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Abstract:

By realizing the W-algebras of Toda field-theories as the algebras of gauge-
invariant polynomials of constrained Kac-Moody systems we obtain a simple algo-
rithm for constructing W-algebras without computing the VW-generators themselves.
In particular this realization yields an identification of a primary field basis for all
the W-algebras, quadratic bases for the A, B,C-algebras, and the relation of W-
algebras to Casimir algebras. At the quantum level it yields the general formula for

the Virasoro centre in terms of the KM- level.
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The so-called W-algebras are defined as polynomial extensions of the Virasoro
algebra by higher (> 3) conformal spin fields. The study of such polynomial ex-
tensions of the Virasoro algebra has been initiated by Zamolodchikov [1]. It has
been found [2] that a large class of polynomial extensions of the Virasoro algebra
is realized at the Poisson-bracket (PB) level by the Gelfand-Dickey (GD) Hamilto-
nian structure of Lax operators. More recently Toda theories have also been shown
to provide a realization of W-algebras [3]. Both of these theories may be regarded
as constrained Wess-Zumino-Novikov-Witten (WZNW) models. The Gelfand-Dickey
Poisson bracket structure can be obtained by a Hamiltonian reduction from the phase
space of a Kac-Moody (KM) algebra [4] and as shown in ref. [5], Toda theories may
be regarded as WZNW models reduced by certain conformally invariant constraints.
Therefore it is natural to expect that a unified treatment of the YWW-algebras could be
obtained by exploiting the structure of the constrained KM (CKM) structure. The
aim of this paper is to demonstrate that indeed the W-algebras in the Toda theory
and the GD algebras are different manifestations of the same CKM algebra. Further-
more the study of W-algebra is much simpler at the CKM level. The simplicity is
due to the fact that the key eqs. of the CKM theory can be solved by a linear, itera-
tive, algebraic process, which is due to the nilpotent nature of the constraint algebra.
Here we shall only present the main results and for a more complete mathematical

elaboration refer to [6].

All our results are based on the fact that the CKM theory is a gauge theory
(with the gauge transformations generated by the first class constraints) and that
the gauge group is nilpotent.

Our first set of results rests on the observation that the differential eqgs. used to define
the W-algebra in the Toda and GD theories [2,3] are nothing but the gauge-invariant
form of the standard WZNW equation dg = J-g which relates the group-valued
WZNW field g(z) to the KM current J(z). This observation leads to the identification
of the W-algebras of Toda theory with the PB algebra of gauge invariant polynomials
of the constrained currents and their derivatives (differential polynomials). Since
the original constraints together with any complete gauge fixing form a system of
second class constraints we get an alternative identification of the W-algebra as the
Dirac-bracket algebra of polynomials of gauge fixed currents (and their derivatives).
Chosing a special gauge, the diagonal gauge, we immediately obtain the free-field
representation of the W-algebra and find that it is nothing but the gauge invariant
extension of the corresponding Casimir algebra. As a by-product we also find a simple
criterion to decide on the differential or pseudo-differential nature of the relevant
operator, which yields that for the groups A, B, C, G5 one has a differential operator

while for the D, E and F, groups one has a pseudo-differential one.



Our second set of results is based on the observation that the Dirac bracket
version of the W-algebra may be implemented by the action of the KM algebra only.
By using the fact that the gauge fixing constraints can be chosen to be linear in the
currents (DS-gauges) the KM-implementation becomes particularly simple and can
be solved in a linear, algebraic and iterative manner. By using DS-gauges we identify
a primary field basis for all the YW-algebras. We also show that quadratic bases exist
only for the A, B, C' groups and identify them in these cases.

Our final result is a first step in quantizing the CKM theory. We compute
the quantum corrections to the classical center, ¢, of the Virasoro subalgebra of
the corresponding W-algebra for highest weight representations. There are three
contributions to ¢, namely, those from the Sugawara energy-momentum tensor, the
improvement term (which emerges automatically in this framework) and the BRST

ghosts. The sum of the three contributions produces the simple and elegant formula

. 1 2
C:l—12< k+gp—ﬁp> , (1)

where [ is the rank of GG, k is the level of the KM algebra, g is the dual Coxeter
number of G, and p (resp. p) is half the sum of the positive roots (resp. coroots) of
G. As usual the norm of the highest root is taken to be v/2. Of course, until other
considerations, such as the unitarity of the representations are investigated, the range
of k (in particular its sign) is not determined.

We begin by defining the constrained WZNW or KM theory. Let us recall that in
the WZNW model the group valued field, g(z, z) and the corresponding KM currents
J(z), J(Z), subject to the equations of motion, satisfy

9(2,2) = g(2) - g(2)  0g(z) = J(2) - g(2), 0g(z) =—g(2)J(2). (2)

Let us now consider WZNW fields with values in a maximally non-compact Lie group

G (i.e. a Lie group generated by the real linear span of the conventional Cartan —

Weyl operators (H;, E1y,),i=1...1, k=1...,(D—1)/2, (D = dim G). We define
the constrained KM theory by imposing the following constraints on the currents

trJE, =J"% = p, , o€ Pt (3.a)

where ®* denotes the set of positive roots and the constants ju, are zero for all
but the simple roots. As shown previously [5] these constraints reduce the WZNW
theories to Toda theories. By a suitable choice of the constants p, the currents
fulfilling (3.a) are of the form

l
J(z)=I_+j(z) , I-=) E_q,
=1

l

i(2) = i) Hi+ Y j%(2)E,,

=1 pedt



where {E,,} are the [ simple root vectors. The constraints for J are very similar to
(3.a) with ¢y replaced by —p. The maximal subgroup of the KM group G which
leaves the form (3.b) of the currents invariant is the maximally nilpotent subgroup,
N, generated by the E,, (¢ € ®1) and implemented by the (D — [)/2 constrained
KM-currents J~%(z). Thus the CKM theory is actually a gauge theory, in which
all but [ of the (D + [)/2 components of J are gauge components. This situation is
reflected at the CWZNW-level by the fact that there are only [ independent gauge-
invariant functions of g(z,z) (e.g. the [ Toda fields). In particular there exists a
unique Virasoro density L(J) that commutes weakly with the constraints (3.a) and

is therefore gauge-invariant, namely
1 2 /
L(J)zitrJ —trHJ', (4)

where H = p'H; and p is as in (1) [5]. L(J) is actually the T’ ;-component of the
improved energy momentum tensor of the Toda theory. Under conformal transfor-

mations generated by this improved stress tensor the current transforms as
{L@), T} = ([H.I @)+ J ()8 + [H, T (@))6 ~ HS", (5)

where 0 = §(z—y), i.e. with exception of the H-component of J all entries are primary
with conformal weights equal to the H-weights plus one.

The currents J(z) in (2), and the gauge-transformations corresponding to the
E,, act on each column of g(z) separately, and since each column is a copy of the
defining representation of (G, it contains only one component e say (namely the lowest
weight component) satisfying F, e =0, and hence only one component that is gauge-
invariant. It is natural to eliminate the gauge-covariant elements of each column in
favour of e, and if one does so, one finds that because of the form of J(z) in (3)
the elimination procedure is iterative and leads to a linear differential (or pseudo-

differential) equation for g, i.e. an equation of the form
n—1
(a" +3 PT(J)E?’") =0 (6)
r=1

(or a similar pseudo-differential equation in which some d~!’s appear). In this equa-
tion the coefficients P"(J) of the 0" are polynomials in the currents and their deriva-
tives, and are gauge-invariant. The operator on the L.h.s of (6) is used in the Toda
and GD theories to define the W-algebra (the independent coefficients of the 9" be-
ing the base elements) and thus the reduction (2) — (6) identifies the W-algebras
as the algebras of gauge-invariant polynomials of the constrained currents and their

derivatives.



We now introduce a special SL(2, R) subgroup of G, which plays a central role.
This SL(2, R) subgroup, which we shall denote by S, is defined as that generated
by {I+,H}, where I_ is as in (3.b), H is as in (4), and I is then a unique linear
combination of the E,, which we do not need to exhibit explicitly. The importance
of the group S is that
(a) the simple roots-vectors E,, are all eigenvectors of ad H with eigenvalue unity,
(b) the adjoint representation of G' decomposes into [ irreducible (tensor) representa-

tions of S whose highest weights j are just the exponents (orders of the Casimirs

minus one) of G,

(c) the condition for the linear constraints imposed on the current components to
be a gauge fixing is that J,; must have one non-zero component in each of the

[ irreducible representations of S appearing in the decomposition of the adjoint

of G.

Two natural gauges which satisfy this condition are the diagonal and Drinfeld-Sokolov

(DS) gauges, i.e.

i) = 0 (H:  and  jps(2) =) jhu(2)F, (7)
i=1 p>2
where the p are the orders of the ! independent Casimirs* of G and the F), are
generators with H-weights (p—1) satisfying condition (c) above. Note that j2. is
just L(J).

In the diagonal gauge the W-algebra generators, P"(.J), reduce to P"(j*H;), and
since the Cartan KM currents j* satisfy free-field KM commutation relations, this
gauge provides us immediately with the free-field representation of the WW-algebra.
Furthermore, if in the algebra of the P (j*H;) derivatives higher than the first are
dropped, the resulting ‘truncated’ YW-algebra is easily seen to be just KM-Casimir
algebra studied by Bais et. al [7], restricted to its Cartan subalgebra. But at the
Poisson-bracket level the restriction to the Cartan subalgebra is actually isomorphic
to the full KM-Casimir algebra [6]. Hence, at the PB-level the truncated W-algebra
may be identified with the Casimir-algebra. Conversely, one may say that the full
Wh-algebra is a deformation of the Casimir algebra, where the Casimir operators
are restricted to the space of constrained currents (3.b) and higher derivatives are
included in order to ensure gauge-invariance. From this correspondence and the
orders of the Casimirs it is easy to see that a quadratic basis for the VW-algebras can
exist only for the A, B,C groups [6].

The S-group may also be used to obtain a simple criterion for the pseudo-

differential nature of the Toda-GD equation (6) as follows: from the form of J(z) in

* Note that D,,, possesses two independent Casimirs of order 2n



(2) one sees that the elimination procedure (2) — (6) requires no 9~ 1’s if, and only
if, the only element in the kernel of 1 is e itself. But this is just the condition for the
defining representation, F', of GG to be irreducible with respect to the group S. Thus
the criterion for eq. (6) to be pseudo-differential is just the S-reducibility of F. It is
easy to verify that F'is S-irreducible for the A, B, C, G2-groups and S-reducible for
the D, E, F, groups, which leads to the result stated earlier.

The importance of the DS-gauges is that the gauge-transformation U(J) that

transforms any current J(z) to its DS-form
UJU I+ 0UU "t = J,4(2) (8)

is unique and is a polynomial in J(z) and its derivatives. The uniqueness of U(.J)
means that the DS-gauges define a complete gauge-fixing (with no Gribov ambiguities
for example). Thus the ring of all gauge-invariant differential polynomials {W (.J)} is
finitely generated and in particular the [ components jb¢ of J,s can be used as the
representatives (in this gauge) of [ base elements WP(.J) of {W (J)}.

For example taking G = SL(2, R):

(9 ) 0) o
e U(J) = (é _19> and  jps(J) = 6% +j =0 1o

In fact j,s = L(J), where L(.J) is the improved Virasoro operator defined in (4)
and is the simplest example of a gauge invariant polynomial. Note, that in the
identification WP(J) = j5s each DS-gauge corresponds to a different choice of basis
of the W-algebra.

The straightforward way to compute the W-algebra relations explicitly would
be to choose a basis {WP} where the | elements WP are differential polynomials
of the currents and simply calculate their Poisson brackets. In practice this is not
tractable, since first one has to find the WP’s as explicit functions of the KM currents
which is quite cumbersome and second the calculation of the Poisson brackets of
complicated polynomials is rather tedious. We now show that there is a way to
compute the W-algebra relations without computing the WP’s themselves. As the
WP’s are gauge invariant it suffices to know them as functions of the [ independent
gauge fixed currents Jé’ s In fact there is a class of gauges where the WP’s are just
the Jg f’s themselves. The price one has to pay is that the computations to be done
involve Dirac brackets, rather than Poisson brackets, because the Toda and the gauge

fixing constraints together form a second class system. Though in general the Dirac



procedure is quite hard to implement it becomes tractable in our case due to the
special nilpotent form of the Toda constraints and the linear gauge choices.

The W-algebra relations may be summarized by the standard formula:

W) = [ dy agly) (W), WP(a)) (11.0)

where the p,q are the orders of the independent Casimirs and the a,’s arbitrary

parameter functions. After gauge fixing eq. (11.a) becomes:
owP (z) = /dy aq(y) {wi(y), w? (x)}*, where w? = WP(J97). (11.0)

In eq. (11.b) {, }* denotes the Dirac bracket. To compute the r.h.s. of (11.b) we

write it in the form:

v (20 ('), 0 @) + s W), 0 @), (12)

where the ag are defined as solution of
ag {w?, ¢} +ag {c’,c*} =0, (12.0)

and {c“} is the set of D—I constraints. Although eqs. (12.b) need only be solved on
the ‘constraint surface’ (defined by ¢* = 0) for ag(aq, Jg¢), in general it is difficult to
find the solution even then, since it is equivalent to inverting the ‘constraint matrix’,
{c®,c?}. However the Toda constraints are such that (12.b) is tractable, and when
the result is substituted into (12.a) JwP is quite simple. In fact in the DS-gauges
(12.b) can be solved in an iterative, algebraic manner.

The crucial property of the DS-gauges is that all gauge fixing conditions are linear
in the currents and that the parameters of the gauge transformations are differential
polynomials of the currents. These properties allow us to identify the wP’s with the
currents in the DS gauge j5s. Thus in the DS gauges the w?’s and the constraints
¢ in (12) are just the current components, up to constants, therefore (12.a) can be

rewritten as:
338(0) = [ dy(auw) 172:0).385(@)) + a90) (7 0), 32} ) |eomo (130
where the ag’s satisfy
(aq 1780 7} + ag {7, 7} ) vz = 0. (13.5)
Exploiting the linearity of eq. (13.a) in j,s we may rewrite it as:

SpJps = [R, Jps] + R/, R(a) = a,F* + agT?, (14)



where the F'9 are conjugate to the F), in (7), Tr F1F, = 69, and T are the remaining
(matrix) generators of the Lie algebra of G. Now eq. (13.b) can be interpreted in the
following way. Given the a,’s as free parameter functions, find R(aq, jps) such that
the KM-transformation (14) keeps the DS-current form-invariant. In other words
determine the ag(ag, jps) such that J,s + 0rJps is still in the same gauge as Jps
and use these ag to compute dr.Jps. It turns out that this is a very efficient way
to calculate the dpJ,s and hence the W-algebra relations, as we shall illustrate on
the example of SL(3, R). It may seem surprising that the problem of inverting the
‘constraint matrix’ can be solved in such a relatively simple way, but this may perhaps
be understood as follows. In the DS gauges all of the constraints are linear and hence
the problem would be completely trivial if the symplectic form were constant. Thus
the only complication in our case (apart from the problem being infinite dimensional
in a rather harmless way) is that the KM symplectic form is not constant but linear
in the variables J. This latter fact and the nature of the Toda constraints makes the
problem non-trivial but still tractable.

As the simplest non-trivial example let us consider SL(3, R). In this case the

special sl(2, R) subalgebra S is generated by

1 0 O 0 2 0 0 0 0
H={0 0 o), I,=[00 2] and I_=[1 0 0], (15
0 0 -1 0 0 0 0 1 0
and the gauge fixed currents J,s in (7) are
Jos(w) = I- + () Fs + j°(2) F3 | (16.a)
where
0 ¢t 0 0 0 1
F=F#)=|0 0 1-t and  Fy=[0 0 0 (16.D)
0 0 O 0 0 0

Here t is a parameter which distinguishes the different DS-gauges. The ‘Wronskian
gauge’ t = 1 is the one usually used in the literature [2,3] and in this gauge the
F1, ¢=2,3, in (14) are just the transpose of F» and Fj. Applying our algorithm we
find that

R(a,jps) = asF? + asF> + AR(a, jps), (17)

where
w v—u v —2d"
AR(a,jps) =azjps +asH+ | 0 u v —2u/ (18.a)
0 ag—al —2u



and .
U = g(a&jgs o ag) y U= a’3jgs - a,2/' (18b)

The variation of J,s under the KM transformation (14) using this R is then found
to be :

025% = az(5%) + 2a45° — 24y’
025" = (13) + 3ah5°% + afj — al
035% = 2a3(5°) + 3a35° — (azj?)” +a(w’ (19)
035° = [(33)"+ 22(5%)" = 2(°)"]
+ah[2(2)2 + 2% - 2(2)"] - 24 (%) — 245 + 248" .

Note that the components of R(a,j,s) in (17) are linear functions of the current
components, and consequently dr.J,s is at most quadratic in .J,s, which implies that
the Poisson brackets of the VW-generators are also (at most) quadratic polynomials.
This is not always the case, as can be checked on the example of Bs.
From (19) one can read off the SL(3, R) W-algebra relations:
(W2(z), W2(y)} = (W?) (2)6 + 2W?(x)d" — 26"
{(W2(z), W3(y)} = 2W3) ()0 + 3W3(x)d" — [W(2)d])" + 5
{W3(2), W3(y)} = [3(W?)'W? + (W?)" — 3(W?)")(2)8
+[3W?)? +2(W°) = 2(W?)")(2)8" = 2(W?) (2)6" — 4W>(2)8" + 35,
(20)
where § = d(x—y). Note that for the CKM group-valued field we have dg = Ry,
from which the variations of any field, such as the Toda field can be found. Of course
the SL(3, R) W-algebra is well known and has been used here only for illustration.
The true power of the algorithm becomes apparent only when it is applied to more
complicated groups. In Ref. [6], for example, it was used to obtain the W-algebras
of the By and G2 groups.
Let us now consider the question of primary field bases for W-algebras. Observe

that the W3 generator in (20) is not a primary field with respect to W2, however

- 1

W3 — W3 o §(W2)/
is a primary field of weight 3. We now show that a primary field basis can be identified
for any group G. For this we chose the special DS gauge (highest weight gauge) in
which the generators F), in (7) are the highest weight vectors, E, of the S group
occuring in the adjoint of G (for the SL(3, R) example above this is the ¢t = 1/2
gauge). That is we now chose the DS gauge

jHW Z]HW P _L )I++ZJ2W(Z)EP (210’)

p>2 p>3



where
Iy, Ep] = 0. (21.b)

The conformal transformations (5) do not respect this (or any other DS) gauge be-
cause the inhomogeneous term in (5) is diagonal and the DS-gauges have no diagonal
component. However, we can find a closely related gauge which has a diagonal
component to absorb the inhomogeneous term by making the gauge transformation

exp(01,), where 0% — ¢’ = j2 . In this way we obtain the gauge

Jo=20-H+Y jh By, (22)
p>3

where the j5y, p > 3 in (22) and (21.a) are the same, because I, commutes with
the E,’s and 0’1 has no component along the E, for p > 3. The conformal trans-
formation (5) leaves (22) form-invariant and gives rise to the following variation of

the currents:

174
50 = (af)’ + %

0jfw = al(ihw) +pa' iy, p=3. (23)
Eq. (23) shows that 6 is not a primary field, but the j%,, (p > 3) are primary fields
of conformal spin p. On the other hand, because the highest weight gauge is a DS
gauge the current components j4,, p > 3, together with L(J), define a basis, W? of
the W-algebra. Combining the two results we see that this is the required primary
field basis of the WW-algebra and the weights of a base element WP, p > 3 is just p
itself.

It is easy to see from (14) that the degree of the polynomial §j,s(2) in jps(2)
cannot exceed the nilpotency index of adj,s(z), and this means that in the corre-
sponding basis WP, the degree of the W-algebra cannot exceed the nilpotency index.
In particular, the W-algebra will be quadratic if the nilpotency index of j,s(z) is
2. We already know that the WW-algebra cannot be quadratic for the D, E, Fy, G2
groups, but we can now show that for the remaining (A,B,C') groups there exist
bases in which it is quadratic. The point is that, for these groups, the j,s(z) can be
chosen to lie within any rectangular block in the upper triangle that intersects I (for
example the current (16) is not of block-form unless ¢ = 1) and then the nilpotency
index of j,s(z) is automatically 2. Note that in general the highest weight gauge
does not lie within such a rectangular block and does not have nilpotency index 2.

Finally we turn to the derivation of the result (1) for the central charge of the
quantized CKM theory. The contribution of the CKM-fields to the central charge is
just the central charge of the improved energy-momentum tensor L(J) in (4), that is

the central charge of the Sugawara energy-momentum tensor plus the contribution



of the improvement term, i.e.

Corn = Z% — 12k TrH?. (24)
To determine the contribution of the BRST ghosts, which are necessary to implement
the constraints (3.a), we first observe that, according to (5), the currents to be
constrained are primary fields with weights A(J~%) =1 — hy,, where h,, is the H-
weight of E,. Hence we must introduce a ghost pair (b, c¢,) with weight (1+h,, —h,,)
for each of the (D —1)/2 constraints (3.a). Each ghost pair contributes 12(h,(1—

hy) — ¢) to the central charge of the CWZW model [8]. Making use of

. 1
Zh@ =2p-p and Zhi = itradeZ,
o+ o+
the total contribution of the ghost system can be written as
cgh =1 — D — 129 TtH> +24p - p, (25)

where gTrH? = Ltraq H?
By using the Freudenthal-deVries formula gD = 12p%, one arrives at eq. (1) for
the total central charge of the CWZW model. For simply laced algebras p = p and

(1) reduces to

gD 2
=]-—=—(k -1 26.
=l (g =17, (26.0)

which agrees with the sl(n, R) result in [9]. By writing k+g¢ as r/s it takes the form

c=1|1-g(g+1) (r ;88)2 , (26.b)

which was obtained directly from Toda theory (without using the KM imbedding)
by Bilal and Gervais [3].
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