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hen 40, GermanyRe
eived 12 July 1990Motivated by the seminal work of S
hwinger, we obtain expli
it 
losed form expressionsfor the one{loop e�e
tive a
tion in a 
onstant ele
tromagneti
 �eld. We dis
uss bothmassive and massless 
harged s
alars and spinors in two, three, and four dimensions.Both strong �eld and weak �eld limits are 
al
ulable. The latter limit results in an asymp-toti
 expansion whose �rst term reprodu
es the Euler{Heisenberg e�e
tive Lagrangian.We use the zeta fun
tion renormalization pres
ription, and indi
ate its relationship toS
hwinger's renormalized e�e
tive a
tion.Published version: IJMPA 6 (1991) 5409{5433.1. Introdu
tionIn the path integral formulation of fermioni
 �eld theories, one is for
ed to 
onfrontthe determinant of the Dira
 operator, while for spin{0 bosons one en
ounters thedeterminant of the gauged Lapla
ian. In the absen
e of gauge �elds, and if the spa
e-time geometry is not an issue, this determinant is an irrelevant 
onstant. However,there is still a good deal of work to be done toward elu
idating the dependen
e ofthese determinants on ba
kground gauge �elds and gravitational �elds. These deter-minants are related to the one-loop e�e
tive a
tion via Se� / ln detD, and, in theguise of the one-loop e�e
tive a
tion, have been the subje
t of 
onsiderable e�ortsdating ba
k at least to the seminal works of Euler and Heisenberg, 1 Weisskopf, 2and S
hwinger. 3Only in two dimensions is the situation reasonably well understood. The par-ti
ularly simple geometry of 
ompa
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2 S. K. Blau, M. Visser & A. Wipfpossible to express the gauge{�eld{free Dira
 determinant in terms of Riemanntheta fun
tions and generalised Dedekind eta fun
tions. 4;5;6;7 On the other hand,in the plane the determinant for lo
alized gauge �elds is given by S
hwinger's 8famous result Se� / R A�A�. Combining the e�e
ts of non{trivial topologies andnon{zero �eld strength has been dis
ussed in referen
e 9.In higher dimensions, only parti
ular ba
kground �elds 
an be handled. Forexample, the e�e
t of 
onformal metri
 deformations on the e�e
tive a
tion is dis-
ussed in referen
es 10 and 11. S
hwinger 3 has 
onsidered the e�e
tive a
tion for
onstant ele
tromagneti
 �eld strength and for a plane wave of ele
tromagneti
 ra-diation, both in 
at four{dimensional Minkowski spa
e. Four{dimensional instantonsolutions have also been 
onsidered. 12;13;14In this paper we shall be interested in obtaining expli
it analyti
 results. A
-
ordingly, we are for
ed to restri
t our attention to parti
ular ba
kgrounds: 
atspa
es with zero{�eld or 
onstant �eld. We use the zeta{fun
tion regularisationof determinants of se
ond-order ellipti
 operators. The Dira
 operator, D= , is �rstorder, but we shall de�ne detD= � qdetD= 2. In order that D= 2 may be an elli
p-ti
 operator, we shall work in Wi
k rotated Eu
lidean spa
etime. In se
tion 2 we
onsider (non{)Abelian gauge �elds de�ned on multidimensional tori (S1)d. Thenon{trivial topology of these tori allows for the possibility of harmoni
 gauge po-tentials, that is, potentials whi
h have vanishing �eld strength but whi
h are notpure gauge. The existen
e of these harmoni
 gauge potentials is asso
iated withthe possibility of en
ountering non{trivial Wilson loops. On multidimensional tori,su
h gauge potentials are 
onstant (up to a gauge transformation), thus allowingexpli
it 
onstru
tion of the eigenspe
trum, zeta fun
tion, and e�e
tive a
tion. Thedependen
e of the e�e
tive a
tion on these nontrivial Wilson loops may be viewedas a generalized Aharonov{Bohm e�e
t. In se
tions 3 through 7, we 
onsider gauge�elds with 
onstant �eld strength in arbitrarily many dimensions, working our wayup from two dimensions. In all these 
ases we shall determine the eigenspe
tra ofthe gauged Lapla
ian and Dira
 operator and shall 
al
ulate the asso
iated zetafun
tions expli
itly. Using spe
ial properties of zeta fun
tions may often give thedeterminant and e�e
tive Lagrangian density in 
losed form.We shall also dis
uss the \folk theorem" Le� � Bd=2 lnB, and will point outa number of situations in whi
h it is violated. The physi
al impli
ations of thelogarithmi
 term are dis
ussed in referen
e 15. We shall show that this folk theoremis generally true in even numbers of dimensions, though there are ex
eptions, su
has the s
alar parti
le in two dimensions. In odd numbers of dimensions however,the logarithmi
 term is absent, and generi
ally we obtain Le� � Bd=2.2. Field{Free Gauge PotentialsIn this se
tion we shall see that a generalized Aharonov{Bohm e�e
t 
an in
uen
ethe one-loop e�e
tive a
tion of a system, even though the ele
tri
 �eld strength iseverywhere zero. Noti
e that an Abelian gauge potential is gauge{equivalent to the
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Analyti
 results for the e�e
tive a
tion 3sum of its harmoni
, monopole and 
oexa
t pie
esA = H +AM + Æ�: (1)The number of independent harmoni
s equals the �rst Betti number and is thusintimately related to the topology of the spa
etime manifold. We shall be interestedin gauge potentials on d{dimensional tori, in whi
h 
ase there are d independentharmoni
s whi
h may be 
hosen to be 
onstant one{forms. In this se
tion we shallfurther spe
ialise to the zero{�eld 
ase so that the monopole 
ontribution and �are both zero.We begin with (
onstant) harmoni
 potentials de�ned on the d{dimensionaltorus Rd=�, where the latti
e � 
onsists of points of the form LPnj ~Ej , thenj being integers and the ~Ej being d linearly independent ve
tors in Rd. It is,of 
ourse, possible to set L = 1 but we prefer to keep this prefa
tor in order totra
k the e�e
t of s
aling the latti
e. Note that a 
onstant �eld{free potential isnot pure gauge sin
e the \would be" gauge transformation is not single valued.These potentials are 
losed but not exa
t. Equivalently one sees that the Wilsonloop W (
j) = exp(�i H
j ~A � d~x) = exp(�i ~A � ~Ej L) evaluated on the 
losed non{
ontra
tible loop 
j from ~0 to L~Ej is gauge invariant, and is therefore an obstru
tionto gauging the potential away to zero.The eigenvalues of �D2 and D= 2 are in fa
t identi
al for zero �eld. On themultidimensional torus with periodi
 boundary 
onditions,  (~x) =  (~x+~�), ~� 2 �,the eigenvalues are easily 
omputed to be�n = �2�L �2 � gij (ni � ai)(nj � aj); ~n 2 Zd; (2)where the matrix (gij) is the inverse of gij = ~Ei � ~Ej ; and ai = L2� ~Ei � ~A. To 
omputethe 
orresponding e�e
tive a
tion one de�nesSe� = 12 ln det(�D2) = � 12 dds� (s)����s=0; (3)where � (s) is the zeta fun
tion asso
iated with �D2,� (s) = tr0 ��D2�2 ��s =X0��n�2��s: (4)It should emphasised that the zeta fun
tion de�nition embodied in (4) impliesboth a regularization and a renormalization. When 
omparing the zeta fun
tionresult with e�e
tive a
tions 
al
ulated using other renormalization pres
riptions(e.g., S
hwinger's) one should always bear in mind that di�erent renormalizationpres
riptions will yield e�e
tive a
tions that may di�er by a �nite renormalization.In parti
ular, the quantity � appearing in (4) is a renormalization s
ale, whi
h hasbeen introdu
ed to keep the zeta fun
tion dimensionless, and the dependen
e ofSe� on � 
orresponds to a �nite renormalization. The dependen
e on the renor-malization s
ale is logarithmi
 and proportional to the 
onformal anomaly (see
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e 16). In order that dimensionful quantities may be properly displayedthroughout, we shall retain this normalization s
ale in all our 
al
ulations.In the present 
ase the zeta fun
tion asso
iated with the di�erential operator�D2 is given in terms of a relatively well understood spe
ial fun
tion by� (s) = 2��L2� �2s�E(s;~a): (5)The prefa
tor 2 arises from summing over both parti
le and antiparti
le states, whilethe symbol �E(s;~a) denotes the generalized Epstein zeta fun
tion, 17;18 de�ned bythe sum �E(s;~a) =XZd 0 �gij(ni � ai)(nj � aj)��s: (6)(the prime indi
ates that one should sum over non{zero eigenvalues only).The generalised Epstein zeta fun
tion is diÆ
ult to handle expli
itly, at least inhigher dimensions. Fortunately, we 
an apply the generalised Poisson resummationformulaXZd exp ���gij(ni � ai)(nj � aj)� =pdet gij �XZd exp ���gijmimj � 2�imiai� :(7)Taking a Mellin transform of the above gives 17;19�E(s;~a) = �(d2 � s)�(s) �2s� d2 qdet[gij ℄ X0�gij mimj�s� d2 e�2�imiai : (8)The zero{mode, mi = 0, is eliminated be
ause the zeta fun
tion is de�ned by ana-lyti
 
ontinuation in s. For large s the zero{mode makes no 
ontribution. Equation(8) is a generalisation of the well{known fun
tional equation (re
e
tion formula)for Riemann's (or rather Euler's) zeta fun
tion. 20 It is now relatively simple toshow that�E(0;~a) = 0 (9)� 0E(0;~a) = ��d=2� �� d2qdet[gij ℄ XZd 0 �gij ninj�� d2 e �2�i njaj :The spe
ial 
ase d = 2 has been extensively studied by Krone
ker, 21 and for thatreason we shall refer to � 0E(0;~a) as a generalised Krone
ker sum.Sin
e �E vanishes at the origin the prefa
tor (2�=L)2 in (5) does not 
ontributeto the e�e
tive a
tion andSe� = 12 ln det(�D2) = �� 0E(0;~a): (10)Note in parti
ular that in this 
ase the e�e
tive a
tion is independent of the renor-malization s
ale �. This is a
tually a rather deep result, related to the vanishing ofthe 
onformal anomaly for zero ele
tromagneti
 �eld strength. 16 If we 
onsider D= 2
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Analyti
 results for the e�e
tive a
tion 5instead of �D2, the only 
hange is to multiply the above with minus one-half thenumber of spinor 
omponents in d dimensions. This general result may be relatedto known results in one and two dimensions.In the simplest 
ase, d = 1, the sum in (9) is a familiar trigonometri
 series. 22We �nd the e�e
tive a
tionSe� = 12 ln det(�D2) = ln�4 sin2 LA2 � : (11)Indeed, in one dimension one does not need the re
e
tion formula. The exa
t zetafun
tion is just a sum of Hurwitz zeta fun
tions and the e�e
tive a
tion 
an be
omputed dire
tly. Using other te
hniques, 23 we may show that the e�e
t of amass term is to 
hange the determinant toSe� = 12 ln det(�D2 +m2) = ln�4 �sin2�LA2 �+ sinh2�mL2 ��� : (12)Considering the next simplest 
ase, we observe that in two dimensions any latti
emay be re{s
aled to satisfy g = � 1 Re(�)Re(�) � �� � ; (13)where � is a 
omplex parameter known as the Tei
hm�uller parameter. The Kro-ne
ker sum be
omes� 0E(0;~a) = Im(�)� X0 e�2�i(ma1+na2)jm+ �nj2 : (14)This sum 
an be expressed in terms of Riemann theta{fun
tions. 17;24 We �nd thee�e
tive a
tion � 0E(0;~a) = �2 log ���� 1�(�) # � 12 + a112 � a2 � (0j�)���� : (15)Our theta{fun
tion 
onventions are those of Mumford. 25 This two{dimensionale�e
tive a
tion is in fa
t well known in string theory. 4;5Though the dis
ussion has, for 
larity, been given in terms of an Abelian gaugepotential, the extension to non{Abelian gauge potentials is simple. If the �eldstrength is zero, we may use the non{Abelian version of Stoke's theorem to de-du
e that the Wilson loopsW (
) = tr(P exp H
 ~A �d~x) form a representation of H1,the �rst homology group. This implies that the ~A(x) = �a ~Aa(x) may be gauge �xedto be mutually 
ommuting 
onstant matri
es. 9 The results of this se
tion then 
on-tinue to hold provided one introdu
es an additional produ
t over the gauge group,Qdim(G)a=1 .
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6 S. K. Blau, M. Visser & A. Wipf3. Constant Field Strength: Two DimensionsConsider the 
ase of a 
onstant ele
tromagneti
 �eld in two dimensions. Let thearea of spa
etime be denoted by S. The �eld strength may be written as:F�� = � 0 B�B 0 � : (16)As a potential we 
hoose A� = (0; Bx) .S
alar Parti
les.With this 
hoi
e the gauged Lapla
ian appropriate to s
alar parti
les is�D2 = ��2x � (�y � iBx)2: (17)By observing that �D2 
ommutes with the momentum P̂y = �i�y we see that oneigenstates of P̂y it redu
es to�D2 ! ��2x +B2 �x� pB�2 : (18)Sin
e this is just (twi
e) the Hamiltonian of a harmoni
 os
illator it has eigenval-ues �p;n = (2n + 1)jBj. These eigenvalues are independent of p. Thus all levelsare degenerate. Later we shall see that this degenera
y is just 2(jBj � S)=2�, theprefa
tor 2 again arising from the sum over both parti
le and antiparti
le states.For notational simpli
ity take B to be positive.The zeta fun
tion of �D2+m2 is given in terms of a Hurwitz zeta fun
tion by:� (s) = 2BS2� 1Xn=0 � (2n+ 1)B +m2�2 ��s � 2BS2� �2B�2 ��s �H(s; 12 + m22B ): (19)The one{loop e�e
tive Lagrangian density is Le� = Se�=S = 12 ln det(�D2 +m2)=S = � 12� 0(0)=S. Using properties of the Hurwitz zeta fun
tion dis
ussed inthe appendix, in parti
ular its value and slope at the point s = 0, yields:Le� = �m24� � ln�2B�2 �� B2� � ln��( 12 + m22B )=p2��: (20)It is easy to see that the m ! 0 limit is well behaved | Le� ! (B=4�) � ln 2 |while in the strong-�eld limitLe� = �m24� � ln�2B�2 �+ B4� ln 2 +O(1): (21)This simple example is already a 
ounterexample to the folk theorem Le� � Bd=2 lnB.The weak-�eld B ! 0 limit may be taken by making use of the doubling formulafor the Hurwitz zeta fun
tion:�H �s; 12 + x2� = 2s �H(s;x)� �H �s; x2� ; (22)
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Analyti
 results for the e�e
tive a
tion 7whi
h follows from the de�nition (A.1) of the appendix. Using this doubling formulawe may write (19) as�(s) = 2BS2� �2B�2 ��s �H � 12 + m22B�= 2BS2� "� B�2��s �H �s; m2B ���2B�2 ��s �H �s; m22B�# : (23)With the help of equations (A.9), (A.11), and (A.18), we may develop the weak-�eld expansion for the e�e
tive Lagrangian:[there is a typo, an extaraneous 2, in the se
ond line of the published version℄Le� = � 12 � 0(0)S= � B2�"� ln� B�2� �H �0; m2B �+ � 0H �0; m2B �+ ln�2B�2 � �H �0; m22B�� � 0H �0; m22B�#= � B2�" ln�m2�2 � �H �0; m2B �+ m2B � 112 Bm2� ln�m2�2 � �H �0; m22B�� 12m2B + 112 2Bm2+ n�1Xk=1 B2k+2(2k + 2)(2k + 1) � Bm2�2k+1 �22k+1 � 1	+O �� Bm2�n� #= 12�"12m2�1� ln�m2�2 ��+ 112 B2m2+m2 n�1Xk=1 B2k+2(2k + 2)(2k + 1) � Bm2�2k+2 �22k+1 � 1	+O �� Bm2�n� #: (24)Here the symbol Bn denotes the nth Bernoulli number. Noti
e that there are noterms logarithmi
 in B in the weak-�eld expansion. However, as foreshadowed,the zeta-fun
tion renormalization has introdu
ed nonstandard �nite terms into thee�e
tive Lagrangian. An additional �nite (often �-dependent) renormalization isneeded to remove these terms. Removing the 
onstant term in the above equation
orresponds to renormalizing the e�e
tive 
osmologi
al 
onstant, while removingthe term proportional to B2 
orresponds to a �nite renormalization of ele
tri

harge. (We have 
hosen our notation in su
h a manner that ele
tri
 
harge doesnot appear expli
itly.) Having implemented these additional �nite renormalizationswe (�nally) display the renormalized e�e
tive a
tion as an asymptoti
 series starting
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8 S. K. Blau, M. Visser & A. Wipfwith B4:Le� = m22� nXk=1 B2k+2(2k + 2)(2k + 1) � Bm2�2k+2 �22k+1 � 1	+O �B2n+4� : (25)(We have gone through this simple example in admittedly tedious detail be
ausethe same te
hniques will be used over and over in the following dis
ussion.)In order to 
on�rm the degenera
y fa
tor we 
onsider the heat kernel of �D2+m2. This heat kernel is found to beK(t) � tr0 �exp([D2 �m2℄t=�2	� e�m2t=�2 � 1Xn=0 e��nt=�2= BS2� � e�m2t=�2 � 
ose
h(Bt=�2): (26)Note that as t! 0,K(t)! 2(S�2=4�t), as it should a

ording to the (known) shorttime behaviour of the heat kernel. This a posteriori proves that we have 
hosen the
orre
t degenera
y fa
tor 2(BS=2�). Equivalently, one may use the fa
t that asB ! 0 the heat kernel must approa
h that of the free two{dimensional di�usionoperator, to obtain an alternative veri�
ation of the degenera
y fa
tor. It shouldbe emphasized that we are 
onsidering the heat kernel appropriate to a 
omplexs
alar �eld. That is to say, the sum in equation (26) in
ludes both parti
le and antiparti
le se
tors.Dira
 Parti
les.The analysis for Dira
 spinors 
losely parallels that of the 
harged s
alar �eld. Thesquare of the Dira
 operator isD= 2 = �D2 +���F�� = ��2x � (�y � iBx)2 + 
5B: (27)The eigenvalues are �n = (2n+ 1)jBj �B. We now re{index the states so that theeigenvalues be
ome �n = 2njBj, where the e�e
tive degenera
y is (jBjS=2�) forn = 0 and 2(jBjS=2�) for n > 0.The zeta fun
tion of D= 2 is given in terms of Hurwitz zeta fun
tions (hen
eforthwe take B > 0),� (s) = BS2� (2 � 1Xn=1�2nB +m2�2 ��s +�m2�2 ��s)= BS2� �(2 ��2B�2 ��s ��H(s; 1 + m22B ) +�m2�2 ��s)= BS2� �(2 ��2B�2 ��s ��H �s; m22B���m2�2 ��s) (28)
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Analyti
 results for the e�e
tive a
tion 9The one{loop e�e
tive Lagrangian density for spinors is Le� = + 12� 0(0)=S, so that:Le� = B +m24� ln�2B�2 �+ B2� ln �(1 + m22B )� B4� ln�2�m2�2 � : (29)The weak{�eld limit B ! 0 for spinors is obtained just as it was for s
alars. Asin the s
alar 
ase we must implement an additional �nite renormalization of the
osmologi
al 
onstant and the ele
tri
 
harge. Then we obtainLe� = m24� nXk=1 B2k+2(2k + 2)(2k + 1) �2Bm2�2k+2 +O �B2n+4� : (30)The limit m ! 0 of equation (29) is ill behaved (Le� ! 1). This is an infraredsingularity asso
iated with the fa
t that the Dira
 operator develops a zero{modeas m! 0. One may deal with the zero{mode by simply dropping the ground state(n = 0) from the sum prior to taking the m ! 0 limit. Equivalently, for masslessDira
 spinors one must ex
lude the zero mode \by hand". Re
all that the de�nitionof the zeta fun
tion is in terms of P0 not P. The di�eren
e has up to now beenirrelevant. Taking 
areful note of this di�eren
e leads to:� (s) = 2BS2� 1Xn=1�2nB�2 ��s = 2BS2� �2B�2 ��s ��R(s): (31)The one{loop e�e
tive Lagrangian density is simpli�ed toLe� = + B2� � ln� B��2� : (32)The heat kernel of D= 2 +m2 is readily evaluatedK(t) = BS2� 
oth�Bt�2 � exp��m2t�2 � : (33)Note that as t! 0 that K(t)! 2 � (S�2=4�t), as indeed it should. (The fa
tor of 2re
e
ts the existen
e of two spinor 
omponents in two dimensions). In the massless
ase the \zero{mode{suppressed" heat kernel isK 0(t) = BS2� �
oth�Bt�2 �� 1� : (34)Note that K 0(t)! 0 as t!1, thanks to the expli
it ex
lusion of the zero mode.Finally, note that 
al
ulation of the heat kernels allows one to dedu
e all theSeeley{deWitt 
oeÆ
ients for the 
ase of 
onstant �eld. Use of the Taylor series for
ose
h(Bt) and 
oth(Bt) yields:a2n(�D2) = �2(22n�1 � 1)(2n)! �B2n � B2n; (35)a2n(D= 2) = (22n+1)(2n)! �B2n � B2n; (36)
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10 S. K. Blau, M. Visser & A. Wipfwhere Bn denotes the nth Bernoulli number. The `odd' 
oeÆ
ients a2n+1 all vanish.It is very unusual to know all the an. For arbitrary �elds these 
oeÆ
ients are leadingorder terms in a low{momentum approximation. Thus they remain interesting forgeneral �elds.4. Constant Field Strength: Three DimensionsIn three dimensions the �eld strength may be written as:F�� = 0�0 0 00 0 B0 �B 0 1A : (37)Let the volume of spa
etime be denoted by V = S �L. In the gauge A� = (0; 0; By),we may immediately write down the three{dimensional heat kernelKd=3(t) = �Lp4�t �Kd=2(t). Three{dimensional zeta fun
tions qui
kly follow:� d=3(s) = 1�(s) � Z 10 ts�1Kd=3(t)= �Lp4� � �(s� 12 )�(s) � �d=2(s� 12 ): (38)All fa
tors are analyti
 at s = 0. In parti
ular, sin
e 1�(s) � s+0(s2), the derivativeat s = 0 is� 0d=3(0) = �Lp4� � �(� 12 ) � �d=2(� 12 ) = ��L � �d=2(� 12 ): (39)This means that the one{loop e�e
tive Lagrangian densities are given in terms of�H(� 12 ; x). Using results of the two{dimensional dis
ussion we see:S
alar Parti
les: Le� = 14� � (2B)3=2 � �H(� 12 ; 12 + m22B );Dira
 Parti
les: Le� = � 18� � 2B � n2p2B �H(� 12 ; 1 + m22B ) +mo : (40)Note that these e�e
tive a
tions are independent of the renormalization s
ale �. This(nonobvious) result is a 
onsequen
e of the vanishing of the 
onformal anomaly inodd{dimensional spa
e{times. For strong �elds, the Hurwitz zeta fun
tion 
an be
omputed by 
onvergent series. [See equation (A.6) of the appendix.℄ For the 
asesof interest:�H(� 12 ; 12 + m22B ) = �H(� 12 ; 12 )� 1Xl=1(�)l (2l � 3)!!2l l! � �m22B�l � �H(� 12 + l; 12 );�H(� 12 ; 1 + m22B ) = �R(� 12 )� 1Xl=1(�)l (2l� 3)!!2l l! ��m22B�l ��R(� 12 + l): (41)The 
oeÆ
ients in these expansions 
an be obtained (with severely limited a

ura
y)from the tables of Jahnke and Emde. 26 Alternatively, the proliferation of personal
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Analyti
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tive a
tion 11
omputers allows these 
oeÆ
ients to easily be 
omputed to any desired a

ura
y.Note the presen
e of fra
tional powers of the �eld strength and the absen
e oflogarithmi
 terms when equation (41) is substituted into (40) in order to obtainan expansion for the e�e
tive Lagrangian. We shall see that these general featurespersist in any odd number of dimensions, at least for 
onstant �eld strength. Theleading strong{�eld limit in three dimensions isS
alar parti
les: Le� = 14� (2B)3=2�H �� 12 ; 12� :Spinor parti
les: Le� = � 12� (2B)3=2�R �� 12� : (42)The leading term in the strong-�eld expansion for the spinor Lagrangian has pre-viously been obtained by Redli
h. 27The leading 
oeÆ
ients appearing in the strong{�eld limit have been evaluatednumeri
ally. This was done by using the re
e
tion formula for the Riemann zetafun
tion to write �H(� 12 ; 1) = �R(� 12 ) = � 14��R( 32 ). Note that �R( 32 ) is givenby a ni
ely 
onvergent series suitable for 
omputer evaluation. We �nd �R( 32 ) �2:612375, �R(� 12 ) � �0:207886. In a similar vein, we use the \doubling formula",�H(s; 12 ) = (2s � 1)�R(s) to dedu
e�H(� 12 ; 12 ) = 14� �1� 1p2��R( 32 ) � 0:060888: (43)In order to obtain the weak{�eld limit for the e�e
tive Lagrangian, we return toequation (40). We shall need equation (A.7) of the appendix, evaluated at s = 12 .�H ��12;x� = 1�(� 12 )"x3=2���32�+ 12x1=2���12�+ nXk=1B2k�(2k � 32 )(2k)! x3=2�2k +O(x1=2�2n)#: (44)After an additional �nite renormalization of the 
osmologi
al 
onstant and theele
tri
 
harge, the weak-�eld limit for the s
alar e�e
tive Lagrangian isLe� = �m3� nXk=1B2k+2 �(2k + 12 )(2k + 2)!�(� 12 ) �22k � 12�� Bm2�2k+2 +O �B2n+4� ; (45)while the spinor Lagrangian isLe� = �m34� nXk=1B2k+2 �(2k + 12 )(2k + 2)!�(� 12 ) �2Bm2�2k+2 +O �B2n+4� : (46)Only even, positive-integer powers of the �eld enter the weak-�eld expansion.Noti
e the absen
e form our dis
ussion of the Chern{Simons se
ondary 
har-a
teristi
 
lass (the topologi
al mass term for the photon). This term might beexpe
ted to appear on rather general grounds, following arguments of Niemi and
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h 27. However, a simple analysis is suÆ
ient to show thatthe Chern-Simons term vanishes for 
onstant �eld strength. 27;29 We should alsonote the appearan
e of fra
tional powers of the �eld strength has also been notedin Redli
h's 
al
ulation for a massive spinor. 29 The present 
al
ulation generalizesthis result to the massive 
ase and also to s
alar parti
les.5. Constant Field Strength: Four DimensionsIn four dimensions the �eld strength may be written as:F�� = 0BB� 0 E 0 0�E 0 0 00 0 0 B0 0 �B 0 1CCA ; (47)so that the four{dimensional problem breaks up into two two{dimensional ones.This result follows from the blo
k-diagonalizability of antisymmeti
 matri
esthrough orthogonal transformations. It is important to know that E and B areinvariant s
alars that 
hara
terise the ele
tromagneti
 �eld. Note that E2 + B2 =12F��F�� = 12F 2, and 2EB = �����F��F �� = F ~F . While it is more 
ommonto 
hara
terise the �eld in terms of F 2 and F ~F , it is more useful for us to usethe invariants E and B. Though we shall be working in Eu
lidean spa
e, we notethat the result (47) also obtains in Minkowski spa
e. This follows from the fa
tthat it is always possible to make a Lorentz boost su
h the ele
tri
 and magneti
�elds be
ome parallel and then (by a rotation) to make both �elds point in the xdire
tion.5.1. E = 0, B 6= 0Our analysis in this 
ase parallels that of three dimensions. Writing the volume ofspa
etime as 
 = 
? �S, and 
hoosing the gauge as A� = (0; 0; 0; By), we fa
torizethe heat kernel Kd=4(t) = D
?�24�t �Kd=2(t): (48)Here D = 1 for s
alars and D = 2 for spinors, re
e
ting the fa
t that four-dimensional spinors possess twi
e as many degrees of freedom as two-dimensionalspinors. The four{dimensional zeta fun
tion is given by� d=4(s) = D�(s) � Z 10 ts�1Kd=4(t)dt = D
?�24� � � d=2(s� 1)s� 1 : (49)Inserting the results of the two{dimensional 
ase yieldsS
alar Parti
les: � (s) = B2
2�2 � �2B�2 ��s � �H(s� 1; 12 + m22B )(s� 1) ;
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 results for the e�e
tive a
tion 13Dira
 Parti
les: � (s) = B2
�2 � �2B�2 ��s � �H(s� 1; 1 + m22B )(s� 1)+m2B
4�2 � (m=�)�2ss� 1 �: (50)Taking derivatives at s = 0 is straightforward.5.1.1. S
alar Parti
les:For the e�e
tive Lagrangian density one obtains:Le� = B24�2 ��1� ln�2B�2 �� �H(�1; 12 + m22B ) +� 0H(�1; 12 + m22B )� : (51)Using results from the appendix one �nds thatLe� = 14�2"�B224 � m48 � � �1� ln�2B�2 ��+B2� 0H(�1; 12 ) + m48+ B2 Z m22B0 ln(�( 12 + y)=p2�)dy:#: (52)This form makes it easy to extra
t the large �eld limit B � m2,Le� = 14�2 ��B224 � m48 � � �1� ln�2B�2 ��+B2� 0H(�1; 12 ) + m48 � Bm24 ln 2� : (53)The 
oeÆ
ient � 0H(�1; 12 ) has been evaluated numeri
ally. This was done by notingthat �H(s; 12 ) = (2s�1) ��R(s); and by using the re
e
tion formula (see appendix)to relate � 0H(�1; 12 ) to � 0R(+2). We obtain � 0H(�1; 12 ) � 0:053829.In order to obtain the weak-�eld limit it is easiest to return to equation (51)and to use the doubling formula (22) along with equations (A.10) and (A.16) of theappendix. This pro
edure yields an asymptoti
 expansion in terms of powers of B2;in parti
ular there are no terms logarithmi
 in �eld strength. After performing theusual additional �nite renormalization of 
osmologi
al 
onstant and ele
tri
 
harge,we obtain the extended Euler{Heisenberg e�e
tive LagrangianLe� = B216�2" �7360 B2m4 + nXk=1 B2k+2(2k + 2)(2k + 1)(2k) �22k+2 � 2�� Bm2�2k +O �B2n+2� #:(54)This result should be 
ompared with the Minkowski-spa
e Euler{Heisenberg La-grangian obtained by S
hwinger. 3 In order to make the 
omparison, we must takeS
hwinger's formula and after setting E = 0 multiply by �1. In the general 
ase, forwhi
h E does not vanish, we must repla
e the E's in S
hwinger's formula with iE
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lidean result. Finally, we have impli
itly
hosen units for the renormalized 
harge so that S
hwinger's �2 
orresponds to our1=16�2. After making these adjustments for notation and metri
 signature, we may
on�rm that our expansion agrees with S
hwinger to the leading order (whi
h isthe only order expli
itly displayed in referen
e 8. Note though, that in this zetafun
tion formalism, it is easy to display all orders of the asymptoti
 expansion forthe Euler{Heisenberg Lagrangian in the weak-�eld limit.5.1.2. Dira
 Parti
les:For Dira
 spinors one obtainsLe� = � B22�2 �h1� ln�2B�2 �i�H(�1; 1 + m22B ) +� 0H(�1; 1 + m22B )�+m2B8�2 hln�m2�2 �� 1i : (55)A little work using results given in the appendix yieldsLe� = 12�2(�B212 + m2B4 + m48 ��1� ln�2B�2 ���B2� 0R(�1)� m48 � m2B4+m2B4 �ln�m2�2 �� 1��B2 Z m22B0 ln(�(1 + y)=p2�)dy): (56)For strong �elds one uses ln �(1 + �) = �
�+O(�2), to establishLe� = 12�2(�B212 + m2B4 + m48 ��1� ln�2B�2 ���B2� 0R(�1)� m48 � m2B4+m2B4 �ln�m2�2 �� 1�+ m2B4 ln(2�) + 
8m4)+m4 O(m2=B): (57)The 
oeÆ
ient � 0R(�1) � �0:165421 has been 
al
ulated numeri
ally.In order to obtain the weak-�eld limit we return to equation (55) and employthe identity �H (s; 1 + x) = �H(s;x) � x�s. Just as in the s
alar 
ase we obtain an(extended) Euler{Heisenberg Lagrangian.Le� = B216�2"�245 B2m4 + nXk=1 4 B2k+2(2k + 2)(2k + 1)(2k) �2Bm2�2k +O �B2n+2� #; (58)whi
h spe
ializes to the Eu
lidean version of S
hwinger's result. 8The results of this se
tion may easily be extended to dis
uss the 
ase B = 0,E 6= 0. One needs merely repla
e B by E in all formulae to obtain valid Eu
lideanspa
e results. Re
all, though, that in 
ontinuing to Minkowski spa
e one e�e
ts
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Analyti
 results for the e�e
tive a
tion 15the transformation E ! iE. In the next se
tion we shall begin to address the
omplexities en
ountered when E and B are both nonzero.5.2. E 6= 0; B 6= 0The s
alar spe
trum is given by � = (2n+1)jEj+ (2n0 +1)jBj+m2, where all thestates have the degenera
y 2(jEBj
)=4�2. The zeta fun
tion is� (s) = jEBj
2�2 � 1Xn;n0=0 � (2n+ 1)jEj+ (2n0 + 1)jBj+m2�2 ��s : (59)For spinors the analogous zeta fun
tion is a tri
e more 
ompli
ated [the publishedversion of this equation has a typo℄:� (s) = jEBj
4�2 �( 4 � 1Xn;n0=1 �2njEj+ 2n0jBj+m2�2 ��s+2 � 1Xn=1 �2njEj+m2�2 ��s+2 � 1Xn0=1 �2n0jBj+m2�2 ��s+1 � �m2�2 ��s): (60)These zeta fun
tions are in general so unwieldy as to be unmanageable. To pro
eedwe restri
t ourselves to the 
ase jEj = jBj = F , 
orresponding to self{dual and anti{self{dual 
onstant �elds. In this spe
ial situation we 
an re
ast these zeta fun
tionsin terms of the elementary Hurwitz zeta fun
tions.For the 
ase of a s
alar parti
le� (s) = F 2
2�2 ��2F�2 ��s � 1Xn;n0=0�n+ n0 + 1 + m22F ��s (61)We de�ne t = n + n0, and observe that there are pre
isely t + 1 ways in whi
h nand n0 
an be arranged to sum to t, 
onsequently� (s) = F 2
2�2 ��2F�2 ��s � 1Xt=0(t+ 1) � �t+ 1 + m22F ��s (62)= F 2
2�2 ��2F�2 ��s � n�H(s� 1; 1 + m22F )� m22F � �H(s; 1 + m22F )o (63)= F 2
2�2 ��2F�2 ��s � n�H(s� 1; m22F )� m22F � �H(s; m22F )o : (64)
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 spinor, very similarresults obtain, though one must be 
areful with degenera
y fa
tors:� (s) = F 2
4�2 ( �2F�2 ��s � 4 1Xn;n0=1(n+ n0 + m22F )�s (65)+ �2F�2 ��s � 2 � 2 1Xn=1(n+ m22F )�s +�m2�2 ��s): (66)Re{indexing the sum, using t = n+ n0 � 1, yields�Spinor(s) = 2 �S
alar(s) + F 2
4�2 �m2�2 ��s : (67)Apart from the ground{state 
ontribution (n = n0 = 0; � = m2) the s
alar andspinor zeta fun
tions are proportional to one another. This desirable property doesnot, unfortunately, 
ontinue to hold if jEj 6= jBj. To dis
uss the e�e
tive a
tion, thestrong{�eld limit, and the weak{�eld limit, it suÆ
es to dis
uss the s
alars.The e�e
tive Lagrangian for s
alars isLe� = F 24�2( ln�2F�2 � h�H(�1; m22F )� m22F �H(0; m22F )i (68)�� 0H(�1; m22F ) + m22F � 0H(0; m22F )): (69)Using results from the appendix yieldsLe� = � 14�2 � 112F 2 � 18m4� ln�2F�2 � (70)� F 24�2 � � 0R(�1) (71)� 14�2 (14m2F + 18m4 � 12m2F ln �(1 + m22F )p2� !) (72)� F 24�2 � Z m22F0 ln(�(1 + y)=p2�)dy: (73)The strong{�eld and weak{�eld limits may be written down in the standard manner,we omit details and present the results. For strong �eldsLe� = � 14�2( � 112F 2 � 18m4� ln�2F�2 �+ F 2 � � 0R(�1) (74)+ 14m2F + 18(1 + 
)m4 +O�m6F �): (75)
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Analyti
 results for the e�e
tive a
tion 17For weak �elds, the Eu
lidean-spa
e (s
alar) Euler{Heisenberg Lagrangian isLe� = F 216�2"�115 F 2m4 + nXk=1 B2k+2(2k + 2)(2k + 1) �4 + 2k��2Fm2�2k +O �F 2n+2� #:(76)When 
ontinued to Minkowski spa
e, the lowest term in this expansion reprodu
esS
hwinger's result. 8 To relate this s
alar result to the 
ase of a massive Dira
spinor, one notes thatLSpinor = �2 � LS
alar + F 28�2 � ln(m2=�2): (77)The massless 
ase a�ords 
onsiderable simpli�
ations; for the s
alar one obtains� (s) = F 2
2�2 � �2F�2 ��s � �R(s� 1): (78)This leads to an e�e
tive a
tionLe� = � F 24�2 � � 112 ln�2F�2 �+� 0R(�1)� : (79)The term proportional to F 2 is an artifa
t of the zeta-fun
tion method, and may,in the usual fashion, be removed through a �nite renormalization of the ele
tri

harge. For massless Dira
 spinors, expli
it ex
lusion of the zero{mode leads toLSpinor = �2LS
alar. These massless (anti{)self{dual e�e
tive a
tions have beenpreviously dis
ussed in the literature, see for example 15;30;31.6. Even DimensionalityIn d = 2N dimensions a 
onstant �eld may be brought into the blo
k diagonal formF�� = 0BBBBBBBBB�

0 B1�B1 0 � � � 0 BN�BN 0
1CCCCCCCCCA ; (80)where the �Bj are the zeros of the 
hara
teristi
 polynomial det(B � I + iF ). Theproblem thus de
omposes intoN two{dimensional problems, allowing the asso
iatedzeta fun
tions to be written down by inspe
tion.S
alar Parti
lesThe eigenspe
trum is �~n = fPNi=1(2ni + 1)jBijg + m2 with degenera
y dn =QNi=1 2(jBij � Si=2�). The zeta fun
tion is� (s) = 2 NYi=1� jBijSi2� � � 1Xni=0 fPNi=1(2ni + 1)jBijg+m2�2 !�s (81)
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�(s) � Z 10 ts�1( NYi=1� jBij4� � 
ose
h� jBijt�2 �) exp(�m2t�2 ): (82)Dira
 Parti
lesThe eigenspe
trum is �~n = fPNi=1 2nijBijg+m2 with degenera
y dn =QNi=1(jBij �Si=2�) � 2!(ni),where !(0) = 0, and !(n > 0) = 1. The zeta fun
tion is� (s) = NYi=1� jBijSi2� � � 1Xni=0 2!(~n) fPNi=1 2nijBijg+m2�2 !�s (83)= 
�(s) � Z 10 ts�1( NYi=1� jBij2� � 
oth� jBijt�2 �) exp��m2t�2 �: (84)These zeta fun
tions are tedious to 
al
ulate with in general, to pro
eed we makethe radi
ally simplifying assumptions that jB1j = jB2j= : : : =B, and that m = 0.Of 
ourse, in two dimensions the 
ondition on the �eld is always met sin
e there isonly one B. In four dimensions it means that we 
on�ne ourselves to (anti{)self{dual ba
kgrounds. With these assumptions the s
alar zeta fun
tion is simpli�edto � (s) = �BS4� �N � (B=�2)�s�(s) � Z 10 ts�1(
ose
h t)N (85)while for the massless spinor, ex
lusion of the zero mode leads to� (s) = �BS2� �N � (B=�2)�s�(s) � Z 10 ts�1f(
oth t)N � 1g: (86)Note that for N = 2, (i.e., four dimensions), the spinorial zeta fun
tion is four timesthe s
alar zeta fun
tion, in agreement with our earlier result.For these ba
kgrounds we 
an relate the zeta fun
tion in d{dimensions to theones in (d � 2) and (d � 4) dimensions by re
ursion relations. For the s
alar 
ase,a repeated integration by parts establishes�N (s) = ��2S4� �2 � �N�2(s� 2)(N � 1)(N � 2) ��BS4� �2 � �N � 2N � 1� � �N�2(s); (87)so that for the s
alar there are two dis
onne
ted series starting with d = 2, d = 4,respe
tively. For the spinorial 
ase a single integration by parts suÆ
es to obtain�N (s) = �2S2� � �N�1(s� 1)N � 1 +�BS2� �2 ��N�2(s): (88)In this 
ase there is a single re
ursive series. We de�ne �N=0(s) = 0, while ourprevious 
al
ulations have shown �N=1(s) = BS� � (2B=�2)�s � �R(s). So we de-du
e �N=2(s) = (BS� )2 � (2B=�2)�s � �R(s � 1), whi
h veri�es our previous four{dimensional 
al
ulation.
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Analyti
 results for the e�e
tive a
tion 19Without resorting to numeri
al 
omputation, we 
an make some general ob-servations regarding the d{dimensional 
ase. Note that all the d{dimensional zetafun
tions are of the form�d=2N (s) = Bd=2 � � B�2��s � 
 � f(s) (89)in whi
h 
ase Le� / Bd=2fln(B=�2) � f(0)� f 0(0)g (90)so that the \folk theorem" generi
ally holds for this 
lass of �elds. The \folk the-orem" 
an fail if f(0) happens to be zero; this is in fa
t exa
tly what happens formassless s
alar parti
les in two dimensions. We remind the reader that the integrals(85) and (86) de�ning f(s) make sense only for Re(s) > d=2. The value of f(0) isde�ned by analyti
 
ontinuation in s.We also wish to point out that our re
ursive formulas (87) and (88) are not theonly way of pro
eeding. The spe
tra are in this 
ase suÆ
iently simple that expli
it
al
ulation in terms of Hurwitz zeta fun
tions is possible.7. Odd DimensionalityIn d = 2N +1 dimensions, we write the volume of spa
etime as 
d = L �
2N . Theheat kernel is related to that in 2N dimensions by Kd(t) = Lp4�t �K2N (t), so that(paralleling the dis
ussion of the three{dimensional 
ase) one dedu
es�d(s) = Lp4� � �(s� 12 )�(s) � � 2N (s� 12 ): (91)Consequently � 0d(0) = �L � � 2N (� 12 ), and in the notation of equations (89) and(90) one has Le� / Bd=2 � f(� 12 ): (92)Though this 
al
ulation is 
arried out for the spe
ial 
ase jB1j = � � � = jBij = � � � =jBN j = B, we expe
t that for general �elds the result Le� � Bd=2 will remain truein any odd number of dimensions.8. Con
lusionsWe have studied the e�e
t of 
onstant �eld strengths on the determinants of theDira
 operator and gauged Lapla
ian. We began with the topologi
ally interest-ing 
ases of harmoni
 gauge potentials, before pro
eeding to monopole potentialswith 
onstant �eld strengths. In both these 
ases we obtained the spe
trum of thesquared Dira
 operator and gauged Lapla
ian expli
itly and 
al
ulated the 
orre-sponding zeta fun
tion dire
tly. Computation of the e�e
tive a
tion then redu
esto a relatively simple appli
ation of spe
ial fun
tions.
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tions.To make this paper as self 
ontained as possible, we shall present here a number ofde�nitions and useful results related to zeta{fun
tion theory. Most of these resultsmay be obtained by 
onsulting Gradshteyn and Ryzhik. 32 Other useful referen
esin
lude Weil 19, Abramowitz and Stegun, 33 The En
y
lopedia of Mathemati
s, 34and the Bateman Manus
ript Proje
t. 35The Hurwitz zeta fun
tion is de�ned by:�H(s;x) = 1Xn=0(n+ x)�s: (A.1)This series 
onverges absolutely for Re(s) > 1, and the fun
tion so de�ned may beanalyti
ally 
ontinued to the entire 
omplex plane. There is a single simple pole ats = 1 and in that neighborhood �H(s; x) = 1s�1 �  (x) + o(s � 1). Setting x = 1reprodu
es the ordinary Riemann zeta fun
tion,�R(s) = �H(s; 1) = 1Xn=1n�s: (A.2)The Riemann eta fun
tion is 
losely related to the Riemann zeta fun
tion. It isde�ned by �(s) = 1Xn=1(�1)n+1n�s: (A.3)The Riemann eta fun
tion, being de�ned by an alternating series, is numeri
allymu
h better behaved than the Riemann zeta fun
tion, and furthermore 
onvergesover a larger region of the 
omplex s{plane [Re(s) > 0℄. In terms of the eta fun
tion�R(s) = 11� 21�s � �(s): (A.4)The Riemann zeta fun
tion satis�es the 
lassi
al re
e
tion formula�R(s) = (2�)s� � sin(�s2 ) � �(1� s) � �R(1� s): (A.5)By 
ombining the re
e
tion formula with an improved series representation forthe zeta fun
tion given in terms of the eta fun
tion one may numeri
ally 
omputeRiemann's zeta fun
tion over the entire 
omplex plane.The Hurwitz zeta fun
tion may be evaluated in terms of Riemann's zeta fun
tionby using the binomial series to write�H(s; 1 + x) = 1Xn=1 1Xl=0 ��sl � � n�s�l � xl= �R(s) + 1Xl=1(�)l � s(s+ 1) � � � (s+ l � 1)l! ��R(s+ l) � xl: (A.6)
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Analyti
 results for the e�e
tive a
tion 21This series is 
onvergent for jxj < 1. An asymptoti
 expansion for large x is providedby referen
e 35 [equation 1.18 (9)℄:�H(s; 1 + x) = 1�(s)"x1�s�(s� 1) + 12x�s�(s)+ nXk=1B2k�(s+ 2k + 1)(2k)! x1�2�2k +O(x�1�s�2n)#: (A.7)At spe
ial values of s more information is available. The value of the Hurwitzzeta fun
tion at non{positive integers is known in terms of the Bernoulli polynomials�H(�n;x) = �Bn+1(x)n+ 1 = � B0n+2(x)(n+ 1)(n+ 2) ; (A.8)in parti
ular, �H(0;x) = 12 � x; (A.9)�H(�1;x) = � 12x2 + 12x� 112 = � 12 (x� 12 )2 + 124 : (A.10)The derivative of the Hurwitz zeta fun
tion at s = 0 is known to be� 0H(0;x) = ln(�(x)=p2�): (A.11)Derivatives at other values of s are not given in the standard tables. One may makesome progress by noting that��H(s; 1 + x)�x = �s � �H(s+ 1; 1 + x) (A.12)so that �� 0H(s; 1 + x)�x = ��H(s+ 1; 1 + x)� s � � 0H(s+ 1; 1 + x): (A.13)This re
ursion relation, when applied to the 
ase s = �1 yields� 0H(�1; 1 + x) = � 0R(�1) + 12 (x2 + x) + Z x0 ln(�(1 + y)=p2�)dy= � 0R(�1) + 12 (x2 + x)� 12x ln(2�) + x ln �(1 + x)� Z x0 y  (1 + y) dy: (A.14)This is the best analyti
 result that we have been able to obtain. For jxj < 1 wemay make the 
onvergent expansion� 0H(�1; 1 + x) = � 0R(�1) + 12 (x2 + x)� 12x ln(2�) + x ln �(1 + x)+ 12
x2 � 1Xk=2(�)k�R(k) xk+1(k + 1) : (A.15)
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22 S. K. Blau, M. Visser & A. WipfFor jxj large, a 
omputationally useful asymptoti
 expansion may be found in ex-positions by Elizalde and Soto 30;31:� 0H(�1;x) = ( 12x2 � 12x+ 112 ) � lnx� 14x2 + 112� n�1Xk=1 B2k+2(2k + 2)(2k + 1)(2k) � x�2k +O(x�2n): (A.16)(But note theat the �nal sign is erroneously displayed in referen
e 30.) We haveresorted to numeri
al methods to evaluate�R( 32 ) � 2:612375; �R(� 12 ) � �0:207886;� 0R(2) � �0:937548; � 0R(�1) � �0:165421: (A.17)Finally, we note that �( 12 ) = p�, and that Stirling's approximation isln(�(x)=p2�) = (x� 12 ) ln(x)�x+ 112x+n�1Xk=1 B2k+2(2k + 2)(2k + 1) x�1�2k+O(x�2n): (A.18)It is often suÆ
ient to use the simpler formln(�(x)=p2�) = (x � 12 ) ln(x� 1)� (x � 1) +O(1=x): (A.19)Referen
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