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Abstract

While pure Yang-Mills theory feature the centre symmetry, this symmetry is
explicitly broken by the presence of dynamical matter. We study the impact of the
centre symmetry in such QCD-like theories. In the analytically solvable Schwinger
model, centre transitions take place even under extreme conditions, temperature
and/or density, and we show that they are key to the solution of the Silver-Blaze
problem. We then develop an an effective SU(3) quark model which confines quarks
by virtue of centre sector transitions. The phase diagram by confinement is obtained
as a function of the temperature and the chemical potential. We show that at low
temperatures and intermediate values for the chemical potential the centre dressed
quarks undergo condensation due to Bose like statistics. This is the Fermi Einstein

condensation. To corroborate the existence of centre sector transitions in gauge
theories with matter, we study (at vanishing chemical potential) the interface tension
in the three-dimensional Z2 gauge theory with Ising matter, the distribution of the
Polyakov line in the four-dimensional SU(2)-Higgs model and devise a new type of
order parameter which is designed to detect centre sector transitions. Our analytical
and numerical findings lead us to conjecture a new state of cold, but dense matter
in the hadronic phase for which Fermi Einstein condensation is realised.
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1 Introduction:

A great deal of efforts, theoretical and experimental, are devoted to explore the properties
of hadronic matter under extreme conditions, temperature and/or baryonic densities. The
general belief is that matter is organised in a quark-gluon plasma phase in this regime. At
least for small densities, this belief is corroborated by lattice gauge calculations [1–3] and
collision experiments such as undertaken at RHIC [4, 5].

Central to understand matter under extreme conditions is the understanding of colour
confinement since its realisation is, almost by definition, the most prominent difference
between the so-called hadronic and the quark-gluon plasma phase. Early on in the eighties,
it was pointed out that the centre of the gauge group plays a major role for confinement:
Realisation of the centre symmetry of the gauge sector goes in line with confinement
while its spontaneous breakdown (e.g. at high temperatures) signals colour liberation [6,7].
Roughly at the same time, it was proposed that certain degrees of freedom of Yang-Mills
theories, such as monopoles or vortices, are responsible for the (dis-)order of the centre
symmetry (see [8] for a review). It took until the late nineties to isolate these degrees of
freedom in lattice gauge theories in a physical, i.e., regulator independent way [9, 10]. It
was pointed out in [11] that the mere existence of centre vortices as physical degrees of
freedom demand a fine tuning between vortex entropy and energy. Quite recently [12],
smooth stream-line configurations which bear confinement have been found using lattice
gauge simulations: it was pointed out that if centre vortices are images of these stream-
line configurations in a certain gauge, it would naturally account for the intrinsic fine-
tuning. Most importantly, the centre vortex picture offers an understanding of confinement
on the basis of weakly interacting degrees of freedom, which explain high temperature
deconfinement and the centre disorder of spatial correlations at the same time [13–15].

Although a quite detailed picture of confinement and deconfinement at finite temperatures
has emerged over the last decade, very little is known about cold but dense matter from
first principles. Because of the notorious “sign”-problem, Monte-Carlo simulations of Yang-
Mills theories with dense quark matter are only feasible for SU(2) colour [16] for which the
sign problem is absent1 or for rather small densities (see [18] for a recent review). First
insights into the properties of matter which feature in cold but dense QCD might be gained
from exact solutions of models which mimic certain aspects of QCD. As an example, we
mention the Gross-Neveu model which features the baryon crystal as an hitherto unknown
state of matter [19–21].

Among the very few gauge theories which admit an exact solution even for the case of
dense quark matter is 2d Quantumelectrodynamics, the so-called Schwinger model [22].
The model with massless fermions was exactly solved in Hamiltonian formalism on the line
in [23–25] and on S1 in [26, 27]: chiral symmetry is spontaneously broken and only states
with a vanishing net baryon number appear in the spectrum. The model on the torus has

1G2 Yang-Mills theory with dynamical fermions has no sign-problem as well and simulations at finite
temperature and density are under way [17].
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been studied in [28] and in particular the temperature dependence of the chiral conden-
sate, Wilson loop correlators and Polyakov line correlators have been determined [29–31].
In [32, 33], non-vanishing values of the fermion chemical potential have been firstly con-
sidered. It was found, most importantly, that the full non-perturbative partition function
is independent of the chemical potential. Since then, many more quantities have been ob-
tained in the massless Schwinger model ranging from the temperature dependence of the
correlators of hadronic currents, spectral functions to the screening mass [34]. This makes
the Schwinger mode the ideal testbed to test new ideas, and we will make extensive use of
this below.

Besides of exactly solvable models, understanding mechanisms, which have been revealed
in model studies or by non-perturbative approximations, is an invaluable tool since they
might extend their applicability to the theory of interest, in particular, cold and dense
QCD matter. Recent examples are the proposal of the quarkyonic phase the existence
of which has been motivated by the large Nc considerations (Nc being the number of
colours) [35, 36]. Another recent example is the chiral magnetic effect which describes
an induced electromagnetic current alongside an external magnetic field made possible by
topological charge transitions in the quark gluon plasma phase [37, 38].

Of particular importance for this publication is the recent observation that quarks effec-
tively comply to periodic boundaries conditions if exposed to a particular non-trivial centre
sector in SU(Nc) Yang-Mills theory for Nc even. In the dense hadronic (confining) phase,
this opens the possibility that centre dressed quarks undergo condensation reminiscent of
Bose-Einstein condensation [39]. In analogy, this has been called Fermi Einstein conden-
sation (FEC) [40]. We also point out that the sensitivity of the quark spectrum to the
boundary conditions of the quarks has been studied in [41].

In this paper, we will further study the phenomenological impact of the FEC effect. We
will use the Schwinger model which will allow to study FEC on almost purely analytical
grounds. Since in previous studies we considered an even number of colours, we here extend
the considerations to the more relevant case of an SU(Nc = 3) gauge group using a quark
model. We are going to show that transitions between the centre sectors are sufficient
to confine quarks in this model. The quark model itself determines the so-called centre
sector weights which serve as an order parameter for confinement. Using these weights,
we will be able to calculate the phase diagram of the model as a function of the chemical
potential and the temperature. For Nc = 3, we find that FEC does occur under cold and
dense conditions at the presence of pressure. Essential for FEC is that the gluonic states
manoeuvre through the centre sectors. Since non-trivial centre-sectors are suppressed by
the presence of dynamical matter, we accumulate evidence in the remainder of the paper
that centre sector transitions do occur in the so-called hadronic phase. To this aim, we will
study the Z2 gauge theory with Ising matter and the SU(2) Higgs theory. We develop a
novel order parameter which is sensitive to centre sector transitions and provide numerical
evidence that these transitions take place until centre symmetry is spontaneously broken
at high temperatures.
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The paper is organised as follows: In section 2, we extend the considerations of [42–44] and
show that the Yang-Mills “empty” vacuum possess gauge in-equivalent flat directions which
collapse to the so-called centre-sectors once quantum fluctuations are included. Section 3
addresses FEC in the context of the Schwinger model. In section 4, we develop the SU(3)
quark model with confinement by virtue of the interaction of the quarks with the centre
sector background fields. Confinement is established by studying the model’s thermal
excitations, and the phase diagram from confinement is obtained. In section 5, we start to
investigate centre-sector transition by means of numerical simulations. For this purpose,
we study the Z2 gauge theory with Ising matter, which has not yet been studied before
to our knowledge. In section 6, we extend the simulations and consider the SU(2) Higgs
theory. The order parameter for centre sector transitions is developed and our numerical
findings for this order parameter are presented. Conclusions are left to the final section.

2 Yang-Mills moduli space and centre sectors

2.1 The empty vacuum on a torus

A configuration with minimal Euclidean action, often called empty vacuum, is often the
starting point of perturbation theory. In Abelian theories, it is naturally defined as a state
for which the field strength at any point of space-time vanishes. In non-Abelian theories,
such as SU(Nc) Yang-Mills theories, a more stringent definition is in order: there, the
empty vacuum is a state for which the holonomy calculated along any contractible loop C
yields the unit element of the gauge group:

P exp

{

i

∫

C

Aµ(x) dx
µ

}

= 1 (empty vacuum condition), (1)

where Aµ(x) is the gauge potential and P denotes path-ordering. Throughout this paper,
we will consider a 4-torus as space-time manifold. The gauge potentials Aµ(x) and gauge
transformations Ω(x) satisfy periodic boundary conditions2, matter fields such as a scalar
Higgs field φ(x) or quarks q(x) are subjected to periodic and anti-periodic boundary condi-
tions, respectively. We will adopt a lattice regularisation with the lattice spacing a acting
as an UV regulator. Thereby, the gauge degrees of freedom are represented by the links
Uµ(x) ∈ SU(Nc). Gauge transformations act as usual:

UΩ
µ (x) = Ω(x)Uµ(x) Ω

†(x+ µ) . (2)

In lattice discretisation, the vacuum condition (1) becomes
∏

ℓ∈C

Uℓ = 1 , ℓ = (x, µ) , (3)

where C is a closed and contractible path on the lattice. The smallest contractible loops
on the lattice are the loops surrounding the elementary plaquettes of the lattice. For the

2In the continuum theory this implies a vanishing instanton number.
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Figure 1: Absence of Polyakov line correlations in the “empty” vacuum (left). Step 1 of
the complete gauge fixing (right).

later choice, the vacuum condition (3) implies that the non-Abelian field strength vanishes
for the empty vacuum.

Already in the late nineties, it has been discovered that there are smoothly connected
configurations which are gauge in-equivalent and which all satisfy the vacuum condition (1)
(or (3)) [42–44]. The set of these configurations defines the Yang-Mills moduli space. While
Keurentjes et al. discuss 3-dimensional Yang-Mills theory, the arguments were extended to
4-dimension in [44]. To make the paper self-contained, we will give a full account of the
Yang-Mills moduli space using lattice regularisation.

Of particular importance for the study of confinement in Yang-Mills theories on the torus
is the Polyakov line:

P(x ) =
∏

t

U0(t, x ) . (4)

Let us firstly study their correlations in the empty vacuum. For this purpose, we consider
the maximal (contractible) loop in figure 1, left panel (note that the product V of spatial
links is the same at the lower and upper time-slices due to periodic boundary conditions).
The vacuum condition implies

P(x )V P†(y)V † = 1 ⇒ trP(x ) = trP(y). (5)

Hence, the trace of the Polyakov line is necessarily constant for any choice of an “empty”
vacuum. Given that the static quark anti-quark potential V (r) can be extracted from the
Polyakov line correlator:

〈

P (x )P (y)
〉

∝ exp {−V (r)/T} , P (x ) =
1

Nc
trP(x ), (6)

where r = |x − y | and T is the temperature, the finding (6) implies that a single “empty”
state cannot sustain quark confinement.
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Figure 2: Gauge fixing step 2 (right) and (almost) completely gauge fixed configuration
(left).

Genuinely different vacua states are obtained by identifying all states which are related
by gauge transformations. In order to calculate those, a complete unique gauge fixing is
in order. In a first step, we adopt a Polyakov type of gauge fixing: all time like links
U0(t, x ) for t > 1 are gauged to the unit element (see figure 1, left panel). The only
non-trivial time-like links are those at t = 1, which thus equal the Polyakov line. The
gauge transformation Ω1, Ω2, etc, are not used for this first gauge fixing step. These gauge
transformations are now employed to gauge almost all spatial links at time-slice t = 1 to
the unit element (see figure 2, right panel). The empty vacuum condition then implies
that all spatial links without arrows in figure 2 are transformed to the unit element. The
spatial links U which are far most to the left then equal the spatial Polyakov line in this
direction. We then again use the vacuum condition for the contractible loop in figure 2,
left panel and conclude that

P(xk)1P†(xℓ)1 = 1 ⇒ P(xk) = P(xℓ) = P .

In this gauge and for an empty vacuum state, not only the trace of the Polyakov is constant
but also the full Polyakov line including off-diagonal parts. After the above gauge fixing,
only gauge transformation Ω1 remains unfixed and acts as a residual global colour symmetry.
In a final step, we consider the plaquette in the bottom left corner of the lattice in figure 2,
right panel. Generically, the eigenvalues of the spatial and time-like Polyakov lines are
different. In order to satisfy the vacuum condition for this case, the matrices P and U are
drawn from the Cartan subgroup of SU(Nc) implying:

PUP†U † = 1 ⇒ [P, U ] = 0 .

Let the spatial Polyakov line U now be an element of the Cartan subgroup with all eigen-
values different. The Polyakov line P must then be an element of the Cartan subgroup in
order to describe an empty vacuum:

P ∈ [U(1)]Nc−1 .
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For two choices of P with at least one eigenvalue being different, we obtain two gauge
in-equivalent empty vacua states. Note that the Polyakov line homogeneously transforms
under gauge transformations,

PΩ(x ) = Ω(x )P(x )Ω†(x ) ,

implying that its eigenvalues are gauge invariant. Each U(1) is spanned by a compact
angle variable αn, n = 1 . . . Nc − 1, which span the space of global minima of the classical
Yang-Mills action - the moduli space. For each direction, the corresponding Polyakov line
can be chosen from the [U(1)]Nc−1 subgroup. Hence, the moduli space is at least spanned
by the

[U(1)]d(Nc−1)

group manifold. Note that if, for a particular direction, the eigenvalues of the Polyakov
line are f fold degenerate, the Polyakov lines of the other direction can be chosen from a
SU(f) subgroup and still satisfy the empty vacuum condition. Hence, the moduli space is
slightly larger than the space spanned by the U(1) groups only.

We finally make two comments:

(i) We point out that the trace of the Polyakov line being different is a sufficient, but not a
necessary condition for two states being at different points in moduli space: assume that
two Polyakov lines possess different eigenvalues but the same sum of all eigenvalues. They
would belong to different points in moduli space, but their trace would be equal.

(ii) A perturbative treatment should involve a summation over all states with minimal
(global) action. This implies an integration over the moduli space. Note that the standard
perturbation theory merely chooses one state (i.e., the state of vanishing gauge potential or
the state of all unit links in lattice formulation) of the moduli space. The integration over
the moduli space would most likely remove the colour states from the theory thus inducing
confinement. It would not, however, provide a confinement scale. Perturbation theory
with an integration over the moduli space as well as the phenomenological implications of
the moduli space integrations in effective quark theories will be explored elsewhere.

2.2 Yang-Mills quantum vacuum

The flat directions of the “empty” vacuum, discussed in detail in the previous subsection,
are lifted if quantum fluctuations are considered. The symmetry of the quantum effective
action collapses to the discrete centre symmetry. Introducing the centre elements of SU(Nc)
by

zm = exp
{

i
2π

Nc
m
}

, m = 1 . . .Nc, (7)

the centre transformed lattice configuration {U c} is obtained by multiplying all time-like
links at a given time slice t0 by zm:

U c
0(t0, x ) = zm U0(t0, x ) , for ∀x , (8)

U c
µ(t, x ) = Uµ(t, x ) , else . (9)
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If the lattice action in pure Yang-Mills theory consists of a collection of contractible loops
(such as the Wilson action which is constructed from the smallest of such loops - the
plaquette), the action is invariant under the above centre transformation. On the other
hand, the Polyakov line (4) transform homogeneously:

P[U c](x ) = zmP[U ](x ) . (10)

Any ergodic Monte-Carlo simulation on a finite lattice necessarily averages over the centre
copies in a democratic way implying that

〈P [U ]〉 = 〈P [U c]〉 = zm 〈P [U ]〉 ⇒ 〈P [U ]〉 = 0 ,

which is also true in the high temperature phase of Yang-Mills theory. Showing that centre
sector transitions imply confinement hence request more subtle arguments involving centre
invariant expectation values.

To this aim, let us directly consider the static quark antiquark potential V (r) as inferred
from the Polyakov line correlation function (6). Instead of the Polyakov line expectation
value, we consider its spatial average in relation to a reference P (0) on the lattice. We
observe

〈

P (0)
∑

x

P (x )
〉

∝
∑

x

e−V (r)/T = finite ⇒ lim
r→∞

V (r) → ∞ ,

and, hence, confinement. If on the other hand the potential approaches a finite value for
r → ∞, the correlator necessarily behaves as

lim
r→∞

〈

P (0)P (x )
〉

= finite or
〈

P (0)
∑

x

P (x )
〉

→ ∞ . (11)

In view of (10), the latter equation could mean that centre sector disorder does not occur
at length scales set by the lattice size. In the next subsection, we will show that the latter
condition is in line with what is usually referred to as the spontaneous breakdown of centre
symmetry. This breakdown occurs at high temperatures leaving us with the so-called
quark-gluon plasma phase.

2.3 Spontaneous breaking of centre symmetry

One way to reveal the spontaneous breaking of centre symmetry using ergodic Monte-Carlo
simulations is to add a centre symmetry breaking source term to the action and controlling
the strength of this term by a parameter, let us say, h, which is reminiscent of a magnetic
field in an Ising type setting. To be explicit, we will study SU(2) lattice gauge theory using
a Euclidean space-time lattice represented by a N3

s ×Nt grid with lattice spacing a. Using
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Figure 3: Sketch of the response of the Polyakov line expectation value to external centre
symmetry breaking (left). The response function of the Polyakov line to an external field
as function of βWil for several spatial volumes (right).

the Wilson action, the partition function is given

ZYM =

∫

DU exp{SWil + Sbreak} , (12)

SWil =
βWil

Nc

∑

x,µ<ν

tr
{

Uµ(x) Uν(x+ µ) U †
µ(x+ ν) U †

ν(x)
}

,

Sbreak = h
∑

x

P (x ) ,

where we have used the Polyakov line (4) to test the response of the theory to explicit
centre symmetry breaking.

In the confinement phase, the Polyakov line expectation value 〈P 〉 linearly responds to the
presence of an external centre symmetry breaking. This is illustrated in figure 3, left panel,
curve (1). Let us now consider the quark gluon plasma, i.e., the deconfinement phase. For
finite lattice volume, the Polyakov line expectation value necessarily vanishes at h = 0
and is otherwise a smooth function of h. This is illustrated by curve (2) in figure 3, left
panel. Only in the infinite volume limit, the 〈P 〉 becomes a discontinuous function which
approaches a finite value in the limit h→ 0 (see curve (3) in figure 3, left panel).

How can we anticipate the spontaneous breaking of the centre symmetry by means of a
finite volume ergodic Monte-Carlo simulation?
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A straightforward way is to study the gradient of 〈P 〉(h) at h = 0. This gradient should
rise beyond bounds with increasing volume. Hence, we find

d〈P 〉(h)
dh

∣

∣

∣

h=0
= lim

h→0

[

〈

P (0)
∑

x

P (x )
〉

−
〈

P (0)
〉 〈

∑

x

P (x )
〉

]

=
〈

P (0)
∑

x

P (x )
〉
∣

∣

∣

h=0
→ ∞ . (13)

This agrees with the idea of ceasing centre sector transitions in the deconfinement phase
(see (11)). Figure 3, right panel, shows the response function (13) for a N3 × 4 lattice as
a function of βWil for several values of N . For this lattice geometry, the deconfinement
phase is attained for β ≥ βdec ≈ 2.3. We observe that the response function is basically
independent of the spatial size in the confinement phase for β < βdec while it roughly scales
with the volume in the gluonic plasma phase.

3 Fermi-Einstein condensation in the Schwinger model

It was already observed in [39] that centre sector transitions have far reaching phenomeno-
logical consequences for gauge theories with dynamical fermions at finite densities (such
as QCD): for an even number of colours, the centre transformed background field can be
viewed as imposing periodic boundary conditions for the matter fields. This opens the possi-
bility that the centre dressed fermions undergo condensation similar to that which is known
as Bose-Einstein condensation although the fermions are described by anti-commuting
Grassmann fields. In analogy, this new phenomenon has been called Fermi-Einstein con-
densation [40]. For this scenario, centre transitions are essential hence relegating Fermi-
Einstein condensation to the confining phase at intermediate values of the chemical po-
tential. Consequently, Fermi-Einstein condensation evades the spin-statistic theorem since
the fermion fields cannot be viewed as asymptotic states.

Here and in the next section, we further explore Fermi-Einstein condensation: (i) the
U(1) gauge theory with fermions at finite densities, i.e., the Schwinger model, bears all
prerequisites for Fermi-Einstein condensation. Because it can be solved analytically, it is
also the ideal testbed to work out the consequences of the condensation. (ii) The rise of
Fermi-Einstein condensation is QCD-like theories with an odd numbers of colours is less
clear cut. We therefore investigate a QCD inspired SU(3) effective quark model to explore
its possible existence and phenomenological consequences.

3.1 Schwinger-model essentials

Here we illustrate the role of the centre with the finite temperature Schwinger model in
a spatial box of length L. The fermion field is anti-periodic and the gauge potential
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periodic in Euclidean time with period β = 1/T . Only configurations with vanishing
instanton number contribute to thermodynamic potentials such that we may assume that
the fields are periodic in the spatial direction. Thus we consider the Schwinger model on
the Euclidean torus [0, β]× [0, L] with volume V = βL. Only at the end of the calculation
do we let the spatial extension L tend to infinity.
To continue we decompose the gauge potential as [29]

A0 =
2π

β
h0 + ∂0λ− ∂1φ, A1 =

2π

L
h1 + ∂1λ+ ∂0φ (14)

with constant toron fields h0 and h1. In the zero-instanton sector the mapping {hµ, φ, λ} →
Aµ is one-to-one if we assume that the periodic functions λ and φ integrate to zero. Adding
an integer either to h0 or to h1 is equivalent to performing a gauge transformation with
winding and thus we must further assume that 0 ≤ hµ < 1. The Polyakov-line is given by

P (x1) = exp

{

i

∫ β

0

A0 dx0

}

= exp{2πi h0} exp

{

−i∂1

∫ β

0

φ(x) dx0

}

. (15)

Using the [0, 1] periodicity of the partition function in h0, the shift

h0 → h0 + α (16)

transforms the Polyakov line expectation value as

〈P 〉 → exp{2πi α} 〈P 〉 , α ∈ [0, 1] (17)

and is identified as U(1) centre transformation of the gauge fields. Hence, integration over
the toron field h0 implies an average over the centre sectors of the theory.

The Jacobian of the transformation (14) can be calculated by expanding all fields in Fourier
modes and this way one finds [29]

DAµ = (2π)2det′(−△)DφDλ dh0dh1, (18)

where the primed determinant is the product of all positive eigenvalues of the operator −△
on the torus. The functional integral over the gauge functions λ cancels out in expectation
values for gauge invariant objects and the φ-dependence of the fermionic determinant can be
calculated explictly by integrating the chiral anomaly [45]. The resulting functional integral
over the periodic function φ (which must integrate to zero) is Gaussian and leads to the
following expression for the grand canonical partition function Z(β, L, µ) = tr

(

e−βH+µN
)

:

Z(β, L, µ) = (2π)2

√

det′(−△)

det′(−△+m2
γ)

∫ 1

0

dh0 z(h0; β, L, µ) (19)

z(h0; β, L, µ) =

∫ 1

0

dh1 det(i/∂h,µ) , (20)
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where mγ = e/
√
π is the induced photon mass, and z(h0; β, L, µ) is the centre sector

partition function specified by a particular value of h0. The Dirac operator is given by

i/∂h,µ = i/∂ −
(

2π

β
h0 − iµ

)

γ0 −
(

2π

L
h1

)

γ1 . (21)

The fermionic determinant det(i/∂h,µ) is an elliptic function of the constant toron fields
h0, h1 and depends on the chemical potential. We use anti-periodic boundary conditions
in time direction and periodic ones in spatial direction.

3.2 Centre-sector partition function

Let us further study the grand-canonical partition function z(h0; β, L, µ) for a given centre
sector. This study emulates the spontaneous breaking of centre symmetry where the theory
is subjected to a “frozen” value of h0. We stress that such the spontaneous breakdown
cannot occur in 2 dimensions due to severe infra-red divergences induced by the would-be
Goldstone bosons. We will however find that the suppression of centre sector transitions
will lead to the wrong physics, and we believe that this is a generic truth valid also in
higher dimensions.

To recover the familiar Fermi sphere physics, it is sufficient to consider large spatial volumes
for the moment. In this limit, we will be able to analytically perform the integration over
the spatial component h1. To start with, we find:

det(i/∂h,µ) = e−βLf(µ,β,L,h0) e−β ECas(L,h1) (22)

where ECas(L, h1) is the µ independent Casimir energy (details of the calculation are left
to appendix A):

ECas = − π

6L
+

π

2L
(1− 2h1)

2 . (23)

The µ and temperature dependence is encoded in the so-called ’free energy density’

f = − 1

Lβ

∑

n∈Z ln[(1 + e2πih0e−β(En+µ)
) (

1 + e−2πih0e−β(En−µ)
)

]

, (24)

where LEn = 2π|n − h1|. For L/β → ∞ the free energy density does not depend on the
constant gauge field h1. In a theory with fixed centre sector, i.e., with a frozen value h0,
the baryon number density would be given by

ρB =
1

L
〈Q〉 = −∂f

∂µ

L→∞−→ 1

π

∫ ∞

0

dp

{

1

e2πih0eβ(p−µ) + 1
− 1

e−2πih0eβ(p+µ) + 1

}

. (25)

For the trivial centre sector h0 = 0, we obtain the standard result of a free Fermi gas
forming a Fermi sphere at finite values for µ. On the other hand, for the sector h0 = 1/2,
we obtain a scenario as if the fermions were to acquire Bose-statistics:

f(µ, h0 = 1/2)
L→∞−→ − 1

πβ

∫ ∞

0

dp
{

log
(

1− e−β(p−µ)
)

+ log
(

1− e−β(p+µ)
)

}

,
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Note that the latter free energy logarithmically diverges when p → µ. This is the usual
instability due to condensation and corresponds to Fermi-Einstein condensation in the
present context. Note that this singularity is integrable upon the integration over the
centre sectors h0.

In the remainder of this subsection, we will show that the assumption of a fixed centre sector
will lead to the wrong physics in the case of the Schwinger model. The key observation is
that the only excitations of the model are fermion anti-fermion bound states. The theory
lacks any physical states which would couple to the chemical potential and would give rise
to non-vanishing fermion density. The baryon density ought to vanish even in the case of
non-vanishing values of the chemical potential. An inspection of (25) shows that this is not
the case if we consider a fixed value of h0 only. The momentum integral can be performed
leaving us with (T = 1/β):

π ρB = µ + T
[

ln
(

1 + e−2π ih0 eµ/T
)

− ln
(

1 + e2π ih0 eµ/T
)

]

, h0 6= 1/2 . (26)

At µ = 0, the contributions from fermions and anti-fermions to the baryon density cancels
since there is no fermionic mass gap in the theory. For h0 = 1/2, the theory produces a
condensed states, and the result (26) cannot be extended to cover this case. For the trivial
centre sector h0 = 0, the baryon density linearly rises with the chemical potential. This
is the well known Fermi-sphere behaviour for the 2-dimensional case. For any other value
of h0, the baryon density is complex which renders the findings difficult to interpret in
physical terms.

The dependence of the baryon density on the chemical potential for a fixed centre sector
is clearly spurious since the spectrum of the theory is free from states which carry baryon
charge. A similar spurious dependence has been encounter in other theories as well which
have been treated in an approximative way, and has been called the silver blaze problem [46].

3.3 Centre sector average

Considering individually the contributions of the centre sectors (specified by h0) the free
energy density has led to a singularity for h0 = 1/2 associated with the condensation of
fermions by virtue of periodic boundary conditions in this specific sector. In the Schwinger
model, we are now in the comfortable situation that we can explore the physics of this
Fermi-Einstein condensation since the centre sector average can be performed analytically.
To this aim, we point out that the average of the fermion determinant over the spatial
toron field can be written as (see appendix A.2 for details):

∫ 1

0

dh1 det(i/∂h,µ) =
1√

2τ |η(iτ)|2
∑

p

e−
1
2
πτp2+2πipγ , γ = h0 +

iβ

2π
µ , (27)

where η(iτ) is the Dedekind eta-function (see (101)). The centre sector average, i.e., the
integration over h0, can be easily performed and restricts the Matsubara momentum sum
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in (27) to the trivial momentum p = 0:

∫ 1

0

dh0dh1 det(i/∂h,µ) =

√

1

2τ

1

|η(iτ)|2 . (28)

The Roberghe-Weiss symmetry for a model with global U(1) centre-symmetry implies that
the partition function can not depend on the imaginary part of µ. Analyticity suggests
that this might also hold for real values of the chemical potential. Indeed for the present
case, we find that any dependence on µ disappears after the integration over h0.

From [47] we take the result
det′1/2(−△) = β|η(iτ)|2 (29)

to write
∫ 1

0

dh0dh1 det(i/∂h,µ) =

√

V

2

1

det′1/2(−△)
. (30)

Inserting the latter finding into the grand canonical partition function (19), the square
root of the determinant cancels, and we finally obtain

Z(β, L, µ) =

√

V

2

1
√

det′(−△+m2
γ)
. (31)

The key observation is that the µ dependence has disappeared implying that the centre
sector average has solved the silver blaze problem: the baryon density vanishes independent
of the value for the chemical potential as it should for the Schwinger model.

It is instructive for QCD model building to investigate how the centre sector average
eliminates the µ-dependence. To this aim, we reconsider from the partition function (19)
the factor
∫ 1

0

dh0 det(i/∂h,µ) = e−βECas(L)

∫ 1

0

dh0
∏

n∈Z (1 + e2πih0e−β(En+µ)
) (

1 + e−2πih0e−β(En−µ)
)

,

(32)
where LEn = 2π|n− h1|. Expanding the product yields terms such as

exp{2πn ih0} exp{−β nµ} .

These terms vanish upon the integration over h0 unless we have n = 0. Hence, the integral
(32) does not depend on µ. This finding has a direct physical interpretation: n = 0 only
occurs if as many fermions as anti-fermions contribute to the product. Hence, the h0
integration eliminates all states which carry a net baryon charge thus solving the silver
blaze problem.
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Figure 4: The real part of the differential contribution z in (20) to the fermion determinant
as a function of h0 and β/L for βµ = 4 (left). The real part of z as a function of h0 and
βµ for β/L = 1 (right).

3.4 Volume studies

The question whether a particular centre sector is singled out or whether a more democratic
average over the centre sectors is in order should be answered by the theory itself. For
this investigation, we will here consider the large volume limits L → ∞ and β → ∞ and
combinations of it.

In (19), we decomposed the grand canonical partition function Z into a part from dynamical
fields and a part z (h0; β/L, β µ) featuring the contributions from the toron fields. From
the studies in the previous subsection, we already know that Zfer is actually independent
of β µ. For a given value of the fugacity µ/T = βµ, we have calculated z as a function
of h0 and β/L. The colour coded result is shown in figure 4, left panel. The important
observation is that the largest contribution arises from the trivial centre sector around
h0 = 0 at least for βµ > 1 (note that the z is periodic, i.e., z(h0) = z(h0) + n, n integer).
The maximum at h0 = 0 even diverges in the limit β/L→ ∞.

Here is a lesson to learn if it comes to Monte-Carlo simulations. Assume that we were to
estimate the h0 integral using a Metropolis Monte-Carlo method. First of all we note that
for h0 6= {0.5, 1} the determinant is complex. For small enough βµ, let us say βµ < 1,
we could use the real part of the determinant as a reweighting factor for the simulation.
From figure 4, left panel, it is already clear that the method samples the region around
h0 = 0 to a large extent. For β/L ≫ 1, other contributions from larger values of h0
would be extremely rare. If we now stick to fixed aspect ratio β/L, we will find that for
large values of βµ the real part of the determinant develops negative parts invalidating
the Monte-Carlo approach altogether (see figure 4, right panel). The keypoint, however, is
that the integral of z over h0 yields a constant only dependent on the aspect ratio (see the
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Figure 5: The Polyakov line expectation value for vanishing chemical potential as a function
of the temperature T and spatial size L (left). 〈P 〉 for a fixed aspect ratio β/L = 1 as a
function of µ and T (right).

previous subsections). This means that integrating along the horizontal axis in figure 4,
right panel, must produce the same value for every choice of βµ. Obviously, sampling
the whole range of h0 values in the Monte-Carlo simulation is of key importance although
difficult to achieve for β/L≫ 1, i.e., in the thermodynamic limit L→ ∞ with T 6= 0 fixed.
Our findings suggest that the infinite volume zero-temperature limit of the QFTs (which
we are going to discuss below) is delicate: we suggest that these limits should be taken at
fixed aspect ratio τ = β/L and with one of the variables, L or β tending to infinity. In this
context, the value τ = 1 is of particular relevance for lattice gauge theories, since in this
limit the rotational symmetry is recovered in the scaling limit of vanishing lattice spacing.

Although the centre transitions never cease in the Schwinger model, the trivial centre sector
contributes an overwhelming part to the expectation values. This is also clear from the
Polyakov line expectation value. This expectation value can be calculated in closed from
for arbitrary lengths β, L and at presence of chemical potential µ (details of the calculation
can be found in appendix A.3):

〈P 〉 = eqβµ exp

(

−πβmγ

4
coth

(

mγL

2

))

, (33)

where mγ = e/
√
π is the dynamical generated photon mass which sets the scale of the

theory.

Let us firstly discuss the case of vanishing chemical potential. Our findings for this case
are summarised in figure 5, left panel. Note that the Polyakov line expectation value 〈P 〉
always vanishes for any fixed spatial size L in the zero temperature limit T → 0. On
the other hand for a fixed temperature, 〈P 〉 increases with increasing system size L, and
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potentially approaches quite large value in the infinite volume limit:

lim
L→∞

〈P 〉 = exp
{

−π
4

mγ

T

}

.

We will see below that this behaviour will be mirrored by the SU(2) Higgs theory.

Secondly, we consider the case of a non-vanishing chemical potential. For a fixed aspect
ratio β/L = 1, figure 5, right panel, shows the Polyakov line expectation value as a function
of µ and T . We point out that the fermion determinant is complex implying that the
expectation value of a phase, in particular the Polyakov line, is not necessarily bounded
anymore. These imaginary parts allow for the cancellations which are essential to solve
the Silver Blaze problem and, at the same time, bear the potential for |〈P 〉| ≫ 1. In the
infinite volume limit, we now find

lim
L→∞

〈P 〉 = exp

{

π

4

(µ−mγ)

T

}

,

which is bigger than one if the chemical potential exceeds the photon mass.

4 Fermi-Einstein condensation in a QCD quark model

with confinement

4.1 Model building

In order to trace out the phenomenology of centre sector transitions and Fermi-Einstein
condensation in a more QCD-type setting, we are here going to investigate an effective
SU(Nc = 3) quark theory in four dimensions. The so-called constituent quarks q(x) satisfy
the usual anti-periodic boundary conditions in Euclidean time direction (and periodic ones
in the spatial directions)

q(x+ βe0) = (−1) q(x) , q(x+ βek) = q(x), k = 1, 2, 3 . (34)

The quarks possesses the constituent quark mass m and are assumed to only interact with
an homogeneous temporal gauge field specifying the centre sector:

A
(n)
0 = 2πnT H, 1 ≤ n ≤ Nc , (35)

where the generator H is from the Cartan algebra, i.e., H = diag(1, . . . , 1, 1−Nc)/Nc. The
Polyakov line is in the centre of the group and the centre sector is labeled by n since the
trace of the Polyakov line is given by

P =
1

Nc
tr exp

{

i

∫ β

0

dx0 A
(n)
0

}

= zn, zn = exp

{

2πi

Nc
n

}

. (36)
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The crucial observation [39] is that by means of a Roberghe-Weiss transformation quarks

which are subjected to the background field A
(n)
0 can be considered as quarks manoeuvring

in the trivial background A
(Nc)
0 but with changed boundary conditions:

A
(n)
0 , q(x+ βe0) = −q(x) ↔ A

(Nc)
0 , q(x+ βe0) = −znq(x) . (37)

For even Nc, there is the element zNc/2 = −1, and it is this centre sector which is mapped
to the trivial sector but with quarks now obeying periodic boundary conditions. Since it is
essentially the boundary conditions which dictate the behaviour of the thermodynamical
potentials, centre-dressed quarks follow Bose statistic and undergo condensation if the
chemical potential approaches the fermionic mass gap [39]. Apparently, this scenario relies
on the fact that (−1) is an element of the centre of the gauge group. This is only the
case if the number of colours Nc is even. The more interesting, i.e., the more QCD type,
case is Nc = 3 and evades the line of arguments. In this subsection, we will explore the
phenomenology of the centre sector transitions in the realm of an effective quark model for
Nc = 3.

The partition function of our model is given by

ZQ =
Nc
∑

n=1

∫

DqDq̄ exp
{

q̄
(

i∂/+ (A
(n)
0 + iµ)γ0 + im

)

q
}

=
Nc
∑

n=1

eΓ(n)

, (38)

Γ(n) = ln det
(

i∂/+ (A
(n)
0 + iµ)γ0 + im

)

, (39)

where m is the quark mass and µ is quark chemical potential. The main difference to
the model discussed in [39] is that we take into account that the gluonic sector is centre
symmetric and the only centre sector bias arises from the quark determinant. Thus, the
sum in (38) democraticly extends over all centre sectors without any further bias to the
trivial centre sector.

4.2 Cold but dense matter

The calculation of determinant in (38) can be performed following the techniques developed
for the Schwinger model. In 4 dimensions the determinant is more severe UV-divergent
than in 2 dimensions but the effective theory only addresses the low-energy modes below
a certain physical energy scale. In this approach, the cutoff scale Λ is finite and acquires
a physical interpretation. Here, we are only considering temperatures which are small
compared to this cutoff scale which allows us to effectively set T/Λ → 0. Using a cutoff
function provided by the Schwinger-proper time approach (see appendix A.1), we find:

Γ(n) = Γ0(β, L,Λ) + Γ
(n)
den(β, L, µ) (40)
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with cutoff-dependent and cutoff-independent contributions

Γ0(β, L,Λ) =
√
π βΛ

∑

p

[

1 − erf (E(p)/Λ)
]

, (41)

Γ
(n)
den(β, L, µ) = 2

∑

p

{

ln
(

1 + zn e
−β(E(p)+µ)

)

+ ln
(

1 + z∗n e
−β(E(p)−µ)

)

}

, (42)

where we have introduced the 1-particle energy by

E(p) =
√

m2 + p2 , p =
2π

L
(n1, n2, n3)

T , nk : integer. (43)

The overall factor 2 in the 4-dimensional case (as compared to the 2d Schwinger model)
arises from the two spin-orientations of the quarks. We point out that the cutoff dependent
part Γ0 is independent from the centre sector number n and the chemical potential while
those parts Γ

(n)
den which do depend on µ and n are UV finite.

Let us now consider the case of low temperatures (and µ > 0) for which we can neglect

the anti-quark contributions to Γ
(n)
den:

β m ≫ 1 ⇒ e−β(E(p)+µ) → 0 . (44)

For such low temperatures, even the mesonic type excitations can be neglected, and the
partition function is approximately given by

ZQ ≈ eΓ0

Nc
∑

n=1

∏

p

[

1 + z∗n e
−β(E(p)−µ)

]2

. (45)

Let us now specialise to Nc = 3, and expand the brackets. We obtain terms such as

[z∗n]
ν e−ν β(E(p)−µ) .

In order to evaluate the sum over the centre sectors, we use

3
∑

n=1

zn = 0 ,

3
∑

n=1

z2n = 0 ,
1

3

3
∑

n=1

z3n = 1 .

Hence, the centre sector sum eliminates all coloured excitations from the partition function
by projecting onto states with vanishing N -ality thus making manifest the confinement of
colour. For µ < 6m, we obtain the simple result

ZQ ≈ 3 eΓ0

[

1 +
∑

p1,p2,p3

exp
{

−β (E(p1) + E(p2) + E(p3)− 3µ)
}

]

, (46)

where in the momentum sum only two of the three momentum can be equal. Since our
model does not include any binding between the quarks, the sum E(p1) + E(p2) + E(p3)
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Figure 6: Baryon number as a function of the chemical potential for the confining quark
model (FEC) in comparison to the standard Fermi gas result, left panel. The normalised
partition function in (55), right panel.

can be interpreted as the energy of the “baryon” in the context of the present model. For
chemical potentials smaller but close to the constituent quark mass m, the thermal energy
density, i.e.,

Etherm(T ) = −∂ ln ZQ

∂β
, (47)

behaves like

Etherm(T ) ≈ 3m exp
{

− 3(m− µ)

T

}

, µ <
∼ m .

The first excitations in the model are baryonic ones. This result should be compared with
the case of the “frozen” centre sector (which, in our simple case, is the free quark model):

Efree
therm(T ) ≈ m exp

{

− m− µ

T

}

, µ <
∼ m .

Here, the mass gap is provided by the constituent quark mass, and the first excitations
which are encountered by increasing the temperature stating at T = 0 are quark excitations.
As in the Schwinger-model, the centre sector sum solves the Silver-Blaze problem.

4.3 Condensation of centre dressed quarks

The thermodynamical quantities of the present quark model can also be calculated exactly
by evaluating e.g. (42) by numerical means. The constituent quark mass m here sets the
fundamental energy scale. It turns out that the approximations leading to (46) are only
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valid for rather low temperatures, i.e., βm ≈ 100. In this subsection, we study intermediate
temperatures and several spatial extensions such as

β m = 10 , Lm = 3 . . . 10 . (48)

We are interested in the baryon number QB which is accessible by

QB = T
∂ lnZQ

∂µ
=

∑

n

ωn

∑

p

[

z∗n
eβ(E(p)−µ) + z∗n

− zn
eβ(E(p)+µ) + zn

]

, (49)

where the centre sector weights are given by

ωn =
exp{Γ(n)

den}
∑

n exp{Γ
(n)
den}

. (50)

Note that for µ 6= 0 the weights can be complex and therefore evade a straightforward
interpretation as probabilistic weight for a given centre sector. An inspection of (42) shows
that

ω1 = ω∗
2 , ω3 ∈ R ,

∑

n

exp{Γ(n)
den} ∈ R . (51)

We can always compare our findings with those from a free Fermi gas model for which we
have

ω1 = 0 , ω2 = 0 , ω3 = 1 (Fermi gas) . (52)

The calculation of the centre sector weights is delicate since the effective actions Γn gener-
ically are large numbers. To facilitate this calculation, we introduce the subtracted actions
by

Γ̄n = Γn − Γmax, Γmax = max
(

ReΓn

)

∀n . (53)

It is easy to check that the centre sector weights are actually independent of this shift:

ωn =
exp{Γ(n)

den}
∑

n exp{Γ
(n)
den}

=
exp{Γ̄(n)

den}
∑

n exp{Γ̄
(n)
den}

. (54)

Figure 6, left panel, shows our finding for the Baryon density as a function of the chemical
potential µ for a small spatial volume:

mL = 3.5 .

For µ/m ≈ 1.3, we observe that the baryon density strongly peaks for the FEC model. This
peak is absent in the standard Fermi gas model. The reason for this peak are cancellations
between the centre sector which nullify the partition function. To see this, we introduce
the normalised partition function by

Zsub = exp{Γn} e−Γmax =
∑

n

exp{Γ̄(n)
den} . (55)
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Figure 7: Ratio between the baryon density of the FEC model and that of the standard
Fermi gas model for two spatial sizes L, left panel. The real part of the centre sector
weights ω1...3, right panel.

Note that Γmax ∈ R implying that a zero of Zsub goes along with a zero of the full partition
function ZQ . The quantity Zsub also appears in the denominator of the sector weights ωi.
Figure 6, right panel, shows the normalised partition function Zsub as a function µ. We
observe formL = 3.5 that Zsub almost vanishes for the chemical potential corresponding to
the peak position in the baryon density. Increasing the spatial size, we find the near-zero
regime of Zsub is lifted and the peak of the baryon density diminished. For an even number
of colours, the rise of the baryon number due to a vanishing partition function was called
Fermi-Einstein condensation (FEC) [39,40]. For small enough spatial size, we observe that
FEC can also occur for an odd number of colours and thus in QCD-like theories.

Let us now study the baryon density for the bigger systems with mL = 5 and mL = 10.
Figure 7, left panel, shows the baryon density of the FEC model normalised to that of the
Fermi gas model. We observe that for small values of µ the baryon density is suppressed
compared to that from the Fermi gas model. For mL = 10, this suppression ceases for
µ/m ≈ 0.9 and the FEC baryon density equals that of the Fermi gas model. We see here
confinement at work: while in the Fermi gas model, the baryon density rises with increasing
µ by exciting single quarks into the system. In the FEC model at small values of µ, the
only way to increase the baryon density is to excite a baryon with mass 3m (in our model).
For µ ≈ 0.9m, deconfinement sets in and density rises further on by adding quarks to the
system. This interpretation is corroborated by an inspection of the centre sector weights ωi

in figure 7, right panel. Note that ω3 corresponds to the trivial centre sector (z3 = 1). For
small values of µ, the real part of the weights are roughly the same and equal ≈ 1/3. This
indicates that centre sector transitions frequently occur wiping coloured states from the
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model and the free Fermi gas (left). Ratio between the thermal energy densities of the
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partition function thus installing confinement. For µ > 0.9m, the weights of the non-trivial
centre sectors, i.e., ω1,2, vanish and only the trivial centre sector significantly contributes.
Hence, the FEC model migrates into the Fermi gas model.

4.4 Deconfinement at finite temperatures

Let us now focus on the case of vanishing chemical potential, i.e., µ = 0. Our aim here
will be to explore the phenomenology of the centre sector transitions far from the dense
regime. The quantity of main interest is the thermal energy density Etherm(T ) in (47). In
the FEC quark model, we obtain:

Etherm(T ) =
∑

n

ωn

∑

p

E(p)

[

z∗n
eβE(p) + z∗n

+
zn

eβE(p) + zn

]

. (56)

The centre sector partition functions Γ
(n)
den(β, L, µ = 0) are real and positive functions of

the temperature T = 1/β. The centre sector weights ωi, i = 1 . . . 3 satisfy

ωi ∈ R, ωi ≥ 0,
3

∑

i=1

ωi = 1 , (57)

and, thus, can be interpreted as the probability with which each sector contributes to
e.g. the thermal energy in (56). For later reference, we also quote the thermal energy of a
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Figure 9: Probabilistic weights for the realisation of the centre sector n.

free Fermi gas:

Efree
therm(T ) = 2

∑

p

E(p)
1

eβE(p) + 1
. (58)

Note that antiquarks contribute in the same way as quarks. Hence, the factor 2 in (58).

For first insights, we consider the case of small temperatures:

β m ≪ 1 .

The partition function (38) can then be approximated by

ZQ = eΓ0

Nc
∑

n=1

∏

p

[

1 + z∗n e
−βE(p)

]2 [

1 + zn e
−βE(p)

]2

(59)

≈ 3 eΓ0

[

1 + 2
∑

p

e−β 2E(p)
]

. (60)

For µ = 0, the most important contribution to the low temperature partition function
arises from mesonic states. Figure 8, left panel, shows the thermal energy for the FEC
model in comparison to the free Fermi gas. At large β (low temperatures), the FEC thermal
energy is suppressed like exp{−β 2m} since only mesonic excitations are possible by virtue
of confinement. This is in contrast to the free Fermi gas where the contribution from single
quark states yields a suppression only of order exp{−β m}.
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!

Figure 10: Phase diagram of the FEC model as shown by the centre weight ω3. Left: large
volumes, i.e., mL = 15. Right: small volumes, i.e., mL = 5. The contours correspond to
ω3 = 0.95.

Dividing the thermal energy by the spatial volume yields the thermal energy density:

ǫFEC = Etherm/L
3, ǫfree = Efree

therm/L
3.

Figure 8, right panel, shows the ratio of thermal energy densities of the FEC model and
the free Fermi gas. Around T ≈ 0.2, we observe that the FEC energy density rapidly
approaches that of the Fermi gas. We attribute this behaviour to a deconfinement phase
transition. Indeed, figure 9 shows the centre sector weights ωi. For small temperatures
T ≪ m, we observe that all weights roughly equal 1/3 indicating an equal contribution
from the centre sectors to thermodynamical quantities. For T > 0.2m, we find that the
non-trivial centre sectors cease to contribute implying that the FEC model turns into the
free Fermi gas theory at high temperatures.

4.5 The phase diagram from confinement

We are now considering both finite temperatures as well as a non-vanishing chemical po-
tential. In order to trace out the phase diagram, we will employ the centre weight ω3 ∈ R:
for a vanishing chemical potential, all weights ωi are real numbers which sum to unity. At
high temperatures, we have observed in the previous subsection that ω3 → 1 while ω1,2 → 0
thus showing confinement. For large non-vanishing chemical potentials, the latter is still
true: ω3 close to 1 signals the transition of the FEC model to the free Fermi gas. Thus, an
inspection of ω3(µ, T ) maps out the deconfinement region in the phase diagram.

Note that the ω3 ≤ 1 only strictly holds for µ = 0 where the weights ωi enjoy an interpre-
tation as probabilities. Though in the deconfinement regime ω3 will approach 1, there is no
need for µ 6= 0 that ω3 is bounded from above by 1. In fact, we have seen for small spatial
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extensions mL <
∼ 2.5 that Fermi-Einstein condensation occurs with potentially large values

of ω3 (see figure 7).

Figure 10 shows our colour coded result for ω3(µ, T ). In the large volume limit, e.g. for
mL = 15, the result is as expected: there is quite a sharp transition between the hadronic
regime at low µ and T to the deconfinement regime under extreme conditions. For a smaller
volume, e.g. mL = 5 (right panel), large values of ω3 can be observed for low temperatures
and µ close to the mass threshold. This is the regime for which the partition function
cancels to a large extent due to centre sector transitions.

5 Centre sector transitions in the gauged Ising model

Above using the Schwinger model as well as a SU(3) effective quark theory, we have stressed
the phenomenological importance of transitions between the centre sectors of the theory
under investigations. It remains to show that these centre transitions do occur if dynamical
matter is present: since this matter explicitly breaks centre symmetry, transitions between
centre sectors could be prohibited in the infinite volume limit. With “matter”, we here
address any dynamical fields (in addition to the Yang-Mills gauge fields) which transform
under the fundamental representation of the gauge group. An important example is the
theory of strong interactions, QCD, which is an SU(3) Yang-Mills theory with e.g. three
(light) flavours of quark matter.

In the remainder of the paper, we discuss theories at zero chemical potential and search
for potential transitions between the centre sectors. Since the Schwinger model does not
possess genuine phase transitions due to its 2-dimensional nature, we start the consider-
ations with the Z2 gauge theory coupled to Ising matter in 3-dimensions. This theory is
easily accessible by means of Monte-Carlo simulations, and offers the possibility of phase
transitions. We will focus on two competing scenarios which both sketch a different picture
of the realisation of the centre symmetry:

(i) The explicit breaking triggers a spontaneous breakdown of centre symmetry. Centre
sector tunneling does not take place. Observables only receive contributions from the
trivial centre sector.

(ii) The explicit breaking of centre symmetry breaking does not bring an end to the
centre sector transitions. Observables are still averaged over the different sectors.
There is, however, a bias towards the trivial sector.

Note that, in scenario (ii), the matter sector is a correction to the gauge sector of pure
Yang-Mills theory. The Polyakov line expectation value is only non-zero since the lattice
configurations are biased towards the trivial centre sector. Centre symmetry does also break
spontaneously at high temperatures though the critical temperature can be quantitatively
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different from the pure Yang-Mills case. Note that the idea of a spontaneously broken
symmetry which is also explicitly broken is a useful concept: in QCD, chiral symmetry
is explicit broken by the current quark masses. Additional spontaneous chiral symme-
try breaking assigns the pions the role of “almost” Goldstone bosons and explains their
particular role in the hadron spectrum.

5.1 Phase diagram of the gauged Ising model

We are here going to discuss the Z2-gauge theory minimally coupled to Ising spins σx ∈
{±1} to ensure Z2 gauge invariance. The model has been considered as the most simple
gauged Higgs theory, and it has been shown that its phase diagram has the same qualitative
features than e.g. the SU(2)-Higgs theory [48–52]. As familiar from lattice Yang-Mills
theories, the gauge fields are represented by the links Zµ(x) ∈ {±1}. The partition function
of the theory is given by

Z =

∫

DZµ Dσ exp{SZ}, (61)

SZ = βI
∑

x,µ>ν

Pµν(x) + κ
∑

xµ

σxZµ(x) σx+µ , (62)

where Pµν(x) is the usual plaquette

Pµν(x) = Zµ(x) Zν(x+ µ) Zµ(x+ ν) Zν(x) . (63)

One easily verifies the invariance of the partition function under gauge transformations
(Ωx ∈ {±1}):

σ → σΩ
x = Ω(x) σx, Zµ(x) → ZΩ

µ (x) = Ω(x)Zµ(x) Ω(x+ µ) . (64)

For κ = 0, the Ising matter decouples from the gauge sector, and we are dealing with a
pure Z2 gauge theory. It is well known that this theory confines static centre charges, and
the static potential between two static charges is linearly rising with their distance. The
Polyakov lines is an order parameter for confinement. For non-vanishing but small values
κ, the dynamical Ising spins can screen the static centre charges, and we obtain string
breaking: the linearly rising static potential at large distances flattens when the potential
energy is sufficient to create a dynamical matter pair. Hence, the phase diagram as a
function of κ and βI is expected to show the same features as that of the SU(2) Higgs
theory.
Figure 11, left panel, summarises this diagram: due to the lack of a local order parameter,
a cross-over region from the string breaking regime to the so-called Higgs phase is expected.
We verified these expectations by calculating Polyakov line expectation values using a 203

lattice. Both, the update of the links Zµ(x) and the matter fields σx have been done by
standard heat bath techniques. We calculated the Polyakov expectation value for 204×201
different values in the βI-κ plane. Our numerical findings are colour-coded and summarised
in figure 11, right panel. Both, the cross-over regime as well as the finite size transition is
clearly visible.
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Figure 11: Sketch of the phase diagram (left); Polyakov line expectation value of the gauged
Ising model as function of βI and κ.

5.2 The interface tension of the trivial centre sector

Let us briefly discuss the “empty” vacuum of the gauged Ising model. The discussion in the
context of pure Yang-Mills theory in subsection 2.1 can be straightforwardly transferred to
the case of the Z2 gauge theory: The gauge inequivalent empty vacua are characterised by
the values of the homogeneous Polyakov lines in each direction. Thus each of the Polyakov
lines P1, P2 and P3 takes values ±1, there are 23 = 8 states which we need to consider.
The Z2 centre transformation

Zν(x) → (−1)Zν(x) ∀ xµ, µ 6= ν, xν fixed (65)

is discrete, changes the sign of the Polyakov line Pν and therefore maps one empty vacuum
state to another.
Before we proceed to consider the centre sector transitions within the gauged Ising model,
we here discuss centre interfaces in the particular sector with all Polyakov lines trivial. For
this “empty” vacuum state a gauge can be found where all links are one:

(P1, P2, P3) = (1, 1, 1) , Zµ(x) = 1 ∀ x, µ . (66)

The gauged Ising model then collapses to the standard Ising model with ferromagnetic
bonds only.

If |ψ〉 is particular 2d array of spin at x0 = 0, i.e., the so-called in-state and if |zψ〉 is
a centre copy of this state for which all spin are reflected, we would like to investigate
the overlap of the true vacuum state |ψ0〉 with either |ψ〉 and |zψ〉. If centre symmetry is
realised in the Wigner mode, the vacuum is centre symmetric yielding an overlap in both
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anti−periodic periodic

Figure 12: Partition function with anti-periodic boundary conditions rewritten as a parti-
tion function with a centre twist.

cases. If the centre symmetry is spontaneously broken, the overlap vanishes for one of the
matrix elements. To investigate the spontaneous breaking of centre symmetry, we thus
study:

χ =

〈z
ψ
∣

∣ exp{−H/T}
∣

∣ψ
〉

〈

ψ
∣

∣ exp{−H/T}
∣

∣ψ
〉 , (67)

where H is the Hamilton operator and T is the temperature. For sufficiently small tem-
peratures, the exponentials in the latter equation project onto the ground state |ψ0〉, and
we obtain:

χ →
〈z
ψ
∣

∣ψ0

〉 〈

ψ0

∣

∣ψ
〉

∣

∣

〈

ψ0

∣

∣ψ
〉
∣

∣

2 =

{

1 Wigner-Weyl realisation
0 spontaneous symmetry breaking.

(68)

In the functional integral approach, χ is given by the ratio of two partition function: the
partition function with the spins σx obeying anti-periodic boundary conditions constitutes
the numerator in (67), while the standard partition function with period spins is in the
denominator. A connection to the centre symmetry can be established by “pushing out”
the centre element to the links:

zσx Uµ(x) σx+µ = σx (−1)Uµ(x) σx+µ .

The net effect is illustrated in figure 12:

χ =
Zanti−periodic

Zperiodic
=

Ztwist

Zperiodic
. (69)
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We expect that the transition between centre sectors are exponentially suppressed with a
slope given by the size of the centre interface. For a N2 ×Nt lattice, the minimal surface
of the centre interface is N2. It is therefore convenient to introduce the interface tension
σ by

χ = exp
{

−N2 σ(κ)
}

. (70)

For small values κ, χ can be directly calculated by the so-called strong coupling expansion,
i.e., the Taylor expansion with respect to κ. For large values of κ, χ can be obtained by
means of a duality transformation. In 3d Ising model is dual to the 3d Z2 gauge theory,
and χ appears to be the Z2 expectation value of the maximal spatial Wilson loop (details
will be presented elsewhere). Altogether, we find:

σ(κ) ≈
{

κNt for κ≪ 1 ,
2κ for κ≫ 1 .

(71)

For a fixed aspect ratio Nt/N and in the thermodynamic limit N → ∞, we find that
the theory is in the disordered phase for small κ, i.e., χ → 1, implying that centre sector
transitions do occur frequently. For large κ, the interface tension is independent of Nt and
large showing that spontaneous centre symmetry breaking occurs in this case.

For intermediate values of κ the interface tension must be obtained by numerical means.
The ratio of partition functions, i.e., χ, can be numerically calculated in an efficient way
using the so-called snake-algorithm [53]. Our numerical results are shown in figure 13. In
the ordered phase at κ = 0.20, we observe an exponential decrease of the interface tension
σ with N in line with result from the leading order Taylor expansion in κ. For the ordered
phase at κ = 0.25, we confirm that the interface tension is indeed independent of the
volume.

5.3 Centre sectors and parametric transition

While in the previous subsection, the link variables have been frozen to the trivial centre
sector, we now consider the transition element χ of the gauged Ising model where all links
Zµ(x) are dynamical. Defining the twisted link variables by

Ztwist
3 (x) = (−1)Z3(x) ∀x1, x2 ; x3 fixed , (72)

Ztwist
µ (x) = Zµ(x) else,

the partition function of the twisted partition function is given by

Ztwist =

∫

DZµ Dσ exp{SZ}, (73)

SZ = βI
∑

x,µ>ν

Pµν [Z] + κ
∑

x,µ

σxZ
twist
µ (x) σx+µ . (74)

Given the invariance of the measure and of the plaquette,

DZµ = DZtwist
µ , Pµν [Z] = Pµν [Z

twist] ,
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Figure 13: The interface tension of the 3d Ising model as a function of the system size N
for interaction strength κ = 0.20 (disordered phase) and κ = 0.25 (ordered phase).

one easily obtains
Ztwist = Zperiodic ⇒ χ = 1 . (75)

In the gauged Ising model (as well as in the Schwinger model and QCD), the centre twist
is part of the gauge field average. It is therefore, strictly speaking, impossible to consider
a spontaneous breakdown of the centre symmetry. Note, however, that the matter fields
break the centre symmetry explicitly. Depending on the coupling strength κ and the
temperature, Nt respectively, this explicit breaking can be small. Actually for small κ, we
are going to show that at low temperatures the explicit breaking is rather irrelevant while
above a critical value for the temperature, the explicit breaking is strong in the sense that
it does not makes sense to even consider an approximate centre symmetry. We call this a
parametric transition.

Let us firstly illustrate the explicit breaking in the gauged Ising model. To this aim,
we integrate over the Ising spin σx for a given link distribution Zµ(x). The resulting
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Figure 14: Polyakov line expectation values of the gauged N3 Ising model as a function of
the system size N (left). Same quantity for a 6×N2 lattice as a function of βI (right).

probabilistic factor contains contractible Wilson loops W [Z] as well as the Polyakov line
P [Z] (for simplicity we here consider infinite space)

∫

Dσ exp{SZ [Z]} =
∑

C

κL(C) WC[Z] + κNt
∑

x1,x2

P [Z] + O
(

κNt+3
)

. (76)

The sum over the closed loops C is centre symmetric while the terms containing the
Polyakov loop explicitly break the symmetry.

In following, we study the theory by means of Monte-Carlo methods. We used a heat-bath
update for the link and matter fields. Since the matter action describing the gauge field
matter interactions is local, we used a generalised Luescher-Weisz algorithm [54,55] for the
calculation of the Polyakov line expectation value.

We are now considering moderate values for κ, let us say κ ≤ 0.25. We have already
obtained (see figure 11) that for small βI the Polyakov line is small. Increasing βI above
a critical value, the Polyakov line expectation value 〈P 〉 rapidly takes large values. In
fact, we find that, below the critical value, 〈P 〉 is strictly vanishing in the infinite volume
zero temperature limit (for fixed and finite aspect ratio) although 〈P 〉 6= 0 for any finite
system. This is illustrated in figure 14, left panel: the graph shows 〈P 〉 for a N3 lattice as
a function of N . At least in the string-breaking phase for sufficiently small κ, we observe
an exponential decrease of 〈P 〉 with increasing N . In the Higgs phase (here for βI = 0.6
and κ = 0.30), we still observe a slight decrease of 〈P 〉 with the system size. Whether the
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Polyakov line expectation finally vanishes for large N cannot be inferred from the present
data. Further investigations are left to future studies.

To monitor the deconfinement cross-over at finite temperatures, we have calculated 〈P 〉
for a 6×N2 lattice as a function of βI for the aspect ratios 4, 5, 6, 7. Our numerical result
is shown in figure 14, right panel. We observe a maximum of 〈P 〉 for βI = βc ≈ 0.75(5)
and very little dependence on the system size N . We argue that βI < βc, the explicit
breaking of centre symmetry is weak, the physics of the regime might be similar to that
of the symmetric theory for κ = 0, and that perturbation theory with respect to κ yields
reliable results. On the hand for βI ≥ βc, centre symmetry breaking is strong and any
similarities with the symmetric theory are lost although we always have χ = 1 in (75).
This is the parametric transition.

6 Centre-sector transitions in the SU(2) Higgs theory

6.1 String breaking

In order to study centre sector transitions in a more realistic, i.e., more QCD-like, the-
ory, we will study a theory where the”empty vacuum” features flat directions, where this
vacuum symmetry collapses to the discrete centre symmetry upon the inclusion of quan-
tum fluctuation and where the trivial centre-sector is favoured through the matter sector.
In addition and for the first time in this paper, we will consider 4 Euclidean space-time
dimensions.

The most simple such theory is a SU(2) gauge theory with a scalar field (say Higgs) in the
fundamental representation. This theory is accessible by means of lattice gauge theories
with large statistical accuracy. The partition function is given by

Z =

∫

DU Dφ Dφ† exp{SWil + SHiggs} , (77)

SHiggs = κ
∑

x,µ

Reφ†(x)Uµ(x)φ(x+ µ) −
∑

x

[1

2
φ†(x)φ(x) + λ [φ†(x)φ(x)]2

]

.

The parameter κ quantifies the interaction strengths of the scalar fields with the gauge
sector, while λ gives rise to a quartic Higgs self-interaction.

The SU(2)-Higgs theory shares the so-called string breaking with QCD: at low tempera-
tures and sufficiently weak gauge-matter interactions, the static quark anti-quark potential
linearly rises at intermediate distances between the static quark antiquark pair while it flat-
tens at asymptotic distances. A popular picture assumes that a colour electric flux tube
still forms between a static quark antiquark pair and that this string breaks due to the
creation of a Higgs anti-Higgs pair. Once the string is broken, there is little penalty in en-
ergy to increase any further the distance between the (screened) heavy quarks. The static
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potential approaches a constant. This also implies that the Polyakov line expectation is
non-zero (even at low temperatures) and cannot serve any more as an order parameter.

The phase diagram has been qualitatively described in figure 11. On a more quantitative
note, we have calculated the static potential by means of lattice gauge simulations. In
order to ensure good ergodicity, we used the local hybrid Monte-Carlo update for the link
fields as well as the scalar fields. In this paper, we work with λ = 0.1 and βWil ∈ [2.2 . . . 2.5]
which roughly corresponds to the scaling window, at least, at small to moderate values κ.

To calculate the static quark potential, we here followed the two channel approach devel-
oped in [56, 57]. Using a 204 lattice, our results for the Wilson coupling βWil = 2.2, fixed
quartic coupling λ = 0.1 and several values of κ is shown in figure 15. For each potential,
8160 independent lattice configurations contributed the relevant expectation values. For
small values of κ, e.g. κ < 0.336, the string breaking scale can be intuitively set by an
inspection of the graph: for κ = 0.31, we would set rb ≈ 7 a. For larger values of κ, a grad-
ual transition to the Higgs phase sets in, and a string breaking scale is hardly defined. It
seems, however, that this scale cannot be pushed to small values by just altering the Higgs
hopping parameter κ. If we fit the static potential for r < rb to V (r) = a0 + σintr + a1/r,
we define the so-called intermediate string tension σint. For κ = 0.31, our estimate is

σinta
2 ≈ 0.22(1) , rb

√
σint ≈ 3.3 , rb ≈ 7.2 fm , (78)

if we assume the QCD value σint ≈ (440MeV)2 to set the scale. We also point out that for
κ values close to the transition line, e.g., for κ = 0.336, the string breaking scale is difficult
to define. Here, the picture of a well defined short string might loose its validity.

6.2 Volume dependence of the Polyakov line expectation value

Integrating over the Higgs fields for a fixed link background yields an effective action for
the links which is not anymore centre-symmetric. In order to get a first impression of
the amount of explicit breaking we consider the normalised probability distribution for the
spatial average of the Polyakov line,

W [p] =
〈

δ
(

p− P̄ [U ]
) 〉

, (79)

where the expectation value is with respect to the partition function (12) and P̄ [U ] is the
spatial average of the trace of the Polyakov line:

P̄ [U ] =
1

V3

∑

x

1

Nc
tr P(x ) . (80)

Since in the low temperature phase the probability distribution of Polyakov line P is
basically given by the Haar measure of the gauge group, the above distribution is divided
by the reduced Haar measure distribution,

R(p) = W (p)/W0(p) , W0(p) =
2

π

√

1− p2 (81)
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distribution for three different temperatures in pure Yang-Mills theory (left) and for the
SU(2) Higgs theory on the 203 ×Nt lattice (right).

to extract any effects beyond the trivial distribution.

Let us first study pure Yang-Mills theory without Higgs matter. Our result is shown in
figure 16, left panel. At zero temperatures, i.e., Ns = Nt = 20, for βWil = 2.5, this ratio
is basically independent of p. We increase the temperature T = 1/Nt a by decreasing the
extent of the lattice in time direction. For Nt = 6 at βWil = 2.5, pure Yang-Mills theory
is still in the confinement phase. Here we observe that deviations from the Haar measure
distribution is still marginal. For Nt = 4, Yang-Mills theory is in the high temperature
deconfinement phase, and significant deviations from the Haar measure distributions are
clearly visible for large values for p. Here, a bias towards the centre elements, 1 and −1,
is seen. In the infinite volume limit, tunneling between the centre sectors ceases to take
place leading to a spontaneous breakdown of centre symmetry. It is, however, important
to notice that the Nt = 4 distribution W (p) is to a good extent symmetric under the
reflection p→ −p by virtue of the centre invariance of the functional integral. This signals
good ergodicity of the algorithm even in the high temperature phase.

Let us now consider the SU(2) Higgs theory. We here used a 203×Nt lattice and βWil = 2.5,
λ = 0.1 and κ = 0.31 which is somewhat below the critical value for the transition from
the confining phase to the Higgs phase. Figure 16, right panel, summarises our findings.
At very low temperatures, i.e., for Nt = 20, there is hardly any deviation from the Haar
measure distribution visible. Still in the string-breaking phase at Nt = 6, there is a bias
towards positive values of the Polyakov line noticeable. At high temperatures, such as
for Nt = 4, above the deconfinement transition, this tendency is strongly amplified: the
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panel).

centre sector z1 = −1 is even more suppressed while the probability for positive values of
p reaches large values. In all cases (though less visible for Nt = 20), the centre symmetry
U → U c, (8,9) is explicitly broken, and the Polyakov line probability distribution is no
longer reflection symmetric, W (p) 6= W (−p).

Apparently, the explicit centre symmetry breaking is much stronger at high temperatures
than in vacuum. Does this mean that centre symmetry breaking is spontaneously broken
at high temperatures? To answer this question, we have studied the the Polyakov line
expectation value 〈P 〉 for a fixed and finite aspect ratio, i.e., N/Nt, as a function of the
system size. This can be easily achieved by using of fixed number of lattice points, 163× 6
and 243×6, respectively, and to vary the Wilson βWil. The logarithm of the temperature T
in relation to the fundamental renormalisation group scale such as the intermediate string
tension σ is then roughly given by

ln

(

T√
σ

)

= ln

(

1

Nt

√
σa(βWil)

)

≈ γ1 βWil + constant,

where γ1 is 1-loop Gell-Mann Low coefficient. For a pure SU(2) gauge theory, this coefficient
would be γ1 = 3π2/11. Figure 17, left panel, shows 〈P 〉 as a function of Wilson βWil using
the Lüscher-Weisz method [54, 55] which is easily generalised to include the Higgs field.
For small values of βWil, i.e., βWil < 2.4, we roughly observe an exponential decrease of 〈P 〉
with decreasing βWil. At high values, i.e., βWil

>
∼ 2.4, 〈P 〉 increases with increasing βWil at a
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modest pace. Whether in this regime the dependence of 〈P 〉 is still exponential (just with
a much smaller slope) or whether the characteristic of this dependence has fundamentally
changed cannot be concluded given the present set of data.

In pure SU(2) Yang-Mills theory and a 163 × 4, we would expect the deconfinement phase
for βWil

>
∼ 2.4. It is tempting to conclude that the change of the dependence of 〈P 〉 on βWil

in this regime signals a spontaneous breaking of centre symmetry. We here argue that this
conclusion is premature: figure 17, right panel, shows 〈P 〉 as a function of lnT/mγ (where
mγ is the induced photon mass which sets the scale) for the same fixed aspect ratio. Both
curves are strikingly similar. While there is certainly no spontaneous breakdown of centre
symmetry in the Schwinger model (this would lead to a Silver-Blaze problem as we pointed
out in section 3), the large values of 〈P 〉 merely indicates an overlap problem if we wish to
address this model by means of Monte-Carlo methods.

6.3 Order parameter for centre-sector transitions

If we consider for the moment a given lattice configuration {U} in pure Yang-Mills and
its centre copy {zU}, then these configurations are degenerate in action. If {U} is an
“empty vacuum” state, i.e., all contractible Wilson loops on the lattice yield the unit
element, a path in configuration space can be found which deforms {U} into {zU} without
changing the action. For a generic lattice configurations, this no longer the case, and the
crucial question is whether transitions between centre-sectors occurs at all in the infinite
volume limit. The situation is aggravated if dynamical matter (transforming under the
fundamental representation of the gauge group) is present which bias the trivial centre
sector. We have partially answered this question by studying the volume dependence of
the Polyakov line: in the string-breaking phase, the bias becomes negligible in the infinite
volume limit, centre transitions do occur and the Polyakov line averages to zero; in the
Higgs-phase explicit centre-symmetry breaking is strong and independent of the volume.

Our aim here will be to construct a sort of order parameter which is sensitive to the centre
transitions. We do not expect that such an observable is built from local field operators
and that it is an order parameter in the strict thermodynamics sense. It must necessarily
be a non-local object which, however, nevertheless signals whether swapping the centre
sectors can occur. To this aim, we divide the 3-volume into two parts of equal size, VL and
VR and define the spatial average of the Polyakov line over each of the volumes:

P̄L/R =
1

VL/R

∑

x∈VL/R

P (x ). (82)

It is straightforward to assign a centre sector to each of the sublattices by the mapping

C(P̄ ) = n, n :
∣

∣

∣
arg(P̄ )− 2πn

Nc

∣

∣

∣
→ min , (83)

where
arg(P̄ ) = ϕ ∈ ]0, 2π] , P̄ = |P̄ | exp{iϕ} .
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Figure 18: The tunneling coefficient for pure Yang-Mills theory and the SU(2) Higgs theory.

Let us then constrain the configurations in such a way that the left hand part of the
universe belongs to centre-sector n while the right hand part has a reference to centre
sector m. The ratio of partition functions between the constrained and the un-constrained
theory defines the free energy Fnm for the mixing of the centre-sectors:

pnm := exp{−Fnm/T} =
1

N

∫

DU Dφ Dφ† δ
(

n, C(P̄L)
)

δ
(

m,C(P̄R)
)

eS , (84)

N =

∫

DU Dφ Dφ† eS .

The matrix pnm can be interpreted as the probability to find sector n in the left half and
sector m in the right half of the spatial universe. If the centre-symmetry is weakly broken
in the string-breaking phase (or not broken at all in the infinite volume limit), the free
energy Fnm, n 6= m is finite (or might even tend to zero for an increasing system size),
while the free energy diverges if the centre symmetry is strongly broken broken as e.g. in
the Higgs phase or at high temperatures. This is basically due to the fact that the whole
universe belongs to one centre sector, and configurations with n 6= m have a very low
probability.

Still measuring the free energy Fnm is hardly an easy task. Alternatively, we consider
another intuitive measure for centre sector transitions: the probability τ that the volumes
VL and VR belong to different sectors. We call τ the transition coefficient. It is directly

40



related to the free energy by

τ =
∑

n 6=m

pnm = 1 −
∑

n

pnn = 1 −
∑

n

exp{−Fnn/T} . (85)

In the infinite volume limit in the string-breaking phase, explicit centre symmetry breaking
can be neglected implying

pnm =
1

N2
c

⇒ τ = 1 − 1

Nc
.

In the Higgs or the high temperature phase, the whole lattice belongs to one centre sector,
and we find:

pnm =
1

Nc
δnm ⇒ τ = 0 .

We have numerically estimated the transition coefficient τ using a 243×6 lattice, κ = 0.31
and λ = 0.1. The parameter setting is such that the theory is in the string-breaking phase
for a 244 lattice size. Figure 18 shows our findings for τ as a function β. We do find that for
βWil

<
∼ 2.35 centre-sector transitions do occur with high probability while one centre-sector

is observed throughout the lattice universe for high temperatures, i.e., βWil > 2.35.

7 Conclusions

For SU(N) Yang-Mills in 4 dimensions on a torus, we started to investigate the “empty
vacuum”, i.e., the set of configurations for which all holonomies calculated for any con-
tractible loop yields the unit element of the group. All these configurations produce zero
field strength everywhere. We found a continuous set of gauge in-equivalent configurations
related by a symmetry transformation. Including quantum fluctuations, the degeneracy
of these states is lifted. The symmetry collapses to the well-known ZN centre symme-
try which divides the gluonic configurations into centre sectors. Transitions between the
centre sectors turned out to be the key ingredient for confinement3. Including dynamical
matter which transforms under the fundamental representation of the group, this centre
symmetry is explicitly broken. Our central working hypothesis to start with was that tran-
sitions between centre sectors still take place in the so-called hadronic phase and that
these transitions only cease to exist at high temperatures when the centre symmetry is
also spontaneously broken (on top of the explicit breaking).

Before corroborating this picture in the sections 5 and 6, we studied the phenomenological
impact in the Schwinger-model, since it allows for explicit analytical solutions, and in an
SU(3) quark model for the sake of its relevance for QCD. For an even number of colours,
it was firstly pointed out in [39, 40] that quarks acquire periodic boundary conditions
in some of the centre sectors. For a finite chemical potential, the quarks then might

3although they do not explain the confinement energy scale of several hundred MeVs for QCD
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undergo condensation due to Bose statistics. In analogy, this has been called Fermi Einstein
condensation (FEC). We traced out the roots of FEC in the Schwinger model on the
torus as finite chemical potential. We found that the phenomenological importance of the
centre transitions is the solution of the silver blaze problem: centre transitions wipe any
dependence of the partition function on the chemical potential as it must be since the
physical states of the model carry no net baryon number.

We then studied an effective SU(3) quark model with constituent quark mass m which only
interactions are with the gluonic background field specifying the centre sector. We verified
that this very simple model already confines quarks: e.g., we considered the thermal energy
density as a function of (low) temperatures and found that its lowest excitations are mesons
of mass ∼ 2m rather than quarks with mass ∼ m. By studying the centre sector weights
(provided by the model), we found that the centre sectors democraticly contribute to the
partition function in the hadronic phase while under extreme conditions basically only the
trivial centre sector contributes implying that the model merges with the Fermi-gas model
in the quark gluon plasma phase. Using the centre weight of the trivial centre sector as an
order parameter, we were able to map out the phase diagram of the model as a function
of the chemical potential and the temperature. We found that FEC is important at low
temperatures and intermediate values of the chemical potential.

For FEC to happen in dense QCD, the central question is whether centre sector transitions
do take place despite of the explicit breaking by matter fields. This question can be studied
for vanishing chemical potential where Monte-Carlo simulations are readily available. Using
a 3-dimensional Z2 gauge theory with Ising matter, we firstly studied the tension of a centre
interface when the model is forced into the trivial centre sector (i.e., the sector for which the
model is identical to the standard ferromagnetic Ising model). While the interface tension
vanishes in the infinite-volume zero-temperature limit, it is finite at high temperatures
when centre symmetry is spontaneously broken. Giving up the artificial constraint which
ties the Z2 gauge theory with matter to the standard Ising model, we find that interface
tension vanishes for any finite volume. Nevertheless, a detailed study of the Polyakov
line expectation value reveals at rather small value (though non-zero) in the would-be
confinement phase, and large values in the Higgs phase.

A theory which is more relevant for QCD, is the SU(2) gauge theory with dynamical
matter. We have chosen a scalar Higgs field since it allows large statistic Monte-Carlo
simulations (facilitated by e.g. the generalised Luescher-Weisz method) and at the same
it explicitly breaks centre symmetry as quarks do. We firstly identified the region of
the coupling space where the theory realises string breaking well within the size of our
lattice. We then studied the extent of explicit centre symmetry breaking by calculating
the Polyakov line distribution function. At high temperatures, the explicit breaking is
largely amplified by an additional spontaneous breakdown. A study of the temperature
dependence of the Polyakov line showed quite a similar behaviour as in the Schwinger
model. This renders cumbersome any conclusion on the spontaneous centre symmetry
breakdown since it is clearly absent in the Schwinger model. This calls for a new type of

42



order parameter which is designed to be a Litmus paper for centre transitions. For such an
order parameter, we here proposed to map the Polyakov line to the centre sector for each
half of the spatial lattice universe separately, and ask for the probability that a particular
lattice configuration belongs to different centre sectors in each half. If this is the case,
the theory certainly undergoes transitions between the centre sectors. Using this order
parameter, we find clear numerical evidence in the SU(2) Higgs theory for a “hadronic”
phase at small temperatures and a de-confined phase at high temperatures.

In conclusion, we found evidence that dynamical matter does not prevent centre sector
transitions in QCD-like theories in the low temperature “hadronic” phase. These tran-
sitions only cease to exist at high temperatures when centre symmetry is also broken
spontaneously. We highlighted the phenomenological impact of these centre transitions: in
the Schwinger model, they solve the Silver-Blaze problem, and in an SU(3) quark model
they lead to a new phase featuring Fermi Einstein condensation (FEC) for cold but dense
matter. The FEC mechanism only uses fairly robust assumptions on the realisation of
centre symmetry. Hence, FEC might also be at work in QCD at low temperatures and
intermediate values of the chemical potential for which quarks are not yet liberated.
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work at the High Performance Computing Centre at University of Plymouth. We are
indebted to the staff for support. This work is a project of the UKQCD collaboration.
DiRAC is supported by STFC.
We would like to thank Philippe de Forcrand, Simon Hands, Emil Mottola, Lorenz von
Smekal and Björn Wellegehausen for helpful discussions.

A The Schwinger-model calculations

In this appendix we extend known results about the Schwinger model at finite temperature
T = 1/β [29] to the case with chemical potential µ 6= 0. For related results on the Thirring
model see [32]. We enclose the system in an interval with length L and impose periodic
boundary conditions in the spatial direction.

A.1 Schwinger-proper time regularisation

Any gauge potential with vanishing instanton number on the two-dimensional torus can
be decomposed as

A0 = −∂1φ+ ∂0λ+
2π

β
h0 , A1 = ∂0φ+ ∂1λ+

2π

L
h1 (86)

with constant toron fields h0 and h1. The determinant of the Dirac operator for massless
fermions does not depend on λ and its φ-dependence follows from the axial anomaly [29].
Here we calculate the determinant for arbitrary toron fields hµ and for a chemical potential
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µ 6= 0. For constant fields the Dirac operator possesses plane waves as eigenfunctions and
its determinant can be written as an infinite product over all admitted momenta,

det(i/∂h,µ) =
∏

(m,n)∈Z2

Dh,µ (m,En) , (87)

The eigenfunctions are anti-periodic in time and periodic in space such that

Dh,µ(m,En) =

(

2π

β

)2
(

m+ 1
2
− γ

)2
+ E2

n, γ = h0 +
iβ

2π
µ, (88)

where LEn = 2π|n− h1|. We introduce the fermionic effective action Γh,µ by

Γh,µ = ln det(i/∂h,µ) (89)

and obtain in Schwinger proper time regularisation

ΓΛ(µ, h) =

∫ ∞

1/Λ2

ds

s

∑

m,n

e−sDh,µ(m,En) ≡
∑

n

Γfer(En, h, µ) . (90)

The terms in the last sum are given by the integral

Γfer(E, h, µ) = 2

∫ ∞

E

de eW (e) , (91)

where the integrand contains the function

W (E) =

∫ ∞

1/Λ2

ds
∑

m

exp {−sDh,µ(m,E)} .. (92)

Now we can do the proper time integration. Since the resulting sum over m is convergent
we may set T/Λ = 0 such that

W (E) = e−E2/Λ2
∑

m

f(m,E) with f(m,E) =
1

Dh,µ(m,E)
. (93)

The sum over m can be rewritten with the help of the Poisson resummation formula

∑

n

f(m,E) =
∑

k

f̃(k, E) , f̃(k, E) =

∫

dx e2πikx f(x, E) .

After a shift of the integration variable the last integral takes the form

f̃(k, E) =
(−1)k

2π
β2e2πikh0

∫

dx
eikx

(x− iβµ)2 + (βE)2
. (94)
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The integral over x is known in closed form and the resulting sum over k can easily be
computed and yields

∑

k

f̃(k, E) =
1

2E

d

dE

{

βE − log
(

1 + e2πiγ−βE
)

− log
(

1 + e−2πiγ−βE
)}

. (95)

Multiplied with exp(−E2/Λ2) this becomes the function W (E) in (91). The µ-dependent
part is UV-finite and hence we can safely remove the cutoff there leaving us with

ΓΛ(β, µ, h) = βEΛ(L, h1) + Γ1(β, L, µ, h) , (96)

with a divergent zero-point energy EΛ and a finite temperature correction

Γ1(β, L, µ, h) =
∑

n

ln
{

(

1 + e2πih0 e−β(En+µ)
)

+ ln
(

1 + e−2πih0 e−β(En−µ)
)

}

. (97)

In the zero-temperature limit we must recover the well-known Casimir energy of fermions
on a circle with circumference L [58, 59],

ΓΛ(β, L, µ, h)
β→∞−→ −βECas, ECas = − π

6L
+

2π

L

(

1

2
− h1

)2

. (98)

The Casimir energy is periodic in h1 with period 1 and in the last formula we must assume
h1 ∈ [0, 1]. We conclude that the renormalised effective action is

Γ(β, L, µ, h) = −βECas(L, h1) + Γ1(β, L, µ, h) . (99)

Note that the energies En are proportional to 1/L such that Γ1 depends only via the
dimensionless parameter τ = β/L on the size L of the system.

A.2 θ-function representation and integration over toron fields

The effective action Γ = log det(i/∂) can be expressed in terms of the θ- and η-function [32]

det(i/∂h,µ) =
1

η2(iτ)
Θ

[

h1 − 1
2

γ

]

(0, iτ) Θ

[

h1 − 1
2

−γ

]

(0, iτ) , (100)

where γ is defined in (88) and we used the Dedekind eta-function

η(iτ) = e−πτ/12
∏

n>0

(

1− e−2πτn
)

, τ =
β

L
, (101)

and the theta function [60]

Θ

[

α

γ

]

(0, iτ) =
∑

n∈Z e−πτ(n+α)2+2πi(n+α)γ (102)
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which has the product expansion

1

η(iτ)
Θ

[

α

γ

]

(0, iτ) = e2πiαγe−πτα2+πτ/12

·
∞
∏

n=1

(

1 + e−2πτ(n+α−1/2)e2πiγ
) (

1 + e−2πτ(n−α−1/2)e−2πiγ
)

. (103)

Note that the determinant is invariant under large gauge transformations hµ → hµ + 1.

Using the product expansion for the θ-function it follows at once that the effective action
Γ(β, L, µ, h) = log det(i/∂h,µ) has the series expansion (99). In the derivation we assumed
that h1 takes its values in the unit interval and this is why the h1-periodicity of the
determinant is not manifest. In the thermodynamic limit we find the following expression
for the free energy density f in Z = exp(−βLf):

f
L→∞−→ − 1

πβ

∫ ∞

0

dp log
[(

1 + e2πih0e−β(p+µ)
) (

1 + e−2πih0e−β(p−µ)
)]

=
1

πβ2

[

dilog
(

1 + e2πih0−βµ
)

+ dilog
(

1 + e−2πih0+βµ
)]

. (104)

For L/β → ∞ the free energy density does not depend on the constant gauge field h1,
as expected. When one varies the constant gauge field h0 (or equivalently the boundary
condition in the temporal direction) then one smoothly interpolates between free fermions
and free bosons or between a Fermi-Dirac and a Bose-Einstein distribution.
In a gauge theory we must average over all gauge fields and in particular we must integrate
the fermionic determinant over the constant gauge fields as well. The integral of (100) over
h1 can be done explicitly. If m,n are the summation indices in the double sum (100) we
change summation indices according to m = p + q and n = q. The sum over q together
with the h1-integral over [0, 1] turns into an integral over [−∞,∞] and yields the simple
result (27). The final integration over h0 is easily performed and yields the µ-independent
result (28) for the averaged determinant

∫

dh0dh1 det(i/∂h,µ).

A.3 Polyakov loops

Let us finally calculate the expectation values of product of Polyakov loops

Pq(u) = eiq
∫
dx0eA0(x0,u) = e2πiqh0e−ieq

∫
∂uφ(x0,u)dx0

(105)

corresponding to static charges q ∈ Z. In particular P−q = P̄q. First we do the integration
over the harmonics. With the help of (27) we obtain

∫

dh0dh1 det
(

i/∂h,µ
)

∏

Pqi(ui) =
1√
2τ

1

η2(iτ)
e−πτ Q2/2+βµQe−i

∫
d2x j(x)φ(x)
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with total charge Q =
∑

qi and source

j(x) = e
∑

i

qiδ
′(x1 − ui). (106)

The functional integral over φ has been done previously in [29] and yields
〈

∏

Pqi(ui)
〉

=
∏

i

〈Pqi〉 e−β
∑

i6=j qiqjV (|ui−uj |) (107)

with expectation values (33) for the individual Polyakov loops and periodic potential

V (|u|) = πmγ

4

cosh
(mγ

2
(L− 2|u|)

)

sinh
(

mγL
2

) , |u| ≤ L . (108)

The potential energy decreases exponentially fast for large separations of the charges

V (|u|) ∼ πmγ

4
e−mγL/2 . (109)

B Local-hybrid Monte Carlo for the Higgs sector

For the update the scalar field in accordance to the functional integral (77), we here discuss
the Local Hybrid-MC (LHMC) scheme. Assume that φ(x) is chosen for the update. The
LHMC Hamiltonian is given by

H =
1

2
π†π + SL(φ, φ

†). (110)

To set up the LHMC scheme, it is convenient to work with real variables, i.e., π = R+ iS,
φ = r + is, s, S, r, R ∈ R. The Hamilton-Jacobi equations of motion are given by

ṙ =
∂H

∂R
= R , ṡ =

∂H

∂S
= S , (111)

Ṙ = − ∂SL

∂r
= −∂SL

∂φ
− ∂SL

∂φ†
, Ṡ = − ∂SL

∂s
= −i

[∂SL

∂φ
− ∂SL

∂φ†

]

. (112)

It is easy to check that the above equations imply Ḣ = 0. Combining both equations in
(112) yields:

π̇ = Ṙ + iṠ = − 2
∂SL

∂φ†
, φ̇ = ṙ + i ṡ = π . (113)

For the action in (77), the terms of SHiggs which depend on φ(x) or φ†(x) give rise to

SL = −κ
2

∑

µ

[

φ†(x)Uµ(x)φ(x+ µ) + φ†(x)U †
µ(x− µ)φ(x− µ)

]

− κ

2

∑

µ

[

φ†(x− µ)Uµ(x− µ)φ(x) + φ†(x+ µ)U †
µ(x)φ(x)

]

+
1

2
φ†(x)φ(x) + λ [φ†(x)φ(x)]2 .

47



Hence, defining

B(x) =
∑

µ

[

Uµ(x)φ(x+ µ) + U †
µ(x− µ)φ(x− µ)

]

, (114)

we finally find:

φ̇ = π , π̇ = κB(x) − φ(x)
[

1 + 4 λφ†(x)φ(x)
]

. (115)
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