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ANALYTIC RESULTS FOR THE EFFECTIVE ACTIONSTEVEN K. BLAU� and MATT VISSERyTheoretial Division, Los Alamos National Laboratory, Los Alamos, New Mexio 87545ANDREAS WIPFzMax Plank Institut f�ur Physik und Astrophysik, Werner Heisenberg Institut f�ur Physik,D{8000 M�unhen 40, GermanyReeived 12 July 1990Motivated by the seminal work of Shwinger, we obtain expliit losed form expressionsfor the one{loop e�etive ation in a onstant eletromagneti �eld. We disuss bothmassive and massless harged salars and spinors in two, three, and four dimensions.Both strong �eld and weak �eld limits are alulable. The latter limit results in an asymp-toti expansion whose �rst term reprodues the Euler{Heisenberg e�etive Lagrangian.We use the zeta funtion renormalization presription, and indiate its relationship toShwinger's renormalized e�etive ation.Published version: IJMPA 6 (1991) 5409{5433.1. IntrodutionIn the path integral formulation of fermioni �eld theories, one is fored to onfrontthe determinant of the Dira operator, while for spin{0 bosons one enounters thedeterminant of the gauged Laplaian. In the absene of gauge �elds, and if the spae-time geometry is not an issue, this determinant is an irrelevant onstant. However,there is still a good deal of work to be done toward eluidating the dependene ofthese determinants on bakground gauge �elds and gravitational �elds. These deter-minants are related to the one-loop e�etive ation via Se� / ln detD, and, in theguise of the one-loop e�etive ation, have been the subjet of onsiderable e�ortsdating bak at least to the seminal works of Euler and Heisenberg, 1 Weisskopf, 2and Shwinger. 3Only in two dimensions is the situation reasonably well understood. The par-tiularly simple geometry of ompat two{dimensional Riemann surfaes makes it�Present address [2002℄: ??? AIP, Washington DC ???yPresent address [2002℄: Shool of Mathematial and Computing Sienes, Vitoria University ofWellington, New ZealandzPresent address [2002℄: Theoretish-Physikalishes-Institut, Friedrih-Shiller-Universit�at Jena,07743 Jena, Germany 1
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2 S. K. Blau, M. Visser & A. Wipfpossible to express the gauge{�eld{free Dira determinant in terms of Riemanntheta funtions and generalised Dedekind eta funtions. 4;5;6;7 On the other hand,in the plane the determinant for loalized gauge �elds is given by Shwinger's 8famous result Se� / R A�A�. Combining the e�ets of non{trivial topologies andnon{zero �eld strength has been disussed in referene 9.In higher dimensions, only partiular bakground �elds an be handled. Forexample, the e�et of onformal metri deformations on the e�etive ation is dis-ussed in referenes 10 and 11. Shwinger 3 has onsidered the e�etive ation foronstant eletromagneti �eld strength and for a plane wave of eletromagneti ra-diation, both in at four{dimensional Minkowski spae. Four{dimensional instantonsolutions have also been onsidered. 12;13;14In this paper we shall be interested in obtaining expliit analyti results. A-ordingly, we are fored to restrit our attention to partiular bakgrounds: atspaes with zero{�eld or onstant �eld. We use the zeta{funtion regularisationof determinants of seond-order ellipti operators. The Dira operator, D= , is �rstorder, but we shall de�ne detD= � qdetD= 2. In order that D= 2 may be an ellip-ti operator, we shall work in Wik rotated Eulidean spaetime. In setion 2 weonsider (non{)Abelian gauge �elds de�ned on multidimensional tori (S1)d. Thenon{trivial topology of these tori allows for the possibility of harmoni gauge po-tentials, that is, potentials whih have vanishing �eld strength but whih are notpure gauge. The existene of these harmoni gauge potentials is assoiated withthe possibility of enountering non{trivial Wilson loops. On multidimensional tori,suh gauge potentials are onstant (up to a gauge transformation), thus allowingexpliit onstrution of the eigenspetrum, zeta funtion, and e�etive ation. Thedependene of the e�etive ation on these nontrivial Wilson loops may be viewedas a generalized Aharonov{Bohm e�et. In setions 3 through 7, we onsider gauge�elds with onstant �eld strength in arbitrarily many dimensions, working our wayup from two dimensions. In all these ases we shall determine the eigenspetra ofthe gauged Laplaian and Dira operator and shall alulate the assoiated zetafuntions expliitly. Using speial properties of zeta funtions may often give thedeterminant and e�etive Lagrangian density in losed form.We shall also disuss the \folk theorem" Le� � Bd=2 lnB, and will point outa number of situations in whih it is violated. The physial impliations of thelogarithmi term are disussed in referene 15. We shall show that this folk theoremis generally true in even numbers of dimensions, though there are exeptions, suhas the salar partile in two dimensions. In odd numbers of dimensions however,the logarithmi term is absent, and generially we obtain Le� � Bd=2.2. Field{Free Gauge PotentialsIn this setion we shall see that a generalized Aharonov{Bohm e�et an inuenethe one-loop e�etive ation of a system, even though the eletri �eld strength iseverywhere zero. Notie that an Abelian gauge potential is gauge{equivalent to the
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Analyti results for the e�etive ation 3sum of its harmoni, monopole and oexat pieesA = H +AM + Æ�: (1)The number of independent harmonis equals the �rst Betti number and is thusintimately related to the topology of the spaetime manifold. We shall be interestedin gauge potentials on d{dimensional tori, in whih ase there are d independentharmonis whih may be hosen to be onstant one{forms. In this setion we shallfurther speialise to the zero{�eld ase so that the monopole ontribution and �are both zero.We begin with (onstant) harmoni potentials de�ned on the d{dimensionaltorus Rd=�, where the lattie � onsists of points of the form LPnj ~Ej , thenj being integers and the ~Ej being d linearly independent vetors in Rd. It is,of ourse, possible to set L = 1 but we prefer to keep this prefator in order totrak the e�et of saling the lattie. Note that a onstant �eld{free potential isnot pure gauge sine the \would be" gauge transformation is not single valued.These potentials are losed but not exat. Equivalently one sees that the Wilsonloop W (j) = exp(�i Hj ~A � d~x) = exp(�i ~A � ~Ej L) evaluated on the losed non{ontratible loop j from ~0 to L~Ej is gauge invariant, and is therefore an obstrutionto gauging the potential away to zero.The eigenvalues of �D2 and D= 2 are in fat idential for zero �eld. On themultidimensional torus with periodi boundary onditions,  (~x) =  (~x+~�), ~� 2 �,the eigenvalues are easily omputed to be�n = �2�L �2 � gij (ni � ai)(nj � aj); ~n 2 Zd; (2)where the matrix (gij) is the inverse of gij = ~Ei � ~Ej ; and ai = L2� ~Ei � ~A. To omputethe orresponding e�etive ation one de�nesSe� = 12 ln det(�D2) = � 12 dds� (s)����s=0; (3)where � (s) is the zeta funtion assoiated with �D2,� (s) = tr0 ��D2�2 ��s =X0��n�2��s: (4)It should emphasised that the zeta funtion de�nition embodied in (4) impliesboth a regularization and a renormalization. When omparing the zeta funtionresult with e�etive ations alulated using other renormalization presriptions(e.g., Shwinger's) one should always bear in mind that di�erent renormalizationpresriptions will yield e�etive ations that may di�er by a �nite renormalization.In partiular, the quantity � appearing in (4) is a renormalization sale, whih hasbeen introdued to keep the zeta funtion dimensionless, and the dependene ofSe� on � orresponds to a �nite renormalization. The dependene on the renor-malization sale is logarithmi and proportional to the onformal anomaly (see
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4 S. K. Blau, M. Visser & A. Wipfe.g., referene 16). In order that dimensionful quantities may be properly displayedthroughout, we shall retain this normalization sale in all our alulations.In the present ase the zeta funtion assoiated with the di�erential operator�D2 is given in terms of a relatively well understood speial funtion by� (s) = 2��L2� �2s�E(s;~a): (5)The prefator 2 arises from summing over both partile and antipartile states, whilethe symbol �E(s;~a) denotes the generalized Epstein zeta funtion, 17;18 de�ned bythe sum �E(s;~a) =XZd 0 �gij(ni � ai)(nj � aj)��s: (6)(the prime indiates that one should sum over non{zero eigenvalues only).The generalised Epstein zeta funtion is diÆult to handle expliitly, at least inhigher dimensions. Fortunately, we an apply the generalised Poisson resummationformulaXZd exp ���gij(ni � ai)(nj � aj)� =pdet gij �XZd exp ���gijmimj � 2�imiai� :(7)Taking a Mellin transform of the above gives 17;19�E(s;~a) = �(d2 � s)�(s) �2s� d2 qdet[gij ℄ X0�gij mimj�s� d2 e�2�imiai : (8)The zero{mode, mi = 0, is eliminated beause the zeta funtion is de�ned by ana-lyti ontinuation in s. For large s the zero{mode makes no ontribution. Equation(8) is a generalisation of the well{known funtional equation (reetion formula)for Riemann's (or rather Euler's) zeta funtion. 20 It is now relatively simple toshow that�E(0;~a) = 0 (9)� 0E(0;~a) = ��d=2� �� d2qdet[gij ℄ XZd 0 �gij ninj�� d2 e �2�i njaj :The speial ase d = 2 has been extensively studied by Kroneker, 21 and for thatreason we shall refer to � 0E(0;~a) as a generalised Kroneker sum.Sine �E vanishes at the origin the prefator (2�=L)2 in (5) does not ontributeto the e�etive ation andSe� = 12 ln det(�D2) = �� 0E(0;~a): (10)Note in partiular that in this ase the e�etive ation is independent of the renor-malization sale �. This is atually a rather deep result, related to the vanishing ofthe onformal anomaly for zero eletromagneti �eld strength. 16 If we onsider D= 2
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Analyti results for the e�etive ation 5instead of �D2, the only hange is to multiply the above with minus one-half thenumber of spinor omponents in d dimensions. This general result may be relatedto known results in one and two dimensions.In the simplest ase, d = 1, the sum in (9) is a familiar trigonometri series. 22We �nd the e�etive ationSe� = 12 ln det(�D2) = ln�4 sin2 LA2 � : (11)Indeed, in one dimension one does not need the reetion formula. The exat zetafuntion is just a sum of Hurwitz zeta funtions and the e�etive ation an beomputed diretly. Using other tehniques, 23 we may show that the e�et of amass term is to hange the determinant toSe� = 12 ln det(�D2 +m2) = ln�4 �sin2�LA2 �+ sinh2�mL2 ��� : (12)Considering the next simplest ase, we observe that in two dimensions any lattiemay be re{saled to satisfy g = � 1 Re(�)Re(�) � �� � ; (13)where � is a omplex parameter known as the Teihm�uller parameter. The Kro-neker sum beomes� 0E(0;~a) = Im(�)� X0 e�2�i(ma1+na2)jm+ �nj2 : (14)This sum an be expressed in terms of Riemann theta{funtions. 17;24 We �nd thee�etive ation � 0E(0;~a) = �2 log ���� 1�(�) # � 12 + a112 � a2 � (0j�)���� : (15)Our theta{funtion onventions are those of Mumford. 25 This two{dimensionale�etive ation is in fat well known in string theory. 4;5Though the disussion has, for larity, been given in terms of an Abelian gaugepotential, the extension to non{Abelian gauge potentials is simple. If the �eldstrength is zero, we may use the non{Abelian version of Stoke's theorem to de-due that the Wilson loopsW () = tr(P exp H ~A �d~x) form a representation of H1,the �rst homology group. This implies that the ~A(x) = �a ~Aa(x) may be gauge �xedto be mutually ommuting onstant matries. 9 The results of this setion then on-tinue to hold provided one introdues an additional produt over the gauge group,Qdim(G)a=1 .
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6 S. K. Blau, M. Visser & A. Wipf3. Constant Field Strength: Two DimensionsConsider the ase of a onstant eletromagneti �eld in two dimensions. Let thearea of spaetime be denoted by S. The �eld strength may be written as:F�� = � 0 B�B 0 � : (16)As a potential we hoose A� = (0; Bx) .Salar Partiles.With this hoie the gauged Laplaian appropriate to salar partiles is�D2 = ��2x � (�y � iBx)2: (17)By observing that �D2 ommutes with the momentum P̂y = �i�y we see that oneigenstates of P̂y it redues to�D2 ! ��2x +B2 �x� pB�2 : (18)Sine this is just (twie) the Hamiltonian of a harmoni osillator it has eigenval-ues �p;n = (2n + 1)jBj. These eigenvalues are independent of p. Thus all levelsare degenerate. Later we shall see that this degeneray is just 2(jBj � S)=2�, theprefator 2 again arising from the sum over both partile and antipartile states.For notational simpliity take B to be positive.The zeta funtion of �D2+m2 is given in terms of a Hurwitz zeta funtion by:� (s) = 2BS2� 1Xn=0 � (2n+ 1)B +m2�2 ��s � 2BS2� �2B�2 ��s �H(s; 12 + m22B ): (19)The one{loop e�etive Lagrangian density is Le� = Se�=S = 12 ln det(�D2 +m2)=S = � 12� 0(0)=S. Using properties of the Hurwitz zeta funtion disussed inthe appendix, in partiular its value and slope at the point s = 0, yields:Le� = �m24� � ln�2B�2 �� B2� � ln��( 12 + m22B )=p2��: (20)It is easy to see that the m ! 0 limit is well behaved | Le� ! (B=4�) � ln 2 |while in the strong-�eld limitLe� = �m24� � ln�2B�2 �+ B4� ln 2 +O(1): (21)This simple example is already a ounterexample to the folk theorem Le� � Bd=2 lnB.The weak-�eld B ! 0 limit may be taken by making use of the doubling formulafor the Hurwitz zeta funtion:�H �s; 12 + x2� = 2s �H(s;x)� �H �s; x2� ; (22)
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Analyti results for the e�etive ation 7whih follows from the de�nition (A.1) of the appendix. Using this doubling formulawe may write (19) as�(s) = 2BS2� �2B�2 ��s �H � 12 + m22B�= 2BS2� "� B�2��s �H �s; m2B ���2B�2 ��s �H �s; m22B�# : (23)With the help of equations (A.9), (A.11), and (A.18), we may develop the weak-�eld expansion for the e�etive Lagrangian:[there is a typo, an extaraneous 2, in the seond line of the published version℄Le� = � 12 � 0(0)S= � B2�"� ln� B�2� �H �0; m2B �+ � 0H �0; m2B �+ ln�2B�2 � �H �0; m22B�� � 0H �0; m22B�#= � B2�" ln�m2�2 � �H �0; m2B �+ m2B � 112 Bm2� ln�m2�2 � �H �0; m22B�� 12m2B + 112 2Bm2+ n�1Xk=1 B2k+2(2k + 2)(2k + 1) � Bm2�2k+1 �22k+1 � 1	+O �� Bm2�n� #= 12�"12m2�1� ln�m2�2 ��+ 112 B2m2+m2 n�1Xk=1 B2k+2(2k + 2)(2k + 1) � Bm2�2k+2 �22k+1 � 1	+O �� Bm2�n� #: (24)Here the symbol Bn denotes the nth Bernoulli number. Notie that there are noterms logarithmi in B in the weak-�eld expansion. However, as foreshadowed,the zeta-funtion renormalization has introdued nonstandard �nite terms into thee�etive Lagrangian. An additional �nite (often �-dependent) renormalization isneeded to remove these terms. Removing the onstant term in the above equationorresponds to renormalizing the e�etive osmologial onstant, while removingthe term proportional to B2 orresponds to a �nite renormalization of eletriharge. (We have hosen our notation in suh a manner that eletri harge doesnot appear expliitly.) Having implemented these additional �nite renormalizationswe (�nally) display the renormalized e�etive ation as an asymptoti series starting
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8 S. K. Blau, M. Visser & A. Wipfwith B4:Le� = m22� nXk=1 B2k+2(2k + 2)(2k + 1) � Bm2�2k+2 �22k+1 � 1	+O �B2n+4� : (25)(We have gone through this simple example in admittedly tedious detail beausethe same tehniques will be used over and over in the following disussion.)In order to on�rm the degeneray fator we onsider the heat kernel of �D2+m2. This heat kernel is found to beK(t) � tr0 �exp([D2 �m2℄t=�2	� e�m2t=�2 � 1Xn=0 e��nt=�2= BS2� � e�m2t=�2 � oseh(Bt=�2): (26)Note that as t! 0,K(t)! 2(S�2=4�t), as it should aording to the (known) shorttime behaviour of the heat kernel. This a posteriori proves that we have hosen theorret degeneray fator 2(BS=2�). Equivalently, one may use the fat that asB ! 0 the heat kernel must approah that of the free two{dimensional di�usionoperator, to obtain an alternative veri�ation of the degeneray fator. It shouldbe emphasized that we are onsidering the heat kernel appropriate to a omplexsalar �eld. That is to say, the sum in equation (26) inludes both partile and antipartile setors.Dira Partiles.The analysis for Dira spinors losely parallels that of the harged salar �eld. Thesquare of the Dira operator isD= 2 = �D2 +���F�� = ��2x � (�y � iBx)2 + 5B: (27)The eigenvalues are �n = (2n+ 1)jBj �B. We now re{index the states so that theeigenvalues beome �n = 2njBj, where the e�etive degeneray is (jBjS=2�) forn = 0 and 2(jBjS=2�) for n > 0.The zeta funtion of D= 2 is given in terms of Hurwitz zeta funtions (heneforthwe take B > 0),� (s) = BS2� (2 � 1Xn=1�2nB +m2�2 ��s +�m2�2 ��s)= BS2� �(2 ��2B�2 ��s ��H(s; 1 + m22B ) +�m2�2 ��s)= BS2� �(2 ��2B�2 ��s ��H �s; m22B���m2�2 ��s) (28)
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Analyti results for the e�etive ation 9The one{loop e�etive Lagrangian density for spinors is Le� = + 12� 0(0)=S, so that:Le� = B +m24� ln�2B�2 �+ B2� ln �(1 + m22B )� B4� ln�2�m2�2 � : (29)The weak{�eld limit B ! 0 for spinors is obtained just as it was for salars. Asin the salar ase we must implement an additional �nite renormalization of theosmologial onstant and the eletri harge. Then we obtainLe� = m24� nXk=1 B2k+2(2k + 2)(2k + 1) �2Bm2�2k+2 +O �B2n+4� : (30)The limit m ! 0 of equation (29) is ill behaved (Le� ! 1). This is an infraredsingularity assoiated with the fat that the Dira operator develops a zero{modeas m! 0. One may deal with the zero{mode by simply dropping the ground state(n = 0) from the sum prior to taking the m ! 0 limit. Equivalently, for masslessDira spinors one must exlude the zero mode \by hand". Reall that the de�nitionof the zeta funtion is in terms of P0 not P. The di�erene has up to now beenirrelevant. Taking areful note of this di�erene leads to:� (s) = 2BS2� 1Xn=1�2nB�2 ��s = 2BS2� �2B�2 ��s ��R(s): (31)The one{loop e�etive Lagrangian density is simpli�ed toLe� = + B2� � ln� B��2� : (32)The heat kernel of D= 2 +m2 is readily evaluatedK(t) = BS2� oth�Bt�2 � exp��m2t�2 � : (33)Note that as t! 0 that K(t)! 2 � (S�2=4�t), as indeed it should. (The fator of 2reets the existene of two spinor omponents in two dimensions). In the masslessase the \zero{mode{suppressed" heat kernel isK 0(t) = BS2� �oth�Bt�2 �� 1� : (34)Note that K 0(t)! 0 as t!1, thanks to the expliit exlusion of the zero mode.Finally, note that alulation of the heat kernels allows one to dedue all theSeeley{deWitt oeÆients for the ase of onstant �eld. Use of the Taylor series foroseh(Bt) and oth(Bt) yields:a2n(�D2) = �2(22n�1 � 1)(2n)! �B2n � B2n; (35)a2n(D= 2) = (22n+1)(2n)! �B2n � B2n; (36)
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10 S. K. Blau, M. Visser & A. Wipfwhere Bn denotes the nth Bernoulli number. The `odd' oeÆients a2n+1 all vanish.It is very unusual to know all the an. For arbitrary �elds these oeÆients are leadingorder terms in a low{momentum approximation. Thus they remain interesting forgeneral �elds.4. Constant Field Strength: Three DimensionsIn three dimensions the �eld strength may be written as:F�� = 0�0 0 00 0 B0 �B 0 1A : (37)Let the volume of spaetime be denoted by V = S �L. In the gauge A� = (0; 0; By),we may immediately write down the three{dimensional heat kernelKd=3(t) = �Lp4�t �Kd=2(t). Three{dimensional zeta funtions quikly follow:� d=3(s) = 1�(s) � Z 10 ts�1Kd=3(t)= �Lp4� � �(s� 12 )�(s) � �d=2(s� 12 ): (38)All fators are analyti at s = 0. In partiular, sine 1�(s) � s+0(s2), the derivativeat s = 0 is� 0d=3(0) = �Lp4� � �(� 12 ) � �d=2(� 12 ) = ��L � �d=2(� 12 ): (39)This means that the one{loop e�etive Lagrangian densities are given in terms of�H(� 12 ; x). Using results of the two{dimensional disussion we see:Salar Partiles: Le� = 14� � (2B)3=2 � �H(� 12 ; 12 + m22B );Dira Partiles: Le� = � 18� � 2B � n2p2B �H(� 12 ; 1 + m22B ) +mo : (40)Note that these e�etive ations are independent of the renormalization sale �. This(nonobvious) result is a onsequene of the vanishing of the onformal anomaly inodd{dimensional spae{times. For strong �elds, the Hurwitz zeta funtion an beomputed by onvergent series. [See equation (A.6) of the appendix.℄ For the asesof interest:�H(� 12 ; 12 + m22B ) = �H(� 12 ; 12 )� 1Xl=1(�)l (2l � 3)!!2l l! � �m22B�l � �H(� 12 + l; 12 );�H(� 12 ; 1 + m22B ) = �R(� 12 )� 1Xl=1(�)l (2l� 3)!!2l l! ��m22B�l ��R(� 12 + l): (41)The oeÆients in these expansions an be obtained (with severely limited auray)from the tables of Jahnke and Emde. 26 Alternatively, the proliferation of personal
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Analyti results for the e�etive ation 11omputers allows these oeÆients to easily be omputed to any desired auray.Note the presene of frational powers of the �eld strength and the absene oflogarithmi terms when equation (41) is substituted into (40) in order to obtainan expansion for the e�etive Lagrangian. We shall see that these general featurespersist in any odd number of dimensions, at least for onstant �eld strength. Theleading strong{�eld limit in three dimensions isSalar partiles: Le� = 14� (2B)3=2�H �� 12 ; 12� :Spinor partiles: Le� = � 12� (2B)3=2�R �� 12� : (42)The leading term in the strong-�eld expansion for the spinor Lagrangian has pre-viously been obtained by Redlih. 27The leading oeÆients appearing in the strong{�eld limit have been evaluatednumerially. This was done by using the reetion formula for the Riemann zetafuntion to write �H(� 12 ; 1) = �R(� 12 ) = � 14��R( 32 ). Note that �R( 32 ) is givenby a niely onvergent series suitable for omputer evaluation. We �nd �R( 32 ) �2:612375, �R(� 12 ) � �0:207886. In a similar vein, we use the \doubling formula",�H(s; 12 ) = (2s � 1)�R(s) to dedue�H(� 12 ; 12 ) = 14� �1� 1p2��R( 32 ) � 0:060888: (43)In order to obtain the weak{�eld limit for the e�etive Lagrangian, we return toequation (40). We shall need equation (A.7) of the appendix, evaluated at s = 12 .�H ��12;x� = 1�(� 12 )"x3=2���32�+ 12x1=2���12�+ nXk=1B2k�(2k � 32 )(2k)! x3=2�2k +O(x1=2�2n)#: (44)After an additional �nite renormalization of the osmologial onstant and theeletri harge, the weak-�eld limit for the salar e�etive Lagrangian isLe� = �m3� nXk=1B2k+2 �(2k + 12 )(2k + 2)!�(� 12 ) �22k � 12�� Bm2�2k+2 +O �B2n+4� ; (45)while the spinor Lagrangian isLe� = �m34� nXk=1B2k+2 �(2k + 12 )(2k + 2)!�(� 12 ) �2Bm2�2k+2 +O �B2n+4� : (46)Only even, positive-integer powers of the �eld enter the weak-�eld expansion.Notie the absene form our disussion of the Chern{Simons seondary har-ateristi lass (the topologial mass term for the photon). This term might beexpeted to appear on rather general grounds, following arguments of Niemi and
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12 S. K. Blau, M. Visser & A. WipfSemeno� 28 and Redlih 27. However, a simple analysis is suÆient to show thatthe Chern-Simons term vanishes for onstant �eld strength. 27;29 We should alsonote the appearane of frational powers of the �eld strength has also been notedin Redlih's alulation for a massive spinor. 29 The present alulation generalizesthis result to the massive ase and also to salar partiles.5. Constant Field Strength: Four DimensionsIn four dimensions the �eld strength may be written as:F�� = 0BB� 0 E 0 0�E 0 0 00 0 0 B0 0 �B 0 1CCA ; (47)so that the four{dimensional problem breaks up into two two{dimensional ones.This result follows from the blok-diagonalizability of antisymmeti matriesthrough orthogonal transformations. It is important to know that E and B areinvariant salars that haraterise the eletromagneti �eld. Note that E2 + B2 =12F��F�� = 12F 2, and 2EB = �����F��F �� = F ~F . While it is more ommonto haraterise the �eld in terms of F 2 and F ~F , it is more useful for us to usethe invariants E and B. Though we shall be working in Eulidean spae, we notethat the result (47) also obtains in Minkowski spae. This follows from the fatthat it is always possible to make a Lorentz boost suh the eletri and magneti�elds beome parallel and then (by a rotation) to make both �elds point in the xdiretion.5.1. E = 0, B 6= 0Our analysis in this ase parallels that of three dimensions. Writing the volume ofspaetime as 
 = 
? �S, and hoosing the gauge as A� = (0; 0; 0; By), we fatorizethe heat kernel Kd=4(t) = D
?�24�t �Kd=2(t): (48)Here D = 1 for salars and D = 2 for spinors, reeting the fat that four-dimensional spinors possess twie as many degrees of freedom as two-dimensionalspinors. The four{dimensional zeta funtion is given by� d=4(s) = D�(s) � Z 10 ts�1Kd=4(t)dt = D
?�24� � � d=2(s� 1)s� 1 : (49)Inserting the results of the two{dimensional ase yieldsSalar Partiles: � (s) = B2
2�2 � �2B�2 ��s � �H(s� 1; 12 + m22B )(s� 1) ;
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Analyti results for the e�etive ation 13Dira Partiles: � (s) = B2
�2 � �2B�2 ��s � �H(s� 1; 1 + m22B )(s� 1)+m2B
4�2 � (m=�)�2ss� 1 �: (50)Taking derivatives at s = 0 is straightforward.5.1.1. Salar Partiles:For the e�etive Lagrangian density one obtains:Le� = B24�2 ��1� ln�2B�2 �� �H(�1; 12 + m22B ) +� 0H(�1; 12 + m22B )� : (51)Using results from the appendix one �nds thatLe� = 14�2"�B224 � m48 � � �1� ln�2B�2 ��+B2� 0H(�1; 12 ) + m48+ B2 Z m22B0 ln(�( 12 + y)=p2�)dy:#: (52)This form makes it easy to extrat the large �eld limit B � m2,Le� = 14�2 ��B224 � m48 � � �1� ln�2B�2 ��+B2� 0H(�1; 12 ) + m48 � Bm24 ln 2� : (53)The oeÆient � 0H(�1; 12 ) has been evaluated numerially. This was done by notingthat �H(s; 12 ) = (2s�1) ��R(s); and by using the reetion formula (see appendix)to relate � 0H(�1; 12 ) to � 0R(+2). We obtain � 0H(�1; 12 ) � 0:053829.In order to obtain the weak-�eld limit it is easiest to return to equation (51)and to use the doubling formula (22) along with equations (A.10) and (A.16) of theappendix. This proedure yields an asymptoti expansion in terms of powers of B2;in partiular there are no terms logarithmi in �eld strength. After performing theusual additional �nite renormalization of osmologial onstant and eletri harge,we obtain the extended Euler{Heisenberg e�etive LagrangianLe� = B216�2" �7360 B2m4 + nXk=1 B2k+2(2k + 2)(2k + 1)(2k) �22k+2 � 2�� Bm2�2k +O �B2n+2� #:(54)This result should be ompared with the Minkowski-spae Euler{Heisenberg La-grangian obtained by Shwinger. 3 In order to make the omparison, we must takeShwinger's formula and after setting E = 0 multiply by �1. In the general ase, forwhih E does not vanish, we must replae the E's in Shwinger's formula with iE
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14 S. K. Blau, M. Visser & A. Wipfbefore multiplying by �1 to obtain the Eulidean result. Finally, we have impliitlyhosen units for the renormalized harge so that Shwinger's �2 orresponds to our1=16�2. After making these adjustments for notation and metri signature, we mayon�rm that our expansion agrees with Shwinger to the leading order (whih isthe only order expliitly displayed in referene 8. Note though, that in this zetafuntion formalism, it is easy to display all orders of the asymptoti expansion forthe Euler{Heisenberg Lagrangian in the weak-�eld limit.5.1.2. Dira Partiles:For Dira spinors one obtainsLe� = � B22�2 �h1� ln�2B�2 �i�H(�1; 1 + m22B ) +� 0H(�1; 1 + m22B )�+m2B8�2 hln�m2�2 �� 1i : (55)A little work using results given in the appendix yieldsLe� = 12�2(�B212 + m2B4 + m48 ��1� ln�2B�2 ���B2� 0R(�1)� m48 � m2B4+m2B4 �ln�m2�2 �� 1��B2 Z m22B0 ln(�(1 + y)=p2�)dy): (56)For strong �elds one uses ln �(1 + �) = ��+O(�2), to establishLe� = 12�2(�B212 + m2B4 + m48 ��1� ln�2B�2 ���B2� 0R(�1)� m48 � m2B4+m2B4 �ln�m2�2 �� 1�+ m2B4 ln(2�) + 8m4)+m4 O(m2=B): (57)The oeÆient � 0R(�1) � �0:165421 has been alulated numerially.In order to obtain the weak-�eld limit we return to equation (55) and employthe identity �H (s; 1 + x) = �H(s;x) � x�s. Just as in the salar ase we obtain an(extended) Euler{Heisenberg Lagrangian.Le� = B216�2"�245 B2m4 + nXk=1 4 B2k+2(2k + 2)(2k + 1)(2k) �2Bm2�2k +O �B2n+2� #; (58)whih speializes to the Eulidean version of Shwinger's result. 8The results of this setion may easily be extended to disuss the ase B = 0,E 6= 0. One needs merely replae B by E in all formulae to obtain valid Eulideanspae results. Reall, though, that in ontinuing to Minkowski spae one e�ets
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Analyti results for the e�etive ation 15the transformation E ! iE. In the next setion we shall begin to address theomplexities enountered when E and B are both nonzero.5.2. E 6= 0; B 6= 0The salar spetrum is given by � = (2n+1)jEj+ (2n0 +1)jBj+m2, where all thestates have the degeneray 2(jEBj
)=4�2. The zeta funtion is� (s) = jEBj
2�2 � 1Xn;n0=0 � (2n+ 1)jEj+ (2n0 + 1)jBj+m2�2 ��s : (59)For spinors the analogous zeta funtion is a trie more ompliated [the publishedversion of this equation has a typo℄:� (s) = jEBj
4�2 �( 4 � 1Xn;n0=1 �2njEj+ 2n0jBj+m2�2 ��s+2 � 1Xn=1 �2njEj+m2�2 ��s+2 � 1Xn0=1 �2n0jBj+m2�2 ��s+1 � �m2�2 ��s): (60)These zeta funtions are in general so unwieldy as to be unmanageable. To proeedwe restrit ourselves to the ase jEj = jBj = F , orresponding to self{dual and anti{self{dual onstant �elds. In this speial situation we an reast these zeta funtionsin terms of the elementary Hurwitz zeta funtions.For the ase of a salar partile� (s) = F 2
2�2 ��2F�2 ��s � 1Xn;n0=0�n+ n0 + 1 + m22F ��s (61)We de�ne t = n + n0, and observe that there are preisely t + 1 ways in whih nand n0 an be arranged to sum to t, onsequently� (s) = F 2
2�2 ��2F�2 ��s � 1Xt=0(t+ 1) � �t+ 1 + m22F ��s (62)= F 2
2�2 ��2F�2 ��s � n�H(s� 1; 1 + m22F )� m22F � �H(s; 1 + m22F )o (63)= F 2
2�2 ��2F�2 ��s � n�H(s� 1; m22F )� m22F � �H(s; m22F )o : (64)
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16 S. K. Blau, M. Visser & A. WipfHere we have used �H(s; 1+x) = �H (s;x)�x�s. For the Dira spinor, very similarresults obtain, though one must be areful with degeneray fators:� (s) = F 2
4�2 ( �2F�2 ��s � 4 1Xn;n0=1(n+ n0 + m22F )�s (65)+ �2F�2 ��s � 2 � 2 1Xn=1(n+ m22F )�s +�m2�2 ��s): (66)Re{indexing the sum, using t = n+ n0 � 1, yields�Spinor(s) = 2 �Salar(s) + F 2
4�2 �m2�2 ��s : (67)Apart from the ground{state ontribution (n = n0 = 0; � = m2) the salar andspinor zeta funtions are proportional to one another. This desirable property doesnot, unfortunately, ontinue to hold if jEj 6= jBj. To disuss the e�etive ation, thestrong{�eld limit, and the weak{�eld limit, it suÆes to disuss the salars.The e�etive Lagrangian for salars isLe� = F 24�2( ln�2F�2 � h�H(�1; m22F )� m22F �H(0; m22F )i (68)�� 0H(�1; m22F ) + m22F � 0H(0; m22F )): (69)Using results from the appendix yieldsLe� = � 14�2 � 112F 2 � 18m4� ln�2F�2 � (70)� F 24�2 � � 0R(�1) (71)� 14�2 (14m2F + 18m4 � 12m2F ln �(1 + m22F )p2� !) (72)� F 24�2 � Z m22F0 ln(�(1 + y)=p2�)dy: (73)The strong{�eld and weak{�eld limits may be written down in the standard manner,we omit details and present the results. For strong �eldsLe� = � 14�2( � 112F 2 � 18m4� ln�2F�2 �+ F 2 � � 0R(�1) (74)+ 14m2F + 18(1 + )m4 +O�m6F �): (75)
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Analyti results for the e�etive ation 17For weak �elds, the Eulidean-spae (salar) Euler{Heisenberg Lagrangian isLe� = F 216�2"�115 F 2m4 + nXk=1 B2k+2(2k + 2)(2k + 1) �4 + 2k��2Fm2�2k +O �F 2n+2� #:(76)When ontinued to Minkowski spae, the lowest term in this expansion reproduesShwinger's result. 8 To relate this salar result to the ase of a massive Diraspinor, one notes thatLSpinor = �2 � LSalar + F 28�2 � ln(m2=�2): (77)The massless ase a�ords onsiderable simpli�ations; for the salar one obtains� (s) = F 2
2�2 � �2F�2 ��s � �R(s� 1): (78)This leads to an e�etive ationLe� = � F 24�2 � � 112 ln�2F�2 �+� 0R(�1)� : (79)The term proportional to F 2 is an artifat of the zeta-funtion method, and may,in the usual fashion, be removed through a �nite renormalization of the eletriharge. For massless Dira spinors, expliit exlusion of the zero{mode leads toLSpinor = �2LSalar. These massless (anti{)self{dual e�etive ations have beenpreviously disussed in the literature, see for example 15;30;31.6. Even DimensionalityIn d = 2N dimensions a onstant �eld may be brought into the blok diagonal formF�� = 0BBBBBBBBB�

0 B1�B1 0 � � � 0 BN�BN 0
1CCCCCCCCCA ; (80)where the �Bj are the zeros of the harateristi polynomial det(B � I + iF ). Theproblem thus deomposes intoN two{dimensional problems, allowing the assoiatedzeta funtions to be written down by inspetion.Salar PartilesThe eigenspetrum is �~n = fPNi=1(2ni + 1)jBijg + m2 with degeneray dn =QNi=1 2(jBij � Si=2�). The zeta funtion is� (s) = 2 NYi=1� jBijSi2� � � 1Xni=0 fPNi=1(2ni + 1)jBijg+m2�2 !�s (81)
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�(s) � Z 10 ts�1( NYi=1� jBij4� � oseh� jBijt�2 �) exp(�m2t�2 ): (82)Dira PartilesThe eigenspetrum is �~n = fPNi=1 2nijBijg+m2 with degeneray dn =QNi=1(jBij �Si=2�) � 2!(ni),where !(0) = 0, and !(n > 0) = 1. The zeta funtion is� (s) = NYi=1� jBijSi2� � � 1Xni=0 2!(~n) fPNi=1 2nijBijg+m2�2 !�s (83)= 
�(s) � Z 10 ts�1( NYi=1� jBij2� � oth� jBijt�2 �) exp��m2t�2 �: (84)These zeta funtions are tedious to alulate with in general, to proeed we makethe radially simplifying assumptions that jB1j = jB2j= : : : =B, and that m = 0.Of ourse, in two dimensions the ondition on the �eld is always met sine there isonly one B. In four dimensions it means that we on�ne ourselves to (anti{)self{dual bakgrounds. With these assumptions the salar zeta funtion is simpli�edto � (s) = �BS4� �N � (B=�2)�s�(s) � Z 10 ts�1(oseh t)N (85)while for the massless spinor, exlusion of the zero mode leads to� (s) = �BS2� �N � (B=�2)�s�(s) � Z 10 ts�1f(oth t)N � 1g: (86)Note that for N = 2, (i.e., four dimensions), the spinorial zeta funtion is four timesthe salar zeta funtion, in agreement with our earlier result.For these bakgrounds we an relate the zeta funtion in d{dimensions to theones in (d � 2) and (d � 4) dimensions by reursion relations. For the salar ase,a repeated integration by parts establishes�N (s) = ��2S4� �2 � �N�2(s� 2)(N � 1)(N � 2) ��BS4� �2 � �N � 2N � 1� � �N�2(s); (87)so that for the salar there are two disonneted series starting with d = 2, d = 4,respetively. For the spinorial ase a single integration by parts suÆes to obtain�N (s) = �2S2� � �N�1(s� 1)N � 1 +�BS2� �2 ��N�2(s): (88)In this ase there is a single reursive series. We de�ne �N=0(s) = 0, while ourprevious alulations have shown �N=1(s) = BS� � (2B=�2)�s � �R(s). So we de-due �N=2(s) = (BS� )2 � (2B=�2)�s � �R(s � 1), whih veri�es our previous four{dimensional alulation.
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Analyti results for the e�etive ation 19Without resorting to numerial omputation, we an make some general ob-servations regarding the d{dimensional ase. Note that all the d{dimensional zetafuntions are of the form�d=2N (s) = Bd=2 � � B�2��s � 
 � f(s) (89)in whih ase Le� / Bd=2fln(B=�2) � f(0)� f 0(0)g (90)so that the \folk theorem" generially holds for this lass of �elds. The \folk the-orem" an fail if f(0) happens to be zero; this is in fat exatly what happens formassless salar partiles in two dimensions. We remind the reader that the integrals(85) and (86) de�ning f(s) make sense only for Re(s) > d=2. The value of f(0) isde�ned by analyti ontinuation in s.We also wish to point out that our reursive formulas (87) and (88) are not theonly way of proeeding. The spetra are in this ase suÆiently simple that expliitalulation in terms of Hurwitz zeta funtions is possible.7. Odd DimensionalityIn d = 2N +1 dimensions, we write the volume of spaetime as 
d = L �
2N . Theheat kernel is related to that in 2N dimensions by Kd(t) = Lp4�t �K2N (t), so that(paralleling the disussion of the three{dimensional ase) one dedues�d(s) = Lp4� � �(s� 12 )�(s) � � 2N (s� 12 ): (91)Consequently � 0d(0) = �L � � 2N (� 12 ), and in the notation of equations (89) and(90) one has Le� / Bd=2 � f(� 12 ): (92)Though this alulation is arried out for the speial ase jB1j = � � � = jBij = � � � =jBN j = B, we expet that for general �elds the result Le� � Bd=2 will remain truein any odd number of dimensions.8. ConlusionsWe have studied the e�et of onstant �eld strengths on the determinants of theDira operator and gauged Laplaian. We began with the topologially interest-ing ases of harmoni gauge potentials, before proeeding to monopole potentialswith onstant �eld strengths. In both these ases we obtained the spetrum of thesquared Dira operator and gauged Laplaian expliitly and alulated the orre-sponding zeta funtion diretly. Computation of the e�etive ation then reduesto a relatively simple appliation of speial funtions.
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20 S. K. Blau, M. Visser & A. WipfAppendix A. Hurwitz zeta Funtions.To make this paper as self ontained as possible, we shall present here a number ofde�nitions and useful results related to zeta{funtion theory. Most of these resultsmay be obtained by onsulting Gradshteyn and Ryzhik. 32 Other useful referenesinlude Weil 19, Abramowitz and Stegun, 33 The Enylopedia of Mathematis, 34and the Bateman Manusript Projet. 35The Hurwitz zeta funtion is de�ned by:�H(s;x) = 1Xn=0(n+ x)�s: (A.1)This series onverges absolutely for Re(s) > 1, and the funtion so de�ned may beanalytially ontinued to the entire omplex plane. There is a single simple pole ats = 1 and in that neighborhood �H(s; x) = 1s�1 �  (x) + o(s � 1). Setting x = 1reprodues the ordinary Riemann zeta funtion,�R(s) = �H(s; 1) = 1Xn=1n�s: (A.2)The Riemann eta funtion is losely related to the Riemann zeta funtion. It isde�ned by �(s) = 1Xn=1(�1)n+1n�s: (A.3)The Riemann eta funtion, being de�ned by an alternating series, is numeriallymuh better behaved than the Riemann zeta funtion, and furthermore onvergesover a larger region of the omplex s{plane [Re(s) > 0℄. In terms of the eta funtion�R(s) = 11� 21�s � �(s): (A.4)The Riemann zeta funtion satis�es the lassial reetion formula�R(s) = (2�)s� � sin(�s2 ) � �(1� s) � �R(1� s): (A.5)By ombining the reetion formula with an improved series representation forthe zeta funtion given in terms of the eta funtion one may numerially omputeRiemann's zeta funtion over the entire omplex plane.The Hurwitz zeta funtion may be evaluated in terms of Riemann's zeta funtionby using the binomial series to write�H(s; 1 + x) = 1Xn=1 1Xl=0 ��sl � � n�s�l � xl= �R(s) + 1Xl=1(�)l � s(s+ 1) � � � (s+ l � 1)l! ��R(s+ l) � xl: (A.6)
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Analyti results for the e�etive ation 21This series is onvergent for jxj < 1. An asymptoti expansion for large x is providedby referene 35 [equation 1.18 (9)℄:�H(s; 1 + x) = 1�(s)"x1�s�(s� 1) + 12x�s�(s)+ nXk=1B2k�(s+ 2k + 1)(2k)! x1�2�2k +O(x�1�s�2n)#: (A.7)At speial values of s more information is available. The value of the Hurwitzzeta funtion at non{positive integers is known in terms of the Bernoulli polynomials�H(�n;x) = �Bn+1(x)n+ 1 = � B0n+2(x)(n+ 1)(n+ 2) ; (A.8)in partiular, �H(0;x) = 12 � x; (A.9)�H(�1;x) = � 12x2 + 12x� 112 = � 12 (x� 12 )2 + 124 : (A.10)The derivative of the Hurwitz zeta funtion at s = 0 is known to be� 0H(0;x) = ln(�(x)=p2�): (A.11)Derivatives at other values of s are not given in the standard tables. One may makesome progress by noting that��H(s; 1 + x)�x = �s � �H(s+ 1; 1 + x) (A.12)so that �� 0H(s; 1 + x)�x = ��H(s+ 1; 1 + x)� s � � 0H(s+ 1; 1 + x): (A.13)This reursion relation, when applied to the ase s = �1 yields� 0H(�1; 1 + x) = � 0R(�1) + 12 (x2 + x) + Z x0 ln(�(1 + y)=p2�)dy= � 0R(�1) + 12 (x2 + x)� 12x ln(2�) + x ln �(1 + x)� Z x0 y  (1 + y) dy: (A.14)This is the best analyti result that we have been able to obtain. For jxj < 1 wemay make the onvergent expansion� 0H(�1; 1 + x) = � 0R(�1) + 12 (x2 + x)� 12x ln(2�) + x ln �(1 + x)+ 12x2 � 1Xk=2(�)k�R(k) xk+1(k + 1) : (A.15)
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22 S. K. Blau, M. Visser & A. WipfFor jxj large, a omputationally useful asymptoti expansion may be found in ex-positions by Elizalde and Soto 30;31:� 0H(�1;x) = ( 12x2 � 12x+ 112 ) � lnx� 14x2 + 112� n�1Xk=1 B2k+2(2k + 2)(2k + 1)(2k) � x�2k +O(x�2n): (A.16)(But note theat the �nal sign is erroneously displayed in referene 30.) We haveresorted to numerial methods to evaluate�R( 32 ) � 2:612375; �R(� 12 ) � �0:207886;� 0R(2) � �0:937548; � 0R(�1) � �0:165421: (A.17)Finally, we note that �( 12 ) = p�, and that Stirling's approximation isln(�(x)=p2�) = (x� 12 ) ln(x)�x+ 112x+n�1Xk=1 B2k+2(2k + 2)(2k + 1) x�1�2k+O(x�2n): (A.18)It is often suÆient to use the simpler formln(�(x)=p2�) = (x � 12 ) ln(x� 1)� (x � 1) +O(1=x): (A.19)Referenes1. H. Euler and W. Heisenberg, Z. Physik 98 (1936) 714.2. V. Weisskopf, Kgl. Danske Videnskab. Selskabs. Mat.-fys. Medd. 14 No.6 (1936).3. J. Shwinger, Phys. Rev. 82 (1951) 664.4. L. Alvarez-Gaume, G. Moore, and C. Vafa, Commun. Math. Phys. 106 (1986) 1.5. L. Alvarez-Gaume, J.-B. Bost, G. Moore, P. Nelson, and C. Vafa, Commun. Math.Phys. 112 (1987) 503.6. E. D'Hoker, and D.H. Phong, Nu. Phys. B278 (1986) 226.7. E. D'Hoker, and D.H. Phong, Comm. Math. Phys. 104 (1986) 537.8. J. Shwinger, Phys. Rev. 128 (1962) 2425.9. S. Blau, M. Visser, and A. Wipf, Int. J. Mod. Phys. A4 (1989) 1467.10. N.D. Birrel and P.C. Davies, Quantum Fields in Curved Spae, (Cambridge UniversityPress, Cambridge, 1982).11. S. Blau, M. Visser, and A. Wipf, Phys. Lett. B209 (1988) 209.12. L.S. Brown and D.B.Creamer, Phys. Rev. D18 (1978) 3695.13. E. Corrigan, P. Goddard, H. Osborn, and S. Templeton, Nul. Phys. B159 (1979) 469.14. H. Osborn, Nul. Phys. B159 (1979) 497.15. W. Dittrih and M. Reuter, E�etive Lagrangians in Quantum Eletrodynamis,(Springer{Verlag, Berlin, 1984), Vol 220 of Leture Notes in Physis.16. S. K. Blau, M. Visser, and A. Wipf, Nulear Physis B310 (1988) 163.17. P. Epstein, Math. Ann. 56 (1903) 516.18. P. Epstein, Math. Ann. 63 (1907) 205.19. A. Weil, Ellipti Funtions aording to Eisenstein and Kroneker,(Springer{Verlag, Berlin, 1976).20. L. Euler, Werke, Ser. I, Vol. VII, Ch XV, x274.21. L. Kroneker, Werke, Vol IV, p. 222, (1863).
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