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AbstratThe four dimensional O(3) non-linear sigma model introdued by Faddeev and Niemi,with a Skyrme-like higher order term to stabilise stati knot solutions lassi�ed by theHopf invariant, an be rewritten in terms of the omplex two-omponent CP1 variables.A further rewriting of these variables in terms of SU(2) urvature free gauge �elds isperformed. This leads us to interpret SU(2) pure gauge vauum on�gurations, in apartiular maximal abelian gauge, in terms of knots with the Hopf invariant equal tothe winding number of the gauge on�guration.
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1 IntrodutionIn this Letter we address some simple results that involve rewriting the Faddeev-Niemimodel [1℄. This model has stable stati solutions that represent knots. Muh workhas been invested in interpreting this model as an e�etive low-energy representationof SU(2) gauge theory [2, 3, 4℄ and investigating the quality of this approximationby inverse Monte Carlo tehniques [5℄. This interpretation in part is motivated by't Hooft's notion of abelian projetion [6℄.The model is de�ned in terms of a spae-time dependent vetor ~n(x) of �xed (herehosen unit) length. To allow for non-trivial stati solutions a Skyrme-like higher-order term is added [7℄, through the introdution of a omposite gauge �eld strengthF��(x) = 12~n(x) � (��~n(x) ^ ��~n(x)). Note that with ~n(x) a unit three-vetor, ��~n(x)is perpendiular to ~n(x), and ��~n(x) ^ ��~n(x) is proportional to ~n(x). The fator ofproportionality is preisely 2F��(x). Thus, one also has F 2��(x) = 14(��~n(x)^ ��~n(x))2.The ation is given byS = Z d4x m2��~n(x) � ��~n(x)� 12e2F��(x)F ��(x): (1)By resaling x with (em)�1, e2S beomes independent of both e and m. With thisunderstood, we will now put e = m = 1. Finite energy requires ~n(~x) to approaha onstant vetor at spatial in�nity. In this way stati on�gurations are lassi�edby the topologial maps from S3 into S2, haraterised by the Hopf invariant. Thetwo-form F (~x) = ~n(~x) � (d~n(~x) ^ d~n(~x)) impliitly de�nes an abelian gauge �eld one-form A(~x) through F (~x) = dA(~x), in terms of whih the Hopf invariant is given byQ = 14�2 R A(~x) ^ F (~x). Remarkably, the energy is bounded by a frational power ofthis Hopf invariant [8, 9℄.E = Z d3x (�i~n(x))2 + 12F 2ij(x) � jQj3=4; (2)with  = 16�233=8 � 238. This gives a rough bound, whih an be improved on [10, 11℄2



(by roughly a fator 2). Extensive numerial studies [12, 13℄ have gone up to Q = 8,with energies indeed following the frational power of Q.2 The CP1 formulationWe �rst disuss the reformulation in terms of CP1 �elds, as well-known from twodimensions. The main advantage is that the abelian gauge �eld involved in de�ning theHopf invariant, no longer needs to be de�ned impliitly. To be spei�, one introduesa omplex two-omponent �eld 	(x). The two degrees of freedom assoiated to the n�eld are obtained by identifying any two 	's whih di�er by an overall nonvanishingomplex sale fator. This is ahieved by onstraining 	 to have unit length, andintroduing loal abelian gauge invariane, obvious from the following relation to then �eld: na(x) = 	y(x)�a	(x) (3)where �a are the Pauli-matries. The abelian gauge invariane of the CP1 model leadsto a omposite gauge �eld A�(x) = �i	y(x)��	(x); (4)and one veri�es by diret omputation that indeed F (x) = dA(x). Useful identities forthese omputations are the ompleteness relation ÆijÆkl+�aij�akl = 2ÆilÆjk and i"ab� bij� kl =�akjÆil � �ailÆjk. For the ation we �nd the following resultS = Z d4x 4(D�	)y(x)D�	(x)� 12F��(x)F ��(x); (5)where D� = �� � iA�(x) is the ovariant derivative. Note that 	y(x)D�	(x) = 0 andthat the energy density an be written as a square, E = R d3x j(2Di +Bi(~x))	(~x)j2.
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3 The SU(2)=U(1) formulationThe next reformulation makes use of the fat that any two-omponent omplex vetorof unit length is in one to one relation to an SU(2) group element. Alternatively wean write 	(x) = g(x)	0. For onveniene we hoose 	y0 = (1; 0), suh thatna(x) = 12tr ��3gy(x)�ag(x)� : (6)As we will see, the winding number of g(~x) as a map from R3 to SU(2) is preisely theHopf invariant. This observation is in itself not new [12℄. But we will push it a littlefurther here.We introdue urrents Ja�(x) through J�(x) = i�aJa�(x) = gy(x)��g(x). A simplealulation shows thatA�(x) = J3�(x) and ��	y(x)��	(x) = Ja�(x)J�a (x) (7)We an interpret the urrents just as well as omponents of an SU(2) gauge onnetion,whih is pure gauge, G(x) = dJ(x) + J(x) ^ J(x) = 0, with J(x) � J�(x)dx�. Forlater use we also introdue Ja(x) � Ja�(x)dx�. In partiular in omponents, we haveG3��(x) = ��J3� (x)� ��J3�(x)� 2(J1�(x)J2� (x)� J1� (x)J2�(x)) = 0. It leads to the usefulidentityF (x) = dJ3(x) = 2J1(x)1 ^ J2(x) or F��(x) = 2(J1�(x)J2� (x)� J1� (x)J2�(x)): (8)With the help of this relation it is now also easy to show that the Hopf invariant isexatly equal to the winding number of the gauge funtion g(~x),14�2A(~x) ^ F (~x) = 12�2J3(~x) ^ J1(~x) ^ J2(~x) = 124�2 tr(gy(~x)dg(~x))3; (9)whih an of ourse also be related to the non-abelian Chern-Simons form,14�2A(~x) ^ F (~x) = � 18�2 tr�J(~x) ^ dJ(~x) + 23J(~x) ^ J(~x) ^ J(~x)� : (10)4



Finally we we note that(D�	)y(x)D�	(x) = ��	y(x)��	(x)�A�(x)A�(x) = J1�(x)J�1 (x)+J2�(x)J�2 (x); (11)whih makes the SU(2)=U(1) nature of the ation expliit, sine both terms in Eq. (5)an be written in terms of just J1�(x) and J2�(x). So the energy of a stati on�gurationis given in terms of the "harged" omponents of the non-abelian gauge �eld onlyE = Z d3x 4 �J1i (~x)J1i (~x) + J2i (~x)J2i (~x)�+ 2 �J1i (~x)J2j (~x)� J2j (~x)J1i (~x)�2 (12)The �rst term agrees exatly with the funtional that de�nes the maximal abeliangauge, by minimising along the gauge orbit, leaving the abelian subgroup generatedby �3 un�xed [6℄. This remains true for the full energy funtional, whih an thus justas well be interpreted as the gauge �xing funtional for a non-linear maximal abeliangauge. As the three parametrisations are mathematially equivalent, we are entitled tointerpret the minima of the energy funtional in the setor with a given value of Q asgauge �xed pure gauge (i.e. urvature free, or at) onnetions in a setor with gauge�eld winding number Q. Therefore, there is a gauge �xing in terms of whih the gaugevaua with di�erent winding number an be haraterised by inequivalent knots.4 ConlusionsIn the light of the attempts to relate the Faddeev-Niemi model to full non-abeliangauge theory, our result is a rather sobering one, even though it also involves an abelianprojetion. Within the ontext of our interpretation, there seems not muh need toaddress the quantum utuations. It should, however, be noted that at the quantumlevel the three models are not equivalent, as the path integral measure depends on thehosen representation. It is the measure that seems to ause some of the problems inrelating the Niemi-Faddeev model to the full SU(2) gauge theory.5
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