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AbstratThe generalized Toda theories obtained in a previous paper by the onformalredution of WZNW theories possess a new lass of W-algebras, namely the algebras ofgauge-invariant polynomials of the redued theories. An algorithm for the onstrutionof base-elements for the W-algebras of all suh generalized Toda theories is found, andthe W-algebras for the maximal SL(N ,R) generalized Toda theories are onstrutedexpliitly, the primary �eld basis being identi�ed.
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1. IntrodutionIn some previous papers [1℄ it was shown that Toda �eld theories [2℄ ould beregarded as Wess-Zumino-Novikov-Witten (WZNW) theories [3℄, in whih the Ka-Moody (KM) urrents were subjeted to some �rst-lass linear onstraints. Amongthe advantages obtained by regarding the Toda theories as redued WZNW theorieswas a very natural interpretation of the W-algebras [4,5℄ of Toda theories, namely, asthe algebras of the gauge invariant polynomials of the onstrained KM urrents andtheir derivatives [1℄.In a subsequent paper [6℄ it was shown that the WZNW-Toda redution ould beextended to yield a series of generalized Toda theories. These generalized Toda theo-ries are a set of onformally-invariant integrable theories that interpolate between theWZNW theories and the Toda theories, and are partially-ordered in orrespondenewith the strata of group-orbits in the adjoint representation of the WZNW groupG, the traditional Toda theories orresponding to the (unique) minimal stratum. Toobtain these generalized Toda theories the KM urrents of the WZNW theories aresubjeted to a more general set of �rst-lass linear onstraints, and thus, like theToda theories, are gauge theories, the gauge group being just that generated by theonstraints. As a result these Toda theories possess algebras of gauge-invariant poly-nomials of the onstrained urrents and their derivatives, where the multipliation isde�ned by the Poisson-brakets and ommutators of the polynomials in the lassialand quantum ases respetively. As will be seen below, the algebras of gauge-invariantpolynomials obtained in this way are W-algebras in the sense of Zamolodhikov [7℄,that is to say, they are non-linear extensions of the Virasoro algebra by primary �elds.But they an also be regarded as non-linear extensions of KM algebras.The purpose of the present paper is twofold, namely to give an algorithm foronstruting a basis for all suh W-algebras (setions 3 through 5), and to display theW-algebra itself for the maximal Toda theories of SL(N ,R) (setions 6 through 8).The bases are not quite general in that they are onstruted subjet to a tehnialrestrition on the ordering of subgroups in the WZNW redution, but the proedure is2



suh that it an readily be generalized to other orderings. To larify the proedure we�rst onsider the ase of SL(N ,R) Toda theories before proeeding to the general ase.All the results inlude, of ourse, the onstrution of gauge-invariant polynomials forthe onventional (minimal) Toda theories.It is evident from the struture of the W-algebra for the maximal SL(N ,R) Todatheories that they are polynomial extensions of KM-algebras, but beause the �eldsinvolved are not all primary it is not immediately evident that they are Zamolodhikovalgebras. However, we determine the non-tensorial properties of the �elds, and, usingthis information, identify the Virasoro operator and the primary �elds (setions 9 and10).2. Reall of Generalized WZNW RedutionWe begin by realling the generalized WZNW-redution. First the WZNW groupsG used are the (maximally non-ompat) simple groups generated by the real linearspan of the anonial Cartan generators, i.e. by the generators (Hi; E�) in onven-tional notation. For the A and D Lie algebras, for example, these are the simplegroups SL(N ,R) and SO(N;N).The problem is that the KM urrents Ja(z) have onformal spin unity with respetto the onformal group generated by the Sommer�eld-Sugawara energy-momentumtensors L(z) = Tzz(z) and �L(�z) = �T�z�z(�z) i.e.[L(z); Ja(w)℄ = �(�wJa(w))Æ(z � w) + Ja(w)�zÆ(z � w); (2:1)and similarly for the barred quantities, and sine the onstraints that must be im-posed in order to obtain the Toda theories involve setting some of the omponents ofthe KM urrents equal to non-zero onstants, this annot be done without breakingthe onformal symmetry generated by L(z) and �L(�z). The solution is to replae theonformal group generated by the L(z) and �L(�z) by another onformal group gener-ated by modi�ed generators, �(z) and ��(�z) say, with respet to whih the urrentomponents in question are salars. The �'s are de�ned as follows:3



Letmi; i = 1; : : : ; l, where l is the rank of G, be the l fundamental oweights of G,selet any subsetma, de�ne a vetor w as w =Pma and an element H of the Cartansubalgebra H as H = w �H. Then the element H has the property that the simpleroot-vetors E�i are eigenvetors of H with eigenvalues zero or unity (depending onwhether the �i are dual or not to the weights ma hosen). Thus[H;E�i℄ = hE�i where h = 0; 1; i = 1; 2; : : : ; l: (2:2)It is lear from (2.2) that H provides an integer grading of the whole Lie algebra,[H;E�h ℄ = hE�h where h = h(�) 2 Z: (2:3)In partiular the elements of the algebra of the little group of H, whih we shall all B,have zero grade. It is not diÆult to see that the set of little groups B for all possiblehoies of H are just the (non-ompat versions of) the little groups in the adjointrepresentation of the ompat form of G. Sine these little groups are, by de�nition,in one-one orrespondene with the strata of G-orbits in the adjoint representationof (the ompat form of) G and the strata an be partially ordered [8℄ it followsthat the WZNW-redutions an be partially-ordered in the same way. The minimalstratum is unique, and has as little group the Cartan subgroup of G. It ours [1℄for w = s, where s sum over all the simple oweights (=half the sum of the positiveoroots), and the orresponding (minimal) Toda theory is just the onventional Todatheory. The maximal strata are not unique. For example for SL(N ,R) they ourwhen the reduing matrix H has only two distint eigenvalues and thus orrespondsto a two-blok redution, SL(N ,R) ! S(L(p,R) � L(q,R)), where p + q = N . Apartiularly interesting ase is the redution of SL(2n,R) ! S(L(n,R) � L(n,R)) ofSL(2n,R) into two equidimensional bloks. This ase is a natural generalization ofthe Liouville ase, to whih it redues for n = 1 and, aordingly, we shall all theresultant S(L(n,R)� L(n,R)) theory the generalized Liouville theory.The extension of (2.3) to the (left- or right-handed) KM algebras of WZNWtheories (or indeed of any KM theories)[Ja(z); Jb(w)℄ = fabJ(w)Æ(z � w) + kgab�zÆ(z � w); (2:4)4



where Ja(z) = tr(J(z)�a) and the �'s are the generators of G, is evidently[H(z); J�h (w)℄ = hJ�h (w)Æ(z � w); (2:5)where H(z) = tr(J(z)H). Note that the part JB? of the urrent JB orresponding tothe little group B, whih is orthogonal to H, ommutes with H(z), and that H(z) hasa nonvanishing ommutator with itself,[H(z); JB? (w)℄ = 0; [H(z); H(w)℄ = k�zÆ(z � w)trH2: (2:6)This means that if we modify the Virasoro operators L(z) of the WZNW theories to�(z) = L(z) + �zH(z); (2:7)then �(z) again satis�es a Virasoro algebra (with entre  ! KM + 12ktrH2), butsine[�(z); H(w)℄ = �(�wH(w))Æ(z � w) +H(w)�zÆ(z � w) + ktrH2�2zÆ(z � w)[�(z); J�h (w)℄ = �(�wJ�h (w))Æ(z � w) + (1 + h)J�h (w)�zÆ(z � w); (2:8)only the KM urrent omponents JB? are onformal vetors, the H(z) being a spin-one onnetion and the J�h (z) being onformal tensors of weight (1+h). The physialmeaning of �(z) and the orresponding ��(�z) is that they are the omponents of theimproved (i.e.traeless) energy-momentum tensor of the redued theory and the phys-ial meaning of the onnetion H(z) is that it is a gravitational onnetion of thePolyakov type [9℄. In fat if we de�ne the �eld h(z) as H(z)(trH2)�1 thenDz = �z + skh(z); (2:9)is a ovariant derivative for the urrent omponents of spin s i.e.[�(z);DwJ�s (w)℄ = �(�w(DwJ�s (w)))Æ(z � w) + (1 + s)(DwJ�s )�zÆ(z � w) (2:10)Note that even in the lassial ase, for whih KM = 0, the entre  for � is not zerobut 12ktrH2. 5



From (2.8) it follows, in partiular, that with respet to �(z), the urrent ompo-nents of grade h = �1 transform as onformal salars. Beause of this one an imposethe onstraints J��1(z) = J��1(0) 6= 0; and J�h (z) = 0; h < �1: (2:11)without breaking onformal symmetry, or, more preisely, without breaking the on-formal symmetry generated by �(z). Note that, in general, the onstraints (2.11) anbe expressed as Jonstr:(z) =M�1 + Jpos(z); (2:12)where M�1 is a onstant matrix of grade minus one and Jpos(z) denotes the partof the urrent for whih the omponents have zero or stritly positive grades. Theonstraints (2.11), or, equivalently, (2.12), are the onstraints that de�ne the reduedtheory.An intuitive feeling for the meaning of the onstraints (2.11) or (2.12) may beobtained by onsidering the G=SL(N ,R) ase, for whih the onstrained urrent J(z)takes the form
Jonstr:(z) = 0BBBBBBB�

J11(z) J12(z) J13(z) : : J1n(z)M21 J22(z) J23(z) : : J2n(z)0 M32 J33(z) : : J3n(z)0 0 M43 : : J4n(z)0 0 0 : : J5n(z): : : : : :0 0 0 : Mn;n�1 Jnn(z)
1CCCCCCCA ; (2:13)

where Mr+1;r � Jr+1;r(0) and the Mr+1;r and Jab(z) denote submatries of urrentswhih in general are not single entries or even square matries. (The single-entry aseorresponds to the original Toda redution.)The onstraints (2.11) (2.12) are obviously not invariant with respet to generalKM transformations, J(z) ! U(z)J(z)U�1(z) + kU(z)�zU�1(z), but there exists aresidual group of KM transformations with respet to whih they are invariant. Theseare the KM transformations for whih U(z) lies in the subgroup A of G generated bythe root vetors with stritly positive h, and orrespond to the KM transformations6



that would be implemented by the onstraints themselves. These residual KM trans-formations are then regarded as gauge transformations and only those funtions, orfuntionals, of the onstrained urrents J(z) whih are invariant with respet to thisgauge group are regarded as physial. Sine there are dimA onstraints and dimAgauge degrees of freedom, there are just dimG � 2dimA = dimB independent phys-ial �elds altogether. So there exist dimB independent gauge-invariant polynomialsof the onstrained urrents and their derivatives. Furthermore, sine the Poisson-or ommutator-braket of two gauge-invariant polynomials is again a gauge-invariantpolynomial, it is lear that the Poisson- or ommutator-braket algebras of the dimBgauge-invariant polynomials will lose. We de�ne these Poisson- and ommutator-braket algebras to be the lassial and quantum W-algebras of the generalized Todatheories.3. W-Bases: Generalized Toda Theories with G=SL(N ,R) and B MaximalWe onsider now the problem of onstruting the dimB gauge-invariant polyno-mials in the onstrained urrents and their derivatives expliitly. To illustrate the ideain its simplest form we begin with the ase of maximal SL(N ,R) Toda theories, whih,as disussed in setion 2, are just the 2-blok redutions of WZNW theory. In thisase the redution matrix H = w �H takes the form H = 1N diag(qIp;�pIq), wherep+ q = N and Ip and Iq denote the unit matries in p and q dimensions respetively.The onstrained urrent (2.12) redues toJonstr: = �K(z) R(z)M C(z)� ; (3:1)where the entries K, R and C are p2, pq and q2 blok-sub-matries, respetively.The gauge group A of residual KM transformations disussed in the preeding setionevidently onsists of all matries of the formg(a) = � I a(z)0 I � ; (3:2)where a(z) is a blok-matrix and thus ontains pq parameters. We shall assume thatp � q and that the onstant matrixM is minimally degenerate, i.e. that rank(MM t) =7



q. This means that there exists a matrix ~M suh that M ~M = Iq (and that ~MM isa rank-q projetion on a spae of p dimensions). It also means that we an hoose abasis so that Jonstr: = 0�A X SB Y T0 I C1A ; (3:3)where Y and C are square matries of dimension q and A is a square matrix ofdimension p� q. This basis will be alled the anonial basis.The gauge transformations of the onstrained urrent with respet to g(a) areJonstr: ! gJonstr:g�1 + g�g�1 (3:4)where g(a) 2 A, and we have set k = 1 to simplify the notation. It will be onvenientto write (3.4) as Jonstr: ! Adj(g)Jonstr:; (3:5)where Adj(g) is the usual adj(g) of Lie group theory supplemented with the derivativeterm. The important point is that, as is easily veri�ed from (3.4), Adj(g) satis�es thegroup property Adj(g1)Adj(g2)=Adj(g1g2). It is easy to see that for the sub-blok Kof (3.1) the gauge transformations indue the transformationsK ! K + aM: (3:6)It follows that if we de�ne a pq-blok j asj = K ~M; (3:7)then the gauge-transformation of j is simplyj ! j + a: (3:8)(Thus j absorbs all of the gauge-transformation.) Then, if we de�ne g(j) as the matrixg(a) with a replaed by j we have g(j)! g(j + a): (3:9)8



Let us now de�ne the urrentJ (2) = Adj(g�1(j))Jonstr:: (3:10)We see at one that under a gauge transformationJ (2) ! Adj(g�1(j + a))Adj(g(a))Jonstr:= Adj(g�1(j + a)g(a))Jonstr: = Adj(g�1(j))Jonstr: = J (2): (3:11)Thus J (2) is gauge-invariant and its entries are the required gauge-invariant polynomi-als. That they form a omplete set follows from the fat that Jonstr: has dimG�dimAindependent omponents and sine J (2) is obtained from it by a gauge-transformationwith dimA parameters (whih are ompletely absorbed aording to (3.8)) it musthave (dimG�dimA)�dimA = dimB independent omponents, whih, as disussed insetion 2, is the total number of independent gauge-invariant polynomials. On om-puting J (2) expliitly we obtainJ (2) = �K(2) R(2)M C(2) � = �K � jM R+Kj � jC � jMj + j0M C +Mj � : (3:12)Thus the gauge-invariant polynomials in the diagonal bloks are atually linear in theoriginal urrent omponents and the gauge-invariant polynomials in the o�-diagonalblok are bilinear. Note that sine J (2) has only dimB independent entries it mustsatisfy dimA onstraints, and it is easy to hek that these areK(2) ~M = 0: (3:13)In the Toda redution a gauge in whih the gauge-invariant polynomials are ur-rent omponents themselves is alled a Drinfeld-Sokolov (DS) [10℄ gauge. It is learthat the gauge de�ned by J (2) has this property. Thus DS gauges exist for the gener-alized Toda theories and we may writeJDS = J (2): (3:14)The ontent of the gauge-invariant urrent J (2) beomes more expliit in the anonialbasis, in whih (3.12) redues toJ (2) = 0�A(2) 0 S(2)B(2) 0 T (2)0 I C(2)1A ; (3:15)9



Note that in the generalized Liouville ase, i.e. the ase in whih the two diagonalbloks are equidimensional (p = q), we have, in the anonial basis,�K RM C �! �Y TI C � so J (2) = � 0 T � Y C + Y 0I C + Y � : (3:16)In partiular, in the onventional Liouville ase (p = q = 1) one �nds that, by thetraeless ondition C + Y = 0, (3.16) redues further toJ (2) = � 0 �1 0 � ; (3:17)where � = T + Y 2 + Y 0 = tr( 12J2 + HJ 0) is just the Virasoro operator [1℄ of thattheory.4. W-Bases: Generalized Toda Theories with G=SL(N ,R) and Arbitrary BLet us next onsider the redution of SL(N ,R) WZNW theory orresponding toany subgroup B, i.e. orresponding to any number of sub-bloks. In this ase theurrent takes the blok-form shown in eq.(2.13). It will, however, be onvenient tolabel the entries by their weights with respet to the reduing matrix H of setion 2and their rows. For SL(N ,R) this means that we use the rows and the lines parallelto the diagonal, rather than the onventional rows and olumns. Thus we write
Jonstr: = 0BBBBBBB�

J01 J11 J21 : : Jn�2;1 Jn�1;1M�1;2 J02 J12 : : Jn�3;2 Jn�2;20 M�1;3 J03 : : Jn�4;3 Jn�3;3: : : : : : :0 0 0 : J0;n�2 J1;n�2 J2;n�20 0 0 : M�1;n�1 J0;n�1 J1;n�10 0 0 : 0 M�1;n J0;n
1CCCCCCCA ; (4:1)

It will also be onvenient to parametrize the elements g(�) of the gauge group G,whih is the group generated by all real stritly upper-triangular matries, asg(�) = 1(a1)2(a2):::n�1(an�1); (4:2)10



where the h(ah) are the matries
h(ah) = 0BBBBBBB�

I 0 0 ::: ah;1 0 0 ::: 00 I 0 ::: 0 ah;2 0 ::: 00 0 I ::: 0 0 ah;3 ::: 0: : : ::: : : : ::: :0 0 0 ::: : : : ::: ah;n�h: : : ::: : : : ::: :0 0 0 ::: : : : ::: I
1CCCCCCCA ; (4:3)

and � denotes the olletion of parameters ah;r. It will also be onvenient to onsiderthe family of nested subgroups Gh of G de�ned as those with elementsgh(�h) = h(ah)h+1(ah+1):::n�1(an�1); (4:4)where �h denotes the olletion of parameters ah; ah+1:::an�1. Note that the h(ah)may be regarded as representatives of the osets Gh=Gh+1.At this point we have to make an assumption onerning the non-degeneray ofthe matrixM�1, onsisting of all the submatries M�1;r. This is the assumption thatthe diagonal bloks J0;r in Jonstr: are arranged in order of non-inreasing dimensionand that the rank of the submatries M�1;rM t�1;r is dimJ0;r. As in the previoussetion, this means that there exists a set of matries ~M1;r suh that M�1;r ~M1;r = I,where I is the unit matrix for the blok J0;r (and the same matries multiplied in thereverse order form a projetion of rank-dimJ0;r for the blok J0;r�1). In a anonialbasis M�1;r takes the form ( 0 I ) :Suppose now that J (h) is any urrent of the onstrained form (4.1) for whihthe gauge transformation indued by the general gauge transformation Jonstr: !Adj(g(�))Jonstr: is only with respet to the subgroup Gh, i.e.J (h) ! Adj(gh(�h))J (h): (4:5)It is easy to see that the blok-omponents of J (h) with weights less than h � 1are left invariant and that the blok-omponents of weight h � 1 undergo the simpletranslations J (h)h�1;r ! J (h)h�1;r + [h;M�1℄h�1;r: (4:6)11



More expliitly, for 1 � r � n� h+ 1, they areJ (h)h�1;r ! J (h)h�1;r + ah;rM�1;h+r �M�1;rah;r�1; (4:7)where we have de�ned ah;0 = M�1;n+1 = 0. It is easy to verify from (4.6) and (4.7)that if we onstrut linear ombinations jh;r of the J (h)h�1;r by the iterative proessjh;r = �M�1;rjh;r�1 + J (h)h�1;r� ~M1;h+r; (4:8)starting from jh;0 = 0, they transform aording tojh;r ! jh;r + ah;r; (4:9)for 1 � r � n� h (and fully absorb the oset Gh=Gh+1 part of the gauge transforma-tion).Let us now de�ne the urrentsJ (h+1) = Adj(�1h (jh))J (h); (4:10)where h(jh) denotes the oset matrix h(ah) with ah;r replaed by jh;r. Then thegauge transformation of J (h+1) indued by that of J (h) is evidentlyJ (h+1) ! Adj(�1h (jh + ah))Adj(gh(�h))J (h)= Adj(�1h (jh + ah)gh(�h)h(jh))J (h+1): (4:11)But, sine gh(�h) = gh(ah; �h+1), it is evident from the nilpotent struture of thegauge group that the argument of Adj in (4.11) is an element of the subgroup Gh+1.Thus J (h+1) ! Adj(gh+1(�h+1))J (h+1); (4:12)where �h+1 is some funtion of �h and jh. Sine Gn � 1, it then follows by indution,starting from J (1) = Jonstr:, that the urrent J (n) is gauge-invariant. We have thusshown that the omponents of the (n)th urrent in the sequeneJ (h+1) = Adj(��1h (j))J (1); (4:13)12



where �h(j) = 1(j1)2(j2):::h(jh); (4:14)and the j's are de�ned by (4.8), are gauge-invariant polynomials. Furthermore, theyform a omplete set beause, as before, J (1) = Jonstr: ontains dimG�dimA inde-pendent omponents, and sine J (n) is obtained from it by gauge transformationswith dimA parameters (whih are ompletely absorbed aording to (4.9)) it mustontain dimG�2dimA = dimB independent omponents, whih is the total numberof gauge-invariant polynomials. This implies, of ourse, that the omponents of J (n)are subjet to dimA onstraints. To see this expliitly, we �rst note that from (4.7),(4.8) and (4.10) the blok-omponents of weight h� 2 of J (h) an be written asJ (h)h�2;r = �J (h�1)h�2;r +M�1;rjh�1;r�1��I � ~M1;h+r�1M�1;h+r�1�; (4:15)from whih we obtain the onstraints J (h)h�2;r ~M1;h+r�1 = 0 for 1 � r � n�h+1. Sinethe blok-omponents J (h)k;r of weight k < h � 2 are equal to J (k+2)k;r whih ful�ll theabove onstraints, the onstraints on J (h) an be olleted asJ (h)k;r ~M1;k+r+1 = 0 for 0 � k � h� 2; 1 � r � n� k � 1: (4:16)Then we �nd that for J (n) the total number of the onstraints in the entries of (4.16)is exatly dimA. Finally, sine J (n) is a urrent whose omponents are the gauge-invariant polynomials it is, by de�nition, a Drinfeld-Sokolov urrent,J (n) = JDS : (4:17)We onlude this setion by onsidering the ase when the dimensions of all thediagonal bloks are equal (as happens, for example, in the original Toda ase wherethey are all of dimension one). In this ase the matries M�1;r an be hosen to beunit matries and then we see from the de�nition that the suburrents jh arejh;1 = J (h)h�1;1;jh;2 = J (h)h�1;1 + J (h)h�1;2;jh;3 = J (h)h�1;1 + J (h)h�1;2 + J (h)h�1;3; (4:18)13



and so on. This means that (apart from the onstant M�1-bloks) the bloks to theleft of the hth vertial olumn in eah J (h) vanish, whih is also lear from (4.16).In partiular, all the bloks in J (n) vanish exept those in the last olumn. Thusthe entries in the last olumn of J (n) are the gauge invariant polynomials for theequidimensional SL(N ,R) redution.For example, for the 3-blok (Toda) redution of SL(3,R) WZNW theory oneeasily omputes thatJ (2) = 0� 0 J11 + J201 + J 001 J21 � J01J12 � (J11 � J01J02)J03 + J01J 0031 0 J12 � J02J03 � J 0030 1 0 1A ; (4:19)using J01 + J02 + J03 = 0, and hene thatJ (3) = 0� 0 0 W31 0 W20 1 0 1A (4:20)whereW2 = J201 + J01J03 + J203 + J11 + J12 + J 001 � J 003 = tr(12J2 +HJ 0); (4:21)and W3 = J21 � J01J12 � J11J03 + J01J02J03 + J 011 + J01(J 001 � J 002) + J 0001= tr[13J3 + P (J 0J + J 00)℄ + tr(PJ)tr(H2J 0); (4:22)H = diag(1; 0;�1) being the redution matrix and P = 12 (H2 +H) being the proje-tion operator onto the �rst omponent of any vetor. The gauge-invariant polynomialsW2 and W3 are the seond and third-order elements of the W -algebra of the SL(3,R)Toda theory, the seond-order polynomial W2 being the Virasoro operator. The ex-pression (4.22) is not homogeneous in the generators beause the projetion P is nothomogeneous, but by subtrating W 02=2 from (4.22) we obtain~W3 = tr[13J3 + 12(H(J 0J + JJ 0) +H2J 00)℄ + 14 [tr(HJ)tr(H2J 0)� tr(H2J)tr(HJ 0)℄;(4:23)whih is homogeneously ubi in the generators.14



5. W-Bases: Generalized Toda Theories for Arbitrary G and BWe now turn to the generalized Toda theories orresponding to any of the sub-groups B of any (maximally non-ompat) WZNW group G. We �rst note that thenumber n of bloks in the redution due to the redution matrix H = w �H isn = w �  + 1, where  is the highest root of G. We then write the onstrainedurrents (2.12) more expliitly asJonstr: =M�1 + n�1Xd=0 Jd �Ed; (5:1)where the grading is with respet to H = w �H, and Jd �Ed means Pr JrdErd , wherethe summation index r runs for all generators of grade d (whose range therefore mayvary with d). The elements of the gauge group are of the formg(�) = exp(n�1Xd=1 ad �Ed) (5:2)where the ad's are the parameters. We de�ne the nested subgroups Gh of gauge-transformations gh(�h) = exp(n�1Xd=h ad �Ed) (5:3)where �h denotes all the parameters for d � h, and the oset representativesh(ah) = exp(ah �Eh); (5:4)for the osets Gh=Gh+1. In partiular we havegh(�h) = gh+1(~�)h(ah) (5:5)where the ~� are some funtions of the �h.As we did before we shall make an assumption about the non-degeneray of thematrix M�1. To see what assumption we should make we express the assumption forthe SL(N ,R) ase in a more general form. It is not diÆult to see that the SL(N ,R)non-degeneray assumption is that the adjoint ation of the matrix M�1 on the Lie15



algebra of the gauge-group (see (4.6)) is not singular (has no kernel). Indeed this iswhy all of the ah appear in (4.9) and an be ompensated by linear ombinations ofthe Jh. The natural extension of this assumption to any group G is that the adjointation of M�1 on the Lie algebra of the gauge-group has no kernel, and this is theassumption that we shall make. If we denote the spae of all generators of G of weighth by Sh then sine M�1 has a de�nite weight, this assumption an also be expressedby saying that the kernels of the maps Erh ! ~Erh�1 = adj(M�1)Erh � [M�1; Erh℄ of Shinto Sh�1 for h � 1 are zero. Note that S0 is just the Lie algebra of the subgroup Band that in general these maps are only into, i.e. the images ~Sh�1 of the maps areonly subspaes of Sh�1. (For SL(N ,R) they are onto only if h = 1 and the bloks areequidimensional.) Let F r1�h be linear ombinations of the generators Er1�h whih aretrae orthogonal (dual) to the ~Esh�1:tr(F r1�h ~Esh�1) = Ærs; (5:6)where the non-degeneray ofM�1 guarantees that the indies r; s run from 1 to dimSh.Note that the F r1�h are not unique unless the map is onto, ~Sh�1 = Sh�1. But this willnot a�et the results.Now suppose that there exists a urrent J (h) of the form (5.1) for whih the gaugetransformation that is indued by the original gauge transformation of J is only withrespet to gh(�h), J (h) ! Adj(gh(�h))J (h): (5:7)From (5.5) we then haveJ (h) ! Adj(gh+1(~�))Adj(h(ah))J (h)= Adj(gh+1(~�))�M�1 � ah � ~Eh�1 + h�1Xd=0 J (h)d �Ed +O(d � h)�=M�1 � ah � ~Eh�1 + h�1Xd=0 J (h)d �Ed + O(d � h): (5:8)
From (5.8) we see at one that if we de�ne the quantitiesjrh = �tr(J (h)F r1�h) (5:9)16



then they gauge-transform aording tojrh ! jrh + arh: (5:10)In partiular, the oset representatives h(jh) gauge-transform aording toh(jh)! h(jh + ah): (5:11)Hene, if we now de�ne the urrentsJ (h+1) = Adj(�1h (jh))J (h); (5:12)then by exatly the same argument that led from (4.10) to (4.14) we onlude that theomponents of J (n) in the sequene of (4.13) are gauge-invariant polynomials. Also,as in the two preeding setions one sees that they form a omplete set and that J (n)is a DS urrent, J (n) = JDS : (5:13)The proedure of the last three setions may be summarized in a more abstratway as follows: Suppose J (h) is a urrent that gauge transforms only with respet tothe subgroup Gh. Then the omponents of J (h) of weight k < h� 1 do not transformat all, and the omponents of weight h� 1 transform aording toJ (h)h�1 ! J (h)h�1 + [h;M�1℄= J (h)h�1 � adj(M�1)h: (5:14)Hene, if we assume that adj(M�1) is non-singular and de�neJ (h+1) = Adj(�1h (jh))J (h) where jh = �(adj(M�1))�1PhJ (h)h�1; (5:15)and Ph is the projetion on the subspae ~Sh�1 of Sh�1, the jh and J (h+1) transformaording to jh ! jh + ah and J (h+1) ! Adj(gh+1(�h+1))J (h+1); (5:16)respetively. It then follows by indution that the omponents of the nth urrent J (n)in the sequene de�ned by (5.16) are gauge-invariant polynomials, and, beause of theonstrution, form a omplete set. 17



6. General Proedure for Computing W-AlgebrasLet us onsider now the onstrution of the W-algebras themselves. The generalidea is the same as was used in ref.[1℄, namely to onsider the (urrent-dependent)KM transformations that keep the onstrained urrents in the DS-gauge form-invariantand ompute the hanges in the non-zero omponents due to these transformations.Beause the gauge-invariant polynomialsW are linear in the DS urrent-omponents,and the KM transformations are anonial, these hanges are just the hanges inthe W 's that are indued by the (Poisson-braket) W-algebra, and thus the struturefuntions for the Poisson-braket W-algebra an be obtained from them by inspetion.In other words we proeed as follows: First we determine the most general matrix Kwhih leaves JDS form-invariant i.e. that satis�es[K; JDS℄�K 0 = ÆJDS ; (6:1)where it is understood that ÆJDS satis�es the same onditions as JDS. Then weparametrize K in some onvenient way as K = K(�a(z)) where the �'s are a setof dimB parameters, a = 1; : : : ; dimB. Sine the omponents of JDS are the gauge-invariant polynomials W the anonial transformationsJDS ! JDS + Æ�JDS (6:2)de�ne the orresponding anonial transformationsW !W + Æ�W (6:3)of the matrix of gauge-invariant polynomials orresponding to JDS . Sine these trans-formations are anonial we are guaranteed that the variations of the W 's an bewritten in the form Æ�W (w) = Z dz�a(z)[Wa(z);W (w)℄; (6:4)for some suitable hoie of Wa(z). Then, one the Wa(z) are identi�ed in terms of theW (w), the W-algebra an be obtained from (6.4) by inspetion.18



So, in pratie, all one has to do is ompute the most general K that keeps JDSform-invariant, parametrize it in a suitable manner, and ompute the variations of theomponents of JDS for eah parameter. One this is done, and the omponents of Waidenti�ed in terms of the W , the W-algebra an be read o� from (6.4). In identifyingthe base-elements Wa it is useful to use the fat that the Poisson-brakets of any twoelements must be anti-symmetri. Although this method of omputing W-algebrasis muh more eÆient than many others it is still quite laborious for more than twobloks and for general WZNW groups G. Hene in this paper we shall restrit ourselvesto the 2-blok redutions of SL(N ,R).7. W-Algebra for Generalized Liouville TheoriesTo illustrate the basi idea, and beause this is an exeptional ase that has to betreated seperately anyway, let us �rst onsider the ase where the two bloks in themaximal Toda theory are equidimensional. In that ase N = 2n, the reduing matrixH is just H = 12diag(In;�In) where In is the n-dimensional unit matrix and from(3.16) we see that, in the anonial basis, the onstrained DS-urrent is of the formJDS = � 0 TI C � where trC = 0: (7:1)(Stritly speaking, the T and C should be written as TDS and CDS , but we drop thesupersripts to simplify the notation.) We write the most general SL(2n,R) matrix Kin the form K = �x y�  � where trK = 0: (7:2)The Greek submatries are the natural independent parameters beause they are on-jugate to the C and T submatries in the urrent with respet to the KM entre, andthe Latin submatries are to be determined from the ondition that with respet to aKM transformation by K the urrent JDS remains form-invariant. The KM variationÆJDS = [K; JDS℄�K 0 of JDS generated by K is easily seen to beÆJDS = �� T� � y + x0 T � xT � yC + y0x+ C� �  + � 0 y + [C; ℄� �T + 0� : (7:3)19



and from this one sees at one that K will leave JDS form-invariant if, and only if,x =  � C� � � 0 and y = T� + x0: (7:4)The general K matries satisfying these onditions split naturally intoK = �  00  � and K� = ��� T� � �0� �oI � (7:5)where tr = 0; � = C� + � 0 � �oI and N�o = tr(C� + � 0); (7:6)and the �o is inserted in order to make K� traeless. From (7.3) one an read o� thevariations in the omponents of JDS due to K and K� , namely,ÆC = [; C℄� 20; ÆT = [; T ℄ + 0C � 00;Æ�C = [�; T ℄ + �0 � � 0o; Æ�T = T�C � (T�)0 � (� + �o)T � �0C + �00: (7:7)The display in (7.7) de�nes the W-algebra for this ase. (When allowane is made forpartial integration the display is anti-symmetri.) Let us denote the elements of theW-algebra by the orresponding omponents Ca = tr(�aC) and Ta = tr(�aT ) of C andT , where the �'s are the generators of GL(n,R) in the fundamental (n-dimensional)representation (and thus inlude a multiple of the unit matrix as well as the usualSL(n,R) generators). Then the W-algebra given by (7.7) is easily seen to take theexpliit form[Ca(z); Cb(w)℄ = �feabCe(w)Æ(z � w) + 2gabÆ0(z � w)[Ca(z); Tb(w)℄ = �feabTe(w)Æ(z � w)� heabCe(w)Æ0(z � w)� gabÆ00(z � w); (7:8a)and[Ta(z); Tb(w)℄ = [(hrsab � hsrab)Tr(w)Cs(w)� hrsabC 0r(w)Cs(w)� heab(T 0e(w)� C 00e (w)) + 1N (C 0a(w)Cb(w)� C 00a (w)(tr�b))℄Æ(z � w)+ [hrsabCr(w)Cs(w) + (heab + heba)Te(w)� 2heabC 0e(w) + 1N (2C 0a(w)(tr�b)� Ca(w)Cb(w))℄Æ0(z � w)+ [ 1N (Cb(w)(tr�a)� Ca(w)(tr�b)) + feabCe(w))℄Æ00(z � w)+ [�gab + 1N (tr�a)(tr�b)℄Æ000(z � w); (7:8b)20



where the primes on Æ(z � w) mean di�erentiation with respet to z, the feab are thestruture onstants of SL(n,R) andgab = tr(�a�b); heab = tr(�e�a�b) and hrsab = tr(�r�a�s�b): (7:9)Note that the [Ca; Cb℄ part of the algebra is just a KM algebra (with the entredouble that of the original KM algebra). In this sense the W-algebra (7.8) may beregarded as a polynomial extension of a KM algebra. The sense in whih it is anextension of a Virasoro algebra will be disussed in setion 9. For the moment wenote only that for the SL(2,R) (Liouville) ase Ca = 0, and Ta redues to a singleomponent and that, sine JDS = J (2), this omponent is idential to the Virasorooperator � obtained in (3.17). Indeed, for this single omponent the W-algebra (7.8)redues to[�(z);�(w)℄ = ��0(w)Æ(z � w) + 2�(w)Æ0(z � w)� 12Æ000(z � w); (7:10)whih is just the Virasoro algebra.8. W-Algebra For Generalized Toda Theories with G=SL(N ,R) and B MaximalLet us now onsider the generi maximal ase when the two bloks are not equidi-mensional, i.e., the redution matrix H is of the form H = 1N diag[nIm+n;�(m+n)In℄where m � 1, n � 1 and N = m + 2n. In that ase the DS-urrent in the anonialbasis is of the form (see (3.15))JDS = 0�A 0 SB 0 T0 I C1A where trA+ trC = 0; (8:1)dimA = m and dimI = dimT = dimC = n. (As in (7.1) the entries in (8.1) shouldhave supersripts DS, but we have omitted them to simplify the notation.) We thenwrite the most general SL(N ,R) matrix asK = 0�� � xu v w� �  1A where trK = 0: (8:2)21



Here again the Greek submatries are to be regarded as the independent parametersand the Latins are to be determined by the form-invariane ondition. The KMvariation ÆJDS = [K; JDS℄�K 0 of JDS generated by K is easily seen to be0� [�;A℄ + �B � S� � �0 x� A� � S� � �0 �S + �T + xC � Ax� S � x0uA+ vB � B�� T� � u0 w � B� � T� � v0 uS + vT + wC � Bx� T � w0�A+ �B � u� C� � �0  � v � C� � � 0 �S + �T + [; C℄� w � 0 1A(8:3)from whih one sees that JDS remains form-invariant if, and only if,x = A� + S� + �0u = �A+ �B � C� � �0v =  � C� � � 0w = B� + T� + v0 (8:4)
The matries K that satisfy this ondition split naturally into the six setsK� = 0�� 0 00 0 00 0 01A ; K� = 0� 0 � A� + �00 0 B�0 0 0 1A ; K = 0� 0 0 00  00 0  1A ; (8:5)

Ko = 1N 0� 2n�o 0 00 �m�o �m�0o0 0 �m�o1A ; K� = 0� 0 0 0� 0 0� 0 01A ; (8:6)and K� = 0� �oI 0 S��B �� T� � �00 � �oI 1A (8:7)where� = �A� C� � �0; � = C� + � 0 � �oIn and N�o = tr(C� + � 0): (8:8)As before, the �o has been inserted in order to make K� traeless. Note that tr� =(m+ n)�o. From (8.3) one an now read o� the variations in the omponents of JDS22



due to the K's and one �nds the following table:Â Ĉ trA B S TÆ� [�;A℄� �0 0 0 �B� �S 0Æ 0 [; C℄� 20 0 B �S [; T ℄ + 0C � 00Æo 0 0 �2mnN �0o �B�o �oS mN (��0oC + �00o )Æ� ^(�B) � ^(B�) tr(�B) 0 � �Æ� � ^(S�) ^(�S) �tr(S�) � 0 �Æ� 0 [�; T ℄ + �̂0 �m� 0o � � �(8:9)where hat means that the trae part is to be removed, e.g., Â = A� 1mtrA, and thelower right-hand 3� 3 subtable isB S TÆ� 0 �(T � C 0) + AX +X 0 BX � (B�)0Æ� �T� + �A� �0 0 �SÆ� (�B)A� C(�B)� 2� 0B � �B0 (S�)C � A(S�)� (S�)0 Z(8:10)whereX = �C �A�� �0 and Z = [�; BS℄+ T�C � (�+ �o)T � (T�)0� �0C + �00: (8:11)The array (8.9) de�nes the W-algebra for the general maximal SL(N ,R) Todatheory. Note that the �rst three rows and olumns in (8.9) de�ne an S(L(m)� L(n))KM algebra, and the �rst four rows and olumns an S(L(m)�L(n))^A(n) KM algebra,where A(n) is the real abelian Lie group of dimension n2. Thus the W-algebra de�nedby (8.9) is a polynomial extension of KM algebra, and the KM subalgebra is quitelarge.To write out the W-algebra de�ned by (8.9) would be quite laborious on aountof the parameters being blok-matries so we shall ontent ourselves with writing itout for the S(L(2)�L(1)) redution of SL(3,R). In this ase Â = Ĉ = 0 and if wewrite trA = �trC = a one obtains from the last four rows and olumns of (8.9) the23



four-dimensional array:a B S TÆo � 23�0o �B�o S�o 13(a�0o + �00o )Æ� B� 0 �T� � 3a�0 � �00 � �B� � 2B�0Æ� �S� � �T� � 3(a�)0 + �00 0 2aS� � S�0Æ� 13 [(a�)0 � � 00℄ �B� � 2(B�)0 �(2Sa+ S0)� � S� 0 Z(8:12)where �T = T � 2a2 � a0 and �B = 2aB +B0, the last entry Z is given byZ = �T� 0 � (T�)0 � 23 [(aa0 + a00)� + (a2 + 2a0)� 0 � � 000℄; (8:13)and B, S and T are no longer matries but simple funtions. From (8.12) one anread o� the W-algebra in an obvious notation as[Wa(z);Wa(w)℄ = 23Æ0(z � w)[Wa(z);Wb(w)℄ = �Wb(w)Æ(z � w)[Wa(z);Ws(w)℄ = Ws(w)Æ(z � w)[Wa(z);Wt(w)℄ = 13[�Wa(w)Æ0(z � w) + Æ00(z � w)℄[Wb(z);Wb(w)℄ = 0[Wb(z);Ws(w)℄ = [Wt(w)� 2W 2a (w)�W 0a(w)℄Æ(z � w)+ 3Wa(w)Æ0(z � w)� Æ00(z � w)[Wb(z);Wt(w)℄ = [�2Wa(w)Wb(w)�W 0b(w)℄Æ(z � w) + 2Wb(w)Æ0(z � w)[Ws(z);Ws(w)℄ = 0[Ws(z);Wt(w)℄ = 2Ws(w)Wa(w)Æ(z � w) +Ws(w)Æ0(z � w)[Wt(z);Wt(w)℄ = �[W 0t (w) + 23Wa(w)W 0a(w) + 23W 00a (w)℄Æ(z � w)+ [2Wt(w) + 23Wa(w)2 + 43W 0a(w)℄Æ0(z � w)� 23Æ000(z � w):
(8:14)
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9. Primary Fields for Generalized Liouville TheoriesThe redued WZNW theories are onformally-invariant and thus the W-algebrasassoiated with them should be expressible in terms of a Virasoro operator and aset of primary �elds. In other words, they should be Zamolodhikov algebras. Thebase-elements of the W-algebra (gauge-invariant polynomials) onstruted so far arenot automatially primary �elds, beause they ontain the gravitational omponentH(z) = h(z)trH2 of the onstrained KM urrent J , and, as disussed in setion 2,this omponent transforms as a spin-1 onnetion. That is to say, under in�nitesimalonformal transformations h aquires, in addition to the usual tensorial terms, theinhomogeneous term (see (2.8) with k = 1)�h(w) � [�(z); h(w)℄inhom: = Æ00(z � w): (9:1)In this and the next setion we determine where h ours in the gauge-invariantpolynomials and hene identify the Virasoro operator � and the primary �elds. Forlarity, and beause of some speial features, we treat only the generalized Liouvillease in this setion, leaving the general maximal Toda theories to setion 10.In order to loate the gravitational omponent h(z) in the gauge-invariant poly-nomials we deompose the original onstrained urrent Jonstr: into its primary �eldand its h(z) parts, i.e., we writeJonstr: = ~J + hH $ �Y TI C � = � ~Y TI ~C �+ h(z)� 12 00 � 12 � ; (9:2)where ~Y ; ~C and T ontain only primary �elds. From (3.16) the matrix J (2) of gauge-invariant polynomials isJ (2) = � 0 T (2)I C(2) � = � 0 T � Y C + Y 0I C + Y � ; (9:3)and if we now use (9.2) and the ovariant derivative D = � + h for the spin-one �eldY to extrat h expliitly we obtainJ (2) = � 0 T � ~Y ~C +D ~YI ~C + ~Y �� 12 � 0 ( ~Y + ~C)h+ 12h2 �Dh0 0 � : (9:4)25



From (9.4) it is easy to see that with respet to onformal transformations the om-ponents of J (2) will aquire, in addition to the usual ovariant variations, the inhomo-geneous terms�C(2) = 0 and�T (2) = �12 [( ~Y + ~C)�h�Dw�h+ h�h℄;= �12 [(Y + C)�h� �w�h℄ = �12 [C(2)�h� �w�h℄: (9:5)where we have used (9.3) to reonvert (Y + C) into C(2). Converting this result intoW -language and using (9.1) we obtain�W = 0 and �Wt(w) = �12 [W(w)Æ00(z � w) + Æ000(z � w)℄: (9:6)Thus the W's are primary �elds but the Wt's are not.To identify the Virasoro operator � one now uses the fat that � must be thatombination of theW 's whose Poisson-braket with theW 's produes the usual tenso-rial onformal transformation terms (spin 1 and 2 for the W's and Wt's respetively)plus the inhomogeneous terms shown in (9.6), and it is easy to hek from the array(7.8) that the ombination � = tr(12W 2 +Wt); (9:7)has this property. That is to say,[�(z);W(w)℄ =�W 0(w)Æ(z � w) +W(w)Æ0(z � w)[�(z);Wt(w)℄ =�W 0t (w)Æ(z � w) + 2Wt(w)Æ0(z � w)� 12W(w)Æ00(z � w)� 12Æ000(z � w): (9:8)Thus the � de�ned in (9.7) is the required Virasoro operator. For n = 1, it oinideswith the expression (3.17) obtained diretly as a gauge-invariant polynomial. Itsentral oeÆient  is seen from (7.8) to be  = 6n, whih, for k = 1 is in agreementwith the general result  = 12ktrH2 of setion 2.To identify the primary �elds one notes from (9.8) and the onformal transforma-tion properties of the derivative that the ombinations W� = Ŵt � 12W 0 are primary26



�elds. Sine the remaining base-element trWt an be replaed by � we then see thata Virasoro-primary-�eld basis of the W-algebras for the generalized Liouville theoriesis �; W and W� = Ŵt � 12W 0: (9:9)Note that, beause �+h is the ovariant derivative for spin-one �elds, the ombinationsŴt + 12hW are also primary �elds. But they are not gauge-invariant on aount ofthe fator h.10. Primary Fields for Maximal Generalized Toda TheoriesAs in the generalized Liouville ase we �rst deompose the original onstrainedurrent Jonstr: into its primary-�eld part ~J and gravitational part H(z) = h(z)trH2:Jonstr: = 0�A X SB Y T0 I C1A = 0� ~A X SB ~Y T0 I ~C1A+ h(z)0� nN 0 00 nN 00 0 �m+nN 1A ; (10:1)where, from the traelessness and trae-orthogonality to H of ~J (�rst matrix on theright-hand-side) we have tr( ~A+ ~Y ) = 0 and tr ~C = 0: (10:2)From (3.15) the matrix J (2) of gauge-invariant polynomials isJ (2) = 0�A(2) 0 S(2)B(2) 0 T (2)0 I C(2)1A = 0�A 0 S + AX �XC + �XB 0 T + BX � Y C + �Y0 I C + Y 1A ; (10:3)and if we now use (10.1) and the ovariant derivative D = �+h for the spin-one �eldsX and ~Y to extrat h expliitly we obtainJ (2) = 0� ~A 0 S + ~AX �X ~C +DXB 0 T +BX � ~Y ~C +D ~Y0 I ~C + ~Y 1A+0� nN h 0 00 0 Z0 0 �mN h1A ; (10:4)where Z = �nN [( ~Y + ~C)h+ nN h2 �Dh℄: (10:5)27



From (10.4) and (10.5) it is easy to see that with respet to onformal transformationsthe omponents of J (2) will aquire, in addition to the usual tensorial variations, theinhomogeneous piees0��A(2) 0 �S(2)�B(2) 0 �T (2)0 0 �C2) 1A = 0� nN�h 0 00 0 �nN [( ~Y + ~C)�h+ 2nN h�h�Dw�h℄0 0 �mN�h 1A :(10:6)Using (10.1), (10.3) and D to reonvert all the quantities in (10.6) into omponents ofJ (2) we obtain0��A(2) 0 �S(2)�B(2) 0 �T (2)0 0 �C(2)1A = 0� nN�h 0 00 0 �nN [C(2)�h� �w�h℄0 0 �mN�h 1A : (10:7)Translating this result into W-algebra language, we see that from (9.1) all theW 's areprimary �elds exept the Wo assoiated with the gravitational �eld h(z) and de�nedas Wo = trA(2), and the Wt's, whih, under in�nitesimal onformal transformations,aquire the inhomogeneous piees�Wo = mnN Æ00 and �Wt = � nN [WÆ00 + Æ000℄; (10:8)respetively.As in the generalized Liouville ase the Virasoro operator is identi�ed as thatombination of the W 's whose Poisson braket with all the W 's produes their usualtensor transformation properties (spin 1 for ~Wa; ~W;Wb and Wo, and spin 2 for Wsand Wt) plus the inhomogeneous terms (10.8). It is easy to hek from (8.9) that theoperator � = tr[12(W 2a +W 2 ) +Wt℄�W 0o= tr[12( ~W 2a + ~W 2 ) +Wt℄ + n+m2mn W 2o �W 0o; (10:9)has this property and is thus the required Virasoro operator. Note that in the DSgauge the matries ~Wa and ~W are traeless and ould therefore equally well be writtenas Ŵa and Ŵ as in table (8.9). The entre  of the Virasoro algebra for the operatorin (10.9) is seen from (8.11) to be  = 12n(n+m)N , whih for k = 1 is in agreement withthe general result  = 12ktrH2 of setion 2.28



To identify the primary �elds one notes from (10.8) and the onformal transforma-tion properties of the derivative that the ombinationsW� =Wt� nNW 0� (m+n)nm2 [W 2o +2mnN W 0o℄ are primary and thus a Virasoro-primary-�eld basis for the W-algebra of thegeneral maximal Toda theories is~Wa; Wb; ~W; Ws; �; and W� =Wt � nNW 0 � (m+ n)nm2 [W 2o + 2mnN W 0o℄:(10:10)This is the generalization of the result (9.9) for the generalized Liouville ase. Onaount of the element Wo it di�ers from the Liouville result not only in the existeneof the extra Wo terms in (10.10) but also in the fat that trW� is a primary �eld andthat the �elds Wt + 1m2 [mWoW �W 2o �mW 0o℄; (10:11)whih are obtained from the W� by using the ovariant derivative �+h! �+ NmnWo,to substitute �NmnWo ~W for ~W 0, are both primary and gauge-invariant.AknowledgementsThe authors wish to thank Drs. J. Balog, L. Feher and P. Forgaz for usefuldisussions and suggestions during the initial stages of this work.
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