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The so-alled W-algebras are de�ned as polynomial extensions of the Virasoroalgebra by higher (� 3) onformal spin �elds. The study of suh polynomial ex-tensions of the Virasoro algebra has been initiated by Zamolodhikov [1℄. It hasbeen found [2℄ that a large lass of polynomial extensions of the Virasoro algebrais realized at the Poisson-braket (PB) level by the Gelfand-Dikey (GD) Hamilto-nian struture of Lax operators. More reently Toda theories have also been shownto provide a realization of W-algebras [3℄. Both of these theories may be regardedas onstrained Wess-Zumino-Novikov-Witten (WZNW) models. The Gelfand-DikeyPoisson braket struture an be obtained by a Hamiltonian redution from the phasespae of a Ka-Moody (KM) algebra [4℄ and as shown in ref. [5℄, Toda theories maybe regarded as WZNW models redued by ertain onformally invariant onstraints.Therefore it is natural to expet that a uni�ed treatment of the W-algebras ould beobtained by exploiting the struture of the onstrained KM (CKM) struture. Theaim of this paper is to demonstrate that indeed the W-algebras in the Toda theoryand the GD algebras are di�erent manifestations of the same CKM algebra. Further-more the study of W-algebra is muh simpler at the CKM level. The simpliity isdue to the fat that the key eqs. of the CKM theory an be solved by a linear, itera-tive, algebrai proess, whih is due to the nilpotent nature of the onstraint algebra.Here we shall only present the main results and for a more omplete mathematialelaboration refer to [6℄.All our results are based on the fat that the CKM theory is a gauge theory(with the gauge transformations generated by the �rst lass onstraints) and thatthe gauge group is nilpotent.Our �rst set of results rests on the observation that the di�erential eqs. used to de�netheW-algebra in the Toda and GD theories [2,3℄ are nothing but the gauge-invariantform of the standard WZNW equation �g = J �g whih relates the group-valuedWZNW �eld g(z) to the KM urrent J(z). This observation leads to the identi�ationof theW-algebras of Toda theory with the PB algebra of gauge invariant polynomialsof the onstrained urrents and their derivatives (di�erential polynomials). Sinethe original onstraints together with any omplete gauge �xing form a system ofseond lass onstraints we get an alternative identi�ation of the W-algebra as theDira-braket algebra of polynomials of gauge �xed urrents (and their derivatives).Chosing a speial gauge, the diagonal gauge, we immediately obtain the free-�eldrepresentation of the W-algebra and �nd that it is nothing but the gauge invariantextension of the orresponding Casimir algebra. As a by-produt we also �nd a simpleriterion to deide on the di�erential or pseudo-di�erential nature of the relevantoperator, whih yields that for the groups A, B, C, G2 one has a di�erential operatorwhile for the D, E and F4 groups one has a pseudo-di�erential one.



Our seond set of results is based on the observation that the Dira braketversion of the W-algebra may be implemented by the ation of the KM algebra only.By using the fat that the gauge �xing onstraints an be hosen to be linear in theurrents (DS-gauges) the KM-implementation beomes partiularly simple and anbe solved in a linear, algebrai and iterative manner. By using DS-gauges we identifya primary �eld basis for all the W-algebras. We also show that quadrati bases existonly for the A, B, C groups and identify them in these ases.Our �nal result is a �rst step in quantizing the CKM theory. We omputethe quantum orretions to the lassial enter, , of the Virasoro subalgebra ofthe orresponding W-algebra for highest weight representations. There are threeontributions to , namely, those from the Sugawara energy-momentum tensor, theimprovement term (whih emerges automatially in this framework) and the BRSTghosts. The sum of the three ontributions produes the simple and elegant formula = l � 12�pk + g �̂� 1pk + g ��2 ; (1)where l is the rank of G, k is the level of the KM algebra, g is the dual Coxeternumber of G, and � (resp. �̂) is half the sum of the positive roots (resp. oroots) ofG. As usual the norm of the highest root is taken to be p2. Of ourse, until otheronsiderations, suh as the unitarity of the representations are investigated, the rangeof k (in partiular its sign) is not determined.We begin by de�ning the onstrained WZNW or KM theory. Let us reall that inthe WZNW model the group valued �eld, g(z; �z) and the orresponding KM urrentsJ(z), ~J(�z), subjet to the equations of motion, satisfyg(z; �z) = g(z) � g(�z) �g(z) = J(z) � g(z) ; ��g(�z) = �g(�z) ~J(�z) : (2)Let us now onsider WZNW �elds with values in a maximally non-ompat Lie groupG (i.e. a Lie group generated by the real linear span of the onventional Cartan {Weyl operators (Hi; E�'k), i = 1 : : : l, k = 1 : : : ; (D� l)=2, (D = dim G). We de�nethe onstrained KM theory by imposing the following onstraints on the urrentstrJE' = J�' = �' ; ' 2 �+; (3:a)where �+ denotes the set of positive roots and the onstants �' are zero for allbut the simple roots. As shown previously [5℄ these onstraints redue the WZNWtheories to Toda theories. By a suitable hoie of the onstants �' the urrentsful�lling (3.a) are of the formJ(z) =I� + j(z) ; I� = lXi=1 E��i ;j(z) = lXi=1 ji(z)Hi + X'2�+ j'(z)E'; (3:b)



where fE�ig are the l simple root vetors. The onstraints for ~J are very similar to(3.a) with 'k replaed by �'k. The maximal subgroup of the KM group G whihleaves the form (3.b) of the urrents invariant is the maximally nilpotent subgroup,N , generated by the E', (' 2 �+) and implemented by the (D � l)=2 onstrainedKM-urrents J�'(z). Thus the CKM theory is atually a gauge theory, in whihall but l of the (D + l)=2 omponents of J are gauge omponents. This situation isreeted at the CWZNW-level by the fat that there are only l independent gauge-invariant funtions of g(z; �z) (e.g. the l Toda �elds). In partiular there exists aunique Virasoro density L(J) that ommutes weakly with the onstraints (3.a) andis therefore gauge-invariant, namelyL(J) = 12tr J2 � trHJ 0; (4)where H = �̂iHi and �̂ is as in (1) [5℄. L(J) is atually the T++-omponent of theimproved energy momentum tensor of the Toda theory. Under onformal transfor-mations generated by this improved stress tensor the urrent transforms asfL(x); J(y)g = �[H; J(x)℄ + J(x)�Æ0 + [H; J 0(x)℄Æ �HÆ00; (5)where Æ = Æ(x�y), i.e. with exeption of the H-omponent of J all entries are primarywith onformal weights equal to the H-weights plus one.The urrents J(z) in (2), and the gauge-transformations orresponding to theE', at on eah olumn of g(z) separately, and sine eah olumn is a opy of thede�ning representation of G, it ontains only one omponent Æe say (namely the lowestweight omponent) satisfying E' Æe=0, and hene only one omponent that is gauge-invariant. It is natural to eliminate the gauge-ovariant elements of eah olumn infavour of Æe, and if one does so, one �nds that beause of the form of J(z) in (3)the elimination proedure is iterative and leads to a linear di�erential (or pseudo-di�erential) equation for Æe, i.e. an equation of the form��n + n�1Xr=1 P r(J)�r� Æe= 0 (6)(or a similar pseudo-di�erential equation in whih some ��1's appear). In this equa-tion the oeÆients P r(J) of the �r are polynomials in the urrents and their deriva-tives, and are gauge-invariant. The operator on the l.h.s of (6) is used in the Todaand GD theories to de�ne the W-algebra (the independent oeÆients of the �r be-ing the base elements) and thus the redution (2) ! (6) identi�es the W-algebrasas the algebras of gauge-invariant polynomials of the onstrained urrents and theirderivatives.



We now introdue a speial SL(2; R) subgroup of G, whih plays a entral role.This SL(2; R) subgroup, whih we shall denote by S, is de�ned as that generatedby fI�; Hg, where I� is as in (3.b), H is as in (4), and I+ is then a unique linearombination of the E�i whih we do not need to exhibit expliitly. The importaneof the group S is that(a) the simple roots-vetors E�i are all eigenvetors of adH with eigenvalue unity,(b) the adjoint representation of G deomposes into l irreduible (tensor) representa-tions of S whose highest weights j are just the exponents (orders of the Casimirsminus one) of G,() the ondition for the linear onstraints imposed on the urrent omponents tobe a gauge �xing is that Jgf must have one non-zero omponent in eah of thel irreduible representations of S appearing in the deomposition of the adjointof G.Two natural gauges whih satisfy this ondition are the diagonal and Drinfeld-Sokolov(DS) gauges, i.e.j(z) = lXi=1 ji(z)Hi and jDS(z) =Xp�2 jpDS(z)Fp; (7)where the p are the orders of the l independent Casimirs* of G and the Fp aregenerators with H-weights (p�1) satisfying ondition () above. Note that j2DS isjust L(J).In the diagonal gauge theW-algebra generators, P r(J), redue to P r(jiHi), andsine the Cartan KM urrents ji satisfy free-�eld KM ommutation relations, thisgauge provides us immediately with the free-�eld representation of the W-algebra.Furthermore, if in the algebra of the P r(jiHi) derivatives higher than the �rst aredropped, the resulting `trunated' W-algebra is easily seen to be just KM-Casimiralgebra studied by Bais et. al [7℄, restrited to its Cartan subalgebra. But at thePoisson-braket level the restrition to the Cartan subalgebra is atually isomorphito the full KM-Casimir algebra [6℄. Hene, at the PB-level the trunated W-algebramay be identi�ed with the Casimir-algebra. Conversely, one may say that the fullW-algebra is a deformation of the Casimir algebra, where the Casimir operatorsare restrited to the spae of onstrained urrents (3.b) and higher derivatives areinluded in order to ensure gauge-invariane. From this orrespondene and theorders of the Casimirs it is easy to see that a quadrati basis for the W-algebras anexist only for the A;B;C groups [6℄.The S-group may also be used to obtain a simple riterion for the pseudo-di�erential nature of the Toda-GD equation (6) as follows: from the form of J(z) in* Note that D2n possesses two independent Casimirs of order 2n



(2) one sees that the elimination proedure (2) ! (6) requires no ��1's if, and onlyif, the only element in the kernel of I+ is Æe itself. But this is just the ondition for thede�ning representation, F , of G to be irreduible with respet to the group S. Thusthe riterion for eq. (6) to be pseudo-di�erential is just the S-reduibility of F . It iseasy to verify that F is S-irreduible for the A, B, C, G2-groups and S-reduible forthe D, E, F4 groups, whih leads to the result stated earlier.The importane of the DS-gauges is that the gauge-transformation U(J) thattransforms any urrent J(z) to its DS-formUJU�1 + �UU�1 = JDS(z) (8)is unique and is a polynomial in J(z) and its derivatives. The uniqueness of U(J)means that the DS-gauges de�ne a omplete gauge-�xing (with no Gribov ambiguitiesfor example). Thus the ring of all gauge-invariant di�erential polynomials fW (J)g is�nitely generated and in partiular the l omponents jpDS of JDS an be used as therepresentatives (in this gauge) of l base elements W p(J) of fW (J)g.For example taking G = SL(2; R):U � �(z) j(z)1 ��(z)�U�1 + �UU�1 = � 0 jDS(z)1 0 � (9)we get U(J) = � 1 ��0 1 � and jDS(J) = �2 + j � �0 : (10)In fat jDS = L(J), where L(J) is the improved Virasoro operator de�ned in (4)and is the simplest example of a gauge invariant polynomial. Note, that in theidenti�ation W p(J) = jpDS eah DS-gauge orresponds to a di�erent hoie of basisof the W-algebra.The straightforward way to ompute the W-algebra relations expliitly wouldbe to hoose a basis fW pg where the l elements W p are di�erential polynomialsof the urrents and simply alulate their Poisson brakets. In pratie this is nottratable, sine �rst one has to �nd theW p's as expliit funtions of the KM urrentswhih is quite umbersome and seond the alulation of the Poisson brakets ofompliated polynomials is rather tedious. We now show that there is a way toompute the W-algebra relations without omputing the W p's themselves. As theW p's are gauge invariant it suÆes to know them as funtions of the l independentgauge �xed urrents Jpgf . In fat there is a lass of gauges where the W p's are justthe Jpgf 's themselves. The prie one has to pay is that the omputations to be doneinvolve Dira brakets, rather than Poisson brakets, beause the Toda and the gauge�xing onstraints together form a seond lass system. Though in general the Dira



proedure is quite hard to implement it beomes tratable in our ase due to thespeial nilpotent form of the Toda onstraints and the linear gauge hoies.The W-algebra relations may be summarized by the standard formula:ÆW p(x) = Z dy aq(y) fW q(y);W p(x)g; (11:a)where the p; q are the orders of the independent Casimirs and the aq's arbitraryparameter funtions. After gauge �xing eq. (11.a) beomes:Æwp(x) = Z dy aq(y) fwq(y); wp(x)g? ; where wp = W p(Jgf ): (11:b)In eq. (11.b) f; g? denotes the Dira braket. To ompute the r.h.s. of (11.b) wewrite it in the form:Z dy �aq(y)fwq(y); wp(x)g+ a�(y)f�(y); wp(x)g�; (12:a)where the a� are de�ned as solution ofaq fwq; �g+ a� f� ; �g = 0; (12:b)and f�g is the set of D�l onstraints. Although eqs. (12.b) need only be solved onthe `onstraint surfae' (de�ned by � = 0) for a�(aq; Jgf ), in general it is diÆult to�nd the solution even then, sine it is equivalent to inverting the `onstraint matrix',f�; �g. However the Toda onstraints are suh that (12.b) is tratable, and whenthe result is substituted into (12.a) Æwp is quite simple. In fat in the DS-gauges(12.b) an be solved in an iterative, algebrai manner.The ruial property of the DS-gauges is that all gauge �xing onditions are linearin the urrents and that the parameters of the gauge transformations are di�erentialpolynomials of the urrents. These properties allow us to identify the wp's with theurrents in the DS gauge jpDS. Thus in the DS gauges the wp's and the onstraints� in (12) are just the urrent omponents, up to onstants, therefore (12.a) an berewritten as:ÆjpDS(x) = Z dy�aq(y) fjqDS(y); jpDS(x)g+ a�(y) fJ�(y); jpDS(x)g�j�=0 (13:a)where the a�'s satisfy �aq fjqDS; J�g+ a� fJ�; J�g�j=0 = 0: (13:b)Exploiting the linearity of eq. (13.a) in jDS we may rewrite it as:ÆRJDS = [R; JDS℄ + R0; R(a) = aqF q + a�T �; (14)



where the F q are onjugate to the Fp in (7), TrF qFp = Æqp, and T � are the remaining(matrix) generators of the Lie algebra of G. Now eq. (13.b) an be interpreted in thefollowing way. Given the aq's as free parameter funtions, �nd R(aq; jDS) suh thatthe KM-transformation (14) keeps the DS-urrent form-invariant. In other wordsdetermine the a�(aq; jDS) suh that JDS + ÆRJDS is still in the same gauge as JDSand use these a� to ompute ÆRJDS. It turns out that this is a very eÆient wayto alulate the ÆRJDS and hene the W-algebra relations, as we shall illustrate onthe example of SL(3; R). It may seem surprising that the problem of inverting the`onstraint matrix' an be solved in suh a relatively simple way, but this may perhapsbe understood as follows. In the DS gauges all of the onstraints are linear and henethe problem would be ompletely trivial if the sympleti form were onstant. Thusthe only ompliation in our ase (apart from the problem being in�nite dimensionalin a rather harmless way) is that the KM sympleti form is not onstant but linearin the variables J . This latter fat and the nature of the Toda onstraints makes theproblem non-trivial but still tratable.As the simplest non-trivial example let us onsider SL(3; R). In this ase thespeial sl(2; R) subalgebra S is generated byH = 0� 1 0 00 0 00 0 �11A ; I+ = 0� 0 2 00 0 20 0 01A and I� = 0� 0 0 01 0 00 1 01A ; (15)and the gauge �xed urrents JDS in (7) areJDS(x) = I� + j2(x)F2 + j3(x)F3 ; (16:a)where F2 = F2(t) = 0� 0 t 00 0 1�t0 0 0 1A and F3 = 0� 0 0 10 0 00 0 01A : (16:b)Here t is a parameter whih distinguishes the di�erent DS-gauges. The `Wronskiangauge' t = 1 is the one usually used in the literature [2,3℄ and in this gauge theF q; q=2; 3; in (14) are just the transpose of F2 and F3. Applying our algorithm we�nd that R(a; jDS) = a2F 2 + a3F 3 +�R(a; jDS); (17)where �R(a; jDS) = a2 jDS + a02H +0�u v � u0 v0 � 2u000 u v � 2u00 a2 � a03 �2u 1A (18:a)



and u = 13(a3j2DS � a003) ; v = a3j3DS � a002 : (18:b)The variation of JDS under the KM transformation (14) using this R is then foundto be : Æ2j2 = a2(j2)0 + 2a02j2 � 2a0002Æ2j3 = a2(j3)0 + 3a02j3 + a002j2 � a(IV)2Æ3j2 = 2a3(j3)0 + 3a03j3 � (a3j2)00 + a(IV)3Æ3j3 = a3[(j3)00 + 23j2(j2)0 � 23 (j2)000℄+ a03[ 23 (j2)2 + 2(j3)0 � 2(j2)00℄� 2a003(j2)0 � 43a0003 j2 + 23a(V)3 : (19)
Note that the omponents of R(a; jDS) in (17) are linear funtions of the urrentomponents, and onsequently ÆRJDS is at most quadrati in JDS, whih implies thatthe Poisson brakets of the W-generators are also (at most) quadrati polynomials.This is not always the ase, as an be heked on the example of B2.From (19) one an read o� the SL(3; R) W-algebra relations:fW 2(x);W 2(y)g = (W 2)0(x)Æ + 2W 2(x)Æ0 � 2Æ000fW 2(x);W 3(y)g = 2(W 3)0(x)Æ + 3W 3(x)Æ0 � [W 2(x)Æ℄00 + Æ(IV)fW 3(x);W 3(y)g = [ 23 (W 2)0W 2 + (W 3)00 � 23 (W 2)000℄(x)Æ+ [ 23 (W 2)2 + 2(W 3)0 � 2(W 2)00℄(x)Æ0 � 2(W 2)0(x)Æ00 � 43W 2(x)Æ000 + 23Æ(V) ;(20)where Æ = Æ(x�y). Note that for the CKM group-valued �eld we have Æg = Rg,from whih the variations of any �eld, suh as the Toda �eld an be found. Of oursethe SL(3; R) W-algebra is well known and has been used here only for illustration.The true power of the algorithm beomes apparent only when it is applied to moreompliated groups. In Ref. [6℄, for example, it was used to obtain the W-algebrasof the B2 and G2 groups.Let us now onsider the question of primary �eld bases forW-algebras. Observethat the W 3 generator in (20) is not a primary �eld with respet to W 2, however~W 3 = W 3 � 12(W 2)0is a primary �eld of weight 3. We now show that a primary �eld basis an be identi�edfor any group G. For this we hose the speial DS gauge (highest weight gauge) inwhih the generators Fp in (7) are the highest weight vetors, Ep of the S groupouring in the adjoint of G (for the SL(3; R) example above this is the t = 1=2gauge). That is we now hose the DS gaugejHW (z) =Xp�2 jpHW (z)Ep = L(J)I+ +Xp�3 jpHW (z)Ep (21:a)



where [I+; Ep℄ = 0: (21:b)The onformal transformations (5) do not respet this (or any other DS) gauge be-ause the inhomogeneous term in (5) is diagonal and the DS-gauges have no diagonalomponent. However, we an �nd a losely related gauge whih has a diagonalomponent to absorb the inhomogeneous term by making the gauge transformationexp(�I+), where �2 � �0 = j2HW . In this way we obtain the gaugej� = 2� �H +Xp�3 jpHWEp ; (22)where the jpHW ; p � 3 in (22) and (21.a) are the same, beause I+ ommutes withthe Ep's and �0I+ has no omponent along the Ep for p � 3. The onformal trans-formation (5) leaves (22) form-invariant and gives rise to the following variation ofthe urrents: Æ� = (a�)0 + a002 ÆjpHW = a(jpHW )0 + p a0jpHW ; p � 3: (23)Eq. (23) shows that � is not a primary �eld, but the jpHW (p � 3) are primary �eldsof onformal spin p. On the other hand, beause the highest weight gauge is a DSgauge the urrent omponents jpHW ; p � 3, together with L(J), de�ne a basis, W p ofthe W-algebra. Combining the two results we see that this is the required primary�eld basis of the W-algebra and the weights of a base element W p; p � 3 is just pitself.It is easy to see from (14) that the degree of the polynomial ÆjDS(z) in jDS(z)annot exeed the nilpoteny index of ad jDS(z), and this means that in the orre-sponding basis W p, the degree of the W-algebra annot exeed the nilpoteny index.In partiular, the W-algebra will be quadrati if the nilpoteny index of jDS(z) is2. We already know that the W-algebra annot be quadrati for the D, E, F4, G2groups, but we an now show that for the remaining (A,B,C) groups there existbases in whih it is quadrati. The point is that, for these groups, the jDS(z) an behosen to lie within any retangular blok in the upper triangle that intersets I+ (forexample the urrent (16) is not of blok-form unless t = 1) and then the nilpotenyindex of jDS(z) is automatially 2. Note that in general the highest weight gaugedoes not lie within suh a retangular blok and does not have nilpoteny index 2.Finally we turn to the derivation of the result (1) for the entral harge of thequantized CKM theory. The ontribution of the CKM-�elds to the entral harge isjust the entral harge of the improved energy-momentum tensor L(J) in (4), that isthe entral harge of the Sugawara energy-momentum tensor plus the ontribution



of the improvement term, i.e.CKM = k �Dk + g � 12kTrH2: (24)To determine the ontribution of the BRST ghosts, whih are neessary to implementthe onstraints (3.a), we �rst observe that, aording to (5), the urrents to beonstrained are primary �elds with weights �(J�') = 1 � h', where h' is the H-weight of E'. Hene we must introdue a ghost pair (b'; ') with weight (1+h';�h')for eah of the (D� l)=2 onstraints (3.a). Eah ghost pair ontributes 12(h'(1�h')� 16 ) to the entral harge of the CWZW model [8℄. Making use ofX�+ h' = 2�̂ � � and X�+ h2' = 12tradjH2 ;the total ontribution of the ghost system an be written asgh = l �D � 12g TrH2 + 24 �̂ � � ; (25)where gTrH2 = 12 tradjH2.By using the Freudenthal-deVries formula gD = 12�2, one arrives at eq. (1) forthe total entral harge of the CWZW model. For simply laed algebras �̂ = � and(1) redues to  = l � gDk + g (k + g � 1)2 ; (26:a)whih agrees with the sl(n;R) result in [9℄. By writing k+g as r=s it takes the form = l h1� g(g + 1)(r � s)2rs i ; (26:b)whih was obtained diretly from Toda theory (without using the KM imbedding)by Bilal and Gervais [3℄.
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