Æij)� = spanf
1; 
2; 
3g; ~� = spanf~
1; ~
2; ~
3g = spanf
t1; 
t2; 
t3g; (A:8)74



and 
onsider M = �Y and ~M = �Y t = �Y . We write the SL(3; R) group elements asg = a � b � 
, with a 2 exp�, b 2 expH and 
 2 exp ~�, with H = spanfY;H2g the Cartansubalgebra. We did not 
onform to the general pres
ription given in Se
tion 2.3, whi
hrequired to write g = ab
 with b 2 expB for a spa
e B 
omplementary to � + ~� in G,eqs.(2.25-26). Had we done that, the resulting e�e
tive a
tion would have looked mu
hmore 
ompli
ated. Here, we simply take a set of 
oordinates in whi
h the a
tion lookssimple.The redu
tion yields an e�e
tive theory for the group-valued �eld b, of whi
h thee�e
tive a
tion is given by (2.40) with (2.29b). Using the parametrization b = exp (�Y ) �exp (2�H2), the expli
it form of the e�e
tive a
tion isIe�(�; �) = Z d2xn�+����+ �+���� � (�+�� �)(���� �)
osh2 � o: (A:9)By inspe
tion, we see that this e�e
tive a
tion is going to be 
onformally invariant if the�eld � is a s
alar, and if the transformation of � is su
h that �� �+� and � � ��� are(1,0) and (0,1) ve
tors respe
tively. It implies that, under a 
onformal transformationx� �! x� � f�(x�), the �elds � and � transform asÆ� = f+ (�+�� �) + f� (���� �);Æ� = f+ �+� + f� ���: (A:10)We now want to show our previous 
laim: the a
tion (A.9) is 
onformally invari-ant under the 
onserved Virasoro density �(x), whi
h reprodu
es the f+-transformations(A.10) by Poisson bra
kets. (The f�-transformations 
ould also be realized by 
onstru
t-ing the 
orresponding Virasoro density ~� in the right-handed se
tor in a similar way.)For this, we �rst note that in terms of the redu
ed variables � and � the two 
urrent
omponents T1 and T2 of (A.7b) readT1 = �(�� �+�) tanh � ; and T2 = �+�: (A:11)These expressions 
an be obtained as follows. Writing g = a�b�
 and using the 
onstraints(2.29b), the 
onstrained 
urrent readsJ = a[T (b) + �+b � b�1℄a�1 + �+a � a�1; (A:12)with T (b) given by (2.29). Although neither T1 nor T2 is gauge invariant, the quantitywe want to 
ompute, �(x), is gauge invariant. As a result, it 
annot depend on the gauge75



variables 
ontained in a. Hen
e we 
an just as well put a = 1 in (A.12). Doing that, thede�nitions (A.7b) yield (A.11). We thus �nd the following expression for �:� = (�� �+�)2 tanh2 � + (�+�)2: (A:13)It is an easy matter to show, by using the �eld equations obtained from the a
tion (A.9),sinh2 � �+���+ tanh � ��+�(���� �) + ���(�+�� �)� = 0 ;
osh2 � �+��� � tanh � (���� �)(�+�� �) = 0 ; (A:14)that � is indeed 
hiral, satisfying ��� = 0 : (A:15)Moreover one also 
he
ks the following Poisson bra
ketsf�(x); �(y)g = �(�+�� �) Æ(x1 � y1) ;f�(x); �(y)g = �(�+�) Æ(x1 � y1); (A:16)whi
h reprodu
e the transformations (A.10). Thus the density � features all what isexpe
ted from the Noether 
harge density asso
iated with the 
onformal symmetry.Finally, we present here for 
ompleteness the general solution of the equations ofmotion (A.14). Along the lines of Se
tion 2.3, it 
an be obtained as follows:� = (�L + �R) + tan�1h sinh(�L � �R)sinh(�L + �R) tan(�L � �R)i+ �x+ + �x�;
osh(2�) = 
osh(2�L) 
osh(2�R) + sinh(2�L) sinh(2�R) 
os(2(�L � �R)); (A:17)where f�L; �L; �Lg and f�R; �R; �Rg are arbitrary fun
tions of x+ and x� only, respe
-tively, and the three fun
tions of ea
h 
hirality are related by the equations,�+�L + �+�L 
osh(2�L) = 0 ; ���R + ���R 
osh(2�R) = 0 : (A:18)

76



Appendix B: H-
ompatible sl(2) and the non-degenera
y 
onditionOur purpose in this te
hni
al appendix is to analyse the notion of the H-
ompatiblesl(2) subalgebra, whi
h has been introdu
ed in Se
tion 3.3. We re
all that the sl(2)subalgebra S = fM�;M0;M+g of the simple Lie algebra G is 
alled H-
ompatible if His an integral grading operator, [H ; M�℄ = �M�, and M� satisfy the non-degenera
y
onditions Ker(adM�) \ GH� = f0g: (B:1)Note that the se
ond property in this de�nition is equivalent to the fa
t that S 
ommuteswith (H �M0). We prove here the results stated in Se
tion 3.3, and also establish analternative form of the non-degenera
y 
ondition, whi
h will be used in Appendix C.Let us �rst 
onsider an arbitrary (not ne
essarily integral) grading operator H ofG and some non-zero element M� from GH�1. We wish to show that to ea
h su
h pair(H;M�) there exists an sl(2) subalgebra S = fM�;M0;M+g for whi
h M+ 2 GH+1. om-mutes To exhibit the S-triple in question, we need the Ja
obson-Morozov theorem, whi
hhas already been mentioned in Se
tion 3.3. In addition, we shall also use the followinglemma, whi
h 
an be found in [33℄ (Lemma 7 on page 98, attributed to Morozov).Lemma: Let L be a �nite-dimensional Lie algebra over a �eld of 
hara
teristi
 0 andsuppose L 
ontains elements h and e su
h that [h ; e℄ = �e and h 2 [L ; e℄. Then thereexists an element f 2 L su
h that[h ; f ℄ = f and [f ; e℄ = 2h : (B:2)Turning to the proof, we �rst use the Ja
obson-Morozov theorem to �nd generators(m�;m0;m+) in G 
ompleting m� � M� to an sl(2) subalgebra. We then de
omposethe elements m0 and m+ into their 
omponents of de�nite grade, i.e., we writem0 =Xn mn0 and m+ =Xn mn+ ; (B:3)where n runs over the spe
trum of the grading operator H. Sin
e M� is of grade �1, itfollows from the sl(2) 
ommutation relations that[m00 ; M�℄ = �M� and [m1+ ; M�℄ = 2m00 ; (B:4)77



and these relations tell us that h = m00 and e = M� satisfy the 
onditions of the abovelemma. Thus there exists an element f satisfying (B.2), whi
h we 
an write as f =Pn fnby using the H-grading again. The proof is �nished by verifying that M+ � f1 andM0 � m00 together with M� span the required sl(2) subalgebra of G.From now on, let H be an integral grading operator. For an elementM� of grade �1,respe
tively, the pair (H;M�) is 
alled non-degenerate if it satis�es the 
orresponding
ondition in (B.1).We 
laim that if S = fM�;M0;M+g is an sl(2) for whi
h the generatorsM� are fromGH�1, then the non-degera
y of the pairs (H;M�) and (H;M+) are equivalent statements.This will follow immediately from the sl(2) stru
ture if we prove that the non-degenera
yof the pair (H;M�) is equivalent to the following equality:dimKer(adM�) = dimGH0 : (B:5)It is enough to prove this latter statement for a pair (H;M�), sin
e then for a pair(H;M+) it 
an be obtained by 
hanging H to �H. To prove this let us �rst rearrangethe identity dimG = dimKer(adM�) + dim [M�;G℄ (B:6)by using the grading asdimKer(adM�)� dimGH0 =�dimGH+ � dim [M�;GH+ ℄	+ �dimGH� � dim [M�;GH0 + GH� ℄	 : (B:7)Sin
e both terms on the right hand side of this equation are non-negative, we see thatdimKer(adM�) � dimGH0 ; (B:8)and equality is a
hieved here if and only ifdimGH+ = dim [M�;GH+ ℄ and [M�;GH0 + GH� ℄ = GH� : (B:9)On the other hand, we 
an show that the two equalities in (B.9) are a
tually equivalent toea
h other. To see this, let us assume that the se
ond equality in (B.9) is not true. Thisis 
learly equivalent to the existen
e of some non-zero u 2 GH+ su
h that hu ; [M�;GH0 +GH� ℄i = f0g. By the invarian
e and the non-degenera
y of the Cartan-Killing form, this isin turn equivalent to [M�; u℄ = 0, whi
h means that the �rst equality in (B.9) is not true.By noti
ing that the �rst equality in (B.9) is just the non-degenera
y 
ondition for the78



pair (H;M�), we 
an 
on
lude that the non-degenera
y 
ondition is indeed equivalentto the equality in (B.5).We wish to mention a 
onsequen
e of the results proven in the above. To this letus 
onsider a non-degenerate pair (H;M�). By our more general result, we know thatthere exists su
h an sl(2) subalgebra S = fM�;M0;M+g for whi
hM+ is from GH+1. Thepoint to mention is that this S is an H-
ompatible sl(2) subalgebra, as has already beensated in Se
tion 3.3. In fa
t, it is now easy to see that this follows from the equivalen
e of(B.1) with (B.5) by taking into a

ount that the kernels of adM� are of equal dimensionby the sl(2) stru
ture.
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Appendix C: H-
ompatible sl(2) embeddings and halvingsIn Se
tion 3.3, we showed that, given a triple (�;M;H) satisfying the 
onditions for�rst-
lassness, 
onformal invarian
e and polynomiality (eqs. (2.6), (2.13) and (3.2-4)),the 
orrespondingW-algebra is isomorphi
 toWGS , provided that H is an integral gradingoperator. Here S = fM�;M0;M+g is some sl(2) subalgebra 
ontaining M� = M . Anatural question is what sl(2) subalgebras arise in this way, or equivalently, given anarbitrary sl(2) subalgebra, 
an the resulting WGS -algebra be obtained as the W-algebra
orresponding to the triple (�;M;H), for some integral grading operator H ? Whetherthis o

urs or not depends only on how the sl(2) is embedded, and it is therefore a puregroup-theoreti
 question. A

ording to Se
tion 3.3, the sl(2) subalgebras having thisproperty are the H-
ompatible ones. This appendix is devoted to establishing when agiven sl(2) embedding is H-
ompatible, and if so, what the 
orresponding H is.The question of an sl(2) being H-
ompatible is very mu
h related to another one,whi
h was mentioned at the end of Se
tion 4.2. We noted that in some instan
es, ageneralized Toda theory asso
iated to an sl(2) embedding 
ould as well be regarded as aToda theory asso
iated to an integral grading operator H. This means that the e�e
tivea
tion of the theory is a spe
ial 
ase of both (4.12) and (4.3) at the same time. We haveseen that this is the 
ase when the 
orresponding halving is H-
ompatible, i.e., when theLie algebra de
omposition G = (G�1+P 12 )+(Q 12 +G0+Q� 12 )+(P� 12 +G��1) (subs
riptsare M0-grades) 
an be ni
ely re
asted into G = GH�1 + GH0 + GH��1. Our se
ond problem,addressed at the end of the appendix, is to �nd the list of those sl(2) subalgebras whi
hallow for an H-
ompatible halving. Clearly, an sl(2) subalgebra whi
h possesses an H-
ompatible halving is also H-
ompatible in the above sense, but it will turn out that the
onverse is not true.Let S = fM�;M0;M+g be an sl(2) subalgebra embedded in a maximally non-
ompa
t real simple Lie algebra G. For the 
lassi
al algebras Al, Bl, Cl and Dl, thesereal forms are respe
tively sl(l+1; R), so(l; l+1; R), sp(2l; R) and so(l; l; R). (We do not
onsider the ex
eptional Lie algebras.) For S to be an H-
ompatible sl(2), one should�nd an H in G with the following properties:1. adH is diagonalizable with eigenvalues being integers,2. H �M0 must 
ommute with the S-triple,80



3. dimKer(adH) = dimKer(adM�).We remark that here the equivalen
e of relations (B.1) and (B.5), proven in the previousappendix, has been taken into a

ount. Under 
onditions 1-3, the de
omposition�? = [M�;�℄ + Ker(adM+) (C:1)holds, where � = GH�1 in the (�;M�; H) setting, or � = P 12 + GM0�1 in the sl(2) setting,respe
tively. (For 
larity, note that these two gauge algebras are in general not equal.)As a 
onsequen
e, Jred(x) = M� + jred(x) with jred(x) 2 Ker(adM+) is a DS gauge inboth settings, and thus the W-algebras are the same.In order to answer the question of whether an sl(2) embedding is H-
ompatible,it is useful to know what these embeddings a
tually are. For a 
lassi
al 
omplex Liealgebra G
, this question has been 
ompletely answered by Mal
ev (and Dynkin for theex
eptional 
omplex Lie algebras) [39℄. The result 
an be ni
ely stated in terms of theway the fundamental ve
tor representation redu
es into irredu
ible representations of thesl(2):Al : the sl(2) redu
tion of the (l+1)-dimensional representation 
an be arbitrary,Bl : the (2l + 1)-dimensional representation of Bl redu
es in su
h a way that the multi-pli
ity of ea
h sl(2) spinor appearing in the redu
tion is even,Cl : the 2l-dimensional representation of Cl redu
es in su
h a way that the multipli
ityof ea
h sl(2) tensor appearing in the redu
tion is even,Dl : same restri
tion as the Bl series: the spinors 
ome in pairs.The above 
onditions are ne
essary and suÆ
ient, i.e., every possible sl(2) 
ontent sat-isfying the above requirements a
tually o

urs for some sl(2) embedding. Moreover, forthe 
lassi
al 
omplex Lie algebras, the way the fundamental redu
es 
ompletely spe
i�esthe sl(2) subalgebra, up to automorphisms of the embedding G
 [39℄.The above des
ription of the sl(2) embeddings remains valid for the maximally non-
ompa
t 
lassi
al real Lie algebras, ex
ept the last statement. First of all, this means thatthe above restri
tions apply to the possible de
ompositions of the fundamental under thesl(2) subalgebras in the real 
ase as well. It is also obvious that those sl(2) embeddingsfor whi
h the 
ontent of the fundemantal is di�erent are inequivalent. The 
onverse81



however 
eases to be true in the real 
ase in general: inequivalent sl(2) subalgebras 
anhave the same multiplet 
ontent in the fundamental of G. The answer to the problem ofH-
ompatibility will in fa
t be provided by looking more 
losely at the de
omposition ofthe fundamental of G under the sl(2) subalgebra in question, as will be 
lear below.As an immediate 
onsequen
e of 
ondition 2, H �M0 is an sl(2) invariant and 
anonly depend on the value of the Casimir. If, in the redu
tion of the fundamental of G, aspin j representation o

urs with multipli
ity mj , the sl(2) generators ~M and H 
an bewritten ~M =Xj ~M (j) � Imj ; (C:2a)H =M0 +Xj I2j+1 �D(j); (C:2b)where In denotes the unit n� n matrix, and the D(j)'s are mj �mj diagonal matri
es.Hen
e, within ea
h irredu
ible representation of sl(2), H is equal to M0 shifted by a
onstant. Obviously, this is also true in the adjoint representation and, in turn, thisimplies that adH takes the value zero at most on
e in ea
h sl(2) multiplet in the adjointof G. From 
ondition 3, adH must take the value zero exa
tly on
e, i.e., ea
h sl(2)representation must interse
t Ker(adH) exa
tly on
e. In parti
ular, the sl(2) singletsmust be adH -eigenve
tors with zero eigenvalue.The trivial solution H =M0 exists whenever adM0 is diagonalizable on the integers,i.e., when the redu
tion of the fundamental of G is either purely tensorial or purelyspinorial. From now on, we suppose that the redu
tion involves both kinds of sl(2)representations.1) Al algebras.The problem for the Al series is simple to solve sin
e, in this 
ase, an H always exists.As a proof, we expli
itly give an H whi
h ful�lls all the requirements. In (C.2b), we setD(j) = �� � Imj if j 2 N ,(�+ 12) � Imj if j 2 N + 12 , (C:3)where � is a 
onstant that makes H tra
eless. In order to show that the H so de�nedhas the required properties, we re
all that for the Al algebras, the adjoint representation82



is obtained by tensoring the fundamental with its 
ontragredient. As a result, the rootsare the di�eren
es of the weights of the fundamental (up to a singlet) and we haveadH = adM0 + [D(j1)�D(j2)℄; (C:4)where j1 and j2 are the spins of the states in the fundamental representation from whi
ha given state in the adjoint representation is formed. That the 
onditions 1-3 are satis�edis obvious from the fa
t that adH = adM0 on tensors and adH = adM0 � 12 on spinors,with + 12 o

urring as many times as � 12 .It should be pointed out that (C.3) is by no means the only solution. Sin
e in theprodu
t j1 � j2, the highest weights have an M0-eigenvalue at least equal to jj1 � j2j,another solution is given by D(j) = (�+ j) � Imj .2) Cl algebras.For the symple
ti
 algebras, the adjoint representation is obtained from the symmetri
produ
t of the fundamental with itself and we therefore haveadH = adM0 + [D(j1) +D(j2)℄: (C:5)Sin
e the symmetri
 produ
t of a tensor with itself produ
es a singlet, whi
h must belongto Ker(adH), we have 2D(t) = 0 for every integer j = t. Hen
e in the fundamentalrepresentation, H = M0 on tensors. Similarly, the symmetri
 produ
t of a spinor withitself always produ
es a triplet, one member of whi
h must belong to Ker(adH). Thisimplies that the diagonal entries of 2D(s) are either 0 or �1, for every half-integer j = s.However D(s) 
annot have a zero on the diagonal, be
ause adH would not be integral onthe representations 
ontained in s � t. Therefore, in the fundamental, H = M0 � 12 onspinors.Let us now look at the ms spinor representations of spin s, say s1; s2; : : : ; sms . Theprodu
t si�sj of any two of those 
ontains a singlet, and that implies D(si)+D(sj) = 0.This equality must hold for any pair of spin s representations, whi
h is impossible unlessms � 2.Let us 
onsider the restri
tion gs of the symple
ti
 form to the spin s representations.The restri
ted form is non-degenerate, be
ause the original non-degenerate metri
 isblo
k-diagonal with respe
t to the eigenvalues of the sl(2) Casimir.83



If ms = 1, then the H given byM0� 12 �I on the unique spin s representation, shouldbe in the symple
ti
 algebra: gsH+Htgs = 0. Sin
eM0 is already symple
ti
, we requirethat the identity be symple
ti
, whi
h is impossible for a non-degenerate form. Hen
ems must be 2.If ms = 2, H �M0 and gs look like (in the basis where M0 and H are diagonal)H �M0 = �� 12 00 � 12 � ; gs = � a b�bt 
� ; (C:6)where the blo
ks a and 
 are antisymmetri
. H�M0 being symple
ti
 leads to a = 
 = 0.To summarize, for an integral H to exist, the sl(2) embedding must be su
h that: (i)the multipli
ity of any spinor representation in the fundamental of G is 2, (ii) if (s; s0) issu
h a pair of spinors, they must be the dual of ea
h other with respe
t to the symple
ti
form. If these two 
onditions are met, then H is given in the fundamental byH = �M0 on tensors,M0+=� 12 on a pair of spinors s=s0. (C:7)Conditions 1-3 are satis�ed sin
e (C.7) implies adH = adM0 on singlets, adH = adM0�(1or 0) on tensors and adH = adM0 � 12 on spinors.3) Bl and Dl algebras.The analysis here is similar to what has been done in 2), and we 
an therefore go throughthe proof qui
kly.For the orthogonal algebras, the adjoint is got from the antisymmetri
 produ
t ofthe fundamental with itself and we still haveadH = adM0 + [D(j1) +D(j2)℄: (C:8)The antisymmetri
 produ
t of a tensor (spinor) with itself produ
es a triplet (singlet),so that with respe
t to the symple
ti
 algebras, the situation is reversed in the sensethat the tensors and the spinors have their roles inter
hanged: H =M0 � 12 on tensors,H =M0 on spinors and mt � 2 for any tensor representation of spin t.If as in 2), we look at the restri
tion gt of the orthogonal metri
 to the spin ttensors, we have mt = 2 on a

ount of the non-degenera
y of gt. From this, we get at84



on
e that there 
an be no solution for the Bl algebras. Indeed, the fundamental beingodd-dimensional, at least one tensor representation must 
ome on its own.On the 2(2t+ 1)-dimensional subspa
e made up by the two spin t tensors, H �M0and gt take the formH �M0 = �� 12 00 � 12 � ; gs = � a bbt 
� ; (C:9)where a and 
 are now symmetri
. Requiring that H � M0 be orthogonal, we againobtain a = 
 = 0.Therefore, for the orthogonal algebras, we get the following 
on
lusions. There isno solution for the Bl series if the sl(2) embedding is not integral. As to the Dl series,the sl(2) embedding must be su
h that: (i) every tensor in the fundamental of G has amultipli
ity equal to 2, (ii) if (t; t0) is su
h a pair of tensors, they must be the dual of ea
hother with respe
t to the orthogonal metri
. In this 
ase, H is given in the fundamentalby H = �M0+=� 12 on a pair of tensors t=t0,M0 on spinors. (C:10)Summarizing the analysis, the H-
ompatible sl(2) embeddings are the followingones:Al : any sl(2) subalgebra,Bl : only the integral sl(2)'s,Cl : those for whi
h ea
h spinor o

urs in the fundamental of Cl with a multipli
ity0 or 2, the pairs of spinors being symple
ti
ally dual,Dl : those for whi
h ea
h tensor o

urs in the fundamental of Dl with a multipli
ity0 or 2, the pairs of tensors being orthogonally dual.The reader may wish to 
he
k that the above results are 
onsistent with the isomorphismsB2 � C2 and A3 � D3.We now 
ome to the se
ond question alluded to at the beginning of this appendix,85



namely the problem of H-
ompatible halvings. From the de�nition, an sl(2) subalgebraallows for an H-
ompatible halving if in addition to 
onditions 1-3 one also has4. P 12 + G�1 = GH�1, and P� 12 + G��1 = GH��1.In parti
ular, this fourth 
ondition implies GM00 � GH0 . So we readily obtain that H andM0 must satisfy adH = adM0 ; on tensors; (C:11)sin
e we know, from the previous analysis, that adH � adM0 is a 
onstant in everyrepresentation (
ondition 2). Therefore, we 
an simply look at those solutions of the �rstproblem whi
h satisfy (C.11) and 
he
k if 
ondition 4 is fully satis�ed or not. We getthat the sl(2) embeddings allowing for an H-
ompatible halving are as follows:Al : any sl(2) subalgebra. There are only two solutions for H given by setting in(C.2b): D(j) = (�� �(j)) � Imj with �(j) = 0= 12 for a tensor/spinor,Bl : only the integral sl(2)'s with H =M0,Cl : only the integral sl(2)'s,Dl : the integral sl(2)'s, and those for whi
h the fundamental of Dl redu
es intospinors and two singlets, with H given by (C.10).
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