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1 IntrodutionOne of the interesting problems in quantum �eld theory in urved spae-times is to derive the indued energy momentum tensor and in partiularthe Hawking radiation [1℄ from the e�etive ation approah [2, 3, 4℄. Thesolution of this problem is important for studying the bakreation problemfor blak holes [5-8℄. The e�etive ation for quantized matter �elds in a blakhole metri is strongly nonloal and should desribe both the asymptotiHawking radiation and the vauum polarization e�ets [9℄.Most of the reent works on the Hawking radiation and bakreationproblem (see, for instane [2,5-8℄) onerned 2d blak holes. In partiular, ithas been shown that the 2d Hawking radiation an be derived from the 2de�etive ation [2,9℄. It is a priori not lear whether these results are of rele-vane for real 4d blak holes. On the other hand, the ovariant perturbationtheory for the 4d e�etive ation � as developed in [3,10℄ seems to be veryinvolved for onrete alulations. The results obtained so far are far frombeing omplete.In this paper we shall simplify the problem by onsidering s-modes ofminimally oupled massless salar �elds propagating in an arbitrary spheri-ally symmetri 4d spaetime. We ompute the ontribution of these modesto the 4d e�etive ation �. The part of � whih is not invariant underWeyl-resalings of the (r; t)-part of the metri is exatly alulated. For theinvariant part an appropriate perturbation expansion is developed. As anappliation the s-wave ontribution to the Hawking ux is obtained from thes-hannel e�etive ation for 4d blak holes. We demonstrate why and howthe 2d-alulations [2,5-8℄ are relevant for realisti 4d blak holes.The alulations are performed in the Eulidean formalism. The signonventions, e.g. for the Riemann tensor and the signature when we returnto Lorentzian spae-time after the alulations have been done, are the sameas in [11℄. We set =�h=G=1:2 SetupThe Eulidean ation for the oupled gravitational and salar �elds isSE = SgravE + S�E = � 116� Z Rpg d4x + 12 Z pgg�������� d4x: (1)2



For spherially symmetri spae-times it is onvenient to hoose adaptedoordinates for whih the metri takes the formds2 = g��dx�dx� = ab(xa)dxadxb + 
2(xa) !ijdxidxj; (2)where !ijdxidxj = (d�2 + sin2 �d'2) (3)is the metri of S2. The funtion 
 depends only on the oordinates (xa)=(x0; x1) = (t; r) and ab(xa) is the metri in the t � r setor. Note thatgab=ab.In a spherially symmetri spae-time we an expand a matter �eld intospherial harmonis. In partiular salar �elds in the s-hannel depend onlyon t and r, � = �(xa). For s-waves the ation (1) redues to the following2d ationSE = SgravE + S�E = �14 Z �
2 R+ !R + 2(r
)2�p d2x+ 2� Z 
2(r�)2p d2x; (4)where we took into aount that the volume of S2 is equal to 4�. Here Ris the salar urvature of the 2d-spae with metri ab, !R=2 is the salarurvature of S2 and (r
)2=ab�a
�b
.The purely gravitational part of the ation (4) is almost the ation belong-ing to 2d dilatoni gravity with two exeptions: �rst, the numerial oeÆientin front of (r
)2 is di�erent and seond, the ation (4) is not invariant un-der Weyl transformations due to the !R term whih is the 2d analog of theosmologial onstant in 4 dimensions. The ation for the salar �eld �(t; r)is quite di�erent from the ations usually onsidered in 2d-�eld theories [5-8℄beause of the unusual oupling of � to the dilaton �eld 
. The ation (4)is the 4d-ation for spherially symmetri gravitational and salar �elds andas suh should not be regarded as just another 2d-toy-model for gravity.The independent �eld equations whih follow from (4) are4
� � R2 � 4�(r�)2�
 = 0 (5) fromthe variation of 
, 3



4
2 � !R + 8�
2(r�)2 = 0; (6)whih is the trae of the variation with respet to ab, and the equation forthe salar �eld ra(
2ra�) = 0: (7) Here4 is the Laplae-Beltrami operator in 2-dimensional spae-time with themetri ab. Note that the matter part of the ation (4) is invariant under 2-dimensional Weyl transformations, ab ! e2�ab, and hene the partial traeT aa of the energy momentum tensor vanishes for spherially symmetri salar�elds.Without matter (�=0) the 2d-Eulidean blak holes(2)ds2 = �1� rgr �dt2 + dr21� rg=r ; 
 = r (8) aresolutions of (5,6) as it should be.3 E�etive AtionIn this setion we determine the s-wave ontribution of the quantized salar�eld to the e�etive ation. In partiular we shall show how this problem anbe redued to a 2d problem. Then we shall alulate the non Weyl-invariantpart of the s-hannel e�etive ation exatly and develop a perturbationtheory for the Weyl-invariant part.The Eulidean 4d-e�etive ation � is de�ned ase�� = Z D� e�S�E ; (9)where S�E = �12 Z �4�pg d4x (10)is the Eulidean ation for the minimally oupled salar �eld and 4 =4gis the 4d-Laplae-Beltrami operator. To de�ne the (formal) di�eomorphisminvariant measure in the path integral (9) we expand the �eld �(x�) in terms4



of the eigenfuntions of �4. For a spherially symmetri spae-time andadapted oordinates (2) this expansion reads�(x�) = Xnlm�nlm; (11)where �nlm = �lmn (t; r)Ylm(�; �); �4�nlm = �nl�nlm: (12) Herethe Ylm are the spherial harmonis and the eigenmodes are normalized withrespet to the 4-metri:h�nlmj�n0l0m0i = Z �nlm�n0l0m0pg d4x = Ænn0Æll0Æmm0 : (13) Thenthe path integral beomese�� = Z Ynlm dnlm exp �� 12Xnlm�nl 2nlm� = exp ��Xl (2l + 1)�l�; (14)where e��l = Z Yn dnlm exp �� 12Xn �nl 2nlm� (15)is the ontribution of the modes with quantum numbers (l; m) and we tookinto aount that the eigenvalues do not depend on the magneti quantumnumber m.The integrals (14,15) are of ourse ultraviolet divergent and must be reg-ularized. We shall use the zeta-funtion regularization [12℄. Any other o-variant regularization of (14) would yield the same result up to integrals ofloal terms of the form pg, pgR and pgR2;pg��R [13℄. The oeÆients ofthese ambigues terms should be determined by experiments or observationsin any ase. One an regularize every �l separately and then sum over allangular momenta to reover the total e�etive ation � =Pl(2l + 1)�l. Ingeneral the sum of the regularized �l's is still quadratially divergent. How-ever, the remaining quadrati and logarithmi divergenes an be absorbedby rede�ning oeÆients of the loal ounterterms. For the �nite non-loalterms of interest the regularization ommutes with taking the sum over the5



angular momentum setors. Hene, to obtain the nonloal ontribution ofthe di�erent setors to � one an apply the �-funtion regularization for everysetor separately.In this paper we shall alulate only the ontribution �s � �0 of thes-wave salar �elds to the total 4d e�etive ation:e��s = Z Yn dn00 exp �� 12Xn �n0 2n00�: (16)Now we shall show how (16) relates to the e�etive ation of a 2-dimensionaltheory. For that we introdue the omplete set of resaled s-modes'n(t; r) = p4�
(t; r)�n00(t; r) (17)whih are orthonormal with respet to the 2-metri abh'nj'n0i = Z 'n'n0p d2x = Ænn0 ; (18)ontrary to the �n00, whih are orthonormal with respet to the 4-metri g��.Then any �eld '(t; r)=p4�
�l=0(t; r) an be expanded as' =Xn n'n: (19)Also note that sine 
 in (2) had the dimension of a length (if we keepthe dimension of the gravitational onstant G), ' beomes dimensionless asrequired for a 2-dimensional salar �eld.It is easy to see that the 'n are the eigenmodes of the 2d-operatorÔ = ��4 + 4

 � (20)with the same eigenvalues �n=�n0 an in (12). Then (16) an be rewrittenas the funtional integral of a �eld theory in 2-dimensional spae time withthe metri ab:e��s = Z D' exp �� 12 Z 'Ô'p d2x�; (21)where the measure D' is the usual (formal) Lebeques measure. The lassial6



ation in (21) is of ourse just the ation S�E in (4) rewritten in terms of the2d-salar �eld '. From (21) it follows at one that�s = 12 log det Ô: (22)Thus, alulating the s-waves ontribution to the e�etive ation redues tothe problem of alulating the determinant of the operator Ô de�ned in 2d-spae with metri ab. This operator has the nie and important propertythat it transforms homogeneously under Weyl-resalingsab ! e2�ab =) Ô! e�2�Ô: (23)This immediately implies that the lassial 2d-ation for ' is Weyl invariant.As it is well-known [14℄, the 2d-e�etive ation eases to be Weyl invariantand the breaking is determined by the trae anomaly whih is proportionalto the �rst Seeley-deWitt oeÆient a1, whih in our ase isa1 = R6 � 4

 : (24) Thuswe have ab 2p Æ�sÆab = a14� : (25)This equation an easily be integrated if we hoose isothermal oordinates(the onformal gauge) ab = e2�fab; (26)where fab is the metri of the at 2d spae. In this gaugeR = �24� = �2e�2�4f� (27) and(25) simpli�es to Æ�sÆ� = 14��134f� + 4f

 �; (28)where 4f is the Laplae operator on at spae whih does not depend on �.7



Integrating (28) and expressing � in terms of R by means of eq. (27) oneends up with(n)�s[�;
℄ � �s[�;
℄ � �s[� = 0;
℄= 18� Z h 112 R 14 R� 4

 14 Rip d2x (29)whih is manifestly invariant under 2d-oordinate transformations. The �rstterm on the r.h.s in (29) has been obtained previously in [2,9℄.In [2℄ it hasbeen shown that it leads to the Hawking radiation for 2d blak holes. Weshall see in the following setion how it is related with the s-wave radiationof 4d blak holes. However, there is the seond term whih, as an easilybe heked, yields a infalling radiation ux. The amplitude of this radiationexeeds the outgoing ux oming from the �rst term by a fator 6. However,we must not forget that in (29) we alulated only that part of �s whihis non-invariant under 2d-Weyl transformations. The total s-wave e�etiveation is �s =(n)�s +(i)�s; (30)where(i)�s = �s[� = 0;
℄ = 12 log det ��4f + 4f

 � � 12 log det Ôf(31) is thepart of the total e�etive ation whih is invariant under 2d-Weyl transfor-mations. To get the omplete result we should also alulate the determinantof Ôf on at spae and then restore the metri ab in the obtained expressionsuh as to reover general ovariane.Unfortunately log det Ôf annot be alulated exatly and we must re-sort to some perturbation expansion. The ovariant perturbation theorydeveloped in [3,10℄ seems to be of no help here beause of severe infrared di-vergenes. These are related with the non-analytiity of the e�etive ationin the potential V f = 4f

 : (32)Instead we write the heat kernel for Ôf in the form8



K(x; x; �) = �24�� exp �� ��2W f(x; �)� (33)and develop the perturbation theory for W in powers of the potential V (seeappendix B). The arbitrary mass � has been introdued suh that � beomesdimensionless.Using the �-funtion regularization (see appendix A) we immediately ar-rive at the following �nite expression for the e�etive ation in terms of Wand V :(i)�s = �CWs + �BSs ; where�CWs = 18� Z nV f � V f log V f�2 oqfd2x�BSs = Z 10 d�nW f � V f�W f (�W f )0 exp(� ��2W f)oqfd2x (34)and the prime means di�erentiation with respet to � . �CWs orrespond tothe 2d Coleman-Weinberg potential [16℄. For onstant V f we have W f =V f so that �BSs vanishes and the Coleman-Weinberg potential is the exatresult. In this setion we will neglet �BSs in (34) whih is proportional tothe derivatives of the potential V . This approximation orresponds to thesimple lassial approximation to the heat kernel (33) and yields the 4d s-hannel Hawking radiation without baksattering e�ets. The more involvedproblem of inluding the baksattering will be disussed in setion 5.Next we need to ovariantize the Weyl-invariant Coleman-Weinberg on-tribution to (34), that is restore the original metri ab. Taking into aountthat V f � 4f

 = e2�4

 (35) andexpressing � in terms of of R via (27) we obtain the following 2d-ovariantresult�CWs = 18� Z 4

 �1� log 1�24

 + 14 R�p d2x: (36)Note that only the last term is nonloal and ontributes to the Hawking ux.9



The ation �CWs is invariant under Weyl-transformations (26) as required andhene does not ontribute to the trae of the 2d energy momentum tensor(EMT). In the next setion we shall see that it also does not ontribute tothe partial trae T aa of the 4d EMT. However, it ontributes to the totaltrae T ��. The free mass-parameter � orresponds to the renormalizationarbitrariness.Combining (29) and (36) one �nally obtains for the s-hannel e�etiveation in the no-baksattering approximation(n)�s + �CWs = 18� Z � 112 R 14 R� 4

 (1 + log 4
�2
 )�p d2x: (37)We see that the nonloal term in (36) anels against the seond term in(29) whih yields a negative ontribution to the Hawking ux. However,in the setion 5 we shall see that the region near a blak hole ontributessigni�antly to the (so far negleted) �BSs in (34) and e�etively redues theoeÆient in front of the nonloal term in (37). Physially this orrespondsto a dereasing of the Hawking ux due to baksattering e�ets.4 4d-Energy Momentum Tensor and Hawk-ing RadiationThe 4d-EMT an be derived from the 4d e�etive ation (9) aording toT�� = 2pg Æ�Æg�� : (38) Thes-waves ontribution to T�� is then gotten by inserting �s for � in (38). Forthat we rewrite the s-hannel e�etive ation (22) in terms of the 4d metrias �s = 14� Z 1
2 Lspg d4x: (39) Thenusing the symmetry properties and taking into aount that g��=(ab;
2!ij)one obtains the following formulae for the non-vanishing omponents of the4d EMT: 10



T ab = 12�
2 1pa Æ�sÆb , T ij = � 18�
 1p Æ�sÆ
 Æij: (40)Without baksattering e�ets �s is given by (37) and the funtional deriva-tive is to be alulated in 2d-spae. Straightforward alulations lead to thefollowing expliit expressions for the EMT (4 = 4;R = R):T ab = 14�
2 148� h� 2rarb( 14R) +ra( 14R)rb 14R+Æab�2R� 12r( 14R)r( 14R)�i+ loal terms (41)The omponents T ij ontain only loal terms whih give rise to vauumpolarization e�et. Here we are mainly interested in partile reation andfor that reason skipped all loal terms in (41). We stress that up to thispoint our results apply to arbitrary spherially symmetri bakgrounds. Thus(41) desribes the s-hannel partile reation (and vauum polarization) forminimally oupled salars propagating in an arbitrary spherially symmetrispaetime, e.g. of a ollapsing star. Here we are mainly onerned with theHawking radiation and leave other interesting appliations to a forthomingpubliation.To get the ux of the Hawking radiation we need to go bak to Lorentzianspae-time by hanging the signs in the appropriate plaes. Aording to theresults in [2,17℄ we arrive at the in-vauum EMT by replaing �1=4 by theretarded Greens funtion G�. Only the seond term in (41) ontributes tothe Hawking radiation. The alulations leading to the orresponding uxare analogous to the ones whih have been done by Frolov and Vilkovisky[2℄. Thus we may skip them here by referring the reader to that paper.The luminosity of the blak hole, whih is obtained from the Lorentzian(in-vauum) version of the EMT (41) is then found to beL = � �12 1(8�M)2 ; (42)where M is the mass of the blak hole. This exatly oinides with the totals-waves ux of the Hawking radiation obtained by standard methods [14℄without taking baksattering e�ets into aount.11



5 Baksattering e�etTo take into aount the baksattering of Hawking radiation we must al-ulate �BSs in (34),�BSs = 18� Z Iqfd2x , I = Z d� W f � V f�W f (W f�)0 e�W f� ; (43) tothe e�etive ation. For that we develop the perturbation expansion for W fin powers of the potential V f . This expansion in presented in appendix B.Up to linear order in V f we �ndW f(x; �) = 1Xn=0 n!(2n+ 1)!(�4�2 )n V f (x) +O(rV f � rV f): (44)To simplify the analysis we hoose the natural radial variable introdued byRegge and Wheelerr� = r + 2M log j r2M � 1j (45) sothat the (r; t)-part of the (Eulidean) blak hole metri takes the formds2 = (1� 2Mr )(dt2 + dr�2): (46) Notethat r� !1 as r !1, but also r� ! �1 as r ! 2M . In this oordinatesystem the potential V f readsV f(r�) = e2�4

 = (1� 2Mr )2Mr3 ; (47)where r should be expressed in terms of r� via (45). Sine the potential V fdepends only on one oordinate, namely r�, the asymptoti series (44) anbe onverted into an integralW f(r�; �) = s��24� Z 1�1 V (~r�) 1� �(�j~r� � r�jp� )!d~r�; (48)where 12



�(x) = Z x0 e�t2dt (49)is the error funtion. For r� � 2M , where r� � r, we an �nd a goodapproximation to the integral (48) for di�erent values of �=�2. The �=�2-dependene of W f for r � 2M is depited in �gure 1. We see that for�=�2 � V f=4fV f the funtion W f slowly inreases as a funtion of � ,starting with W f(r; � = 0) = V f (r). Then, in a very short interval in theviinity of �=�2 � V f=4fV f it inreases dramatially from M=r3 to 1=Mr.When � is muh bigger then W f dereases as 1=p� . Sine W f� � p� when� !1 the expression for the e�etive ation is infrared-onvergent.Clearly, the small interval in the viinity of V f=4fV f , whereW f hangesa lot, gives the main ontribution to the integral in (34). In this interval wehave W f � V f , (W f)0� �W f and we an estimate the integral (43) asI � Z 10 d� (W f)0 exp (� W f��2 ) � W f (�0); (50)where �0 is the value of � for whih �0W f(�0) � �2. For potentials forwhih W f has the qualitative shape depited in �gure 1, we have �0=�2 �V f=4fV f . Thus one obtainsI � �4fV fV f ; (51)where � is some fudge oeÆient. In our approximate treatment of the inte-gral in (43) we annot get the exat value for this oeÆient. Note that at� � �0 the main ontribution to the integral (48) whih de�nes W f omesfrom the region near the blak hole horizon. This on�rms that (51) atu-ally takes into aount the baksattering of the Hawking radiation in thepotential of the blak hole, whih is most e�etive near a blak hole.Now we need to restore the metri ab in (51). Taking into aount eqs.(27) and (36) we �nd that (51) leads to the following ontribution to thetotal e�etive ation�BSs = � �8� Z � R 14 R+ loal terms�pd2x: (52) Thismust be added to (37) to get the s-hannel e�etive ation. Notie that the13



nonloal term in (52) anels part of the nonloal term in (37) and diminishesthe total Hawking ux. Comparing our result with that obtained by othermeans [℄ we onlude that � should be about 10 perent less than 1=12.6 ConlusionsWe have alulated the ontribution of the s-waves of massless minimallyoupled salars to the 4d-e�etive ation in an arbitrary spherially symmet-ri external gravitational �eld. The problem was to a large extend simpli�edby reduing the s-waves setor to an e�etive 2-dimensional, lassially Weyl-invariant theory. Of ourse, it is obvious that the s-wave hannel redues to a2-dimensional theory. But during the redution proess one needs to resalethe spherially symmetri salar �eld (see (e16)) suh that the new measurein the path integral belongs to a salar �eld propagating in a 2-dimensionalspaetime. The �eld theory for the 2-dimensional �eld is a onformal �eldtheory. This observations permitted us to alulate the Weyl non-invariantpart of the e�etive ation exatly. Then the problem redues to the alula-tion of the 2d-Weyl invariant part whih atually is an e�etive ation in 2dat spaetime. To alulate this we developed the perturbation expansionwhih works well in the ase of blak holes and permits us to take into a-ount the baksattering of the Hawking radiation by the gravitational �eldof the blak hole. As an appliation we derived the expliit form of that partof the stress-energy tensor whih leads to the Hawking radiation.However, the range of appliability of our main results is not at all re-strited to the blak hole physis. They hold for arbitrary spherially sym-metri bakgrounds and onsequently an be applied to study ollapse prob-lems, e.g. the partile prodution by time-dependent spherial gravitational�elds.Aknowledgments: We thank A. Barvinsky, V. Frolov, I. Sahs and C.Shmid for illuminating disussions. This work has been supported in partby the Swiss National Siene Foundation.
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A Regularization of the e�etive ation andinfrared problemThe e�etive ation � expressed in terms of the heat kernel is divergent.Sine we are only interested in the �nite part of � rather than the divergentone we derive here the expression for the �-funtion regularized � in termsof some funtion W (x; �) � W (x; x; �) whih is de�ned via the heat kernelK(x; y; �) in d-dimensional spae asK(x; y; �) = �d(4��) d2 exp h� �2(x� y)24� � W (x; y; �) ��2 i: (53) Here� is an arbitrary mass-parameter introdued for dimensional reasons. Sinethis parameter an be easily restored in the �nal results we will set it to oneto simplify the formulae. We will see how one solves the infrared problemwhih is usually met when one uses the Seeley-deWitt expansion for the heatkernel in the massless ase. Keeping in mind the other possible appliationsbesides the blak hole physis we onsider the general d-dimensional ase.The formula (64) below whih we need for our purposes is then gotten aspartiular example. Finally we show how to onstrut the asymptoti seriesfor the �nite part of � in terms of the Seeley-deWitt oeÆients.An eÆient methods (whih respets the di�eomorphism invariane) toalulate the e�etive ation is the �-funtion regularization [12℄ in terms ofwhih � = �12 d�(s)ds js=0: (54)Here �(s) is the meromorphi funtion whih for s > d=2 has the integralrepresentation �(s) = 1�(s) Z 10 d�� s�1trK(�) (55)in terms of the heat kernel (53). First, let us introdue instead of � the newvariable � = W (x; �)� (56)15



assuming that W (x; �)� inreases monotonially from 0 to 1 when � runsthrough the same interval. Then the expression (55) takes the form�(s) = 1(4�) d2�(s)tr x Z 10 d� e���s�1� d2W d2�s�1� �W 0W �; (57)where now prime means di�erentiation with respet to �. The integral in(57) is onvergent for s > d=2. Integrating suÆiently often by parts onegets the following expression for the analyti ontinuation of �(s) to s! 0:�(s) = (�14� ) d2 �(s� d2)�(s)�(s+ 1) Z 10 �s�W d2�s e���( d2 )d� (58) ind = 2; 4; : : : dimensions and�(s) = 12p� (�14� ) d2 �(s� d2)�(s)�(s+ 12) Z 10 �s� 12 (W d2�s e��)( d2� 12 )d� (59) ind = 1; 3; : : : dimensions. Here (: : :)(n) denotes the n't derivative with respetto �. Calulating the s-derivative at s = 0 we arrive at the following formulaefor the �nite parts of the e�etive ations� = 12 1(4�) d2 1�(d2 + 1) d2�1Xk=0(�1) d2�1�k d2 � 1k !�tr x(� (W d2 logW )(k)0 + ( d=2Xn=1 1n)(W d2 )(k)0+ Z 10 d� e��� h(W d2 )(k) � (W d2 )(k)0 i) (60) in
even dimensions and� = 12 p�(4�) d2 1�(d2 + 1) d�12Xk=0(�1) d2� 12�k d2 � 12k !�tr x Z 10 d�e��p� (W d2 )(k) (61)in odd dimensions, where the subsript 0 means that the derivative should16



be taken at � = 0. Taking into aount (56) we an see that the integrals in(60,61) are onvergent both in the ultraviolet (� ! 0) and infrared (� !1)regions. Note that even for massless �elds no infrared divergenes appear.Of ourse we assumed that the map [0;1) 3 � ! � is bijetive whih inpartiular implies that W (x; �) does not deay faster than 1=� for large � .Now we shall show how to relate the �nite part of the e�etive ation to theSeeley-deWitt oeÆients.In 2-dimensions the formulae simplify onsiderably and the e�etive a-tion (60) reads� = 18� tr xhW0 �W0 logW0 + Z 10 d�e��� (W �W0)i: (62) Foran operator Ô = �4+ V (x) (63)in at spae we have W0 = V . The �rst two terms in (62) orrespond thento the 2d-Coleman-Weinberg potential and the integral gives the orretionwhih vanishes for onstant V . Expanding W (x; �) in a Taylor series andintegrating over � we �nd the following asymptoti series for �:� = 18� tr x�W0 �W0 logW0 + 1Xn=1 1nW (n)0 �: (64) Notethat the derivative with respet to � is related to the � -derivative via��� = 1W + �W�� � ��� : (65)Thus, the series (64) an be viewed as an expansion of the e�etive ationin terms of the � -derivatives of W (x; �). In partiular, the �rst few terms in(64) an be expliitly written as� = 18� tr x W0 �W0 logW0 + 1W0 (�W�� )0 + 12 1W 20 (�2W�� 2 )0� 2W 30 (�W�� )20!+O� 1W 30 (�3W�� 3 )0; 1W 40 (�W�� )30; : : :� (66)
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Expanding (53) in powers of � and omparing it with the Seeley-deWittexpansion for the heat kernel on the diagonalK(x; x; �) = 1(4��) d2 X an�n (67)we an express the derivatives of W at � = 0 in terms of the Seeley-deWittoeÆients as W0 = �a1(�W�� )0 = 12a21 � a2(�2W�� 2 )0 = 2a1a2 � 2a3 � 23a31; : : : (68) Thenthe e�etive ation (66) an be rewritten in terms of the an as� = 18� tr xna1 � a1 log a1 + (a2a1 � 12a1)(�a3a21 + a22a31 � 112a1) + : : :o: (69) Inpartiular, for operators of the form (64) in a 2d at spaetime one gets� = 18� tr x(V � V logV + 164VV� 112 (rV )2V 2 + 16042VV 2 � 136 (4V )2V 3 + : : :): (70)Note that the asymptoti expansion (64) (and orrespondingly (70)) is goodonly if the potential V is big ompared with its derivatives. In this ase theformal expansion parameter is 4V=V 2 � 1. When this ondition is not met,as for instane for the blak hole metri, then we must work diretly with(62).
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B Perturbation theory for WTo alulate the e�etive ation for an operator (63) in at spaetime weneed to develop some perturbation expansion for the heat kernel K̂(�) whihsatis�es �K̂�� = �ÔK̂ and K̂(� = 0) = 1̂: (71)In the oordinate representation we write the heat kernel in the form (53)(again we set � = 1) and derive the perturbation series forW in powers of thepotential V . Keeping in mind other possible appliations of the perturbationexpansion (e.g. in statistial mehanis [15℄) we onsider an arbitrary numberof dimensions d. Substituting (53) into (71) we obtain the following equationfor W :� �W�� = 4W� � (x� y)iriW � (rW )2� 2 + V �W: (72)Making the 'ansatz'W (x; y; �) =X bn(x; y)�n (73) weimmediately arrive at the reurrene relations for the bn:b0 + (x� y)iribo = V;2b1 + (x� y)irib1 = 4b0 ; (74) andfor n > 2(n+ 1)bn + (x� y)iribn = 4bn�1 � n�2Xp=0ribpribn�p�2: (75)For omputing the e�etive ation or partition funtion it suÆes to know Kand orrespondingly the bn on the diagonal x = y. Taking this oinidenelimit in (74,75) (of ourse, after the derivatives have been taken) we arriveat
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limx!y bn = n!(2n+ 1)!4(n)V� limx!y n�2Xk=0 n!(2n� 1� k)!4(n�2�k)x n�2Xp=0ribpribk�p: (76) Theterms proportional to ribrib are at least quadrati in the potential. Let usnote that the terms whih are nonlinear in V always ontain produts of gra-dients (as riVriV; ri4VriV et.). The terms linear in V in the expansion(73,76) orrespond to the sum of all terms of the forms V; V 2; : : : ; V4V;42Vet. in the Seeley-deWitt expansion. Thus in the linear approximation one�ndsW (x; �) � W (x; x; �) = 1Xn=0 n!(2n+ 1)!�n4(n)V +O(rV � rV ): (77)In one dimension or in the ase when the potential V depends just on onevariable, the series (77) an be onverted into the following integralW (x; �) = r �4� Z 1�1 V (y)h1� �( jx� yjp� )idy +O(rV � rV ); (78)where � is the error funtion. The nonloal result (78) for W aounts forall terms whih are linear in V . It is relevant for improving the Coleman-Weinberg e�etive potential as well as the partition funtion in statistialphysis. It is related but not idential to a similar expression obtained byFeynman by variational method [15℄.Referenes[1℄ S.W. Hawking, Commun. Math. Phys. 43 (1975) 199.[2℄ V.P. Frolov and G.A. Vilkovisky, in Pro. seond seminar on quantumgravity (1981), Mosow, ed. M.A. Markov and P.C. West, Plenum, Lon-don, 1983.[3℄ A.O. Barvinsky and G.A. Vilkovisky, Nul. Phys. B333 (1990) 471.20
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