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We study the potential energy between static charges inG2 gluodynamics in three and four dimensions. Our
work is based on an efficient local hybrid Monte-Carlo algorithm and a multi-level Lüscher-Weisz algorithm
with exponential error reduction to accurately measure expectation values of Wilson and Polyakov loops. Both
in three and four dimensions we show that at intermediate scales the string tensions for charges in variousG2

representations scale with the second order Casimir. In three dimensions Casimir scaling is confirmed within
four percent for charges in representations of dimensions7, 14, 27, 64, 77, 77′, 182 and189 and in four dimen-
sions within five percent for charges in representations of dimensions7, 14, 27 and64. In three dimensions
we detect string breaking for charges in the two fundamentalrepresentations. The scale for string breaking
agrees very well with the mass of the created pair of glue-lumps. Close to the string breaking distance Casimir
scaling between adjoint and defining representation is violated by2.5 percent. The analytical prediction for the
continuum string tension is confirmed for the defining representation in three dimensions.

PACS numbers: 11.15.-q, 11.15.Ha, 12.38.Aw

I. INTRODUCTION

There is compelling experimental evidence that the funda-
mental constituents of QCD, quarks and gluons, never show
up as asymptotic states of strong interaction – rather they are
confined in mesons and baryons. Understanding the dynamics
of this confinement mechanism is one of the challenging prob-
lems in strongly coupled gauge theories. There are convinc-
ing analytical and numerical arguments to believe that con-
finement is a property of pure gauge theories (gluodynamics)
alone and that the underlying mechanism should not depend
on the numberNc of colors. Confinement is lost at high tem-
peratures and for gauge groups with a non-trivial center the
trace of the Polyakov loop
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vanishes in the confined low-temperature phase and is close
to an element of the center in the deconfined high-temperature
phase. In gluodynamics or gauge theories with matter in the
adjoint representation the action and measure are both invari-
ant undercenter transformations, whereas the Polyakov loop
transforms non-trivially and hence serves as order parameter
for the global center symmetry. This means that the center
symmetry is realized in the confined phase and spontaneously
broken in the deconfined phase.

In the vicinity of the transition point the dynamics of the
Polyakov loop is successfully described by effective three
dimensional scalar field models for the characters of the
Polyakov loop [1–4]. If one further projects the scalar fields
onto the center of the gauge group then one arrives at gen-
eralized Potts models describing the effective Polyakov loop
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dynamics [5]. The temperature dependent couplings constants
of these effective theories have been calculated ab initio by in-
verse Monte Carlo methods in [3].

With dynamical quarks in the fundamental representation
the center symmetry isexplicitly brokenand the Polyakov
loop points always in the direction of a particular center el-
ement. In a strict sense the Polyakov loop ceases to be an
order parameter. This is attributed to breaking of the string
connecting a static ‘quark anti-quark pair’ when one tries to
separate the charges. It breaks via the spontaneous creation
of dynamical quark anti-quark pairs which in turn screen the
individual static charges.

The pivotal role of the center for confinement also follows
from a recent observation relating the Polyakov loop with cen-
ter averaged spectral sums of the Dirac operator [6–8]. More
precisely, for gauge groups withnon-trivial centerone can re-
late the expectation value of the Polyakov loop to dual con-
densates. This result could finally explain why for gauge
groups with a non-trivial center and fundamental matter the
transition temperatures for the deconfinement and chiral phase
transitions coincide. On the contrary, for gauge theories with
adjoint matter the two transition temperatures can be very dif-
ferent [9, 10].

To clarify the relevance of the center for confinement it sug-
gests itself to studypure gauge theorieswhose gauge groups
have a trivial center. For such theories the string connecting
external charges can break via the spontaneous creation of dy-
namical ‘gluons’ such that the Polyakov loop acquires a non-
vanishing expectation value for all temperatures, similarly as
it does in QCD with dynamical fermions. Here the simple
gauge groupSO(3) suggests itself and indeed theSO(3)
gauge theory has been studied in great detail on the lattice,see
for example [11]. Unfortunately, via the non-trivial first ho-
motopy groupπ1(SO(3)) = Z2 the lattice gauge theory ‘de-
tects’ its simply connected universal covering groupSU(2).
To avoid the resulting lattice artifacts one should investigate
theories with simply connected gauge groups with trivial cen-
ter.

From Tab. I, taken from [12], one reads off that the smallest
simple Lie group with these properties is the14 dimensional
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TABLE I. CentersZ of simple lie groups.

group Ar Br Cr Dr, r even Dr, r odd E6 E7 E8 F4 G2

centerZ Zr+1 Z2 Z2 Z2 × Z2 Z4 Z3 Z2 1 1 1
exceptional Lie groupG2. This is one reason why the group in
Bern investigatedG2 gauge theories with and without Higgs
fields in series of papers [13–15]. In their pioneering works
it has been convincingly demonstrated thatG2 gluodynamics
shows a first order finite temperature phase transition without
order parameter from a confining to a deconfining phase. In
this context confinement refers to confinement at intermediate
scales, where a Casimir scaling of string tensions has been re-
ported [16]. On large scales strings will finally break due to
spontaneous gluon production and the static inter-quark po-
tential is expected to flatten [17]. However, the threshold en-
ergy for string breaking inG2 gauge theory is rather high and
all previous attempts to detect this flattening have been with-
out success. In the present paper we shall demonstrate that
string breaking for charges in the fundamental and adjoint rep-
resentations ofG2 takes place at the expected scales. To that
aim we implemented a slightly modified Lüscher-Weisz mul-
tistep algorithm for high precision measurements of the static
inter-quark potential.

The present paper deals withG2 gluodynamics in3 and
4 dimensions. The simulations are performed with an effi-
cient and fast implementation of a local hybrid Monte-Carlo
algorithm. Below we shall calculate the potentials at interme-
diate scales for static charges in the7, 14, 27, 64, 77, 77′, 182
and189 dimensional representations. We show that in3 and
4 dimensions the string tensions on intermediate scales are
proportional to the second order Casimir of the representa-
tions. The high precision measurements in3 dimensions con-
firm Casimir scaling within4 percent for all mentioned repre-
sentations. In4 dimensions Casimir scaling for the lowest4
representations is again fulfilled within5 percent. In3 dimen-
sions we also calculated the static potential for widely sepa-
rated charges in the two fundamental representations. In both
cases we see a flattening of the potential which signals the
breaking of the connecting string. The energy where string
breaking sets in is in full agreement with the independently
calculated masses of the glue-lumps formed after string break-
ing. Interestingly, in the region close to the string breaking
distance Casimir scaling for the fundamental charges is found
to be violated by about2.5 percent. Eventually the contin-
uum extrapolated numerical value of the string tension in3
dimensions is found to be in good agreement with analytical
predictions.

II. THE GROUP G2

The exceptional Lie groupG2 is the automorphism group of
the octonion algebra or, equivalently, the subgroup ofSO(7)
that preserves any vector in its8 dimensional real spinor rep-
resentation. This means that the8 dimensional real spinor

representation ofSpin(7) branches into the trivial representa-
tion and the7 dimensional fundamental representation ofG2.
The14 dimensional fundamental representation ofG2, which
at the same time is the adjoint representation, arises in the
branching of the adjoint ofSO(7) according to21 → 7 ⊕ 14.
The27 dimensional representations ofSO(7) acting on sym-
metric traceless2-tensors remains irreducible underG2. In
this work we need the followingbranchingsof SO(7) repre-
sentations toG2:

7 → 7, 21 → 14 ⊕ 7, 27 → 27,

35 → 27 ⊕ 7 ⊕ 1, 77 → 77. (2)

For explicit calculations it is advantageous to view the ele-
ments of the7 dimensional representation ofG2 as matrices
in the defining representation ofSO(7), subject to seven in-
dependent cubic constraints [15]

Tabc = Tdef gda geb gfc. (3)

HereT is a total antisymmetric tensor given by

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1.
(4)

The gauge groupSU(3) of strong interaction is a subgroup of
G2 and the corresponding coset space is a sphere [18],

G2/SU(3) ∼ S6. (5)

This means that every elementU of G2 can be factorized as

U = S ·V with V ∈ SU(3) and S ∈ G2/SU(3), (6)

and we shall use this decomposition in our simulations. The
short exact sequence

0 = π4(S
6) → π3(SU(3)) → π3(G2) → π3(S

6) = 0 (7)

shows thatπ3(G2) = Z and hence there should existG2 in-
stantons of any integer topological charge. In the chargek
sector there are at least3k magnetically charged defects [12].

Any irreducible representation ofG2 is characterized by its
highest weight vectorµ which is a linear combination of the
fundamental weights,µ = pµ(1) + qµ(2), with non-negative
integer coefficientsp, q called Dynkin labels. The dimension
of an arbitrary irreducible representationR = [p, q] can be
calculated with the help of Weyl’s dimension formula and is
given by

dR ≡ dimp,q =
1

120
(1 + p)(1 + q)(2 + p + q)

× (3 + p + 2q)(4 + p + 3q)(5 + 2p + 3q).
(8)
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TABLE II. Representations ofG2 with corresponding dimension and Casimir values.

representationR [1, 0] [0, 1] [2, 0] [1, 1] [3, 0] [0, 2] [4, 0] [2, 1]

dimensiondR 7 14 27 64 77 77′ 182 189

Casimir eigenvalueCR 12 24 28 42 48 60 72 64

Casimir ratioC′
R 1 2 7/3 3.5 4 5 6 16/3

Below we also use the physics-convention and denote a rep-
resentation by its dimension. For example, the fundamental
representations are[1, 0] = 7 and[0, 1] = 14. However, this
notation is ambiguous, since there exist different representa-
tions with the same dimension. For example[3, 0] = 77 and
[0, 2] = 77′ have the same dimension. An irreducible repre-
sentation ofG2 can also be characterized by the values of the
two Casimir operators of degree2 and6. Below we shall need
the values of the quadratic Casimir in a representation[p, q],
given by

CR ≡ Cp,q = 2p2 + 6q2 + 6pq + 10p + 18q. (9)

For an easy comparison we normalize these ‘raw’ Casimir
values with respect to the defining representation byC′

p,q =
Cp,q/C1,0. The normalized Casimir values for the eight non-
trivial representations with smallest dimensions are given in
Tab. II.

Quarks and gluons inG2 are in the fundamental represen-
tations7 and14, respectively. To better understandG2 glu-
odynamics we recall the decomposition of tensor products of
these representations,

7 ⊗ 7 = 1 ⊕ 7 ⊕ 14 ⊕ 27,

7 ⊗ 14 = 7 ⊕ 27 ⊕ 64,

14 ⊗ 14 = 1 ⊕ 14 ⊕ 27 ⊕ 77 ⊕ 77′,

7 ⊗ 7 ⊗ 7 = 1 ⊕ 4 · 7 ⊕ 2 · 14 ⊕ 3 · 27 ⊕ 2 · 64 ⊕ 77′,

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 · 14 ⊕ 3 · 27 ⊕ · · · .
(10)

The decompositions (10) show that, similarly as in QCD, two
or three quarks or two or three gluons can build color singlets
– mesons, baryons or glueballs. Since three gluons can screen
the charge of a single (static) quark,

7 ⊗ 14 ⊗ 14 ⊗ 14 = 1 ⊕ · · · , (11)

one expects that the string between two static quarks will
break for large charge separations. The two remnants are two
glue-lumps – charges screened by (at least)3 gluons. The
same happens for charges in the adjoint representation. Each
adjoint charge can be screened by one gluon.

Construction of characters from tensor products

The characterχR(U) = trR(U) of any irreducible represen-
tationR is a polynomial of the charactersχ7 andχ14 of the
two fundamental representations7 and14. For example, the

first two decompositions in (10) imply

χ27 = χ7 · χ7 − χ1 − χ7 − χ14,

χ64 = χ7 · χ14 − χ7 − χ27

= χ7χ14 − χ2
7 + χ1 + χ14

(12)

and yield the characters of the representations27 and64 as
polynomials ofχ7 andχ14. From further tensor products of
irreducible representations one can calculate the polynomial
in χR = PolR(χ7, χ14) for any irreducible representationR.
For a fast implementation of our algorithms we also need re-
ducible representations. In particular we use

(7⊗7)s, (7⊗7⊗7)s, (7⊗7⊗7⊗7)s, (7 ⊗ 7)s⊗14, (13)

where the subscript ‘s’ denotes the symmetrized part of the
respective tensor product. Comparing the reduction of rep-
resentations forSO(7) andG2 and mapping representations
from SO(7) to G2 the following characters of reducible rep-
resentations can be computed

χ(7⊗7)s = χ27 + χ1,

χ(7⊗7⊗7)s
= χ77 + χ7,

χ(7⊗7⊗7⊗7)s
= χ182 + χ77 + χ27 + χ64 + 2 χ14 + χ7,

χ(7⊗7)s⊗14 = χ189 + χ27 + χ1.
(14)

III. CASIMIR SCALING AND STRING BREAKING FOR
SU(Nc) GAUGE THEORIES

In QCD quarks and anti-quarks can only be screened by par-
ticles with non-vanishing3-ality, especially not by gluons.
Thus, in zero-temperaturegluodynamicsthe potential energy
for two static color charges is linearly rising up to arbitrary
large separations of the charges. The potentials for charges
in a representationR can be extracted from the 2-point cor-
relator of Polyakov loops or the expectation values of Wilson
loops with temporal extentT according to

〈PR(0)PR(R)〉 = e−βT VR(R),

〈WR(R, T )〉 = eκR−TVR(R).
(15)

With dynamical quarks the string should break at a character-
istic lengthrb due to the spontaneous creation of quark anti-
quark pairs from the energy stored in the flux tube connect-
ing the static charges. However, for intermediate separations
r < rb the string cannot break since there is not enough en-
ergy stored in the flux tube.
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Forpure gauge theorieswe expect the following qualitative
behavior of the static potential: At short distances perturbation
theory applies and the interaction is dominated by gluon ex-
change giving rise to a Coulomb-like potential,V ∼ −α/r,
the strengthα being proportional to the valueCR of the
quadratic Casimir operator in the given representationR of
the charges; at intermediate distances, from the onset of con-
finement to the onset of color screening atrb, the potential is
expected to be linearly rising,V ∼ σr, and the corresponding
string tension is again proportional to the quadratic Casimir;
at asymptotic distance scales (partial) screening sets in such
that the string tension typically decreases and only depends
on theN -ality of the representation. In particular for center-
blind color charges or gauge groups without center the poten-
tial flattens. The characteristic lengthrb where the interme-
diate confinement regime turns into the asymptotic screening
regime is determined by the masses of the debris left after
string breaking. The Casimir scaling hypothesis, according to
which the string tension at intermediate scales is proportional
to the quadratic Casimir of the representation [19], is exact
for two dimensional continuum and lattice gauge theories and
dimensional reduction arguments support that it also holdsin
higher dimensions. Within the Hamiltonian approach to Yang-
Mills theories in2+1 dimensions the following prediction for
the string tensions has been derived [20],

σR =
g4

4π

C14CR
122

, (16)

with a recent refinement in [21].1 These analytical results di-
rectly predict Casimir scaling in three dimensions. In fourdi-
mensions Casimir scaling can be explained via Gaussian field
correlators [22]. Forpure SU(2) and SU(3) gauge theoriesin
three and four dimensions there is now conclusive numerical
evidence forCasimir scalingfrom Monte-Carlo simulations,
for SU(2) in 3 dimensions [19, 23] and in4 dimensions [24–
27] as well as forSU(3) in 4 dimensions at finite temperature
[28] and zero temperature [29–32]. In particular the simula-
tions forSU(3) gluodynamics in [31] confirm Casimir scaling
within 5% for separations up to1 fm of static charges in repre-
sentations with Casimirs (normalized by the Casimir of{3})
up to7. String breakingfor charges in the adjoint representa-
tion has been found in several simulations: In3 dimensional
SU(2) gluodynamics with improved action and different op-
erators in [33, 34] and in4 dimensionalSU(2) gluodynamics
in [35] with the help of a variational approach involving string
and glueball operators. For a critical discussion of the various
approaches we refer to [36], where string breaking in a sim-
ple setting but with an improved version of the Lüscher-Weisz
algorithm has been analyzed and compared with less sophis-
ticated approaches. There is a number of works in which a
violation of Casimir scaling on intermediate scales have been
reported. For example, it has been claimed that in4 dimen-
sionalSU(Nc) gluodynamics with largerN ∈ {4, 6} the nu-

1 The factor1/12
2 in the formula given here arises from a different normal-

ization of the quadratic Casimir operator.

merical data favor thesin-formula, as suggested by supersym-
metry, in place of the Casimir scaling formula [37]. The dif-
ferences between the Casimir scaling law andsin-formula are
tiny and it is very difficult to discriminate between the two
predictions in numerical simulations. Indeed, in [38] agree-
ment with Casimir scaling andsin-formula in 4 dimensions
and disagreement in3 dimensions has been claimed. In ad-
dition the high precision simulations based on the Lüscher-
Weisz algorithm in [36, 39] point to a violation of the Casimir
scaling law in3 dimensionalSU(2) gluodynamics. In a very
recent paper Pepe and Wiese [40] reanalyzed the static poten-
tial for SU(2) gluodynamics in3 dimensions with the help of
the Lüscher-Weisz algorithm and substantiated Casimir scal-
ing violation at intermediate scales while confirming2-ality
scaling at asymptotic scales.

For gauge theories with matterwe expect a similar quali-
tative behavior: A Coulomb-like potential at short distances,
Casimir scaling at intermediate distances and (partial) screen-
ing at asymptotic distances. The string tension at asymptotic
scales depends both on theN -alities of the static color charges
and of the dynamical matter. In particular, if dynamical quarks
or scalars can form center blind composites with the static
charges then the potential is expected to flatten at large sep-
arations. To see any kind of screening between fundamen-
tal charges requires a full QCD simulation with sea quarks,
which is demanding. Thus the earlier works dealt with gauge
theories with scalars in the fundamental representation. For
example, in [41] clear numerical evidence for string breaking
in the 3 dimensionalSU(2) Yang-Mills-Higgs model via a
mixing analysis of string and two-meson operators has been
presented. Probably the first observation of hadronic string
breaking in simulations of QCD3 with two flavors of dynam-
ical staggered fermions using only Wilson loops has been re-
ported in [42, 43]. Despite extensive searches for color screen-
ing in 4 dimensional gauge theories with dynamical fermions
the results are still preliminary at best. First indications for
string breaking in two flavor QCD, albeit only at temperatures
close to or above the critical deconfinement temperature, have
been reported in [44]. More recently Bali et al. used sophis-
ticated methods (e.g. optimized smearing, improved action,
stochastic estimator techniques, hopping parameter accelera-
tion) to resolve string breaking in two flavor QCD at a value
of the lattice spacinga−1 ≈ 2.37 GeV and of the sea quark
mass slightly belowms [45]. By extrapolation they estimate
that in real QCD with light quarks the string breaking should
happen atrb ≈ 1.13 fm.

To measure the static potential and study string breaking
three approaches have been used: correlations of Polyakov
loops at finite temperature, variational ansaetze using two
types of operators (for the string-like states and for the broken
string state) and Wilson loops. Most results on Casimir scal-
ing and string breaking have been obtained with the first two
methods. This is attributed to the small overlap of the Wilson
loops with the broken-string state. To measure Polyakov or
Wilson loop correlators for charges in higher representations
or to see screening at asymptotic scales one is dealing with ex-
tremely small signals down to10−40. In order to measure such
small signals one needs to improve existing algorithms con-
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FIG. 1. (Color online) Phase transition on a163 × 6 lattice in terms
of the Polyakov loop in the fundamental representation.

siderably or/and use improved versions of the Lüscher-Weisz
multistep algorithm.

For gauge groups with trivial centerslike G2, F4 or E8

the flux tube between static charges in any representation will
always break due to gluon production. The potential flattens
for large separations and expectation values of the Polyakov
loop never vanish [13]. However, forG2 it changes rapidly
at the phase transition temperature and is very small in the
low-temperature confining phase, see Fig. 1. Similarly as in
QCD we characterize confinement as the absence of free color
charges in the physical spectrum [16, 46].

IV. ALGORITHMIC CONSIDERATIONS

A. Local hybrid Monte-Carlo

In simulations of gauge field theories different algorithmsare
in use. ForSU(Nc) gluodynamics heat-bath algorithms based
on the Cabibbo-MarinariSU(2) subgroup updates, often im-
proved by over-relaxation steps, have proven to be fast and
reliable. For QCD with dynamical fermions a hybrid Monte-
Carlo (HMC) scheme is preferable. Based on [47] alsolocal
versions of HMC algorithms are available where single links
are evolved in a HMC style. According to [48] the cost for
the local hybrid Monte-Carlo (LHMC) is about three times
more than for a combined heat-bath and overrelaxation (HOR)
scheme for the case ofSU(Nc) gluodynamics.

For the exceptional gauge groupG2 there exists a modifica-
tion of the heat-bath update [13] which combines the heat-bath
update for aSU(3) subgroup with randomly distributedG2

gauge transformations to rotate theSU(3) subgroup through
G2. In the present work we instead use a LHMC algorithm for
several good reasons: First, the formulation is given entirely
in terms of Lie group and Lie algebra elements and there is no
need to back-project ontoG2. The autocorrelation time can
be controlled (in certain ranges) by the integration time inthe
molecular dynamics part of the HMC algorithm. Furthermore,

one can use a real representation ofG2 and relatively simple
analytical expressions for the two involved exponential maps
to obtain a fast implementation of the algorithm. Finally, the
inclusion of a (normalized) Higgs field is straightforward and
does not suffer from a low Metropolis acceptance rate (even
for large hopping parameters).

The LHMC algorithm has been essential for obtaining the
results in the present work. Since we developed the first im-
plementation forG2 it is useful to explain the technical de-
tails for this exceptional group. As any (L)HMC algorithm
for gauge theories it is based on a fictitious dynamics for the
link-variables on the gauge group manifold. The “free evolu-
tion” on a semisimple group is the Riemannian geodesic mo-
tion with respect to the Cartan-Killing metric

ds2
G = κ tr

(

dU U−1 ⊗ dU U−1
)

. (17)

In the fictitious dynamics the interaction term is given by the
Yang-Mills action of the underlying lattice gauge theory and
hence it suggests itself to derive the dynamics from the La-
grangian

L =
1

2

∑

x,µ

tr
(

i U̇x,µU−1
x,µ

)2

− SYM [U ], (18)

where ‘dot’ denotes the derivative with respect to the fictitious
time parameterτ and

SYM [U ] =
β

2Nc

∑

x,µν

tr
(

2Nc − Ux,µν − U†
x,µν

)

, β =
2Nc

ag2

(19)
is the Wilson action. The Lie algebra valued fictitiousconju-
gated link momentumis given by

Px,µ = i
∂L

∂
(

U̇x,µU−1
x,µ

) = iUx,µ

∂L

∂U̇x,µ

= −i U̇x,µU−1
x,µ ,

(20)
and via a Legendre transform yields the pseudo-Hamiltonian

H =
1

2

∑

x,µ

tr P2
x,µ + SYM [U ]. (21)

The equations of motion for the momenta are obtained by
varying the Hamiltonian. The variation of the Wilson action
SYM [U ] with respect to a fixed link variableUx,µ is given by
the corresponding staple variableRx,µ, the sum of triple prod-
ucts of elementary link variables closing to a plaquette with
the chosen link variable. Hence we obtain

δH =
∑

x,µ

tr
{

Px,µ δPx,µ + i δUx,µ U†
x,µFx,µ

}

=
∑

x,µ

trPx,µ

{

Ṗx,µ − Fx,µ

}

dτ,

Fx,µ =
iβ

2Nc

(

Ux,µRx,µ − R†
x,µU†

x,µ

)

.

(22)

The variational principle implies that the projection of the
term between curly brackets onto the Lie algebrag2 vanishes,

Ṗx,µ = Fµ,x

∣

∣

g2

. (23)
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Choosing a trace-orthonormal basis{Ta} of g2 the equations
for the (L)HMC dynamics can be written as follows,

Ṗx,µ =
∑

a

tr (Fx,µTa)Ta and U̇x,µ = i Px,µUx,µ (24)

with the “force” Fx,µ defined in (22). Now a LHMC sweep
consists of the following steps:

1. Gaussian draw of the momentum variable on a given
link.

2. Integration of the equations of motion for the given link.

3. Metropolis accept/reject step,

4. Repeat these steps for all links of the lattice.

This local version of the HMC does not suffer from an ex-
tensiveδH ∝ V problem such that already a second order
symplectic (leap frog) integrator allows for sufficiently large
timestepsδτ . In condensed form the integration for a link
variable yields

U(t + δτ) = exp (iP(t + δτ/2)δτ)U(t). (25)

For a large range of Wilson couplingsβ in our simulations an
integration length ofT = 0.75 with a step size ofδτ = 0.25 is
optimal for minimal autocorrelation times and a small number
of thermalization sweeps. Acceptance rates of more than99%
are reached. Nevertheless, the most time consuming part of
the calculations involves the exponential maps. A calculation
for G2 can be implemented fast and exact up to a given order
in δτ as will be shown in the next section.

B. The exponential mapg2 → G2

For an efficient and fast computation of the exponential map
we use thereal embeddingof theSU(3) representation3 ⊕ 3̄
into G2, given by

V(W) = Ω†







1 0 0

0 W 0

0 0 W∗






Ω ∈ G2 with W ∈ SU(3).

(26)
One can choose the unitary matrixΩ to have block diagonal
form with Ω11 = 1. A possible choice forΩ is

Ω =

(

1 0

0 V Q

)

with

Q =



















0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0



















, V =
1√
2

(

1 i

i 1

)

⊗ 13.

(27)

Every element ofG2 can be factorized as

U = S · V(W) with S ∈ G2/SU(3). (28)

For a given timestepδτ in the molecular dynamics this factor-
ization will be expressed in terms of the Lie algebra elements
with the help of the exponential maps,

exp {δτ u} = exp {δτ s} · exp {δτ v}
with generators u ∈ g2, v ∈ V∗(su(3)) (29)

fulfilling the commutation relations

[ v, v′ ] = v′′, [ v, s ] = s′ and [ s, s′ ] = v′ + s′′. (30)

The generatorss are orthogonal to the generators of the re-
ally embeddedSU(3) subgroup. To simplify the notation we
absorb the time stepδτ in the Lie algebra elements.

The last exponential map in (29) can be calculated with
the help of the embedding (26) and the exponential map
for SU(3), W = exp(w), which follows from the Cayley-
Hamilton theorem forSU(3) generators, see [49]. The re-
sult can be expressed in terms of the imaginary eigenvalues
w1, w2, w3 of w and the differencesδ1 = w2 − w3, δ2 =
w3 − w1 andδ3 = w1 − w2 by

W = exp(w) = − 1

δ1δ2δ3

(

α11+ αww + αw2w2
)

(31)

with expansion coefficients

α1 =
3
∑

i=1

δiwi+1wi+2e
wi , αw =

3
∑

i=1

δiwie
wi ,

αw2 =
3
∑

i=1

δie
wi ,

(32)

wherein one identifiesw3+i andwi.
For the generators{u1, . . . , u14} of G2 we use the real rep-

resentation given in [46]. Thesu(3) subalgebra formed by the
elements{u1, . . . , u8} generates the really embedded3 ⊕ 3̄
of SU(3) and the remaining generators{u9, . . . , u14} gener-
ate the coset elementsS in the factorization (28). With this
choice for the generators the real embedding (26) reads

V(W) =

(

1 0

0 V⊥

)

,

V⊥ =



















a33 −b33 a32 −b32 −b31 a31

b33 a33 b32 a32 a31 b31

a23 −b23 a22 −b22 −b21 a21

b23 a23 b22 a22 a21 b21

b13 a13 b12 a12 a11 b11

a13 −b13 a12 −b12 −b11 a11



















,

(33)

where the entries are the real and imaginary parts of the ele-
ments of theSU(3) matrix,Wij = aij + ibij .
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Finally, to parametrize the elements of the coset space we
calculate the remaining exponential map

S = exp {s} with s =

i=6
∑

i=1

siu8+i . (34)

The result depends on the real parameterσ = ‖~s ‖ and the6
dimensional unit-vector̂s = ~s/‖~s ‖. In a1× 6-block notation
the map takes the form

S =

(

cos 2σ − sin 2σ ŝT

sin 2σ ŝ S⊥

)

(35)

with 6 dimensional matrix

S⊥ = cosσ 1+ sin σ ŝ⊥ + (cos 2σ − cosσ) ŝŝT

+ (1 − cosσ)v̂v̂T .
(36)

The matrix̂s⊥ is the6× 6 right-lower block ofs in (34). The
unit-vectorv̂T = (ŝ2,−ŝ1, ŝ4,−ŝ3,−ŝ6, ŝ5) defining the last
projector in (36) is orthogonal to the unit-vectorŝ defining the
projectorŝŝT.

In the numerical integration we need the exponential map
for elementsu in g2. They are related to the generators used
in the factorization by the Baker-Campbell-Hausdoff formula,

δτ u = δτ (s + v) +
1

2
δτ2 [ s, v ] + · · · (37)

Depending on the order of the symplectic integrator we must
solve this relation fors andv up to the corresponding order in
δτ . For a second order integrator used in this work this can be
done analytically since the commutator[s, v] does not contain
any contribution of the subalgebrasu(3). The integrator used
in the (L)HMC algorithm must be time reversible. It can be
checked that time reversibility holds to every order in thisex-
pansion. To summarize, for a second order integrator the ap-
proximation (37) may be used in the exponentiations needed
to calculateV andS. This approximation leads to a violation
of energy conservation which is of the same order as the viola-
tion one finds with a second order integrator. In comparison to
the exponentiation via the spectral decomposition the method
based on the factorization (28) is more than ten times faster.
It is also much faster than computing the exponential map for
SO(7) via the Cayley-Hamilton theorem.

C. Exponential error reduction for Wilson loops

In the confining phase the rectangular Wilson loop scales as
W (L, T ) ∝ exp(−σL · T ). In order to estimate the string
tensionσ we probe areasLT ranging from0 up to 100 and
thusW will vary by approximately40 orders of magnitude.
A brute force approach where statistical errors for the expec-
tation value of Wilson or Polyakov loops decrease with the
inverse square root of the number of statistically independent
configurations by just increasing the number of generated con-
figurations will miserably fail. Nevertheless, convincingre-
sults onG2 Casimir scaling on intermediate scales for repre-
sentations with relative CasimirsC′

R ≤ 5 have been obtained

in [16] with a variant of the smearing procedure. When re-
producing these results we observed that the calculated string
tensions depend sensitively on the smearing parameter.2 Thus
to obtain accurate and reliable numbers for the static potential
and to detect string breaking we implemented the multi-step
Lüscher-Weisz algorithm with exponential error reduction for
the time transporters of the Wilson loops [50]. With this
method the absolute errors of Wilson lines decrease exponen-
tially with the temporal extentT of the line. This is achieved
by subdividing the lattice intont sublatticesV1, . . . , Vnt con-
taining the Wilson loop and separated by time slices plus the
remaining sublattice, denoted bȳV , see Fig. 2 (left panel). At
the first level in a two-level algorithm the time extent of each
sublatticeVn is 4 such thatnt is the smallest natural number
with 4nt ≥ T + 2. In Fig. 2 (left panel)T = 14 and the
lattice is split into four sublatticesV1, V2, V3, V4 containing
the Wilson loop plus the complementV̄ . The Wilson loop is
the product of parallel transportersW = T ′

2T ′
3T4T3T2T1. If

a sublatticeVn contains only one connected piece of the Wil-
son loop (asV1 andV4 do) then one needs to calculate the
sublattice expectation value

〈Tn〉n =
1

Zn

∫

sublattice n

DU Tn e−S , (38)

if Vn contains two connected pieces (asV2 andV3) then one
needs to calculate〈Tn ⊗T ′

n〉n. The updates in each sublattice
are done with fixed link variables on the time-slices bounding
the sublattice. Calculating the expectation value of the full
Wilson loop reduces to averaging over the links in thent + 1
time slices,

〈W 〉 =
〈

C
(

〈T1〉1〈T2 ⊗ T ′
2 〉2 · · ·

· · · 〈Tnt−1 ⊗ T ′
nt−1〉nt−1〈Tnt〉nt

)〉

boundaries

(39)

HereC is that particular contraction of indices that leads to
the trace of the productW = T ′

2 · · · T ′
nt−1TntTnt−1 · · · T2T1.

In a two-level algorithm each sublatticeVn is further divided
into two sublatticesVn,1 andVn,2, see Fig. 2 (middle panel),
and the sublattice updates are done on the small sublattices
Vn,k with fixed link variables on the time slices separating the
sublatticesVn,k. This way one finds two levels of nested aver-
ages. Iterating this procedure gives themulti-level algorithm.
Since the dimensionsdR grow rapidly with the Dynkin labels
[p, q] – for example, below we shall verify Casimir scaling for
charges in the189 dimensional representation[2, 1] – it is dif-
ficult to store the many expectation values of tensor products
of parallel transporters. Thus we implemented a slight mod-
ification of the Lüscher-Weisz algorithm where the latticeis
further split by spatially slicing along a hyperplane orthogo-
nal to the plane defined by the Wilson loop, see Fig. 2 (right
panel). The sublattice updates are done with fixed link vari-
ables on the same time slices as before and in addition on the

2 This is not the case for the ratios of string tensions.
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V̄

V1T1

V2 T2T ′
2

V3 T3T ′
3

V4
T4

V̄

V̄

V1,1

V1,2

V2,1

V2,2

V3,1

V3,2

V4,1

V4,2

V̄

V̄

V1,2

V1,3

V2,1

V2,2

V3,1

V3,2

V4,1

V1,1

V6,2

V6,1

V5,2

V5,1

V4,3

V4,2

V̄

FIG. 2. (Color online) Iterative slicing (from left to right) of lattice and Wilson loop during the multi-level algorithm.

newly introduced space slice. Instead ofnt sublattices con-
taining the Wilson loop we now have2nt − 2 sublattices. But
now every sublattice contains only one connected part of the
Wilson loop and (39) is replaced by

〈W 〉 =
〈

tr

2nt−2
∏

n=1

〈Tn〉n
〉

boundaries
(40)

An iteration of this procedure by additional splittings of the
time slices leads again to a multi-level algorithm. In the
present work we use a two-level algorithm with time slices
of length4 on the first and length2 on the second level. We
calculate〈W 〉 for Wilson loops (and hence transportersTn)
of varying sizes and in different representations. To avoidthe
storage of tensor products of large representations we imple-
mented the modified algorithm as explained above.

We also applied the Lüscher-Weisz algorithm to calcu-
late the correlators of two Polyakov loops〈PR(0)PR(R)〉 on
larger lattices. In this case the complete lattice is divided into
sublattices separated by time slices, hence there is no comple-
ment V̄ . Since the Polyakov loops are only used for lower-
dimensional representations we have not split the lattice by
a spatial slicing but used tensor products similar to Eq. (39).
Actually for the calculations of Polyakov loop correlatorswe
used the three step Lüscher-Weisz algorithm.

V. STRING TENSION AND CASIMIR SCALING IN G2

GLUODYNAMICS

The static inter-quark potential is linearly rising on intermedi-
ate distances and the corresponding string tension will depend
on the representation of the static charges. We expect to find
Casimir scalingwhere the string tensions for different repre-

sentationsR andR′ scale according to

σR

cR
=

σR′

cR′

(41)

with quadratic CasimircR. Although all string tensions will
vanish at asymptotic scales it is still possible to check for
Casimir scaling at intermediate scales where the linearityof
the inter-quark potential is nearly fulfilled.

To extract the static quark anti-quark potential two different
methods are available. The first makes use of the behavior of
rectangular Wilson loops in representationR for largeT ,

〈WR(R, T )〉 = exp
(

κR(R) − VR(R)T
)

with VR(R) = γR − αR

R
+ σRR. (42)

The potential can be extracted from the ratio of two Wilson
loops with different time extent according to

VR(R) =
1

τ
ln

〈WR(R, T )〉
〈WR(R, T + τ)〉 . (43)

We calculated the expectation values of Wilson loops with the
two-level Lüscher-Weisz algorithm and fitted the right hand
side of (43) with the potentialVR(R) in (42). The fitting has
been done for external charges separated by one lattice unitup
to separationsR with acceptable signal to noise ratios. From
the fits we extracted the constantsγR, αR andσR entering
the static potential. For an easier comparison of the numerical
results on lattices of different size and for different values of
β we subtracted the constant contribution to the potentials and
plotted

ṼR(R) = VR(R) − γR (44)

in the figures. The statistical errors are determined with the
Jackknife method. In addition we determined thelocal string
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tension

σloc,R

(

R +
ρ

2

)

=
VR(R + ρ) − VR(R)

ρ
, (45)

given by the Creutz ratio

σloc,R

(

R +
ρ

2

)

=
αR

R(R + ρ)
+ σR

=
1

τρ
ln

〈WR(R + ρ, T )〉 〈WR(R, T + τ)〉
〈WR(R + ρ, T + τ)〉 〈WR(R, T )〉 . (46)

The second method to calculate the string tensions uses cor-
relators of two Polyakov loops,

VR(R) = − 1

βT

ln 〈PR(0)PR(R)〉 . (47)

The correlators are calculated with the three-level Lüscher-
Weisz algorithm and are fitted with the static potentialVR(R)
with fit parametersγR, αR andσR. Now the local string ten-
sion takes the form

σloc,R

(

R +
ρ

2

)

= − 1

βT ρ
ln

〈PR(0)PR(R + ρ)〉
〈PR(0)PR(R)〉 . (48)

A. Casimir scaling in 3 dimensions

Most LHMC simulations are performed on a283 lattice with
Wilson loops of time extentT = 12. To extract the static
potentials from the ratio of Wilson loops in (43) we chose
τ = 2. The fits to the static potential (42) for charges in the
fundamental7 representationand for valuesβ = 30, 35 and
40 yield the lattice parametersα, γ andσ given in Tab. III.
To check for scaling we plotted the potentials in ‘physical’
units,V/µ, with mass scale set by the string tension in the7
representation,

µ =
√

σ7, (49)

as function ofµR in Fig. 3. We observe that the potentials for
the three values ofβ are the same within error bars. In addi-
tion they agree with the potential (in physical units) extracted
from the Polyakov loop on a much larger483 lattice.

The fitted constantsαR, γR andσR of the potential (42) for
the eight smallest representations are given in Tab. IV. The
Casimir scaling of coefficients becomes apparent when they
are divided by the corresponding coefficients of the static po-
tential in the7 representation.

The local string tensionsextracted from the Creutz ratio
can be determined much more accurately as the global string
tensions extracted from fits to the static potentials. Tab. V
contains the local string tensions for static charges in theeight
smallest representations forρ = 1 and differentR in (46), di-
vided by the corresponding local string tensions in the7 rep-
resentation. The results are insensitive the the distanceR in
the Creutz ratio. They agree within1 percent with the values
for the Casimir ratiosC′

R = CR/C7 given in the last row of
that table.
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2.0
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3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ṽ7/µ

µR

β = 30, N = 283

β = 35, N = 283

β = 40, N = 283

β = 30, N = 483

FIG. 3. (Color online) Continuum scaling of the fundamentalpoten-
tial.
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0
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6

8
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ṼR/µ

µR

R = 7
R = 14
R = 27
R = 64
R = 77
R = 77′

R = 182
R = 189

FIG. 4. (Color online) Unscaled potential withβ = 40 on a283

lattice.

In Fig. 4 we plotted the values for the eight potentials
V7, . . . , V189 (with statistical errors) measured in ‘physical
units’ µ defined in (49). The distance of the charges is mea-
sured in the same system of units. The linear rise at inter-
mediate scales is clearly visible, even for charges in the189
dimensional representation.

Fig. 5 contains the same data points rescaled with the
quadratic Casimirs of the corresponding representations.The
eight rescaled potentials fall on top of each other within er-
ror bars. This implies that thefull potentialsfor short and
intermediate separations of the static charges show Casimir
scaling.

To further check for Casimir scaling we calculated thelocal
string tensionswith ρ = 1, this time for allR between1 and
10 and not only forR = 0, 1, 2 as in Tab. V. The horizontal
lines in Fig. 6 are the values predicted by the Casimir scaling
hypothesis. Clearly we see no sign of Casimir scaling viola-
tion on a283 lattice near the continuum atβ = 40. Of course,
for widely separated charges in higher dimensional represen-
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TABLE III. Potential for charges in the7 representation.

β = 30, N = 283 β = 35, N = 283 β = 40, N = 283 β = 30, N = 483 β = 40,N = 643 β = 20, N = 323

γa 0.185(8) 0.160(4) 0.147(5) 0.197(1) 0.164(1) 0.252(1)

α 0.0881(7) 0.0752(3) 0.071(4) 0.098(1) 0.0887(1) 0.117(1)

σa2 0.046(1) 0.0340(8) 0.024(1) 0.0435(3) 0.0221(3) 0.1161(2)

TABLE IV. Fit-parameters of static potentials.

R 7 14 27 64 77 77′ 182 189

γRa 0.147(5) 0.29(1) 0.34(1) 0.51(1) 0.58(1) 0.74(2) 0.83(1) 0.77(2)

γRa/C′
R 0.147 0.145 0.146 0.146 0.145 0.148 0.138 0.144

γR/γ7 1 1.97 2.31 3.46 3.94 5.03 5.64 5.23

αR 0.071(4) 0.145(8) 0.16(1) 0.24(1) 0.27(1) 0.36(1) 0.37(1) 0.36(1)

αR/C′
R 0.071 0.0725 0.069 0.069 0.068 0.072 0.062 0.068

αR/α7 1 2.04 2.25 3.38 3.80 5.07 5.21 5.07

σRa2 0.024(1) 0.048(2) 0.057(3) 0.086(4) 0.099(5) 0.120(6) 0.157(6) 0.132(6)

σRa2/C′
R 0.024 0.024 0.024 0.025 0.025 0.024 0.026 0.025

σR/σ7 1 2.00 2.37 3.58 4.12 5.00 6.54 5.50
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R = 77
R = 77′

R = 182
R = 189

FIG. 5. (Color online) Scaled potential withβ = 40 on a283 lattice.

tations the error bars are not negligible even for an algorithm
with exponential error reduction.

B. Lüscher term

In Tab. IV we have seen that the dimensionless coefficientαR

in the static potential scales with the quadratic Casimir, sim-
ilarly to the string tension. The corresponding term, if mea-
sured at distances where the flux tube is fully developed, is
referred to asLüscher term. Its value has been calculated by
Lüscher for charges in the fundamental representation, ind di-
mensionsα = (d − 2)π/24, and it is believed to be universal
[51]. The valueα = π/24 in 3 dimensions is off the results in
Tab. III. However, since the coefficients in this table are fitted

0

1

2

3

4

5

6

7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

σR(R)
σ7(R)

µR

FIG. 6. (Color online) Ratio of the local string tension withβ = 40
scaled on a283 lattice for the eight smallest representations.

to the static potential fromR = 1 to values ofR with accept-
able signal to noise ratio, they contain contributions fromthe
short range Coulombic tail. To calculateαR at intermediate
distances we better use the (local) Lüscher term

αloc,R (R) =
αRR2

R2 − ρ2
=

R3

2βT ρ2
ln

〈PR(0)PR(R + ρ)〉 〈PR(0)PR(R − ρ)〉
〈PR(0)PR(R)〉 〈PR(0)PR(R)〉 , (50)

with ρ = 1. In Fig. 7 we plotted the local Lüscher term
for charges in the7 and14 representation at couplingsβ ∈
{30, 40}. Our data for the defining7 dimensional representa-
tion at intermediate distances are in agreement with the the-
oretical predictionα7 = π/24 ≈ 0.131. The local Lüscher
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TABLE V. Scaled local string tension.

R 7 14 27 64 77 77′ 182 189

σR(1/2)/σ7(1/2) 1 1.9996(3) 2.3327(5) 3.498(1) 3.997(2) 4.996(3) 5.991(5) 5.328(4)

σR(3/2)/σ7(3/2) 1 1.9989(7) 2.331(1) 3.495(5) 3.994(4) 4.989(7) 5.99(1) 5.321(9)

σR(5/2)/σ7(5/2) 1 1.996(1) 2.327(1) 3.484(5) 3.980(7) 4.96(1) 5.94(2) 5.29(1)

C′
R 1 2.0000 2.3333 3.5000 4.0000 5.0000 6.0000 5.3333
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R = 7, β = 30, N = 483

R = 7, β = 40, N = 643

R = 14, β = 40, N = 643

FIG. 7. (Color online) Local Lüscher term at two different couplings
and for two different representations.

term for the adjoint representation approaches a value close
to α14 ≈ π/12. Although this exceeds the universal predic-
tion of [51] by a factor2 this behavior is in close analogy
to the situation in3 dimensionalSU(5) Yang-Mills theory
where Casimir scaling of the local Lüscher term at short dis-
tances has been reported in [52] for the10 dimensional rep-
resentation. Since the Lüscher term is expected to show up
at asymptotic large distances, this term can only be extracted
if the flux tube has fully developed before string breaking
sets in. Whether this is the case forG2 gauge theory is not
clear. Our results suggest that this happens for charges in the
7-dimensional representation.

C. String breaking and glue-lumps in 3 dimensions

To observe the breaking of strings connecting static charges
at intermediate scales when one further increases the separa-
tion of the charges we performed high statistics LHMC sim-
ulations on a483 lattice with β = 30. We calculated ex-
pectation values of Wilson loops and products of Polyakov
loops for charges in the two fundamental representations of
G2. When a string breaks then each static charge in the repre-
sentationR at the end of the string is screened byN(R) glu-
ons to form a color blind glue-lump. We expect that the dom-
inant decay channel for an over-stretched string is string→
gluelump+ gluelump. For a string to decay the energy stored
in the string must be sufficient to produce two glue-lumps.

According to (11) it requires at least3 gluons to screen a static
charge in the7 representation, one gluon to screen a charge in
the14 representation and two gluons to screen a charge in the
27 representation. We shall calculate the separations of the
charges where string breaking sets in and the masses of the
produced glue-lumps. The mass of such a quark-gluon bound
state can be obtained from the correlation function according
to

exp (−mRT ) ∝ CR(T )

=

〈

(N(R)
⊗

n=1

Fµν(y)

)∣

∣

∣

∣

R,a

R(Uyx)ab

(N(R)
⊗

n=1

Fµν(x)

)∣

∣

∣

∣

R,b

〉

,

(51)
whereR(Uyx) is the temporal parallel transporter in the rep-
resentationR from x to y of length T . It represents the
static sources in the representationR. The vertical line means
projection of the tensor product onto that linear subspace on
which the irreducible representationR acts,

(14 ⊗ 14 ⊗ · · · ⊗ 14) = R⊕ · · · . (52)

For example, for charges in the14 representation the projec-
tion is simply

Fµν(x)
∣

∣

∣

14,a
= F a

µν(x), where F a
µνT a = Fµν . (53)

For charges in the7 representation we must project the re-
ducible representation14 ⊗ 14 ⊗ 14 onto the irreducible rep-
resentation7. Using the embedding ofG2 into SO(7) repre-
sentations one shows that this projection can be done with the
help of the totally antisymmetricε-tensor with7 indices,

Fµν(x) ⊗ Fµν(x) ⊗ Fµν(x)
∣

∣

∣

7,a

∝ F p
µν(x)F q

µν(x)F r
µν(x)εabcdefgT

p
bcT

q
deT

r
fg. (54)

Fig. 8 shows the logarithm of the glue-lump correlator (51) as
function of the separation of the two lumps for static charges
in the fundamental representations7 and14. The linear fits to
the data yield the glue-lump masses

m7a = 0.46(4), m14a = 0.761(3). (55)

Thus we expect that the subtracted static potentials approach
the asymptotic values

ṼR −→ 2mR − γR. (56)
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FIG. 8. (Color online) Glue-lump correlator (lattice size483, β =
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FIG. 9. (Color online) Potential for both fundamental representations
atβ ∈ {20, 30} and corresponding glue-lump mass forβ = 30.

With the fit-valuesγ7a = 0.197(1) andγ14a = 0.381(2) we
find

Ṽ7/µ −→ 3.47 , Ṽ14/µ −→ 5.47. (57)

Fig. 9 shows the rescaled potentials for charges in the fun-
damental representations together with the asymptotic values
(57) extracted from the glue-lump correlators. At fixed cou-
pling β = 30 both potentials flatten exactly at separations
of the charges where the energy stored in the flux tube is
twice the glue-lump energy. However, the direct comparison
of the potentials for two different couplings, i.e. different lat-
tice spacings, reveals that the potential for adjoint charges is
nearly free of lattice artifacts while the string breaking dis-
tance for charges in the defining representation is largely cou-
pling dependent and the continuum limit is not reached yet.

A good approximation for the string breaking distance is
then given byVR(Rb) ≈ 2mR. Assuming Casimir scaling
for the coefficientsαR, γR andσR in the static potential we
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FIG. 10. (Color online) Local string tension (483 lattice,β = 30).
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FIG. 11. (Color online) Casimir scaling of local string tension (483

lattice,β = 30).

obtain

µRb
R =





√

α7 +
1

4

(

γ7

µ
− MR

)2

− 1

2

(

γ7

µ
− MR

)



 ,

MR =
2mR

µC′
R

.

(58)
Inserting the result from the last row in Tab. III and the glue-
lump masses we findµRb

7 = 3.49 andµRb
14 = 2.77. These

values agree well with the separationsµR in Fig. 9 where
the static potentials flatten such that string breaking setsin
at scales predicted by formula (58). Fig. 10 shows the lo-
cal string tensions in the two fundamental representationsand
Fig. 11 their ratio. Especially the last plot makes clear that the
string connecting charges in the adjoint representation break
earlier than the string connecting charges in the7 representa-
tion. Just at the critical separation predicted by formula (58)
the ratio of local string tensionsσ14(R)/σ7(R) shows indeed
a pronounced knee.
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FIG. 12. (Color online) Deviations from Casimir scaling at two dif-
ferent couplings.

D. Signs of Casimir scaling violations

Although the coarse grained view onto the ratio of local string
tensions up to the string breaking distance (Fig. 11) shows
an approximate Casimir scaling, a closer look uncovers de-
viations from the expected Casimir ratio of the adjoint and
defining representation (see Fig. 12). The results for two dif-
ferent lattice spacings indicate that for short distances,in the
Coulombic part of the potential, Casimir scaling is fulfilled, in
agreement with the predictions of perturbation theory, valid at
short distances. For larger distances the measured ratio drops
by about2.5% near the string breaking distance and similar
deviations have already been reported in [36, 39] in3 dimen-
sionalSU(2) gauge theory. In either case the scale depen-
dence identifies Casimir scaling violations as a purely nonper-
turbative long range effect. Of course, the given error bounds
in Fig. 12 may be taken with care as they include only statis-
tical uncertainties. Lattice artifacts are still visible and further
work will be necessary to confirm that this violation persists
in the continuum limit.

E. Continuum limit of the string tension

Formula (16) gives the string tension in the continuum as
function of the couplingβ ∝ 1/g2 [20]. To compare this
continuum result with our lattice data we extrapolate the cor-
responding valueg−2√σ7 linearly in β−1 ∝ a to the contin-
uum limit by using the couplings and lattice sizes in Tab. VI.
This procedure is motivated by the (in leading order) linearbe-
havior that has been found in a similar study for gauge groups
SU(2) up to SU(5) [53]. For increasingβ the scaling win-
dow with a linear rising potential shrinks and it becomes more
difficult to extract reliable values for the intermediate string
tension. Thus a linear fit to all points in table VI leads to
g−2√σ7 = 0.381(5) (see Fig. 13). with a rather large reduced
χ2 = 8.56, whereas a linear fit to the reliable data points with
the 3 smallestβ-values yieldsg−2√σ7 = 0.376(2) with a

TABLE VI. String tension for the7 representation on lattice sizes
and couplings that are used for the continuum extrapolation.

β N σ7a
2 g−2√σ7

20 323 0.11807(19) 0.4908(4)

25 403 0.06863(12) 0.4678(4)

30 483 0.04481(28) 0.4536(14)

35 563 0.03193(14) 0.4467(10)

40 643 0.02219(33) 0.4256(32)
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FIG. 13. (Color online) Linear continuum extrapolation of the string
tension. The shaded region indicates the corresponding error bound.

small reducedχ2 = 0.51. Both fit-values are in good agree-
ment with the prediction of Eq. (16),g−2√σ7 = 0.39894.

Corrections to this theoretical value have been derived in a
systematic expansion in [21],

g−2√σ7 =

√

1

2π
(1 − 0.02799 + · · · ) ≈ 0.38778, (59)

but they are still subject to ambiguities in defining a low mo-
mentum cutoff that may change this value by up to3%. With
keeping in mind that we are left with possible systematic un-
certainties in the extrapolation procedure that are not reflected
in the given statistical error a complete agreement between
analytical and numerical results is apparent.

F. Casimir scaling in 4 dimensions

In this last section we present our results for the static po-
tential in 4 dimensions. The LHMC simulations have been
performed on a small144 and a larger204 lattice for differ-
ent values ofβ. The static potentials and local string tensions
have been extracted from (43) and (46), where the expectation
values have been calculated with a two-step Lüscher-Weisz
algorithm. Tab. VII contains the fits to the parameters in the
potential for static charges in the7 representation for these
lattices and values forβ.
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TABLE VII. Parameters of the quark anti-quark potential in4 dimen-
sions forR = 7.

β = 9.7, N = 144 β = 10, N = 144 β = 9.7, N = 204

γ7a 0.83(8) 0.74(4) 0.68(9)

α7 0.40(7) 0.33(3) 0.28(8)

σ7a
2 0.07(2) 0.042(9) 0.11(1)
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FIG. 14. (Color online) Unscaled potential atβ = 9.7 on a144

lattice.

Fig. 14 shows the static potentials in ‘physical units’µ =√
σ7 for charges in the7, 14, 27 and64 dimensional represen-

tations and couplingβ = 9.7 as function of the distance be-
tween the charges in physical units. The corresponding value
for σ7 is taken from Tab. VII. The same coupling has been
used in [16] on an asymmetric143 × 28 lattice. After normal-
izing the potential with the quadratic Casimirs they are iden-
tical within error bars, as can be seen in Fig. 15. Our findings
are in complete agreement with the results in [16] on Casimir
scaling in4 dimensionalG2 gluodynamics atβ = 9.7 and our
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FIG. 15. (Color online) Scaled potential atβ = 9.7 on a144 lattice.
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FIG. 16. (Color online) Unscaled potential atβ = 10 on a 144

lattice.
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FIG. 17. (Color online) Scaled potential atβ = 10 on a144 lattice.

accurate results on Casimir scaling on intermediate scalesin
3 dimensionalG2 gluodynamics.

Figs. 16 and 17 show the corresponding results for a weaker
couplingβ = 10 closer to the continuum limit. For this small
coupling we can measure the potential only up to separations
µR ≈ 1.5 of the charges. But we can do this with high preci-
sion and for higher-dimensional representations. As forβ =
9.7 we find that the potentials normalized with the second or-
der Casimirs fall on top of each other. This confirms Casimir
scaling forG2 gluodynamics in4 dimensions for charges in
representations with dimensions7, 14, 27, 64, 77, 77′, 182 and
189.

Finally we simulated on a much larger204 lattice atβ =
9.7 in order to calculate the static potential for larger separa-
tions of the static quarks. Unfortunately the distanceµR ≈ 3
is still not sufficient to detect string breaking, see Fig. 18. But
again the potentials normalized with the quadratic Casimirs
shown in Fig. 19 are equal within error bars.

In Tab. VIII we have listed the fit-values for the parame-
ters of the potentials on the larger204 lattice for static charges
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FIG. 18. (Color online) Unscaled potential atβ = 9.7 on a204

lattice.
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FIG. 19. (Color online) Scaled potential atβ = 9.7 on a204 lattice.

in the representations with dimensions7, 14 and27. For all
representation we find Casimir scaling of all three parameters
in the potential. Unfortunately the fit-parameters cannot be
determined reliably in the64 representation with the present
data. This is attributed to larger errors for the potentialsat
intermediate scales, see Fig. 18, so that the parameters can
only be determined from the ultraviolet part of the potential
for this representation (R < 3) which is rather Coulomb-like
than linearly rising. Much more conclusive are the local string
tensions calculated on the larger lattice (now up to the64 rep-
resentation). Tab. IX contains the local string tensions divided
by the local string tensions in the7 representation. These nor-
malized values are constant up to separations of the charges
where the statistical errors are under control. Compared to
the corresponding numbers in3 dimensions, see Tab. V, we
now see a slight dependence of the local string tensions from
Eq. (45) on the distanceR. Despite of the lower precision
of the results in4 dimensions compared to the corresponding
results in3 dimensions we again confirm Casimir scaling on
short to intermediate scales within5 percent.

TABLE VIII. Fit-parameters of static potentials (204 lattice, β =
9.7).

R 7 14 27

γRa 0.68(9) 1.39(4) 1.61(3)

γRa/C′
R 0.68 0.695 0.690

αR 0.28(8) 0.60(2) 0.69(2)

αR/C′
R 0.28 0.30 0.295

σRa2 0.11(1) 0.21(1) 0.251(9)

σRa2/C′
R 0.11 0.105 0.107

TABLE IX. Scaled local string tension (204 lattice,β = 9.7).

R 7 14 27 64

σR(1/2)/σ7(1/2) 1 1.973(1) 2.294(1) 3.396(8)

σR(3/2)/σ7(3/2) 1 1.987(3) 2.303(4) 3.44(2)

σR(5/2)/σ7(5/2) 1 1.92(1) 2.28(3) —

C′
R 1 2.0000 2.3333 3.5000

All our simulation results for the local string tensions
σR(R) normalized byσ7(R) on a 144 lattice with β ∈
{9.7, 10} and on a204 lattice withβ = 9.7 and forµR ≤ 1.5
are collected in Fig. 20. The horizontal lines in this figure
show the prediction of the Casimir scaling hypothesis. The
normalized data points are compatible with each other and
with the hypothesis.

VI. CONCLUSIONS

In the present work we implemented an efficient and fast
LHMC algorithm to simulateG2 gauge theory in three and
four dimensions. With only a slight modification we can
include a (normalized) Higgs field in the7 representation.

0

1

2

3

4

5

6

7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

σR(R)
σ7(R)

µR

FIG. 20. (Color online) Scaled local string Tension withβ ∈
{9.7, 10} on144 and204 lattices.
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The corresponding results for the phase diagram ofG2 Yang-
Mills-Higgs theory will soon be presented in a companion pa-
per. The algorithm has been optimized with the help of the
coset decomposition of group elements and the analytic ex-
pressions for the exponential maps for the two factors. In
addition we implemented a slightly modified Lüscher-Weisz
multi-step algorithm with exponential error reduction to mea-
sure the static potentials for charges in variousG2 represen-
tations. The accurate results in3 dimensions show that all
parameters of the fitted static potentials show Casimir scal-
ing, see Tab. III. The global string tensions extracted from
these fits show that possible deviations from Casimir scaling
must be less than4 percent. We also extracted the local string
tensions from the Creutz ratios to obtain even more precise
data. This way we confirm Casimir scaling at short distances√

σ7R < 1 with 1 percent accuracy. Thus we conclude that
in 3 dimensionalG2 gluodynamics the Casimir scaling vio-
lations of the string tensions are small for all charges in the
representations with dimensions7, 14, 27, 64, 77, 77′, 182 and
189.

For charges in the two fundamental representations we per-
formed LHMC simulations on larger lattices to detect string
breaking at asymptotic scales. In3 dimensions we observe
that string breaking indeed sets in at the expected scale where
the energy stored in the flux tube is sufficient to create two

glue-lumps. To confirm this expectation we calculated masses
of glue-lumps associated with static charges in the fundamen-
tal representations. Here, close to the string breaking distance,
systematic Casimir scaling violations show up at the2.5 per-
cent level and they are identified as a nonperturbative effect
arising only at large distances. Finally, the prediction for the
numerical value of the string tension in3 dimensions is con-
firmed by a continuum extrapolation of our precise data.

In 4 dimensionalG2 gluodynamics we found Casimir scal-
ing for charges in the representations7, 14, 27 and64, simi-
larly as we did in3 dimensions, although the uncertainties are
of course larger. But within error bars we see no violation of
Casimir scaling and this confirms the corresponding resultsin
[16], obtained with a variant of the smearing procedure. To
see the expected string breaking in4 dimensions one would
need larger lattices than those used in the present work.
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