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Remarkable progress has been made towards solving the two dimensional quantumgravity [1,2℄ whi
h is indu
ed by string theory in sub
riti
al dimensions. As observedby Polyakov [1℄ the indu
ed gravity a
tion possesses a hidden 
hiral SL(2; R) Ka
-Moody (KM) symmetry in the light-
one gauge, and this symmetry opened up a newway of solving minimal models 
oupled to gravity [2℄. It is hoped that this KM sym-metry will also prove useful in understanding strings in sub
riti
al dimensions. Sin
ein the 
onformal gauge the indu
ed gravity is des
ribed by Liouville theory, it is natu-ral to ask whether there is a `hidden' KM symmetry asso
iated with Liouville theoryas well. In this paper we show there are a
tually two (a left- and a right-handed)hidden SL(2; R) symmetries asso
iated with Liouville theory. In fa
t we demonstratethat the Liouville theory is nothing but the SL(2; R) Wess-Zumino-Novikov-Witten(WZNW) theory, redu
ed in a 
onformally invariant manner. More generally, weshow that Toda �eld theories [3,4℄, whi
h are natural, 
ompletely integrable general-izations of the Liouville theory 
an also be obtained by redu
ing WZNW models ina 
onformally invariant way.One important advantage of regarding the Liouville theory as a redu
ed WZNWsystem is that the 
on�gurations whi
h are singular in the Liouville variables buthave regular energy-momentum densities turn out to be regular in the 
orrespondingWZNW variables. For this reason it is hoped that the WZNW des
ription will openup a new way of atta
king the hard problem of quantizing the Liouville theory [5-8℄,namely, by applying the symmetry redu
tion to the quantized WZNW theory. Butin this paper we shall restri
t ourselves to purely 
lassi
al 
onsiderations.The dis
overy of Polyakov [1℄ mentioned above is that in the light-
one gaugewhere ds2 = d�+d�� + h(�+; ��)(d�+)2 (1)the indu
ed gravity Lagrangian densityL = � k8� �12R��1R�M�p�g ; k = D � 266 (2)where R is the s
alar 
urvature and � is the two-dimensional wave operator, is lo
alin the variable f de�ned as h = �+f=��f , and is invariant with respe
t to the



SL(2; R) KM symmetry transformations~f(�+; ��) = f��+; a(�+)�� + b(�+)
(�+)�� + d(�+)�: (3)In the left-right symmetri
 
onformal gaugeds2 = e�(�+;��)d�+d��; p�g = e� (4)the indu
ed two-dimensional gravitational Lagrangian density redu
es toL = � k8� �12�+�����Me�� (5)whi
h is the Liouville Lagrangian density (for the value of k given in (2)). We nowwish to show that (for any negative value of the parameter k) the Liouville Lagrangian(5) has a hidden two-sided SL(2; R) symmetry, whi
h it inherits from an underlyingSL(2; R) WZNW model.We start by re
alling some fa
ts about the WZNW theory [9℄. First, the WZNWa
tion for a group-valued �eld g is:S(g) = � k8� Z d2����Tr�(g�1��g)(g�1��g)	+ k12� ZB3 Tr�(g�1dg)3	 ; (6)where the Tr symbol denotes the ordinary matrix tra
e operation multiplied by a
onstant to be �xed later and, as usual, B3 is a three-dimensional manifold whoseboundary is Minkowski spa
e-time*. Any Lie algebra element � gives rise to left- andright KM symmetries of (6) generated by the Noether 
urrentsJ(�) = �Tr�� � (�+g) � g�1	~J(�) = ��Tr�� � g�1 � (��g)	 where � = � k4� (7)and the WZNW �eld equation is equivalent to 
urrent 
onservation��J = 0 ; �+ ~J = 0: (8)* Our spa
e-time 
onventions are the following:�00 = ��11 = �01 = ��10 = 1; ��� = �0�� �1� = _�� �0.



We will make use of the Polyakov-Wiegmann identity [10℄ that expresses the WZNWa
tion for the produ
t of three matri
es A,B,C as the sum of the respe
tive a
tionsfor A,B and C, modulo lo
al terms:S(ABC) = S(A) + S(B) + S(C)+ � Z d2� Tr�(A�1��A)(�+B)B�1+ (B�1��B)(�+C)C�1 + (A�1��A)B(�+C)C�1B�1	: (9)After this re
apitulation we 
onsider the 
ase of SL(2; R). This group has theproperty that any group element g in a neighbourhood of the identity admits theGauss-de
omposition g = ABC, whereA = � 1 x0 1� = exE+ ; C = � 1 0y 1� = eyE�B = � e 12� 00 e� 12�� = e 12�H : (10a)The neighbourhood in whi
h this parametrization is valid 
onsists of those groupelements for whi
h g22 > 0 and the whole group 
an be 
overed by four pat
hes ofthis type, that is an arbitrary group element g 
an be parametrized as:g = ABC! where ! = �1 or ! = �� 0 1�1 0� : (10b)(Note that for the adjoint group SL(2; R)=Z2 two pat
hes suÆ
e.) Substituting theparametrization (10) into (9) the a
tion takes the simple lo
al form [11℄:S(g) = S(x; y; �)= �2 Z d2� �12�+����+ 2(��x)(�+y)e��	: (11)The equations of motion, derived 
onveniently from (11), read as��(�+ye��) = �+(��xe��) = 0; (12a)�+���+ 2(��x)(�+y)e�� = 0: (12b)Working in the neighbourhood of the identity (! = 1), let us now 
onsider thefollowing spe
ial solutions of (12a):�+y = �e� ��x = �e� ; (13)



where � and � are arbitrary 
onstants. Using (13), the equation (12b) redu
es to theLiouville equation �+���+Me� = 0 ; where M = 2�� : (14)Thus lo
ally at least the Liouville system 
an be regarded as a redu
ed WZNWtheory. This redu
tion is a 
anoni
al one in the sense that the Poisson bra
kets ofthe Liouville phase spa
e variables � and �0� 
an be 
al
ulated either in the WZNWtheory or using the Liouville Lagrangian (5). Sin
e lo
ally the 
urrents J(E+) and~J(E�) 
an be written asJ(E+) = � �+ye�� ~J(E�) = �� ��xe��; (15)the solutions (13) 
orrespond to imposing the 
onstraintsJ(E+) = �� ~J(E�) = ��� (16)whi
h are globally well-de�ned and therefore 
an be imposed on any of the pat
hesde�ned by (10b).An important question is how the 
onformal symmetry of the Liouville theoryappears in the WZNW 
ontext. The left- and right Virasoro algebras of the Liouvilletheory are given by the improved (tra
eless) energy-momentum tensor:T0� = (�2 )�12(���)2 +Me� � 2(���)0�: (17)Due to the improvement term (���)0, there is a 
lassi
al 
entre 
 = �6k in thisVirasoro algebra. We have to look for a Virasoro algebra in the WZNW modelwhi
h, upon imposing the 
onstraint (16), yields the Liouville Virasoro (17). It iseasy to see that the Sugawara Virasoro density L of the WZNW theoryL = (�2�k )�12J(H)2 + 2J(E+)J(E�)� (18)(and similarly for ~L) does not 
ommute with the 
onstraint (16). However, there isa whole family of Virasoro subalgebras in the semidire
t produ
t formed by the KM



algebra and its asso
iated Sugawara Virasoro algebra, namely, those generated bythe densities l = L+ a�J(�) + b�J 0(�); (19)(and similarly for ~l) where � 2 sl(2; R) and a� and b� are real numbers. Within thisfamily it is possible to �nd a Virasoro algebra that does weakly 
ommute with the
onstraint. Indeed, by imposing the requirement that the Virasoro weakly 
ommuteswith (16), one is led to the solutionl = L� J 0(H) ~l = ~L+ ~J 0(H); (20)whi
h is unique up to terms whi
h are proportional to the 
onstraint (16) and do not
ontribute in Liouville theory. As a 
onsequen
e of the relationfJ(H; �); J(H; �0)g = k2� TrH2 Æ0(� � �0); (21)(20) has the same 
entre as (17), namely
 = �3k TrH2 = �6k: (22)Sin
e there is only one Virasoro symmetry in Liouville theory, T0+ and l are expe
tedto be the same fun
tionals of the Liouville phase spa
e data � and �0�. In lo
al
oordinates the density l takes the forml = L� J(H)0 = �2�[ 12(�+�)2 + 2(�+x)(�+y)e��℄�[2�+�+ 4x(�+y)e��℄0	 (23)and this expression does indeed redu
e to T0+ on imposing the 
onstraint (16). Theterm (�+�)2 
omes entirely from the Sugawara density L, while the improvementterm 
omes from J 0(H). On the other hand, the exponential intera
tion potential in(17) arises as a 
ombination of two terms , one of them 
oming from L, the otherfrom J 0(H).One 
an use the WZNW �! Liouville redu
tion to obtain the general solution ofthe Liouville equation from that of the WZNW model. As is well-known, the formeris given as e�(�+;��) = 2M F 0(�+) ~F 0(��)[1 + F (�+) ~F (��)℄2 ; (24)



where F and ~F are arbitrary fun
tions satisfying F 0 > 0, ~F 0 > 0 and the primemeans derivative taken with respe
t to the argument. The general WZNW solutionis des
ribed by the simpler formulag(�+; ��) = gL(�+) � gR(��) ; (25)where gL and gR are arbitrary group-valued fun
tions. Now, if one assumes that g,gL and gR are all Gauss-de
omposable then trivial matrix multipli
ation yields (inan obvious notation) e�(�+;��) � e�L(�+)e�R(��)[1 + yL(�+)xR(��)℄2 : (26)On the other hand, the 
onstraints (16) in this 
ase redu
e toy0L(�+) = �e�L(�+) x0R(��) = �e�R(��) ; (27)and if these are imposed and one makes the identi�
ationF = yL ; ~F = xR (28)then (26) redu
es to (24), as required. Conversely, if a Liouville solution e� is givenin terms of F and ~F as in (24) then one 
an build a family of 
orresponding lo
alWZNW solutions by reversing the above pro
edure. This family is parametrized bythe arbitrary fun
tions yR and xL whi
h des
ribe the gauge freedomg �! �A(xL) � g � C(yR) (29)of the 
onstraint (16). (The dis
rete freedom g �! �g disappears, of 
ourse, forthe adjoint group.)It is known [6℄ that the Liouville equation admits `singular' solutions with per-fe
tly regular energy-momentum density and that these 
on�gurations play an im-portant role in the quantized version of the theory. One of the main advantages of theWZNW des
ription of Liouville theory is that these 
on�gurations are representedby globally regular WZNW �elds. For example, the Liouville solutione� = 1
os2 � where � = ��+ � ��� (30)



is apparently singular, but the 
orresponding Virasoro densities are not (they are sim-ply 
onstants). On the other hand, using the redu
tion pro
edure, the 
on�guration(30) is obtained from the following solution of WZNW theory:g = � 
os� � sin�sin� 
os�� ; (31)whi
h is indeed perfe
tly regular.To see that this holds for any Liouville solution with regular Virasoro densities,let us 
onsider two independent real solutions 	1, 	2 of the S
hr�odinger equationwith periodi
 potential V � �2T0+ (and similarly for ~V = �2T0�),	00(�) = 12V (�)	(�): (32)Normalizing the pair of solutions by the Wronskian 
ondition	02	1 �	01	2 = � ; (33)it is easy to see that the left moving SL(2; R) matrixgL = �	1=N �	2=N	2 	1 � where N = 	21 +	22 (34)satis�es the left-handed part of the 
onstraint (16). Moreover, sin
e 	1 and 	2are two independent solutions of the same S
hr�odinger equation and thus 
an nevervanish simultanously, the matrix (34) is always regular. It is known that V is theS
hwarzian derivative of F and it follows from (32) and (33) that V is also theS
hwarzian derivative of the ratio 	2=	1. Therefore, using the SL(2; R)=Z2 freedomof the S
hwarzian derivative, we 
an 
hoose 	1 and 	2 so that they reprodu
e F :F = 	2	1 : (35)Applying the analogous pro
edure to the right hand side as well one �nds that theLiouville solution e� is re
overed ase� = �(gL � gR)22��2 = 1(	1 ~	1 +	2 ~	2)2 ; (36)



where the matrix gR is built out of ~	1 and ~	2 a

ording to the matrix transposeof the formula (34). To summarize, we have shown that it is indeed possible to
onstru
t a globally regular WZNW representation for any Liouville 
on�gurationwith regular Virasoro densities. From (36) one sees that the only singularities of theLiouville fun
tion e� o

ur at the zeros of the matrix element g22 of the 
orrespondingWZNW solution, and from (10) one sees that these are only 
oordinate singularitiesasso
iated with the pat
hing of SL(2; R) (or, more pre
isely, of SL(2; R)=Z2).The 
onne
tion with Polyakov's light-
one gauge theory mentioned earlier isobtained by making the WZNW �! Liouville redu
tion in two steps. In the �rststep we impose only the right-moving part of the 
onstraint (16). Then the equationsof motion yield ��(e���+���) = 0 ; where � � ln( 1� ��x): (37)This equation 
an be derived from the e�e
tive LagrangianL = (� k16� ) (�+��x)(����x)(��x)2 ; (38)whi
h is the same as Polyakov's Lagrangian for the two-dimensional indu
ed gravityin the light-
one gauge (with k = D�266 ) if we identify x with Polyakov's variable fthrough the relation x(�+; f(�+; ��)) = �� : (39)The e�e
tive Lagrangian (38) is invariant under the residual left-moving SL(2; R)transformations~x(�+; ��) = a(�+)x(�+; ��) + b(�+)
(�+)x(�+; ��) + d(�+) ; ad� b
 = 1; (40)whi
h, in terms of the variable f , are just Polyakov's left-moving SL(2; R) KM trans-formations. If we now break this residual symmetry by imposing the left-moving partof (16), then we rea
h the Liouville theory again, sin
e the E+ 
omponent of theSL(2; R) Noether 
urrent 
orresponding to the symmetry transformation (40) of theLagrangian (38) turns out to beJ(E+) = � �2� e���+��� : (41)



Let us now 
onsider the Liouville �! Toda generalization of the above results.Let G be any 
omplex simple Lie algebra, � the set of roots with respe
t to someCartan subalgebra H and � a set of simple roots. We �x a Cartan-Weyl basis,
onsisting of root ve
tors E�, � 2 � and Cartan generators H� � [E�; E��℄, � 2 �,with respe
t to whi
h all the stru
ture 
onstants of G are real numbers. The real spanof the Cartan-Weyl basis yields a parti
ular real form GR of G. (This `maximally non-
ompa
t' real form of G is well-de�ned by the Cartan-Weyl basis up to isomorphismand for the 
lassi
al Lie algebras An, Cn, Bn and Dn is in fa
t provided by the realLie algebras sl(n+ 1; R), sp(2n;R) and so(p; q; R) for p� q = 1; 0, respe
tively.)A property that distinguishes GR from all the other real forms of G, and that willbe 
ru
ial for our purposes, is that it is the only real form for whi
h any 
onne
tedLie-group GR with GR as its Lie-algebra admits a lo
al, unique, group-valued Gauss-de
omposition similar to (10), g = ABC (42a)where A = expn X�2�+ x�E�o ; C = expn X�2�� y�E�o ;B = expn12 X�2���H�o : (42b)(Here �� denotes the set of positive (negative) roots, respe
tively.) This propertymakes the WZNW models based on the non-
ompa
t groups GR the natural gen-eralizations of the SL(2; R) WZNW model and these are the models that we shall
onsider.We need to re
all the following results and 
onventions from the theory of Liealgebras [12℄:K�;� = �(H�) = 2� � �j�j2 �; � 2 �; j�longj2 = 2Tr (H� �H�) = 2j�j2K�;� = C�;�Tr (E� �E�) = 2j�j2 Æ�;�� ; �; � 2 �; Tr (E� �H�) = 0 ; (43)



whi
h are valid in any �nite dimensional representation of G where Tr is the usualmatrix tra
e multiplied by an appropriate 
onstant.Our main result is that the 
onstraintsJ(E�) = ��� ~J(E��) = ���� (� 2 �+); (44)where �� and �� are arbitrary nonzero real numbers for the l primitive roots � 2 �and zero for all other positive roots (whi
h are natural generalizations of the SL(2,R)
onstraints (16)) redu
e the GR WZNW theory to the Toda theory, de�ned for anysimple Lie algebra by the LagrangianL = � k8��14C�;��+�� ���� � X�2�M� expf12K�;� ��g�: (45)Be
ause �� and �� are zero for all but the primitive roots the 
onstraints (44)may be written for g = ABC asA�1��A = B� X�2� j�j22 ��E��B�1 = X�2� j�j22 ��E� exp f12K�;���g(�+C)C�1 = B�1� X�2� j�j22 ��E���B = X�2� j�j22 ��E�� exp f12K�;���g : (46)Sin
e the matri
es A and C o

ur in the WZNW equation of motion (8) only in the
ombinations shown in (46), they 
an be eliminated and the equation then redu
es toan equation for B (i.e. for the ��'s) alone. A little algebra shows that this equationis just the Toda equation�+���� + 12 j�j2M� expf12K�;���g = 0 ; where M� � j�j2����: (47)This shows that the 
onstraints (44) redu
e the GR WZNW theory to the Todatheory. As in the Liouville 
ase, the redu
tion is 
anoni
al in the sense that thePoisson bra
kets of the Toda variables are preserved by the redu
tion. (Note that, asfar as they are positive, the a
tual values of the 
onstants M� in (47) are irrelevantsin
e they 
an be rede�ned simply by shifting the �elds ��.)At this point it is worth mentioning that the general solution of the Toda �eldequation (47) 
an be immediately generated from that of the 
orresponding WZNW



model, (25). Applying the lo
al Gauss-de
omposition (42) for g and also for gL andgR, g 
an be written asg(�+; ��) = A expf 12 X�2���H�gC= gL(�+)gR(��) = AL expf 12 X�2���LH�gCLAR expf 12 X�2���RH�gCR: (48)The problem of proje
ting out the the matrix elements e��(�+;��) of B 
an be elegantlysolved [3℄ by introdu
ing the l normalized lowest weight states j ��i of the l (�nitedimensional) fundamental representations of G, so thatH� j ��i = �Æ�;� j ��i �; � 2 �: (49)Now, by 
al
ulating the matrix element h�� j g j ��i of (48) we obtaine� 12��(�+;��) = e� 12��L� 12��Rh�� j CLAR j ��i: (50)(50) is the general solution of the Toda �eld equations provided gL and gR satisfy the
onstraints (44). Following [3℄ we 
hoose the set of fun
tions f��L(�+); ��R(��)g asour independent variables. Then the 
onstraints (44) 
an be solved for the matri
esCL and AR in terms of these fun
tions. (Alternatively, one 
ould start with a set ofl matrix elements of CL and AR ea
h and try to solve the 
onstraints for ��L, ��R andthe remaining matrix elements of CL and AR.) To get the solution in the form givenin [3℄ * we have to introdu
e 12��L;R =X� G�� ln f�� (51)where f�� are arbitrary fun
tions and G�� is the inverse of the Cartan matrix. So�nally we �nd e� 12�� = 
�� j CL(�+)Q� (f+� )G�� AR(��)Q� (f�� )G�� j ���: (52)Note, in parti
ular, that e� 12�� always de
omposes into a sum of produ
ts of 
hiralfa
tors.* Note that our ��'s di�er by a fa
tor of 2 from those of ref. [3℄.



As in the SL(2; R) 
ase, there is a family of Virasoro generators in the WZNWmodel given by (19). The fa
t that the 
onstraints (44) redu
e the GR WZNW the-ories to the respe
tive Toda theories and that the latter are 
onformally invariantshows that although the 
onstraints break the KM symmetry 
ompletely, they pre-serve at least one member of the family (19). To see this, and to pla
e our resultsin a more abstra
t 
ontext, we now show that our redu
tion pro
edure is a �eldtheoreti
al realization of a general me
hanism for breaking KM symmetries withoutbreaking the 
orresponding 
onformal symmetries. The analogues of the 
onstraints(44) for an abstra
t GR KM algebra areJ(E�) = �� � 2 �+ ; (53)where �� 6= 0 for the primitive roots and �� = 0 for the other positive roots. If onenow looks for the normalizer N of the 
onstraints (53) in the semi-dire
t sum of theKM and its asso
iated Sugawara Virasoro algebra one �nds that N is, in analogy to(20), generated by the Virasoro operatorsl = L� J 0(H) ; (54)where the element H of the Cartan subalgebra is determined by the 
ondition�(H) = 2 for all � 2 � : (55)The unique solution of (55) is given byH = 2Æ̂; (56)where Æ̂ is the sum of the l fundamental 
o-weights (or equivalently half the sum ofthe positive 
o-roots). Note that (55) 
ould not be satis�ed for any system of positiveroots larger than � and this is why �� must be zero for all non-primitive positiveroots. From these 
onsiderations it is 
lear that the redu
tion whi
h was applied inthis paper to break the KM-symmetry of the WZNW model a
tually depends onlyon the algebrai
 stru
ture of the KM algebra and 
ould be applied to any system



with a KM symmetry. The KM equation (21) holds in general, and hen
e, from (22)the 
lassi
al 
entre of the Virasoro (54) is
 = �12kjÆ̂j2: (57)Sin
e the Virasoro algebra of Toda theory is obtained by the above redu
tion its
entre must be given by (57), and indeed (57) agrees with the Toda result of Gervaisand Bilal [4℄.
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