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Abstra
t:By realizing the W-algebras of Toda �eld-theories as the algebras of gauge-invariant polynomials of 
onstrained Ka
-Moody systems we obtain a simple algo-rithm for 
onstru
ting W-algebras without 
omputing the W-generators themselves.In parti
ular this realization yields an identi�
ation of a primary �eld basis for allthe W-algebras, quadrati
 bases for the A;B;C-algebras, and the relation of W-algebras to Casimir algebras. At the quantum level it yields the general formula forthe Virasoro 
entre in terms of the KM- level.1 on leave from Central Resear
h Institute for Physi
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The so-
alled W-algebras are de�ned as polynomial extensions of the Virasoroalgebra by higher (� 3) 
onformal spin �elds. The study of su
h polynomial ex-tensions of the Virasoro algebra has been initiated by Zamolod
hikov [1℄. It hasbeen found [2℄ that a large 
lass of polynomial extensions of the Virasoro algebrais realized at the Poisson-bra
ket (PB) level by the Gelfand-Di
key (GD) Hamilto-nian stru
ture of Lax operators. More re
ently Toda theories have also been shownto provide a realization of W-algebras [3℄. Both of these theories may be regardedas 
onstrained Wess-Zumino-Novikov-Witten (WZNW) models. The Gelfand-Di
keyPoisson bra
ket stru
ture 
an be obtained by a Hamiltonian redu
tion from the phasespa
e of a Ka
-Moody (KM) algebra [4℄ and as shown in ref. [5℄, Toda theories maybe regarded as WZNW models redu
ed by 
ertain 
onformally invariant 
onstraints.Therefore it is natural to expe
t that a uni�ed treatment of the W-algebras 
ould beobtained by exploiting the stru
ture of the 
onstrained KM (CKM) stru
ture. Theaim of this paper is to demonstrate that indeed the W-algebras in the Toda theoryand the GD algebras are di�erent manifestations of the same CKM algebra. Further-more the study of W-algebra is mu
h simpler at the CKM level. The simpli
ity isdue to the fa
t that the key eqs. of the CKM theory 
an be solved by a linear, itera-tive, algebrai
 pro
ess, whi
h is due to the nilpotent nature of the 
onstraint algebra.Here we shall only present the main results and for a more 
omplete mathemati
alelaboration refer to [6℄.All our results are based on the fa
t that the CKM theory is a gauge theory(with the gauge transformations generated by the �rst 
lass 
onstraints) and thatthe gauge group is nilpotent.Our �rst set of results rests on the observation that the di�erential eqs. used to de�netheW-algebra in the Toda and GD theories [2,3℄ are nothing but the gauge-invariantform of the standard WZNW equation �g = J �g whi
h relates the group-valuedWZNW �eld g(z) to the KM 
urrent J(z). This observation leads to the identi�
ationof theW-algebras of Toda theory with the PB algebra of gauge invariant polynomialsof the 
onstrained 
urrents and their derivatives (di�erential polynomials). Sin
ethe original 
onstraints together with any 
omplete gauge �xing form a system ofse
ond 
lass 
onstraints we get an alternative identi�
ation of the W-algebra as theDira
-bra
ket algebra of polynomials of gauge �xed 
urrents (and their derivatives).Chosing a spe
ial gauge, the diagonal gauge, we immediately obtain the free-�eldrepresentation of the W-algebra and �nd that it is nothing but the gauge invariantextension of the 
orresponding Casimir algebra. As a by-produ
t we also �nd a simple
riterion to de
ide on the di�erential or pseudo-di�erential nature of the relevantoperator, whi
h yields that for the groups A, B, C, G2 one has a di�erential operatorwhile for the D, E and F4 groups one has a pseudo-di�erential one.



Our se
ond set of results is based on the observation that the Dira
 bra
ketversion of the W-algebra may be implemented by the a
tion of the KM algebra only.By using the fa
t that the gauge �xing 
onstraints 
an be 
hosen to be linear in the
urrents (DS-gauges) the KM-implementation be
omes parti
ularly simple and 
anbe solved in a linear, algebrai
 and iterative manner. By using DS-gauges we identifya primary �eld basis for all the W-algebras. We also show that quadrati
 bases existonly for the A, B, C groups and identify them in these 
ases.Our �nal result is a �rst step in quantizing the CKM theory. We 
omputethe quantum 
orre
tions to the 
lassi
al 
enter, 
, of the Virasoro subalgebra ofthe 
orresponding W-algebra for highest weight representations. There are three
ontributions to 
, namely, those from the Sugawara energy-momentum tensor, theimprovement term (whi
h emerges automati
ally in this framework) and the BRSTghosts. The sum of the three 
ontributions produ
es the simple and elegant formula
 = l � 12�pk + g �̂� 1pk + g ��2 ; (1)where l is the rank of G, k is the level of the KM algebra, g is the dual Coxeternumber of G, and � (resp. �̂) is half the sum of the positive roots (resp. 
oroots) ofG. As usual the norm of the highest root is taken to be p2. Of 
ourse, until other
onsiderations, su
h as the unitarity of the representations are investigated, the rangeof k (in parti
ular its sign) is not determined.We begin by de�ning the 
onstrained WZNW or KM theory. Let us re
all that inthe WZNW model the group valued �eld, g(z; �z) and the 
orresponding KM 
urrentsJ(z), ~J(�z), subje
t to the equations of motion, satisfyg(z; �z) = g(z) � g(�z) �g(z) = J(z) � g(z) ; ��g(�z) = �g(�z) ~J(�z) : (2)Let us now 
onsider WZNW �elds with values in a maximally non-
ompa
t Lie groupG (i.e. a Lie group generated by the real linear span of the 
onventional Cartan {Weyl operators (Hi; E�'k), i = 1 : : : l, k = 1 : : : ; (D� l)=2, (D = dim G). We de�nethe 
onstrained KM theory by imposing the following 
onstraints on the 
urrentstrJE' = J�' = �' ; ' 2 �+; (3:a)where �+ denotes the set of positive roots and the 
onstants �' are zero for allbut the simple roots. As shown previously [5℄ these 
onstraints redu
e the WZNWtheories to Toda theories. By a suitable 
hoi
e of the 
onstants �' the 
urrentsful�lling (3.a) are of the formJ(z) =I� + j(z) ; I� = lXi=1 E��i ;j(z) = lXi=1 ji(z)Hi + X'2�+ j'(z)E'; (3:b)



where fE�ig are the l simple root ve
tors. The 
onstraints for ~J are very similar to(3.a) with 'k repla
ed by �'k. The maximal subgroup of the KM group G whi
hleaves the form (3.b) of the 
urrents invariant is the maximally nilpotent subgroup,N , generated by the E', (' 2 �+) and implemented by the (D � l)=2 
onstrainedKM-
urrents J�'(z). Thus the CKM theory is a
tually a gauge theory, in whi
hall but l of the (D + l)=2 
omponents of J are gauge 
omponents. This situation isre
e
ted at the CWZNW-level by the fa
t that there are only l independent gauge-invariant fun
tions of g(z; �z) (e.g. the l Toda �elds). In parti
ular there exists aunique Virasoro density L(J) that 
ommutes weakly with the 
onstraints (3.a) andis therefore gauge-invariant, namelyL(J) = 12tr J2 � trHJ 0; (4)where H = �̂iHi and �̂ is as in (1) [5℄. L(J) is a
tually the T++-
omponent of theimproved energy momentum tensor of the Toda theory. Under 
onformal transfor-mations generated by this improved stress tensor the 
urrent transforms asfL(x); J(y)g = �[H; J(x)℄ + J(x)�Æ0 + [H; J 0(x)℄Æ �HÆ00; (5)where Æ = Æ(x�y), i.e. with ex
eption of the H-
omponent of J all entries are primarywith 
onformal weights equal to the H-weights plus one.The 
urrents J(z) in (2), and the gauge-transformations 
orresponding to theE', a
t on ea
h 
olumn of g(z) separately, and sin
e ea
h 
olumn is a 
opy of thede�ning representation of G, it 
ontains only one 
omponent Æe say (namely the lowestweight 
omponent) satisfying E' Æe=0, and hen
e only one 
omponent that is gauge-invariant. It is natural to eliminate the gauge-
ovariant elements of ea
h 
olumn infavour of Æe, and if one does so, one �nds that be
ause of the form of J(z) in (3)the elimination pro
edure is iterative and leads to a linear di�erential (or pseudo-di�erential) equation for Æe, i.e. an equation of the form��n + n�1Xr=1 P r(J)�r� Æe= 0 (6)(or a similar pseudo-di�erential equation in whi
h some ��1's appear). In this equa-tion the 
oeÆ
ients P r(J) of the �r are polynomials in the 
urrents and their deriva-tives, and are gauge-invariant. The operator on the l.h.s of (6) is used in the Todaand GD theories to de�ne the W-algebra (the independent 
oeÆ
ients of the �r be-ing the base elements) and thus the redu
tion (2) ! (6) identi�es the W-algebrasas the algebras of gauge-invariant polynomials of the 
onstrained 
urrents and theirderivatives.



We now introdu
e a spe
ial SL(2; R) subgroup of G, whi
h plays a 
entral role.This SL(2; R) subgroup, whi
h we shall denote by S, is de�ned as that generatedby fI�; Hg, where I� is as in (3.b), H is as in (4), and I+ is then a unique linear
ombination of the E�i whi
h we do not need to exhibit expli
itly. The importan
eof the group S is that(a) the simple roots-ve
tors E�i are all eigenve
tors of adH with eigenvalue unity,(b) the adjoint representation of G de
omposes into l irredu
ible (tensor) representa-tions of S whose highest weights j are just the exponents (orders of the Casimirsminus one) of G,(
) the 
ondition for the linear 
onstraints imposed on the 
urrent 
omponents tobe a gauge �xing is that Jgf must have one non-zero 
omponent in ea
h of thel irredu
ible representations of S appearing in the de
omposition of the adjointof G.Two natural gauges whi
h satisfy this 
ondition are the diagonal and Drinfeld-Sokolov(DS) gauges, i.e.j(z) = lXi=1 ji(z)Hi and jDS(z) =Xp�2 jpDS(z)Fp; (7)where the p are the orders of the l independent Casimirs* of G and the Fp aregenerators with H-weights (p�1) satisfying 
ondition (
) above. Note that j2DS isjust L(J).In the diagonal gauge theW-algebra generators, P r(J), redu
e to P r(jiHi), andsin
e the Cartan KM 
urrents ji satisfy free-�eld KM 
ommutation relations, thisgauge provides us immediately with the free-�eld representation of the W-algebra.Furthermore, if in the algebra of the P r(jiHi) derivatives higher than the �rst aredropped, the resulting `trun
ated' W-algebra is easily seen to be just KM-Casimiralgebra studied by Bais et. al [7℄, restri
ted to its Cartan subalgebra. But at thePoisson-bra
ket level the restri
tion to the Cartan subalgebra is a
tually isomorphi
to the full KM-Casimir algebra [6℄. Hen
e, at the PB-level the trun
ated W-algebramay be identi�ed with the Casimir-algebra. Conversely, one may say that the fullW-algebra is a deformation of the Casimir algebra, where the Casimir operatorsare restri
ted to the spa
e of 
onstrained 
urrents (3.b) and higher derivatives arein
luded in order to ensure gauge-invarian
e. From this 
orresponden
e and theorders of the Casimirs it is easy to see that a quadrati
 basis for the W-algebras 
anexist only for the A;B;C groups [6℄.The S-group may also be used to obtain a simple 
riterion for the pseudo-di�erential nature of the Toda-GD equation (6) as follows: from the form of J(z) in* Note that D2n possesses two independent Casimirs of order 2n



(2) one sees that the elimination pro
edure (2) ! (6) requires no ��1's if, and onlyif, the only element in the kernel of I+ is Æe itself. But this is just the 
ondition for thede�ning representation, F , of G to be irredu
ible with respe
t to the group S. Thusthe 
riterion for eq. (6) to be pseudo-di�erential is just the S-redu
ibility of F . It iseasy to verify that F is S-irredu
ible for the A, B, C, G2-groups and S-redu
ible forthe D, E, F4 groups, whi
h leads to the result stated earlier.The importan
e of the DS-gauges is that the gauge-transformation U(J) thattransforms any 
urrent J(z) to its DS-formUJU�1 + �UU�1 = JDS(z) (8)is unique and is a polynomial in J(z) and its derivatives. The uniqueness of U(J)means that the DS-gauges de�ne a 
omplete gauge-�xing (with no Gribov ambiguitiesfor example). Thus the ring of all gauge-invariant di�erential polynomials fW (J)g is�nitely generated and in parti
ular the l 
omponents jpDS of JDS 
an be used as therepresentatives (in this gauge) of l base elements W p(J) of fW (J)g.For example taking G = SL(2; R):U � �(z) j(z)1 ��(z)�U�1 + �UU�1 = � 0 jDS(z)1 0 � (9)we get U(J) = � 1 ��0 1 � and jDS(J) = �2 + j � �0 : (10)In fa
t jDS = L(J), where L(J) is the improved Virasoro operator de�ned in (4)and is the simplest example of a gauge invariant polynomial. Note, that in theidenti�
ation W p(J) = jpDS ea
h DS-gauge 
orresponds to a di�erent 
hoi
e of basisof the W-algebra.The straightforward way to 
ompute the W-algebra relations expli
itly wouldbe to 
hoose a basis fW pg where the l elements W p are di�erential polynomialsof the 
urrents and simply 
al
ulate their Poisson bra
kets. In pra
ti
e this is nottra
table, sin
e �rst one has to �nd theW p's as expli
it fun
tions of the KM 
urrentswhi
h is quite 
umbersome and se
ond the 
al
ulation of the Poisson bra
kets of
ompli
ated polynomials is rather tedious. We now show that there is a way to
ompute the W-algebra relations without 
omputing the W p's themselves. As theW p's are gauge invariant it suÆ
es to know them as fun
tions of the l independentgauge �xed 
urrents Jpgf . In fa
t there is a 
lass of gauges where the W p's are justthe Jpgf 's themselves. The pri
e one has to pay is that the 
omputations to be doneinvolve Dira
 bra
kets, rather than Poisson bra
kets, be
ause the Toda and the gauge�xing 
onstraints together form a se
ond 
lass system. Though in general the Dira




pro
edure is quite hard to implement it be
omes tra
table in our 
ase due to thespe
ial nilpotent form of the Toda 
onstraints and the linear gauge 
hoi
es.The W-algebra relations may be summarized by the standard formula:ÆW p(x) = Z dy aq(y) fW q(y);W p(x)g; (11:a)where the p; q are the orders of the independent Casimirs and the aq's arbitraryparameter fun
tions. After gauge �xing eq. (11.a) be
omes:Æwp(x) = Z dy aq(y) fwq(y); wp(x)g? ; where wp = W p(Jgf ): (11:b)In eq. (11.b) f; g? denotes the Dira
 bra
ket. To 
ompute the r.h.s. of (11.b) wewrite it in the form:Z dy �aq(y)fwq(y); wp(x)g+ a�(y)f
�(y); wp(x)g�; (12:a)where the a� are de�ned as solution ofaq fwq; 
�g+ a� f
� ; 
�g = 0; (12:b)and f
�g is the set of D�l 
onstraints. Although eqs. (12.b) need only be solved onthe `
onstraint surfa
e' (de�ned by 
� = 0) for a�(aq; Jgf ), in general it is diÆ
ult to�nd the solution even then, sin
e it is equivalent to inverting the `
onstraint matrix',f
�; 
�g. However the Toda 
onstraints are su
h that (12.b) is tra
table, and whenthe result is substituted into (12.a) Æwp is quite simple. In fa
t in the DS-gauges(12.b) 
an be solved in an iterative, algebrai
 manner.The 
ru
ial property of the DS-gauges is that all gauge �xing 
onditions are linearin the 
urrents and that the parameters of the gauge transformations are di�erentialpolynomials of the 
urrents. These properties allow us to identify the wp's with the
urrents in the DS gauge jpDS. Thus in the DS gauges the wp's and the 
onstraints
� in (12) are just the 
urrent 
omponents, up to 
onstants, therefore (12.a) 
an berewritten as:ÆjpDS(x) = Z dy�aq(y) fjqDS(y); jpDS(x)g+ a�(y) fJ�(y); jpDS(x)g�j
�=0 (13:a)where the a�'s satisfy �aq fjqDS; J�g+ a� fJ�; J�g�j

=0 = 0: (13:b)Exploiting the linearity of eq. (13.a) in jDS we may rewrite it as:ÆRJDS = [R; JDS℄ + R0; R(a) = aqF q + a�T �; (14)



where the F q are 
onjugate to the Fp in (7), TrF qFp = Æqp, and T � are the remaining(matrix) generators of the Lie algebra of G. Now eq. (13.b) 
an be interpreted in thefollowing way. Given the aq's as free parameter fun
tions, �nd R(aq; jDS) su
h thatthe KM-transformation (14) keeps the DS-
urrent form-invariant. In other wordsdetermine the a�(aq; jDS) su
h that JDS + ÆRJDS is still in the same gauge as JDSand use these a� to 
ompute ÆRJDS. It turns out that this is a very eÆ
ient wayto 
al
ulate the ÆRJDS and hen
e the W-algebra relations, as we shall illustrate onthe example of SL(3; R). It may seem surprising that the problem of inverting the`
onstraint matrix' 
an be solved in su
h a relatively simple way, but this may perhapsbe understood as follows. In the DS gauges all of the 
onstraints are linear and hen
ethe problem would be 
ompletely trivial if the symple
ti
 form were 
onstant. Thusthe only 
ompli
ation in our 
ase (apart from the problem being in�nite dimensionalin a rather harmless way) is that the KM symple
ti
 form is not 
onstant but linearin the variables J . This latter fa
t and the nature of the Toda 
onstraints makes theproblem non-trivial but still tra
table.As the simplest non-trivial example let us 
onsider SL(3; R). In this 
ase thespe
ial sl(2; R) subalgebra S is generated byH = 0� 1 0 00 0 00 0 �11A ; I+ = 0� 0 2 00 0 20 0 01A and I� = 0� 0 0 01 0 00 1 01A ; (15)and the gauge �xed 
urrents JDS in (7) areJDS(x) = I� + j2(x)F2 + j3(x)F3 ; (16:a)where F2 = F2(t) = 0� 0 t 00 0 1�t0 0 0 1A and F3 = 0� 0 0 10 0 00 0 01A : (16:b)Here t is a parameter whi
h distinguishes the di�erent DS-gauges. The `Wronskiangauge' t = 1 is the one usually used in the literature [2,3℄ and in this gauge theF q; q=2; 3; in (14) are just the transpose of F2 and F3. Applying our algorithm we�nd that R(a; jDS) = a2F 2 + a3F 3 +�R(a; jDS); (17)where �R(a; jDS) = a2 jDS + a02H +0�u v � u0 v0 � 2u000 u v � 2u00 a2 � a03 �2u 1A (18:a)



and u = 13(a3j2DS � a003) ; v = a3j3DS � a002 : (18:b)The variation of JDS under the KM transformation (14) using this R is then foundto be : Æ2j2 = a2(j2)0 + 2a02j2 � 2a0002Æ2j3 = a2(j3)0 + 3a02j3 + a002j2 � a(IV)2Æ3j2 = 2a3(j3)0 + 3a03j3 � (a3j2)00 + a(IV)3Æ3j3 = a3[(j3)00 + 23j2(j2)0 � 23 (j2)000℄+ a03[ 23 (j2)2 + 2(j3)0 � 2(j2)00℄� 2a003(j2)0 � 43a0003 j2 + 23a(V)3 : (19)
Note that the 
omponents of R(a; jDS) in (17) are linear fun
tions of the 
urrent
omponents, and 
onsequently ÆRJDS is at most quadrati
 in JDS, whi
h implies thatthe Poisson bra
kets of the W-generators are also (at most) quadrati
 polynomials.This is not always the 
ase, as 
an be 
he
ked on the example of B2.From (19) one 
an read o� the SL(3; R) W-algebra relations:fW 2(x);W 2(y)g = (W 2)0(x)Æ + 2W 2(x)Æ0 � 2Æ000fW 2(x);W 3(y)g = 2(W 3)0(x)Æ + 3W 3(x)Æ0 � [W 2(x)Æ℄00 + Æ(IV)fW 3(x);W 3(y)g = [ 23 (W 2)0W 2 + (W 3)00 � 23 (W 2)000℄(x)Æ+ [ 23 (W 2)2 + 2(W 3)0 � 2(W 2)00℄(x)Æ0 � 2(W 2)0(x)Æ00 � 43W 2(x)Æ000 + 23Æ(V) ;(20)where Æ = Æ(x�y). Note that for the CKM group-valued �eld we have Æg = Rg,from whi
h the variations of any �eld, su
h as the Toda �eld 
an be found. Of 
oursethe SL(3; R) W-algebra is well known and has been used here only for illustration.The true power of the algorithm be
omes apparent only when it is applied to more
ompli
ated groups. In Ref. [6℄, for example, it was used to obtain the W-algebrasof the B2 and G2 groups.Let us now 
onsider the question of primary �eld bases forW-algebras. Observethat the W 3 generator in (20) is not a primary �eld with respe
t to W 2, however~W 3 = W 3 � 12(W 2)0is a primary �eld of weight 3. We now show that a primary �eld basis 
an be identi�edfor any group G. For this we 
hose the spe
ial DS gauge (highest weight gauge) inwhi
h the generators Fp in (7) are the highest weight ve
tors, Ep of the S groupo

uring in the adjoint of G (for the SL(3; R) example above this is the t = 1=2gauge). That is we now 
hose the DS gaugejHW (z) =Xp�2 jpHW (z)Ep = L(J)I+ +Xp�3 jpHW (z)Ep (21:a)



where [I+; Ep℄ = 0: (21:b)The 
onformal transformations (5) do not respe
t this (or any other DS) gauge be-
ause the inhomogeneous term in (5) is diagonal and the DS-gauges have no diagonal
omponent. However, we 
an �nd a 
losely related gauge whi
h has a diagonal
omponent to absorb the inhomogeneous term by making the gauge transformationexp(�I+), where �2 � �0 = j2HW . In this way we obtain the gaugej� = 2� �H +Xp�3 jpHWEp ; (22)where the jpHW ; p � 3 in (22) and (21.a) are the same, be
ause I+ 
ommutes withthe Ep's and �0I+ has no 
omponent along the Ep for p � 3. The 
onformal trans-formation (5) leaves (22) form-invariant and gives rise to the following variation ofthe 
urrents: Æ� = (a�)0 + a002 ÆjpHW = a(jpHW )0 + p a0jpHW ; p � 3: (23)Eq. (23) shows that � is not a primary �eld, but the jpHW (p � 3) are primary �eldsof 
onformal spin p. On the other hand, be
ause the highest weight gauge is a DSgauge the 
urrent 
omponents jpHW ; p � 3, together with L(J), de�ne a basis, W p ofthe W-algebra. Combining the two results we see that this is the required primary�eld basis of the W-algebra and the weights of a base element W p; p � 3 is just pitself.It is easy to see from (14) that the degree of the polynomial ÆjDS(z) in jDS(z)
annot ex
eed the nilpoten
y index of ad jDS(z), and this means that in the 
orre-sponding basis W p, the degree of the W-algebra 
annot ex
eed the nilpoten
y index.In parti
ular, the W-algebra will be quadrati
 if the nilpoten
y index of jDS(z) is2. We already know that the W-algebra 
annot be quadrati
 for the D, E, F4, G2groups, but we 
an now show that for the remaining (A,B,C) groups there existbases in whi
h it is quadrati
. The point is that, for these groups, the jDS(z) 
an be
hosen to lie within any re
tangular blo
k in the upper triangle that interse
ts I+ (forexample the 
urrent (16) is not of blo
k-form unless t = 1) and then the nilpoten
yindex of jDS(z) is automati
ally 2. Note that in general the highest weight gaugedoes not lie within su
h a re
tangular blo
k and does not have nilpoten
y index 2.Finally we turn to the derivation of the result (1) for the 
entral 
harge of thequantized CKM theory. The 
ontribution of the CKM-�elds to the 
entral 
harge isjust the 
entral 
harge of the improved energy-momentum tensor L(J) in (4), that isthe 
entral 
harge of the Sugawara energy-momentum tensor plus the 
ontribution



of the improvement term, i.e.
CKM = k �Dk + g � 12kTrH2: (24)To determine the 
ontribution of the BRST ghosts, whi
h are ne
essary to implementthe 
onstraints (3.a), we �rst observe that, a

ording to (5), the 
urrents to be
onstrained are primary �elds with weights �(J�') = 1 � h', where h' is the H-weight of E'. Hen
e we must introdu
e a ghost pair (b'; 
') with weight (1+h';�h')for ea
h of the (D� l)=2 
onstraints (3.a). Ea
h ghost pair 
ontributes 12(h'(1�h')� 16 ) to the 
entral 
harge of the CWZW model [8℄. Making use ofX�+ h' = 2�̂ � � and X�+ h2' = 12tradjH2 ;the total 
ontribution of the ghost system 
an be written as
gh = l �D � 12g TrH2 + 24 �̂ � � ; (25)where gTrH2 = 12 tradjH2.By using the Freudenthal-deVries formula gD = 12�2, one arrives at eq. (1) forthe total 
entral 
harge of the CWZW model. For simply la
ed algebras �̂ = � and(1) redu
es to 
 = l � gDk + g (k + g � 1)2 ; (26:a)whi
h agrees with the sl(n;R) result in [9℄. By writing k+g as r=s it takes the form
 = l h1� g(g + 1)(r � s)2rs i ; (26:b)whi
h was obtained dire
tly from Toda theory (without using the KM imbedding)by Bilal and Gervais [3℄.
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