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Abstract

It is shown that Liouville theory can be regarded as an SL(2, R) Wess-Zumino-
Novikov-Witten theory with conformal invariant constraints and that Polyakov’s
SL(2, R) Kac-Moody symmetry of induced two-dimensional gravity is just one side
of the WZNW current algebra. Analogously, Toda field theories can be regarded as
conformal-invariantly constrained WZNW theories for appropriate (maximally non-
compact) groups. The WZNW formulation shows that the singularities of those
Liouville and Toda solutions which are conformally regular are just coordinate sin-

gularities.
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NeINarKkable progress llas DEcll INnade tOwards soiving tie two dlinensional qualntuln
gravity [1,2] which is induced by string theory in subcritical dimensions. As observed
by Polyakov [1] the induced gravity action possesses a hidden chiral SL(2, R) Kac-
Moody (KM) symmetry in the light-cone gauge, and this symmetry opened up a new
way of solving minimal models coupled to gravity [2]. It is hoped that this KM sym-
metry will also prove useful in understanding strings in subcritical dimensions. Since
in the conformal gauge the induced gravity is described by Liouville theory, it is natu-
ral to ask whether there is a ‘hidden’ KM symmetry associated with Liouville theory
as well. In this paper we show there are actually two (a left- and a right-handed)
hidden SL(2, R) symmetries associated with Liouville theory. In fact we demonstrate
that the Liouville theory is nothing but the SL(2, R) Wess-Zumino-Novikov-Witten
(WZNW) theory, reduced in a conformally invariant manner. More generally, we
show that Toda field theories [3,4], which are natural, completely integrable general-
izations of the Liouville theory can also be obtained by reducing WZNW models in
a conformally invariant way.

One important advantage of regarding the Liouville theory as a reduced WZNW
system is that the configurations which are singular in the Liouville variables but
have regular energy-momentum densities turn out to be regular in the corresponding
WZNW variables. For this reason it is hoped that the WZNW description will open
up a new way of attacking the hard problem of quantizing the Liouville theory [5-8],
namely, by applying the symmetry reduction to the quantized WZNW theory. But
in this paper we shall restrict ourselves to purely classical considerations.

The discovery of Polyakov [1] mentioned above is that in the light-cone gauge
where

ds® = detde™ + h(EF,67)(deH)? (1)
the induced gravity Lagrangian density

k-1 D — 26
L=——[-RAT'R— M|\ /—q: k=
57 2 V=g 6

(2)

where R is the scalar curvature and A is the two-dimensional wave operator, is local

in the variable f defined as h = 04 f/0_f, and is invariant with respect to the
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In the left-right symmetric conformal gauge

et =1(

ds® = ?€" S derde=, g =’ (4)

the induced two-dimensional gravitational Lagrangian density reduces to

k1

which is the Liouville Lagrangian density (for the value of k given in (2)). We now
wish to show that (for any negative value of the parameter k) the Liouville Lagrangian
(5) has a hidden two-sided SL(2, R) symmetry, which it inherits from an underlying
SL(2, R) WZNW model.

We start by recalling some facts about the WZNW theory [9]. First, the WZNW

action for a group-valued field g is:

S(g) = —8%/dz&n“”Tf{(9_13ug)(g‘18ug)}+ %/B Tr{(g~'dg)*} , (6)

where the Tr symbol denotes the ordinary matrix trace operation multiplied by a
constant to be fixed later and, as usual, B3 is a three-dimensional manifold whose
boundary is Minkowski space-time*. Any Lie algebra element A gives rise to left- and

right KM symmetries of (6) generated by the Noether currents
I = RIr{A- (029) 97}
~ where K= —2 (7)
J(A) = —=KTr{A-g7 - (9-9)}

and the WZNW field equation is equivalent to current conservation

0_J=0 ; d.J =0. (8)

* Our space-time conventions are the following:

N =-—nlt = =0 =1; 919 =0pp 1=+ ¢'.
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action for the product of three matrices A,B,C' as the sum of the respective actions

for A,B and C', modulo local terms:
S(ABC) = S(A)+ S(B)+S(C)
+ ﬁ/d2§ Tr{(A~"0_A)(0.B)B~! (9)
+ (B7'0_B)(04C)C~ "+ (A7'9_A)B(0+C)C~ "B~}
After this recapitulation we consider the case of SL(2, R). This group has the

property that any group element g in a neighbourhood of the identity admits the

Gauss-decomposition g = ABC', where

_ I x _ By . _ 10 _ yE_
(§ D) e )

The neighbourhood in which this parametrization is valid consists of those group

(10a)

elements for which goo > 0 and the whole group can be covered by four patches of

this type, that is an arbitrary group element g can be parametrized as:

g =ABCw where w==*1 or w== <_01 (1)> . (100)

(Note that for the adjoint group SL(2, R)/Z, two patches suffice.) Substituting the

parametrization (10) into (9) the action takes the simple local form [11]:
S(9) = S(z,y,¢)

_ 5 /d2§ {%ama_w 20_)(Dsy)e ). ()

2

The equations of motion, derived conveniently from (11), read as

O_(04ye™?) = 0, (0_ze™?) =0, (12a)

040_¢ + 2(0_x)(01y)e”? = 0. (120)

Working in the neighbourhood of the identity (w = 1), let us now counsider the

following special solutions of (12a):

Oyy = pe? O_x =ve? | (13)



wiere (4 and v are arbitrary constaints. Using {(l1o), tlie equatlon { 120) reauces Lo tie

Liouville equation
04,0_¢p+Me? =0, where M =2uv . (14)

Thus locally at least the Liouville system can be regarded as a reduced WZNW
theory. This reduction is a canonical one in the sense that the Poisson brackets of
the Liouville phase space variables ¢ and 0p¢ can be calculated either in the WZNW
theory or using the Liouville Lagrangian (5). Since locally the currents J(E,) and

J(E_) can be written as
J(Ey) =k 0pye? J(E_) = -k O_ze™?, (15)

the solutions (13) correspond to imposing the constraints

J(Ey) = kp J(E_) = —kv (16)

which are globally well-defined and therefore can be imposed on any of the patches
defined by (10b).

An important question is how the conformal symmetry of the Liouville theory
appears in the WZNW context. The left- and right Virasoro algebras of the Liouville

theory are given by the improved (traceless) energy-momentum tensor:

Tos = (5)[5(020)° + Me? 5 2(059)']. (17)

)|

| =
Do | =

Due to the improvement term (01¢)’, there is a classical centre ¢ = —6k in this
Virasoro algebra. We have to look for a Virasoro algebra in the WZNW model
which, upon imposing the constraint (16), yields the Liouville Virasoro (17). It is
easy to see that the Sugawara Virasoro density L of the WZNW theory

V[ () + 27 (B, (B)] (18)

27

L=(-2

(and similarly for L) does not commute with the constraint (16). However, there is

a whole family of Virasoro subalgebras in the semidirect product formed by the KM
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the densities

I =L+ axJ(A) +brJ' (), (19)

(and similarly for I) where A € sI(2, R) and ay and by are real numbers. Within this
family it is possible to find a Virasoro algebra that does weakly commute with the
constraint. Indeed, by imposing the requirement that the Virasoro weakly commutes

with (16), one is led to the solution
l=L-J(H) [=L+J(H), (20)

which is unique up to terms which are proportional to the constraint (16) and do not

contribute in Liouville theory. As a consequence of the relation
(J(H, o), J(H,o')} = % TeH? §' (0 — o), (21)
(20) has the same centre as (17), namely
c= -3k TrH? = —6k. (22)

Since there is only one Virasoro symmetry in Liouville theory, T4 and [ are expected
to be the same functionals of the Liouville phase space data ¢ and dy¢. In local

coordinates the density [ takes the form
l=L-JH) = { (04¢)% +2(042) (94 y)e™?]
s+ 4r(Dy)e))

and this expression does indeed reduce to Tp4 on imposing the constraint (16). The

(23)

term (04 ¢)2 comes entirely from the Sugawara density L, while the improvement
term comes from J'(H). On the other hand, the exponential interaction potential in
(17) arises as a combination of two terms , one of them coming from L, the other
from J'(H).

One can use the WZNW — Liouville reduction to obtain the general solution of
the Liouville equation from that of the WZNW model. As is well-known, the former

is given as ~
ete) _ 2 FENFET)
M1+ FENFE)?

(24)



wiere £ and £ are aroitrary unctions satisiymmg /- > U, [/ > U ald Llle Priime
means derivative taken with respect to the argument. The general WZNW solution

is described by the simpler formula

9(&",¢7) = gL(&") gr(€7) (25)

where g7, and gg are arbitrary group-valued functions. Now, if one assumes that g,
gr, and ggr are all Gauss-decomposable then trivial matrix multiplication yields (in

an obvious notation)

ePL(ET) pbr(E7)

ePETET) = T yn e onE e (26)
On the other hand, the constraints (16) in this case reduce to
vp(Eh) = pet D) wp(£7) =vetn ), (27)
and if these are imposed and one makes the identification
F =y : F=zp (28)

then (26) reduces to (24), as required. Conversely, if a Liouville solution e? is given
in terms of F and F as in (24) then one can build a family of corresponding local
WZNW solutions by reversing the above procedure. This family is parametrized by

the arbitrary functions yr and xy which describe the gauge freedom
g — +A(xp)-g9-C(yr) (29)

of the constraint (16). (The discrete freedom ¢g — —g disappears, of course, for
the adjoint group.)

It is known [6] that the Liouville equation admits ‘singular’ solutions with per-
fectly regular energy-momentum density and that these configurations play an im-
portant role in the quantized version of the theory. One of the main advantages of the
WZNW description of Liouville theory is that these configurations are represented
by globally regular WZNW fields. For example, the Liouville solution

1
e? = —— where o= puEt —vEs (30)
cos? a



15 apparcitly singular, out tlie Corresponding v Iirasoro densivles arc 1ot (tiey are sii-
ply constants). On the other hand, using the reduction procedure, the configuration
(30) is obtained from the following solution of WZNW theory:

cosa —sina
g ( ) , (31)

sin o Ccos

which is indeed perfectly regular.
To see that this holds for any Liouville solution with regular Virasoro densities,
let us consider two independent real solutions Wi, Wy of the Schrodinger equation

with periodic potential V' = £T4 (and similarly for V= 57T0-),
" ]‘
() = SV(OU(E). (3)
Normalizing the pair of solutions by the Wronskian condition
VLU, — U0y =y, (33)

it is easy to see that the left moving SL(2, R) matrix

gL = (W\IIIQN _\lepzl/N> where N = V] + V3 (34)

satisfies the left-handed part of the constraint (16). Moreover, since ¥y and Ws
are two independent solutions of the same Schrodinger equation and thus can never
vanish simultanously, the matrix (34) is always regular. It is known that V is the
Schwarzian derivative of F' and it follows from (32) and (33) that V is also the
Schwarzian derivative of the ratio Wy /W;. Therefore, using the SL(2, R)/Zs freedom
of the Schwarzian derivative, we can choose ¥, and ¥, so that they reproduce F*:

F=—.
vy

(35)

Applying the analogous procedure to the right hand side as well one finds that the

Liouville solution e? is recovered as

1

e? _ _ ,
(U0 + UyWy)2

= (92 9r)2) "~ = (36)



wilere tne matrix gr 1s DuUllt out Ol ¥j1 and ¥o aCcording to tie INnatrix transpose
of the formula (34). To summarize, we have shown that it is indeed possible to
construct a globally regular WZNW representation for any Liouville configuration
with regular Virasoro densities. From (36) one sees that the only singularities of the
Liouville function e? occur at the zeros of the matrix element g,, of the corresponding
WZNW solution, and from (10) one sees that these are only coordinate singularities
associated with the patching of SL(2, R) (or, more precisely, of SL(2, R)/Z>).

The connection with Polyakov’s light-cone gauge theory mentioned earlier is
obtained by making the WZNW — Liouville reduction in two steps. In the first
step we impose only the right-moving part of the constraint (16). Then the equations

of motion yield
1
O_(e=?0,0_¢) =0 , where ¢= 11’1(;8_.1;). (37)

This equation can be derived from the effective Lagrangian

k  (0+0_x)(0-0_x)

L= 16 (0_z)2 ’

(38)

which is the same as Polyakov’s Lagrangian for the two-dimensional induced gravity

D—26

5 ) if we identify z with Polyakov’s variable f

in the light-cone gauge (with k =
through the relation

w(€F, f(EF,67) =¢ . (39)
The effective Lagrangian (38) is invariant under the residual left-moving SL(2, R)
transformations

(et £) 4+ be+

T Ehn(et ) v dEr)
which, in terms of the variable f, are just Polyakov’s left-moving SL(2, R) KM trans-
formations. If we now break this residual symmetry by imposing the left-moving part
of (16), then we reach the Liouville theory again, since the E; component of the
SL(2, R) Noether current corresponding to the symmetry transformation (40) of the
Lagrangian (38) turns out to be

J(E,) = —%e—¢a+a_¢ . (41)
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Let G be any complex simple Lie algebra, ® the set of roots with respect to some
Cartan subalgebra H and A a set of simple roots. We fix a Cartan-Weyl basis,
consisting of root vectors FE,, a € ® and Cartan generators H, = [E,, E_,], a € A,
with respect to which all the structure constants of G are real numbers. The real span
of the Cartan-Weyl basis yields a particular real form Gg of G. (This ‘maximally non-
compact’ real form of G is well-defined by the Cartan-Weyl basis up to isomorphism
and for the classical Lie algebras A,,, C,,, B, and D,, is in fact provided by the real
Lie algebras sl(n + 1, R), sp(2n, R) and so(p, q, R) for p — ¢ = 1,0, respectively.)

A property that distinguishes Gg from all the other real forms of G, and that will
be crucial for our purposes, is that it is the only real form for which any connected
Lie-group Gr with Gg as its Lie-algebra admits a local, unique, group-valued Gauss-

decomposition similar to (10),

g=ABC (42a)

where

A:exp{ Z xaEa} ; C’:eXp{ Z y"Ea} ;

acdt acd—

B :exp{% - ¢aHa} .

a€EA

(42b)

(Here ®* denotes the set of positive (negative) roots, respectively.) This property
makes the WZNW models based on the non-compact groups Gz the natural gen-
eralizations of the SL(2, R) WZNW model and these are the models that we shall
consider.

We need to recall the following results and conventions from the theory of Lie

algebras [12]:

Kap=a(Hg) = TaP o, B €A, |Qtiong|? = 2
2
Tr (Ho - Hp) = WKa,B = Cap (43)
2
Ty (EQ-EB): —(Sa,_ﬁ, OZ,BECI), Tr (EQ-HB):O ,
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matrix trace multiplied by an appropriate constant.

Our main result is that the constraints

J(Ey) = kp® J(E_y) = —kv® (a € ®T), (44)
where p® and v® are arbitrary nonzero real numbers for the [ primitive roots o € A
and zero for all other positive roots (which are natural generalizations of the SL(2,R)
constraints (16)) reduce the Gg WZNW theory to the Toda theory, defined for any

simple Lie algebra by the Lagrangian

L= —ﬁ(loa,ﬁama o_¢f — Y M° exp{%f(a,ﬁ qsﬁ}). (45)

8m \4 aEA

Because p® and v® are zero for all but the primitive roots the constraints (44)

may be written for g = ABC' as

AT'9_A=B[) Ly |B~ =) Ly exp { 1Ko 507}
— 2 a 9 a 2 a,B

(07
@00 =Y S en = S B e (K]
a€A acA

Since the matrices A and C occur in the WZNW equation of motion (8) only in the
combinations shown in (46), they can be eliminated and the equation then reduces to
an equation for B (i.e. for the ¢®’s) alone. A little algebra shows that this equation

is just the Toda equation
1 1
04+0_¢~ + §|a|2Ma exp{éKa,[gqﬁB} =0 , where M = |aPuv®.  (47)

This shows that the constraints (44) reduce the Gg WZNW theory to the Toda
theory. As in the Liouville case, the reduction is canonical in the sense that the
Poisson brackets of the Toda variables are preserved by the reduction. (Note that, as
far as they are positive, the actual values of the constants M“ in (47) are irrelevant
since they can be redefined simply by shifting the fields ¢“.)

At this point it is worth mentioning that the general solution of the Toda field
equation (47) can be immediately generated from that of the corresponding WZNW



model, {£490). APPLylZ the 10Cal xauss-deColnposition (#4) 10 g and also 10r gr, and
gr, g can be written as

g(€7,67) = Aexp{s > ¢“Ho}C

aEA

=g.(EN)gr(€7) = Apexp{3 D ¢FHa}CrARexp{t Y ¢%Ha}Ch.
acA aEA

(48)

The problem of projecting out the the matrix elements e?” (€7:67) of B can be elegantly
solved [3] by introducing the [ normalized lowest weight states | A,) of the [ (finite

dimensional) fundamental representations of G, so that
He | Ag) = —0a,5 | Ag) a, B €A. (49)
Now, by calculating the matrix element (A, | g | Ao) of (48) we obtain
em2?" (€T ET) = o739l 30R (N, | CLAR | o). (50)

(50) is the general solution of the Toda field equations provided g, and gg satisfy the
constraints (44). Following [3] we choose the set of functions {¢%(£1), p%E(£7)} as
our independent variables. Then the constraints (44) can be solved for the matrices
Cr, and Apg in terms of these functions. (Alternatively, one could start with a set of
[ matrix elements of C';, and Ag each and try to solve the constraints for ¢¢, ¢% and
the remaining matrix elements of C, and Ag.) To get the solution in the form given

in [3] * we have to introduce
1
S a af +
S0%n = ;G In f3 (51)

where fI are arbitrary functions and G*# is the inverse of the Cartan matrix. So

finally we find
CL(€") Ar(§7)

+\Ge —\Gp
I;I(fg) I;I(fg)

e %" = (Aa | | Aa)- (52)

Note, in particular, that e~ 2¢" always decomposes into a sum of products of chiral

factors.

* Note that our ¢*’s differ by a factor of 2 from those of ref. [3].
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model given by (19). The fact that the constraints (44) reduce the Gg WZNW the-
ories to the respective Toda theories and that the latter are conformally invariant
shows that although the constraints break the KM symmetry completely, they pre-
serve at least one member of the family (19). To see this, and to place our results
in a more abstract context, we now show that our reduction procedure is a field
theoretical realization of a general mechanism for breaking KM symmetries without
breaking the corresponding conformal symmetries. The analogues of the constraints

(44) for an abstract Gr KM algebra are
J(E®) = p* acdt (53)

where p® # 0 for the primitive roots and u® = 0 for the other positive roots. If one
now looks for the normalizer N of the constraints (53) in the semi-direct sum of the
KM and its associated Sugawara Virasoro algebra one finds that A is, in analogy to

(20), generated by the Virasoro operators
l=L-J(H), (54)
where the element H of the Cartan subalgebra is determined by the condition
a(H) =2 for all aeA. (55)
The unique solution of (55) is given by
H = 26, (56)

where § is the sum of the / fundamental co-weights (or equivalently half the sum of
the positive co-roots). Note that (55) could not be satisfied for any system of positive
roots larger than A and this is why p® must be zero for all non-primitive positive
roots. From these considerations it is clear that the reduction which was applied in
this paper to break the KM-symmetry of the WZNW model actually depends only

on the algebraic structure of the KM algebra and could be applied to any system
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the classical centre of the Virasoro (54) is
¢ = —12k|6|2. (57)

Since the Virasoro algebra of Toda theory is obtained by the above reduction its
centre must be given by (57), and indeed (57) agrees with the Toda result of Gervais
and Bilal [4].
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