DERIVATION OF THE S-MATRIX USING SUPERSYMMETRY

Fred COOPER, Joseph N. GINOCCHIO and Andreas WIPF

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 7 March 1988; accepted for publication 22 March 1988 Communicated by D.D. Holm

Using supersymmetry and shape invariance the reflection and transmission coefficients for a large class of solvable potentials can be obtained algebraically.

The eigenspectrum and eigenstates of a class of onedimensional hamiltonians have been derived algebraically using supersymmetry [1-3] and shape invariance [4,5]. In this paper we show that the scattering function can be obtained algebraically as well using these two features.

All one-dimensional Schrödering equations can be factorized [6,7],

$$H_{1} \Phi_{n}^{(1)} = \left(-\frac{d^{2}}{dx^{2}} + V_{1}(x, a_{1}) \right) \Phi_{n}^{(1)}$$
$$= A^{\dagger} A \Phi_{n}^{(1)} = E_{n}^{(1)} \Phi_{n}^{(1)} , \qquad (1)$$

where

$$A^{\dagger} = -\frac{d}{dx} + W(x, a_1), \quad A = \frac{d}{dx} + W(x, a_1)$$
(2)

and

$$V_1 = W^2(x, a_1) - \frac{d}{dx} W(x, a_1) , \qquad (3)$$

and a_1 are some parameters of the potential, *n* labels the states, n=0, 1, ..., and n=0 is the lowest state. The superpotential $W(x, a_1)$ is given by

$$W(x, a_1) = -\frac{d}{dx} \ln \Phi_0^{(1)}(x, a_1) .$$
 (4)

The partner hamiltonian $H_2 = AA^{\dagger} = -d^2/dx^2 + V_2$,

$$V_2 = W^2(x, a_1) + \frac{d}{dx} W(x, a_1),$$
 (5)

0375-9601/88/\$ 03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

gives the same spectrum as H_1 but with the ground state missing; that is,

$$E_0^{(1)} = 0, \quad E_n^{(2)} = E_{n+1}^{(1)}.$$
 (6a)

In addition the eigenfunctions with the same energy are related:

$$\Phi_{n+1}^{(1)}(x) = (E_{n+1}^{(1)})^{-1/2} A^{\dagger} \Phi_n^{(2)}(x) .$$
 (6b)

This degeneracy in the two spectra is due to a supersymmetry. We define a superhamiltonian H and supercharges Q and Q^{\dagger} :

$$H = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & 0 \\ A & 0 \end{bmatrix}, \quad Q^{\dagger} = \begin{bmatrix} 0 & A^{\dagger} \\ 0 & 0 \end{bmatrix}.$$
(7)

These operators are the two-dimensional representation of the sl(1/1) super algebra

$$[Q, H] = [Q^{\dagger}, H] = 0,$$

$$\{Q, Q^{\dagger}\} = H, \quad \{Q, Q\} = \{Q^{\dagger}, Q^{\dagger}\} = 0.$$
 (8)

The fact that the supercharges commute with H gives the energy degeneracy (6).

Clearly this process can be continued; a V_3 can be determined from V_2 , etc. This produces a ladder of potentials [4-7], V_n . Furthermore, if the partner potentials are "shape invariant", i.e., V_2 has the same functional form as V_1 but different parameters except for an additive constant,

$$V_2(x, a_1) = V_1(x, a_2) + C(a_1), \qquad (9a)$$

145

then the full ladder of potentials will be shape invariant,

$$V_n(x, a_1) = V_1(x, a_n) + E_n^{(1)}(a_1), \qquad (9b)$$

and the energy spectrum [4,5] and eigenfunctions [4,8] of the original potential can be determined algebraically:

$$E_n^{(1)} = \sum_{k=1}^n C(a_k) , \qquad (10a)$$

$$\Phi_n^{(1)}(x,a_1) = \prod_{k=1}^n A^{\dagger}(x,a_k) \Phi_0^{(1)}(x,a_{n+1}). \quad (10b)$$

In this paper we shall show that, using shape invariance, we can determine the scattering solutions algebraically as well also. There are two types of scattering problems that we shall consider: (1) scattering from a one-dimensional potential well and (2) scattering from a spherically symmetric three-dimensional potential well.

The asymptotic wavefunction for scattering from a one-dimensional potential well V_2 is given by

$$\Phi^{(2)}(k, x \to -\infty) \to e^{ikx} + R_2 e^{-ikx}, \qquad (11)$$

$$\boldsymbol{\Phi}^{(2)}(k, x \to \infty) \to T_2 \mathbf{e}^{ikx} \,. \tag{12}$$

Using (6b) we can determine the asymptotic behaviour of $\Phi^{(1)}(k, x)$ in terms of the asymptotic behaviour of $\Phi^{(2)}(k, x)$ and derive the following relation between the two transmission and reflection coefficients [9-11]:

$$T_1 = \frac{W_+ - ik}{W_- - ik} T_2 , \qquad (13a)$$

$$R_1 = \frac{W_- + ik}{W_- - ik} R_2 , \qquad (13b)$$

where $W_{\pm} = W(x \rightarrow \pm \infty)$. We have assumed that $W_{+}^{2} = W_{-}^{2}$ for simplicity of exposition only; this assumption implies that the potential is symmetrical asymptotically. If we also assume shape invariance, (9), then we get

$$T(k, a_1) = \frac{W_+(a_1) - ik}{W_-(a_1) - ik} T(k, a_2) , \qquad (14a)$$

$$R(k, a_1) = \frac{W_-(a_1) + ik}{W_-(a_1) - ik} R(k, a_2) .$$
(14b)

Hence we find a recursion relation with W being the same function but with a different value of the parameters. In particular if there is some parameter set a_N such that the transmission and reflection coefficient is known, then we have

$$T(k, a_1) = \prod_{n=1}^{N-1} \frac{W_+(a_n) - ik}{W_-(a_n) - ik} T(k, a_N),$$
(15)

$$R(k, a_1) = \prod_{n=1}^{N-1} \frac{W_-(a_n) + ik}{W_-(a_n) - ik} R(k, a_N).$$
(16)

As an example we take the Pöschl-Teller potential; $W(x, a_1) = \alpha \tanh(x)$,

$$V(x, a_n) = a_n^2 - \frac{a_n(a_n+1)}{\cosh^2(x)},$$
 (17a)

where

$$a_n = \alpha - n + 1 . \tag{17b}$$

If $\alpha = N-1$, then $a_N = 0$ and the potential vanishes: hence the transmission coefficient is unity. Thus (15) gives

$$T(k,\alpha) = \frac{\Gamma(-ik-\alpha) \Gamma(-ik+\alpha+1)}{\Gamma(-ik) \Gamma(1-ik)}$$
(18)

When the potential vanishes, the reflection coefficient vanishes. From (16) we see that the reflection coefficient vanishes for all integer values of α . This means that

$$R(k,\alpha) = \sin(\pi\alpha) R_0(k,\alpha) .$$
⁽¹⁹⁾

For α small the potential will be small and $R_0(k, 0) = (1/\pi)\dot{R}(k, 0)$, where \dot{R} is the derivative of R with respect to α . At small α we can use the Born approximation

$$\dot{R}(k,0) = \int e^{2iky} \dot{W}(y,0) \, dy$$
 (20)

and we finally get

$$R(k,\alpha) = \frac{i\sin(\pi\alpha)}{\sinh(\pi k)} T(k,\alpha) .$$
⁽²¹⁾

Next, we consider the spherically symmetric threedimensional Schrödinger equation:

$$H_1 = -\frac{d}{dr^2} + \frac{l(l+1)}{r^2} + V_1 = A^{\dagger}A, \qquad (22)$$

Volume 129, number 3

$$H_2 = -\frac{\mathrm{d}}{\mathrm{d}r^2} + \frac{(l+1)(l+2)}{r^2} + V_2 = AA^{\dagger}, \qquad (23)$$

where

$$A^{\dagger} = -\frac{d}{dr} - \frac{l+1}{r} + W(r, a_1) .$$
 (24)

We see from the above that the partner potential will be a solution for angular momentum increased by one.

The asymptotic radial wavefunction for partial wave l is

$$\Psi_{2}(r, l, a) \rightarrow \frac{1}{2k} [S_{l+1}(k, a) e^{ikr} - (-1)^{l+1} e^{-ikr}].$$
(25)

where S_l is the scattering function for the *l*th partial wave.

Using supersymmetry and shape invariance as before, we find

$$S_{l}(k, a_{1}) = \frac{ik - W(\infty, a_{1})}{ik + W(\infty, a_{1})} S_{l+1}(k, a_{2}).$$
(26)

For the Coulomb potential $W = (2l+2)^{-1}$ which is shape invariant. Solving the recursion relation in (26) we derive the well-known result

 $S_{l+1}(k)$

$$=\frac{\Gamma(l+1+(2ik)^{-1})\Gamma(1-(2ik)^{-1})}{\Gamma(l+1+(2ik)^{-1})\Gamma(1+(2ik)^{-1})}S_0(k),$$
(27)

which gives the scattering function for all l in terms of that for l=0. The term S_0 does not contribute to the angular distribution since $|S_0|^2=1$. Although the Coulomb scattering does not have the form (25) asymptotically, the result (27) still follows.

If we identify the operators A and A^{\dagger} with ladder operators of a potential group, then the recursion relations we have obtained can be given a group algebraic interpretation [12,13].

References

- [1] E. Witten, Nucl. Phys. B 185 (1981) 513.
- [2] P. Salomonson and J.W. van Holten, Nucl. Phys. B 196 (1982) 509.
- [3] F.Cooper and B. Freedman, Ann. Phys. (NY) 146 (1983) 262.
- [4] L. Infeld and T.D. Hull, Rev. Mod. Phys. 23 (1951) 21.
- [5] L. Gendenshtein, Pis'ma Zh. Eksp. Teor. Fiz. 38 (1983) 299 [JETP Lett. 38 (1983) 356].
- [6] C.V. Sukumar, J. Phys. A 18 (1985) L57.
- [7] A.A. Andrianov, N.V. Borisov and M.V. Ioffe, Phys. Lett. A 105 (1984) 19.
- [8] R. Dutt, A Khare and U. Sukhatme, Am. J. Phys. (January 1988), to be published.
- [9] R. Akhoury and A. Comtet, Nucl. Phys. B 246 (1984) 253.
- [10] D. Boyanovsky and R. Blankenbecker, Phys. Rev. D 30 (1984) 1821.
- [11] C.V. Sukumar, J. Phys. A 19 (1986) 2297.
- [12] Y. Alhassid, F. Gursey and F. Iachello, Phys. Rev. Lett. 50 (1983) 873.
- [13] Jianshi Wu, Group theory approach to scattering, Yale University Thesis (1985), unpublished.