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We derive a supersymmetric renormalization group (RG) equation for the scale-dependent super-
potential of the supersymmetric O(N) model in three dimensions. For a supersymmetric optimized
regulator function we solve the RG equation for the superpotential exactly in the large-N limit.
The fixed-point solutions are classified by an exactly marginal coupling. In the weakly coupled
regime there exists a unique fixed point solution, for intermediate couplings we find two separate
fixed point solutions and in the strong coupling regime no globally defined fixed-point potentials
exist. We determine the exact critical exponents both for the superpotential and the associated
scalar potential. Finally we relate the high-temperature limit of the four-dimensional theory to the
Wilson-Fisher fixed point of the purely scalar theory.
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I. INTRODUCTION

Fixed points of the renormalization group (RG) play
a fundamental role in statistical physics and quantum
field theory [1, 2]. Infrared (IR) fixed points dominate
the long-distance behavior of correlation functions and
are relevant for the understanding of continuous phase
transitions and universal scaling laws [3]. Ultraviolet
(UV) fixed points control the short-distance behavior of
quantum field theories. It is widely believed that the
existence of an UV fixed point is mandatory for a def-
inition of quantum field theory on a microscopic level,
e. g. asymptotic freedom of QCD or asymptotic safety of
gravity [4, 5]. In general, the fixed point structure of a
given theory depends on its field content, the spacetime
dimensionality, the long-range or short-range nature of
its interactions and the symmetries of the action.

Scalar field theories with a global O(N) symmetry pro-
vide an important testing ground for fixed point stud-
ies. In three dimensions the (φ2)2 theory displays a non-
trivial IR fixed point which determines the second-order
phase transition between an O(N) symmetric and the
symmetry broken phase as realized in many physical sys-
tems ranging from entangled polymers and water to fer-
romagnets or QCD with two massless flavors of quarks
[3, 6]. The (φ2)3 theory also displays a line of first-order
phase transitions whose end point, in the limit of many
scalar fields, qualifies as an UV fixed point [7, 8].

Supersymmetry represents the global symmetry which
relates bosonic to fermionic degrees of freedom. Su-
persymmetric theories are important candidates for ex-
tensions of the Standard Model. It is important to
understand how the fixed-point structure of a non-
supersymmetric theory differs from that of its supersym-
metric extension, both in view of the IR and the UV
behavior of the theory.

In this paper, we study fixed points of supersymmetric
O(N) models which consist of an N -component scalar
field coupled to N Majorana fermions. We employ non-
perturbative renormalization group methods a la Wilson,

based on the integrating-out of momentum modes from
a path-integral representation of the theory [9–11]. A
particular strength of this continuum method is its flex-
iblity, allowing for the study of theories with strong cor-
relations and large couplings. Furthermore, optimization
techniques are available to control the physics content
within systematic approximations [12–14]. In the past,
this method has been successfully employed for the study
of critical phenomena in a variety of settings includ-
ing scalar theories, fermions, gauge theories and gravity
[5, 15–24]. It has recently been extended to include su-
persymmetric theories [25–36]. Our prime interest here
concerns the limit of many scalar fields 1/N → 0, where
effects induced by the fields’ anomalous dimensions are
suppressed and a local potential approximation (LPA)
becomes exact. Then full analytical fixed point results
are obtained for the fixed points in the supersymmetric
theory, allowing for a complete analytical understanding
of the theory, analogous to the purely scalar theory [37–
39].

Supersymmetric O(N) models have previously been in-
vestigated with Dyson-Schwinger equations [40] and with
the large-N expansion [41, 42]. The three-dimensional
theory has also been studied at finite temperatures,
where supersymmetry is softly broken [43, 44]. The
model has a peculiar phase structure concerning the
breaking of the O(N) symmetry: Additionally to the
normal phases with a broken and an unbroken symme-
try a phase with two O(N) symmetric ground states
and a phase with one symmetric and one non-symmetric
ground state have been found. In addition, there exists a
supersymmetric analogue of the Bardeen-Moshe-Bander
phenomenon [7]. The fate of this phenomenon at finite
N remains yet to be resolved [45–47].

The paper is organized as follows: First we introduce
the supersymmetric O(N) model (Sec. II) and derive
the non-perturbative flow equation for the superpoten-
tial in LPA (Sec. III). We then solve this equation an-
alytically in the large-N limit (Sec. III C) and analyze
the resulting fixed-point solutions (Sec. IV). We com-
pute the universal scaling exponents and compare our re-
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sults with those in the non-supersymmetric theory with-
out fermions (Sec. V). We close with a discussion of our
results (Sec. VI). Our conventions and a derivation of
supersymmetric flow equations in superspace is found in
the appendix.

II. SUPERSYMMETRY

In this section, we recall the definition of three-
dimensional supersymmetric O(N) models, which are
built from N real superfields

Φi(x, θ) = φi + θ̄ψi(x) +
1

2
θ̄θF i(x), i = 1, ..., N. (1)

Each component of the superfield contains a real scalar
field, a two-component Majorana spinor field and a real
auxiliary field, Φi ∼ (φi, ψi, F i). We shall use a Majo-
rana representation with imaginary γ-matrices {γµ} =
{σ2, iσ3, iσ1}. Then the metric in {γµ, γν} = 2ηµν takes
the form ηµν = diag(1,−1,−1). A Majorana spinor is
real in this representation and ψ̄ = (iψ2, −iψ1). The
supersymmetry variation of the superfield is generated
by the supercharge Q via δεΦ

i = iε̄QΦi, where the ex-
plicit form of the supercharge and further conventions
are collected in appendix A. To construct a supersym-
metric invariant action we note that the F -term in the
expansion (1) transforms under supersymmetry transfor-
mations into a spacetime divergence such that its space-
time integral is invariant.

In order to define an O(N) symmetric, supersymmetric
action we introduce the supercovariant derivatives

D =
∂

∂θ̄
+ i/∂θ and D̄ = − ∂

∂θ
− iθ̄ /∂, (2)

which anticommute with the supercharges and thus map
superfields into superfields. Since the theory should be
O(N) invariant, the superpotential only depends on the
invariant composite superfield R ≡ 1

2ΦiΦi. In component
form, it reads

R = %̄+ (θ̄ψi)φ
i +

1

2
θ̄θ

(
φiFi −

1

2
ψ̄iψi

)
, (3)

where the quantity %̄ ≡ 1
2φ

iφi has been introduced. The
starting point for further investigations will be the su-
persymmetric action

S =

∫
d3x

[
−1

2
ΦiD̄DΦi + 2N W

(
R

N

)] ∣∣∣
θ̄θ

(4)

which contains a kinetic term with supercovariant Lapla-
cian D̄D as well as an interaction term, given by the su-
perpotential W . We have already rescaled the fields and
the superpotential with N . An expansion in component
fields yields the Lagrangian density

Loff =
1

2

(
−φi�φi − iψ̄i /∂ψi + F 2

)
+W ′

( %̄
N

)
φiF

i

− 1

2
W ′
( %̄
N

)
ψ̄iψi −W ′′

( %̄
N

) (ψ̄iφi)(ψ
jφj)

2N
, (5)

where primes denote derivatives with respect to %̄/N .
Eliminating the auxiliary field F i by its algebraic equa-
tion of motion, F i = −W ′(%̄/N)φi, yields the on-shell
Lagrangian density

Lon = −1

2
φi�φi −

i

2
ψ̄i /∂ψi −

1

2
W ′
( %̄
N

)
ψ̄iψi

−%̄W ′2
( %̄
N

)
−W ′′

( %̄
N

) (ψ̄iφi)(ψ
jφj)

2N
. (6)

From (6) we conclude that the potential for the bosonic
field follows from the superpotential W via

V (%̄) = %̄W ′2
( %̄
N

)
. (7)

Note that for a polynomial superpotential W (%̄/N) which
for large %̄ tends to W ∼ %̄n we do not expect supersym-
metry breaking in our non-perturbative renormalization
group studies.

III. RENORMALIZATION GROUP

A. Supersymmetric flows

In order to analyze the phase transition and the low-
energy behavior of supersymmetric sigma models we
resort to Wilsonian renormalization group techniques.
Specifically, we adopt the framework of the effective av-
erage action based on the infinitesimal integrating-out of
degrees of freedom with momenta q2 larger than some
infrared momentum scale k2. In consequence, the effec-
tive action becomes a scale-dependent effective action Γk
which interpolates between the microscopic action S in
the UV and the full quantum effective action in the IR,
where k → 0. The scale-dependence of Γk is given by an
exact functional differential equation [48]

∂tΓk =
1

2
Str

{
∂tRk

(
Γ

(2)
k +Rk

)−1
}
, (8)

where t = ln(k/Λ). The function Rk(q2) denotes the
momentum cutoff. It obeys Rk(q2) → 0 for k2/q2 → 0,
Rk(q2) > 0 for q2/k2 → 0 and Rk(q2) → ∞ for k →
Λ → ∞, where k = Λ stands for the initial scale in the
UV. The stability and convergence of the RG flow (8)
is controlled through adapted, optimized choices of the

momentum cutoff [12, 39, 49]. Furthermore, Γ
(2)
k denotes

the second functional derivative of Γk with respect to the
fields according to

(
Γ

(2)
k

)
ab

=

−→
δ

δΨa
Γk

←−
δ

δΨb
, (9)

where the indices a, b summarize field components, inter-
nal and Lorentz indices as well as coordinates. Note that
Ψ is merely a collection of fields and not a superfield
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Following the construction in [27–31], it is essential
that the regulator term ∆Sk preserves both the O(N)-
symmetry and supersymmetry of the classical theory. Be-
ing quadratic in the fields it should be the superspace
integral of ΦiRk(D̄D)δijΦ

j . Using the anticommutation
relation {Dk, D̄l} = −2(γµ)kl∂µ for the supercovariant
derivatives, we have(1

2
D̄D

)2n

= (−�)n, (10)

such that a supersymmetric and O(N)-invariant regula-
tor term is the superspace integral of

ΦiRk(D̄D)Φi = Φi

(
r1(−�)− r2(−�)

D̄D
2

)
Φi. (11)

Expressed in component fields, we find

∆Sk =
1

2

∫
(φ, F )RB

k

(
φ

F

)
+

1

2

∫
ψ̄RF

kψ . (12)

In momentum space i∂µ is replaced by pµ and the bosonic
and fermionic momentum cutoffsRBk andRFk respectively
are of the form

RB
k =

(
p2r2 r1

r1 r2

)
⊗ 1N

RF
k = −

(
r1 + r2/p

)
⊗ 1N . (13)

Note that the requirements of manifest supersymme-
try imposes a link between the bosonic and fermionic
momentum cutoffs, leaving two free functions r1 ≡
r1(p2/k2) and r2 ≡ r2(p2/k2) at our disposal. Such su-
persymmetric cutoffs have been introduced for the N = 1
model in two and three dimensions in [28, 31].

There exist no Majorana fermions in three Euclidean
spacetime dimensions. With respect to the supersym-
metric O(N) model we could thus analytically continue
the flow equation in Minkowski spacetime to imaginary
time or alternatively just ignore the fact that the Majo-
rana condition is not compatible with Lorentz invariance
in Euclidean spacetime [43]. Both approaches lead to
identical flow equations in Euclidean spacetime, cf. [31].

B. Local potential approximation

Next we turn to the supersymmetric RG flow in the
local potential approximation. Here, one keeps the lead-
ing order term in a superderivative expansion such that
the effective action (with Lorentzian signature) reads

Γk[Φ] =

∫
d3x

[
−1

2
ΦiD̄DΦi + 2N Wk

(
R

N

)] ∣∣∣
θ̄θ

=
1

2

∫
d3x

(
∂µφ

i∂µφi − iψ̄i /∂ψi + F 2
)

(14)

+

∫
d3x

(
W ′k

2φiFi − ψ̄iψi
2

− W ′′k (ψ̄iφi)(ψ
jφj)

2N

)
,

where the prime denotes the derivative with respect to
%̄/N . The flow of the renormalized superpotentialWk( %̄N )
in Euclidean space is obtained by projecting the flow (8)
onto the term linear in the auxiliary field F and perform-
ing a Wick rotation (see appendix B for its derivation in
superspace). The function r1 acts as IR regulator but
not as UV-regulator, in contrast to r2 which serves both
as IR and UV regulator. Thus we use r1 as regulator in
what follows1. Then we find

∂tWk = −1

2

∫
d3p

(2π)3
∂tr2

(
N − 1

N

W ′k
(1 + r2)2p2 +W ′2k

+
1

N

W ′k + 2(%̄/N)W ′′k
(1 + r2)2p2 + (W ′k + 2(%̄/N)W ′′k )2

)
.

(15)

Similar to the bosonic O(N) model the flow receives con-
tributions from the N − 1 Goldstone modes (the first
term) and from the radial mode (second term).

Next we specify the function r2(p2/k2). Following [12–
14, 31] we choose the optimized regulator function

r2(p2) =

(
k

|p|
− 1

)
θ(k2 − p2). (16)

This choice implies ∂tr2 to vanish identically for p2 > k2,
and the inverse propagators

(1 + r2)2 p2 +X =

{
p2 +X for p2 > k2

k2 +X for p2 < k2

become flat (momentum independent) in the regime
where the right-hand side of (15) is non-vanishing. In
the LPA this is a solution to the general optimization
condition of [12–14] and is therefore expected to lead
to improved convergence and stability of the RG flow.
Equally important, the momentum integrals in (15) can
be performed analytically, leading to

∂kWk = − k2

8π2

(
1− 1

N

)
W ′k

k2 +W ′2k

− k2

8π2

1

N

W ′k + 2(%̄/N)W ′′k
k2 + (W ′k + 2(%̄/N)W ′′k )2

. (17)

With given initial condition Wk=Λ(%̄/N) ≡ W (%̄/N) at
the UV scale Λ this flow equation uniquely determines
the superpotential in the infrared limit k → 0. For N = 1
it reduces to the three-dimensional Wess-Zumino model
studied in [31].

In order to write the flow equation (17) in a scale-
invariant form it is convenient to define a dimension-
less field variable ρ as well as a dimensionless superpo-
tential w and a dimensionless scalar potential v. The

1 In preliminary studies we did include the regulator r1 and got
almost identical results.
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canonical mass dimension of the fields and potentials are
[%̄] = d− 2, [V ] = d and [W ] = d − 1 in d spacetime
dimensions. We therefore introduce the dimensionless
quantities

ρ =
8π2

N

%̄

k
and w(ρ) = 8π2 W ( %̄N )

k2
. (18)

Note that we have also rescaled an irrelevant numerical
factor into the potential and the fields. It is understood
that w is also a function of the RG scale parameter,
though this is not spelled out explicitly. Similarly, we
define the dimensionless bosonic potential v as

v(ρ) =
8π2

N

%̄

k

(
W ′( %̄N )

k

)2

≡ ρw′2(ρ), (19)

where (7) and (18) have been used. Thus, by substituting
(18) into (17) we end up with the following flow equation
for the dimensionless superpotential,

∂tw−ρw′+2w = −
(1− 1

N )w′

1 + w′2
−

1
N (w′ + 2ρw′′)

1 + (w′ + 2ρw′′)2
. (20)

C. Large-N limit

In the large-N limit the Goldstone modes fully dom-
inate the dynamics and the contribution of the radial
mode becomes a subleading effect. It follows that the
anomalous dimension of the Goldstone modes vanish, as
no momentum-dependent two-point function exists that
contribute to the running of the kinetic term of these
modes to leading order in N . This is a particular feature
of the bosonic O(N) models [3] and their supersymmet-
ric extensions2. Consequently, the LPA approximation
becomes exact for N →∞.

In this limit, the RG equation for the first derivative
of the superpotential u(ρ) ≡ w′(ρ) becomes

∂tu+ ∂ρu
[
1− ρ− u2 f(u2)

]
= −u (21)

with f(x) = (3 + x)/(1 + x)2. We note that the second-
order partial differential equation (20) has turned into a
first-order one in this limit, which is solved analytically
with the method of characteristics. The first character-
istic reads uet = const. and the second one is

ρ− 1

u
− F (u) = const. (22)

with

F (u) =
u

1 + u2
+ 2 arctanu (23)

2 For example, Yukawa-type systems may have large anomalous
dimensions in the large-N limit [50].
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FIG. 1: Supersymmetric fixed point solutions ρ(u∗) for all
fields ρ and all superfield potentials u∗, color-coded by the free
parameter c (both axes are rescaled as x→ x

1+|x| for display

purposes). Thin lines are included to guide the eye, thick lines
correspond to distinguished values for c (|c| = 0, cL, cP , cM )
as defined in main text.

and F ′(u) = f(u2). Altogether, we find

ρ− 1

u
− F (u) = G(uet) (24)

for all ρ ≥ 0, where the function G(uet) is determined by
the boundary conditions for u(ρ), imposed at the initial
UV scale k = Λ. The validity of the solution (24) is
confirmed by direct insertion into (21). For completeness,
we also give the RG equation for the bosonic potential.
Using (19) and (22) we obtain

∂tv + 3v − ρ v′ = (v − ρ v′) ρ− v
(ρ+ v)2

. (25)

In passing we note that up to minor modifications eq. (21)
holds for general spacetime dimensions away from d = 3.
The canonical mass dimension of u is one for all dimen-
sions and the dependence on spacetime dimensionality,
therefore, only enters via the field variable leading to the
replacement of (−ρ) by (2 − d)ρ in (21). This modi-
fies the second characteristic equation whose solution is
expressed in terms of the hypergeometric function for ar-
bitrary dimension d 6= 1. Below, we restrict ourselves to
the case d = 3.
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FIG. 2: Supersymmetric fixed point solutions u∗(ρ) according to (26), covering the entire parameter range for c. With decreasing
c, fixed point curves rotate counter-clockwise around (ρ, u∗) = (1, 0) starting with c =∞ where u∗ = 0 (horizontal line), passing
through c = 0 (red, dashed-dotted line), completing a rotation of 180◦ at c = −∞ (horizontal line). Further special lines refer
to |c| = cM (blue dashed), |c| = cP (green, long dashed), |c| = cL (black, full lines), see main text. Left panel: fixed point
solutions for all fields (both axes are rescaled as x→ x

1+|x| for display purposes). Right panel: fixed point solutions for physical

fields in the vicinity of ρ = 1.

IV. FIXED POINTS

A. Supersymmetric fixed points

Fixed points are the scale-independent solutions of
(21), i. e. solutions satisfying ∂tu = 0. Besides the Gaus-
sian fixed-point solution u∗ ≡ 0, non-trivial fixed points
follow from (24) in the limit where G(uet) becomes a
t-independent constant. The classification of solutions of

ρ = 1 +H(u∗) + c u∗, H(u∗) = u∗ F (u∗), (26)

where F (u∗) is given by (23), then depends only on the
real parameter c. With |u∗| ∈ [0,∞) and for a fixed c (26)
identifies the range of achievable field values. Candidates
for physical fixed points u∗(ρ) are those solutions which
extend over all fields ρ ∈ [0,∞). Fig. 1 and Fig. 2 display
the entire set of solutions to (26) for all c. Note that Fig. 1
shows the function ρ(u∗) whereas the relation u∗(ρ) is
displayed in Fig. 2.

The space of solutions enjoys some internal symme-
try. Since H(u∗) is an even function, solutions only de-
pend on the absolute value of c, i. e. any solution u∗(ρ)
with parameter c is equivalent to the reflected solution
−u∗(ρ) with parameter −c. Both solutions lead to iden-
tical scalar potentials v∗ and therefore we may restrict
our discussion to c ≥ 0.

We now discuss (26) in more detail. All curves pass

through

(ρ, u∗) = (1, 0) (27)

which follows immediately from (26) due to H(0) = 0.
As can be seen from Fig. 2 the fixed point solutions fall
into two distinct classes, and solutions in the same class
show the same global behavior. Depending on the value
of c the solution u∗ is either defined for all real ρ or
it has a turning point at |ρs| < ∞ and is only defined
for ρ ∈ [ρs,∞). In the latter case the solution has two
branches bifurcating at ρ = ρs. The value of ρs will be
determined below.

Next we discuss some limiting cases of interest. For
small u∗ we conclude from (26) that

ρ− 1 = c u∗ + 3u2
∗ +O(u4

∗). (28)

Hence, the potential is analytical in ρ− 1 in the vicinity
of ρ = 1 for all c, except for c = 0 where it becomes
non-analytical with u∗ ∝

√
ρ− 1. Eq. (28) implies that

all fixed-point solutions have one simple zero at ρ = 1
with finite u′∗(1) except for c = 0 where u′∗(1) diverges.
Consequently, the scalar fixed-point potentials v∗ = ρu2

∗
possess two minima at

ρ = 0 and ρ = 1 , (29)

the first one being a simple zero. The second minimum
is a double zero for c 6= 0 and a simple zero for c = 0.
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FIG. 3: Left panel: Fixed point solutions u∗ and fixed point potentials v∗ = ρ u2
∗ at |c| = cL showing the two branches v<, u<

(full lines) and v>, u> (dashed lines). Right panel: The scalar fixed point potential v∗(ρ) as a function of the parameter c

with cL (black line), cP (green, long dashed), cM (blue, short dashed) and c = an cL, a = 21/4 with n = 1.0, 2.3, 3.6, 4.9 (blue,
dotted). For cL and cP just one branch is plotted.

In the large-u∗ limit of (26), we find

ρ = π |u∗|+ c u∗ +O(1/u2
∗) . (30)

Thus the asymptotic behavior of u∗ is given by

u∗ =
ρ

c+ π
+ subleading (u∗ > 0) ,

u∗ =
ρ

c− π
+ subleading (u∗ < 0) .

(31)

If |c| > cP , with

cP = π , (32)

the expansions extend towards ρ → ±∞, respectively.
Together with the boundedness of H(u∗) we conclude
that u∗(ρ) is defined for all real ρ. The expansions corre-
spond to asymptotically large fields ρ� 1 in the physical
regime. At |c| = cP the leading term in (30) vanishes
and, depending on the sign of c, one of the asymptotic
solutions is replaced by u∗ ∼ ρ−1/2 thus corresponding
to a small field regime ρ � 1. For |c| < cP both ex-
pansions extend towards ρ→ +∞. We conclude that u∗
has, simultaneously, two asymptotic expansions for large
positive ρ. This implies that v∗ displays a loop consisting
of two branches v< and v> which coincide at ρ =∞ and
possibly at some ρ = ρs <∞ where u∗ has infinite slope.
The latter condition determines the turning point ρs as
the simultaneous solution of

ρs =
1− u2

s

(1 + u2
s)

2
(33)

together with (26), leading to

|c| = 1

|us|

(
u2
s(3 + u2

s)

(1 + u2
s)

2
+H(us)

)
, (34)

where us ≡ u∗(ρs). The degenerate solutions extend over
the whole physical regime ρ ≥ 0, provided that ρs ≤ 0.
From (33) it follows that the equal sign holds for u2

s = 1
leading with (34) to |c| = cL, where

cL =
1

2
(π + 3) ≈ 3.071 . (35)

For |c| = cL, both u< and u> have infinite slope at van-
ishing field with the non-analytical behavior

du∗
dρ

= ± 1
√
ρ

+ subleading (36)

and us = ∓1 for c = ±cL (see Fig. 3, left panel). In
contrast, for cL < |c| < cP , the behavior at vanishing
field is analytic. The turning point (33) exists for small
0 ≤ |c| ≤ cM as long as d2ρ/du2

∗|ρs does not vanish, which
happens at u2

s = 3 leading with (34) to |c| = cM , where

cM = 2

(
π

3
+

5
√

3

16

)
≈ 3.177 . (37)

We note that cP < cM and conclude that the fixed point
solutions in the parameter regime cP ≤ |c| < cM are
single-valued in the physical regime but multi-valued in
the non-physical regime ρ < 0. For all cM ≤ |c|, fixed
point solutions are single-valued on the entire real axis.
In Fig. 3, right panel the scalar fixed point potential v∗
for different values of c is displayed.
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B. Exactly marginal coupling

Next we discuss the physical meaning of the parameter
c. To this end we employ the polynomial expansion of the
RG-time dependent superpotential u(t, ρ) which satisfies
the flow equation (21). For a typical initial condition
uΛ = τ1(ρ− ρ0) there always exists a node ρ0(t) around
which we can perform a Taylor expansion:

u(t, ρ) =
∑
n=1

1

n!
τn(t) (ρ− ρ0(t))

n
. (38)

Inserting this ansatz into the flow equation (21) we read
off the flow equations for ρ0 and the couplings τn entering
the Taylor expansion

∂tρ0 = 1− ρ0 (39)

∂tτ1 ≡ 0 (40)

∂tτ2 = 6τ3
1 + τ2 (41)

and similarly to higher order. Several comments are in
order at this point. Firstly, the running of the vev ρ0(t)
is independent of all the other local couplings. This prop-
erty is typical for a supersymmetric flow and has previ-
ously been observed in [29, 31]. The fixed point is ob-
tained for ρ0 = 1. Secondly, the system of algebraic
equations describing the t-independent fixed point cou-
plings can be solved recursively. This leads to fixed point
couplings τn(τ1) for all n ≥ 2 as functions of τ1. Insert-
ing (38) into the expansion of the scalar field potential
v = ρ u2 =

∑
n=2 λn/n! (ρ − ρ0)n and evaluating it on

the fixed point leads to the fixed point values

λ2 = 2 τ2
1 (42)

λ3 = 6 τ2
1 (1− 6τ2

1 ) (43)

λ3 = −24τ4
1 (1− 45τ2

1 ) (44)

and similarly to higher order. Clearly, the weak (strong)
coupling regimes correspond to small (large) λ2 and
hence small (large) τ1 respectively. Also, on the level
of the scalar field potential the critical behavior is inde-
pendent of the sign of τ1. Finally, and most importantly,
the coupling τ1 remains un-renormalized under the su-
persymmetric RG flow (40). Therefore τ1 corresponds
to an exactly marginal coupling, and fixed points can be
classified according to the value of the linear (dimension-
less) superfield interaction τ1 which relates to the free
parameter c in the analytical solution (26) as

c =
1

τ1
. (45)

This relation can be shown by inserting expansion (38)
into the fixed point equation (26). The presence of the
exactly marginal coupling τ1 explains the existence of a
line of fixed points.

C. Line of fixed points

In summary, the following picture has emerged. Fixed
point solutions are characterized by the dimensionless lin-
ear superfield coupling τ1 = 1/c in the vicinity of the
node ρ0 6= 0. In the weakly coupled regime

cP ≤ |c| (46)

a unique fixed point solution exists covering the whole
physical domain ρ ≥ 0. This includes the Gaussian fixed
point τ1 = 0. In the intermediate coupling regime

cL ≤ |c| < cP (47)

two separate fixed point solutions u< and u> exist. The
former solution has a node at ρ0 = 1 whereas the other
solution has no node, see Fig. 3, left panel. Therefore,
the corresponding scalar field potentials v< (v>) have two
minima at (29) (one minimum at ρ = 0). Both are ana-
lytical functions of ρ in the vicinity of their global min-
ima. For |c| = cL, the potential becomes non-analytical
for either of them at ρ = 0 in a manner reminiscent of the
Bardeen-Moshe-Bander phenomenon in the purely scalar
theory [7]. In the strong coupling regime

|c| < cL (48)

the theory becomes so strongly coupled that du/dρ|ρs
diverges in the physical regime, and hence no fixed point
solution exists which extends over all fields. Therefore,
the supersymmetric O(N) model displays a line of fixed
points which bifurcates at |c| = cP into two fixed points,
and then terminates at |c| = cL.

Finally we note that the solution with c = 0 is closely
linked to the Wilson-Fisher fixed point in the purely
bosonic model [37–39]. The precise relation is discussed
in Sec. V C below.

V. UNIVERSALITY

A. Critical exponents

Fixed point solutions are characterized by universal
critical scaling exponents. The exponents can be de-
duced from the RG equations in several ways. Within
a polynomial approximation up to order n, we expand
u(ρ) =

∑n
i=1 bi(ρ − b0)i/i! in terms of the n + 1 cou-

plings bi(t). From their beta-functions βi ≡ ∂tbi, the
universal exponents follow as the negative of the eigen-
values θI of their stability matrix B j

i = ∂βi/∂bj |b=b∗
as B vI = −θI vI with eigenvectors vI . Using the flow
equation, we find

θ = −1, 0, 1, 2, 3, · · · (49)

both numerically and analytically. In fact, the LPA ap-
proximation has become exact in the large-N limit, and
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hence the correct scaling exponents are achieved to ev-
ery order in the polynomial approximation. We note that
this analysis relies on local information of the RG flow
in the vicinity of u = 0, showing that the scaling (49)
is achieved mathematically for all 0 < |c| < ∞. Physi-
cally, however, the analysis is not sensitive to the global
behavior of the solution, and consequently cannot detect
that |c| = cL denotes a physical endpoint. Also, the case
c = 0 requires special care as an analytical expansion
about u = 0 is no longer applicable.

B. Eigenperturbations

Interestingly, the critical exponents and eigenperturba-
tions can also be calculated analytically without resort-
ing to a polynomial expansion. To that end, we consider
small fluctuations δu about the fixed-point superpoten-
tial such that u(t, ρ) = u∗(ρ) + δu(t, ρ). Linearizing the
flow equation in δu leads to the fluctuation equation

∂t δu =
u∗
u′∗

(
∂ρ −

(u∗u
′
∗)
′

u∗u′∗

)
δu, (50)

where primes denote a derivative with respect to the
function’s argument. Since the right-hand side is inde-
pendent of t, the differential equation (50) can be factor-
ized via separation of variables δu(t, ρ) = f(t)g(ρ) with

(ln f)′ = θ

(ln g)′ = θ (lnu∗)
′ + (lnu∗u

′
∗)
′ , (51)

where θ denotes the eigenvalue. Integration leads to the
exact solution for the linear perturbation of the fixed
point superpotential

δu = C eθt uθ+1
∗ u′∗ . (52)

The allowed range of values for the exponents θ is deter-
mined using regularity conditions for the eigenperturba-
tions. To that end, we recall that the fixed point potential
u∗ grows linearly with the field for large ρ, see (30), and
hence δu ∝ eθtρθ+1. Furthermore, in the vicinity of the
node we have (28), which for c 6= 0 leads to a finite u′

(meaning 0 < u′ <∞). We thus find

δu ∝ eθt (ρ− 1)θ+1 . (53)

Regularity of the perturbations requires non-negative in-
teger values for the exponent θ + 1, reproducing (49).

Note that this line of reasoning assumes analyticity of
the perturbation at the node which holds for all c 6= 0.
For c = 0, u∗ is non-analytical at (27) but u2

∗ instead is
analytical and has a simple zero with finite (u2

∗)
′|u∗=0.

Therefore we use (52) to relate the (regular) fluctuations
of u2 to u2

∗, leading to

δu2 = C eθt (u2
∗)

1
2 (θ+1) (u2

∗)
′ . (54)

Again, analyticity implies that the exponent (θ+ 1)/2 is
a non-negative integer

θ = −1, 1, 3, 5, 7, · · · (55)

Here we recognize the universal critical exponents of the
3d spherical model [49]. We stress, however, that this
solution is not a proper fixed point solution in the usual
sense because it is limited to field values with ρ ≥ 1.

Finally we extend the analysis of linear perturbations
to those of the function u2 and the scalar potential v =
ρ u2. We begin with u2 = u2

∗+δu
2. An analytical solution

is found by using the identity δu2 = 2u∗ δu together with
(52), leading to

δu2 = 2C eθt uθ+2
∗ u′∗ . (56)

Note that the degree in u∗ has increased by one unit.
Employing the same reasoning as above for c 6= 0, we
conclude that the set of available eigenvalues is

θ = −2,−1, 0, 1, 2, 3, · · · (57)

Physically, the appearance of the eigenmode with eigen-
value −2 is due to the mass term squared, a term which
on dimensional grounds is available in u2 but not in u.

Finally, using (25), (56) and (21), the linear eigen-
perturbations about the scalar potential v(t, ρ) = v∗ +
δv(t, ρ) are found as

δv = 2C eθt uθ+2
∗

{
u∗ + u′∗[1− u2

∗f(u2
∗)]
}
. (58)

Close to u∗ = 0, the term in square brackets reduces to
1, and the curly bracket becomes u′∗ which is finite at
u∗ = 0. Therefore regularity of eigenperturbations again
implies (57). In a non-supersymmetric scalar theory the
potential is not constrained to be of the product form
(19) and an additional eigenvalue −3 becomes available
related to redundant shifts of the potential.

We conclude that supersymmetry is responsible for the
absence of the redundant eigenvalue −3 in the scalar
potential, and for relating its two relevant eigendirec-
tions with eigenvalues −1 and −2 with the sole relevant
eigendirection with eigenvalue −1 of the derivative of the
superpotential.

C. Wilson-Fisher fixed point

It is interesting to clarify how the supersymmetric
model and its fixed points fall back onto those of the 3d
non-supersymmetric scalar theory in the same approxi-
mation [37–39]. To that end, we consider the 4d super-
symmetric O(N) at finite temperature. The tempera-
ture is implemented using the imaginary time formalism
which on the level of the flow equation amounts to the
replacements [10, 12, 15]∫ ∞

−∞

dq0

2π
f(q0)→ T

∞∑
n=−∞

f(q0 = 2πcnT ) . (59)
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Here 2πcnT denotes the nth Matsubara frequency with
cn = n for bosons and cn = n+ 1

2 for fermions. The tem-
perature imposes periodic (anti-periodic) boundary con-
ditions for bosons (fermions) and, consequently, softly
breaks global supersymmetry. Within a derivative ex-
pansion the relevant momentum integrals are performed
analytically using the four-dimensional version of (15)
together with (59) and the optimized momentum cutoff
(16).

We are interested in the large-scale behavior k/T → 0.
Due to (59), all fermions and bosons with a non-vanishing
Matsubara mass will decouple from the system, except
for the bosonic zero mode. In this limit, the 4d super-
symmetric model undergoes a dimensional reduction to
a 3d non-supersymmetric theory where all fermions have
decoupled. In the large-N limit, the RG equation for the
potential of the remaining bosonic zero mode in LPA is
given by

∂tz = −2z + ρ z′ − 1− z
(1 + z)2

z′ (60)

where z is related to the scalar field potential by v(ρ) =
ρ z(ρ). The key difference to the supersymmetric sys-
tem studied previously is that the function z is no longer
constrained to be the square of a superpotential deriva-
tive w′. Relaxing this constraint allows for an additional
fixed point solution, which follows from integrating (60)
analytically. The general solution reads

ρ− 1√
z
−
√
z

1 + z
− 2 arctan

√
z = B(z e2t) (61)

where B(z e2t) is fixed through initial conditions. The
solution for negative z is found by analytical continua-
tion. In particular, (60) has a Wilson-Fisher fixed point
solution z∗ 6= 0 with z(ρ = 1) = 0 corresponding to (61)
with B = 0. The solution extends over all ρ with one
unstable direction, see Fig. 4. The eigenperturbations
z = z∗ + δz are found analytically leading to (54) with
the replacements δu → δz and u2

∗ → z∗. Hence, the
universal eigenvalues are identical and given by (55).

The similarities and differences between the Wilson-
Fisher fixed point solution of the purely scalar theory
and the c = 0 ‘would-be’ Wilson-Fisher fixed point of
the supersymmetric partner theory can also be appre-
ciated from the behavior at small and large fields. In
fact, for ρ ≥ 1, z∗(ρ) is positive and related to the real
superpotential by

z∗(ρ) = w′∗(ρ)2 . (62)

In turn, z∗(ρ) is negative for all ρ < 1. Interestingly,
this solution is still visible in the supersymmetric theory
where it corresponds to a purely imaginary “superpoten-
tial” with

w′∗(ρ) = ±i
√
−z∗(ρ) . (63)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ρ

z*

FIG. 4: The Wilson-Fisher fixed point solution z∗(ρ) of (60).

Hence, provided that a purely imaginary superpotential
is meaningful in the supersymmetric theory, the c = 0 so-
lution can be extended to a valid supersymmetric Wilson-
Fisher fixed point for all ρ. However, the structure of
the Lagrangian imposed by supersymmetry implies that
the field-dependent fermion mass term is proportional
to w′∗ and the Yukawa-type fermion-boson interaction
proportional to w′′∗ all become purely imaginary. Most
importantly, a purely imaginary w′∗ for small fields im-
plies that the scalar potential obeys v∗(ρ) = ρw′2∗ < 0
for all fields within 0 < ρ < 1. Unbroken global super-
symmetry requires that the dimensionful Vk(%̄) remains
positive for all fields and scales. In the infrared limit
k → 0, re-inserting powers of k, the dimensionful po-
tential approaches V (%̄) = 64π2%̄3/N2 ≥ 0. Hence, our
results state that this potential can be approached arbi-
trarily close from within a phase with O(N) symmetry
and global supersymmetry.

VI. CONCLUSIONS

We have studied fixed points of supersymmetric O(N)
symmetric Wess-Zumino models in the limit of many
components N → ∞ in three dimensions with the help
of the renormalization group. We have solved the the-
ory analytically, showing that it displays a line of non-
trivial fixed points solely parametrized by the exactly
marginal linear superfield coupling. The fixed points are
non-Gaussian, yet they display Gaussian exponents sim-
ilar to the line of fixed points observed in the bosonic
(φ2)3 theory. The line of fixed points contains the Gaus-
sian fixed point and therefore all fixed-points are continu-
ously linked to the Gaussian one. With increasing super-
field coupling, the line of fixed points bifurcates into two
fixed point solutions, both of which terminate at a crit-
ical coupling (35) below which no fixed point solutions
exist which extends over all physical fields. One of these
solutions has its minimum at ρ0 = 0 the other at ρ0 6= 0.
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Interestingly, remnants of the non-Gaussian scaling ex-
ponents of the 3d spherical model (55) become visible for
asymptotically large superfield coupling. However, the
fixed point solution does not extend over all fields in the
supersymmetric case, except if the superfield potential
becomes purely imaginary for small fields.

From a structural point of view, the main impact of
global supersymmetry on the critical behavior in com-
parison with the purely scalar theory is summarized
as follows. Firstly, for unbroken global supersymmetry
the scalar potential has its minimum at vanishing field.
Hence the irrelevant eigenmode with eigenvalue −3 corre-
sponding to overall shifts in the potential is absent from
the supersymmetric eigenvalue spectrum. Secondly, the
quartic and sextic coupling of the scalar potential are
no longer independent. Hence, in the supersymmetric
theory criticality is achieved by tuning only one param-
eter as opposed to the tuning of two parameters in the
corresponding purely bosonic theory. This is reflected
in the sole negative eigenvalue for u as opposed to the
two negative eigenvalues for both u2 and v. Finally, at
the coupling |c| = cL (35) the supersymmetric model
shares similarities with the Bardeen-Moshe-Bander phe-
nomenon in the bosonic theory [8]. The logarithmic sin-
gularity observed in [8] is superseded by a square-root
behavior in the supersymmetric case, a difference which
can be traced back to the underlying regularizations.

The fixed point solutions discussed in this paper de-
scribe the phase transition for the breaking of the O(N)
symmetry. Analyzing the pattern of symmetry breaking
and the phase transition between symmetric and bro-
ken phases in more detail, and relating our findings with
earlier studies based on gap equations is deferred to an
upcoming publication. Furthermore, stepping back to
finite N we expect modifications to the above picture,
both within the local potential approximation studied
here and to higher order in the derivative expansion. For
example, it is known that the N = 1 model displays a
superscaling relation linking the unstable direction with

the anomalous dimension [28, 31], a behaviour which is
quite different from the Ising universality class [24]. It
will thus be interesting to see how these patterns gener-
alize for supersymmetric O(N) models with generic N .
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Appendix A: Conventions

Relevant symmetry relations and Fierz identities for
Majorana spinors are Ψ̄χ = χ̄Ψ, Ψ̄γµχ = −χ̄γµΨ and
θkθ̄l = − 1

2 (θ̄θ)1kl. One of the main features of the action
is its invariance under supersymmetry transformations.
The latter are characterized by the supersymmetry vari-
ations δεΦ

i, generated by the N = 1 fermionic generator
Q. We have

δεΦ
i(x) = iε̄kQkΦi(x) with Qk = −i∂θ̄k−γ

µ
klθl∂µ. (A1)

Thus, (A1) leads to the supersymmetry variations

δφi = ε̄ψi, δψi = (F i + i/∂φi)ε and δF i = iε̄/∂ψi (A2)

of the component fields. The anticommuting sector of
the superalgebra is given by the anticommutator of two
supercharges

{Qk, Q̄l} = 2γµkl∂µ. (A3)

Appendix B: Superspace

Following [27] we consider the action of the three-dimensional supersymmetric O(N) model in the local potential
approximation

Γk[Φi] =

∫
d3x

dθ1 dθ2

2i

(
−1

2
ΦiKΦi + 2Wk(R)

)
, (B1)

where R = 1
2ΦiΦi, K = 1

2 (D̄D − DD̄) and i = 1, ..., N. We derive the flow equation in the superspace R3|2 with

coordinates z = (x, θ1, θ2). Furthermore, we introduce the abbreviation
∫
dz ≡

∫
d3x dθ1 dθ2/(2i). In Minkowski

spacetime [31], the Wetterich equation in superspace may be written in the form

∂tΓk =
i

2

∫
dz dz′(∂tRk)mn(z, z′)(Gk)nm(z′, z), t = ln(k2/Λ2), (B2)

where (Rk)mn represents a supersymmetric regulator term and (Gk)nm the connected Green’s function. According
to [27, 31], we now choose a general regulator term quadratic in the superfields Φi and diagonal with respect to the
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field indices:

∆Sk =
1

2

∫
dzΦiRk,ij(D, D̄)Φj =

1

2

∫
dzΦi

(
2r1(−∂2

x, k)δij − r2(−∂2
x, k)Kδij

)
Φj . (B3)

Notice that this regulator conserves both the O(N) symmetry and supersymmetry. The functional derivative with

respect to a superfield is chosen according to the conventions
~δ

δΦj(z̃)

∫
dzΦi(z) = δij with

~δΦi(z)
δΦj(z̃) = 2i δij δ(x− x̃) δ(θ2−

θ̃2) δ(θ1 − θ̃1) ≡ δijδ(z − z̃). Thus, the second functional derivative of the effective average action with respect to the
superfields reads

Γ
(2)
k,nm(z, z′) ≡

−→
δ

δΦn(z)
Γk

←−
δ

δΦm(z′)
=
[(
−K + 2W ′k(R)

)
δnm + 2W ′′k (R)ΦnΦm

]
(z)δ(z − z′). (B4)

Similarly, the second functional derivative ∆S
(2)
k (z, z′) of the regulator term is given by

(Rk)nm(z, z′) = [2r1 − r2K] (z) δnm δ(z − z′). (B5)

Now we assume the superfields to be constant, i.e. ∂xΦi(x, θ) = 0, such that the regulator functions as well as the
wave operator may be simply written in momentum space. However, note that the wave operator K still contains
derivatives with respect to the Grassmann coordinates and thus acts on the adjacent delta functions. Hence, the flow
of the effective average action may be written as

∂tΓk =
i

2

∫
dz dz′ (∂tRk)mn(z, z′)(Γ

(2)
k +Rk)−1

nm(z′, z)

=
i

2

∫
d3x

dθ1 dθ2

2i

dθ′1 dθ
′
2

2i

∫
d3p

(2π)3
(2∂tr1 − ∂tr2K)(p, θ1, θ2) δmn 2i δ(θ2 − θ′2) δ(θ1 − θ′1)×[

(−hK(p,θ′1,θ
′
2) + 2W ′)δnm + 2W ′′ΦnΦm

]−1
2i δ(θ′2 − θ2) δ(θ′1 − θ1). (B6)

We have thereby introduced the notation W ′(R) ≡W ′k(R) + r1, h ≡ 1 + r2. The inverse of the N ×N -matrix

(M)−1
nm ≡ (−hK + 2W ′)δnm + 2W ′′ΦnΦm (B7)

is given by

(M)nm =
(−hK + 2W ′)δnm + 2W ′′(Φ2δnm − ΦnΦm)

4 (h2p2 +W ′(W ′ + 2W ′′R)− hK(W ′ +W ′′R))
, (B8)

where we have used the relation K2(p) = 4p2 resulting from the action of K(p) = −∂θ∂θ̄ − (∂θp/θ)− (θ̄p/∂θ̄)− p2(θ̄θ)
on an arbitrary superfield. In order to eliminate the wave operator K in the denominator of (B8), we multiply both
the numerator and the denominator with

[
(h2p2 +W ′(W ′ + 2W ′′R)) + hK(W ′ +W ′′R)

]
and use again K2(p) = 4p2.

Thus we get

(M)nm = −2
h2p2(δnmW ′ +W ′′ΦnΦm)−W ′(W ′ + 2W ′′R)(W ′δnm +W ′′(Φ2δnm − ΦnΦm))

4(h2p2 −W ′2)(h2p2 − (W ′ + 2W ′′R)2)

− hK δnm(h2p2 −W ′2)− 2W ′′(W ′ +W ′′R)(Φ2δnm − ΦnΦm))

4(h2p2 −W ′2)(h2p2 − (W ′ + 2W ′′R)2)

≡ −2fnm − hKgnm
R

(B9)

with R = 4(h2p2 −W ′2)(h2p2 − (W ′ + 2W ′′R)2). For

(Gk)nm(p,θ′1−θ1,θ′2−θ2) = (M)nm(p, θ′1, θ
′
2) 2i δ(θ′2 − θ2)δ(θ′1 − θ1) (B10)

to be the Green’s function it has to fulfill the defining relation∫
dz (Gk)mn(z̃, z)(Γ

(2)
k +Rk)np(z, z

′) = δ(z̃ − z′)δmp. (B11)

This can be shown by directly inserting the explicit expressions on the left hand side and working out the contributions
to different orders in K.
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The flow equation is calculated by inserting the regulator (B5) as well as the propagator (B10) into eq. (B6). Note
that the regulator (Rk)mn ∝ δmn is diagonal with respect to the field indices. Hence, we simply have evaluate the
trace over the Green’s function (Gk)mm. This yields

∂tΓk =
i

2

∫
dθ1 dθ2 dθ

′
1 dθ

′
2

∫
d3x

∫
d3p

(2π)3
(2∂tr1 − ∂tr2K)(p, θ1, θ2) δ(θ2 − θ′2) δ(θ1 − θ′1)

×
(
−2

h2p2(NW ′ + 2W ′′R)−W ′(W ′ + 2W ′′R)(NW ′ + 2(N − 1)W ′′R)

4(h2p2 −W ′2)(h2p2 − (W ′ + 2W ′′R)2)

−hKN(h2p2 −W ′2)− 4(N − 1)W ′′(W ′ +W ′′R)R

4(h2p2 −W ′2)(h2p2 − (W ′ + 2W ′′R)2)

)
δ(θ′2 − θ2) δ(θ′1 − θ1). (B12)

Now, only terms linear in K contribute to the flow of Γk after having integrated out the Grassmann variables. Those
contributing terms lead to a multiplying factor of 2i. Thus the flow equation (B12) simplifies to

∂tΓk = −i
∫
d3x dθ1 dθ2 ∂tWk(R)

=
1

2

∫
d3x dθ1 dθ2

∫
d3p

(2π)3

(
(N − 1)

(∂tr1h− ∂tr2W ′)
h2p2 −W ′2

+
∂tr1h− ∂tr2(W ′ + 2W ′′R)

h2p2 − (W ′ + 2W ′′R)2

)
. (B13)

Performing a Wick rotation of the zeroth component of the momentum, i.e. p0 → ip0
E , p2 → −p2

E , we obtain the
Euclidean version of the flow equation (B13). Thus, the resulting flow equation in superspace reads∫

x,θ1,θ2

∂tWk(R) =
1

2

∫
x,θ1,θ2

∫
d3pE
(2π)3

(
(N − 1)

(∂tr1h− ∂tr2W ′)
h2p2

E +W ′2
+
∂tr1h− ∂tr2(W ′ + 2W ′′R)

h2p2
E + (W ′ + 2W ′′R)2

)
. (B14)

Notice, that the truncation (14) involved a superpotential of the form 2NWk(R/N) instead of 2Wk(R). The cor-
responding flow equation may be easily derived from the above result by performing the substitution Wk(R) →
NWk(R/N) in (B14). This yields the final result∫

x,θ1,θ2

∂tWk(R/N) =
1

2

∫
x,θ1,θ2

∫
d3pE
(2π)3

(
(N − 1)

N

(∂tr1h− ∂tr2W ′)
h2p2

E +W ′2
+

1

N

∂tr1h− ∂tr2(W ′ + 2W ′′R/N)

h2p2
E + (W ′ + 2W ′′R/N)2

)
. (B15)
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