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1 IntrodutionThe study of vauum utuations, as embodied in the Casimir e�et [1℄, has been a subjet ofextensive researh [2℄. The Casimir energy may be thought of as the energy due to the distortionof the vauum. This distortion may be aused either by some bakground �eld (e.g. gravity), orby the presene of boundaries in the spae{time manifold (e.g. ondutors). Early investigationsof the e�ets of a gravitational bakground were performed by Utiyama and De Witt [3℄, andwork has ontinued on this important subjet [4, 5, 6, 7, 8, 9℄. Early work on the e�et ofboundaries was performed by Casimir [1℄, and was later extended by Fierz, Boyer, deRaad, andMilton [10, 11, 12, 13℄. More reently boundary e�ets have been entral to the alulation ofthe Casimir energy in bag models of QCD [14, 15, 16℄.We feel that interesting things remain to be said. In this paper heat kernel and zeta funtiontehniques will be utilized to investigate these topis [4, 17℄. The uni�ed treatment presentedhere is appliable to a very wide lass of models and physial situations.We start by developing a de�nition of the Casimir energy whih is �nite and applies toarbitrary stati manifolds with or without boundariesECasimir = 12�h� � PP [�3(�12 + �)℄: (1.1)Here � is a normalization sale of dimension (length)�1, and the PP symbol indiates that weare to extrat the \prinipal part". This de�nition yields a �nite quantity in both at andurved spae{times, with or without boundaries, for both massive and massless partiles. Thenormalization sale � appearing in the above is required to keep the zeta funtion dimensionlessfor all values of s. The introdution of this sale leads generially to non-trivial saling behaviourfor the Casimir energy. It is pointed out how this de�nition relates in speial ases to well{knownresults.Our de�nition of the Casimir energy allows us to investigate its dependene on the \radius"of the manifold. We �nd that for massless �eldsECasimir(R) = �hR � f�0 � �1 � ln(�R)g; (1.2)where the �-independent oeÆients �0 and �1 are dimensionless numbers depending on thegeometry of the manifold. This result has some very interesting onsequenes when applied tothe bag models of hadrons in QCD.Further, we may relate the Casimir energy to the one{loop e�etive ation (i.e. the deter-minant of a suitable four dimensional di�erential operator). This is done by relating the zetafuntion of D4 = ��02 +D3 to the zeta funtion of D3�4(s) = �Tp4� � �(s� 12 )�(s) � �3(s� 12): (1.3)Thus we obtain a non-trivial relationship between the Casimir energy and the one-loop e�etiveenergy Ee� = ECasimir + 12�h� h (1) �  (�12 )i C2(4�)2 : (1.4)To help understand the signi�ane of this relationship we inlude a disussion of the variousdi�erent onepts ommonly lumped together as \vauum energy".We next apply our analysis to the one{loop orretions to the e�etive osmologial onstantand Newton onstant in Kaluza{Klein theories. These one-loop orretions may be interpreted as2



a Casimir-like e�et. We derive the following �nite expressions for the one-loop four-dimensionale�etive osmologial and Newton onstants.�e� = � � vol(
) +G�1 � Z
pg Rd � �42(4�)2 n12� 0d(�2)� 34�d(�2)o ;G�1e� = G�1 � vol(
)� k �22(4�)2 �� 0d(�1)� �d(�1)	 : (1.5)In partiular, this allows us to study the dependene of these onstants on the \radius" of theompat dimensions, without having to resort to expliit alulations.
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2 Zeta funtions on manifolds with boundary.As regularization tehnique we shall use the zeta-funtion method due to Dowker and Crith-ley [4℄ and Hawking [17℄. Its relation to other methods (e.g., dimensional regularization) hasbeen disussed in the literature [4℄. In order to make subsequent arguments understandable,we must �rst briey review the mathematial mahinery of zeta funtions. Consider the zetafuntion assoiated with a seond-order self-adjoint ellipti operator D de�ned on a ompatmanifold 
 with boundary �
�(s) = tr0f(��2D)�sg =X0(��2�n)�s; (2.1)where the �n are eigenvalues of D; while the prime on tr0 and P0 indiates that we shouldnot inlude the zero eigenvalues of D in the sum. We have introdued a \sale" �, with thedimensions of (length)�1, in order to keep the zeta-funtion dimensionless for all s.The zeta funtion is related to the di�usion operator (heat kernel) via a Mellin transform:�(s) = X0 1�(s) Z 10 dt ts�1 exp(��n��2t)= 1�(s) Z 10 dt ts�1 tr0(e�tD��2): (2.2)Here t is a dimensionless parameter, not to be onfused with physial time (x0=). From nowon, in the interests of notational simpliity, we ignore zero modes. The trae of the di�usionoperator is given by the integral of the diagonal part of the heat kernel over the manifold:tr(e�tD��2) = Z
K(t; x; x) pg ddx: (2.3)The heat kernel K possesses an asymptoti expansion for small t:K(t; x; x) =  �24�t!d=2 �( NX0 an(x) (��2t)n + o(tN )) : (2.4)The sum is over integer values of n. The an are funtions of the gravitational �eld, they maybe expressed as polynomials in the Riemann tensor, its ontrations, and ovariant derivatives.(See Appendix A.) The diagonal part of the heat kernel ontains exponentially suppressed terms(e�k(x)=t) that do not ontribute to the asymptoti expansion (2.4). These exponentially sup-pressed terms do however ontribute an expliit boundary term to the trae of the heat kerneltr(e�tD��2) =  �24�t!d=2 �( NX0 �Z
 an(x) (��2t)n + Z�
 bn(y) (��2t)n�+ o(tN )) : (2.5)The sum runs over half{integers, (but the an vanish for half-odd-integers). The bn are funtionsof the seond fundamental form of the boundary (extrinsi urvature), the indued geometryon the boundary (intrinsi urvature), and the nature of boundary onditions imposed. Theseobjets are tabulated in many plaes: e.g., Birrell and Davies [19℄ and Appendix A of this paper.For future referene we de�ne the dimensionless quantities: An = �d�2n R
 an(x) pg ddx,Bn = �d�2n R�
 bn(y) p~g dd�1y, and Cn = An +Bn.In view of the asymptoti expansion (2.5), it is lear that the zeta funtion �(s) is a mero-morphi funtion of the omplex variable s possessing only simple poles whose residues aredetermined by Cn. Observe that (2.5) implies that �(s) has a pole struture given by�(s) = 1�(s) (4�)d=2 � ( 1X0 Cn(s� [d2 � n℄) + f(s)) : (2.6)4



The funtion f(s) is an entire analyti funtion of s, but, in general, we have little additionalinformation onerning its behaviour. However, we do know that �(s) is analyti at s = 0. It isthus possible to de�ne the determinant of D to be [17℄det0(��2D) = exp�� dds�(s)����s=0� : (2.7)Observe that many of the tehnial details assoiated with renormalization have been hiddenby these zeta funtion tehniques. We shall now utilize this mathematial mahinery to de�nethe Casimir energy, and relate ECasimir to the one{loop E�etive ation Se� = 12 ln detD.
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3 The Casimir energy.In order to have a well{de�ned notion of energy, it is useful to work in a stati spaetime [18℄,spei�ally let us take g4 = �(dx0)2 + g3, in whih ase we deompose the di�erential operatorD4 as D4 = �(�0)2 +D3. The eigen-frequenies assoiated with D3 are !n = p�n(D3) � . Wewish to onsider the zero{point energy:ECasimir = 12Xn �h!n: (3.1)This sum is, of ourse, divergent. We regularize it by de�ningEreg(�) = 12�h� �Pn(�n��2)( 12��) = 12�h� � �3 ��12 + �� : (3.2)Where �3 is the zeta funtion assoiated with the three-dimensional operator D3. A quikglane at the previous setion shows that Ereg(�) is a meromorphi funtion with a pole at� = 0, with residue �12�h� C2(g3)=(4�)2 = �12�hfR
 a2 + R�
 b2g=(4�)2, where the integral isover three-dimensional spae and its two-dimensional boundary. Beause of the pole at � = 0,we annot, in general, remove the regulator; the geometri oeÆient C2 is an obstale to givinga �nite de�nition for the Casimir energy. Note, however, that in many interesting ases (e.g.,at spae with at boundaries and massless partiles) C2 = 0, so that lim�!0Ereg(�) is �nite,and independent of the normalization sale �.How is one to understand the unphysial pole and � dependene of the (zeta-funtion regu-lated) Casimir energy? First we note that the Casimir energy in isolation is unphysial. Whenphysiists speak of the Casimir energy they usually are identifying terms in the renormalizedtotal energy whih they interpret as arising from boundary or gravitational e�ets. There is ipsofato no pole in the total energy; the pole in equation (3.2) is absorbed into the bare ation whihmust ontain a term proportional to C2. Having seen this we must admit that the way in whihthe pole is removed is not unique. The possibility of di�erent renormalization shemes meansthat the Casimir energy has an ambiguity proportional to C2. Our hoie of renormalizationsheme is to adopt the minimal subtration sheme whih is equivalent to simply removing thepole from equation (3.2). We de�neECasimir � lim�!0 12fEreg(+�) +Ereg(��)g� 12�h� � lim�!0 12f�3(�12 + �) + �3(�12 � �)g� 12�h� � PP [�3(�12 + �)℄; (3.3)where the symbol PP stands for taking the prinipal part. (This tehnique yields the \�nitepart" of any meromorphi funtion that possesses at worst simple poles.)The Casimir energy de�ned in equation (3.3) depends, in general, on the normalization sale.We keep this sale dependene to remind us that the that the renormalization programme, whihremoves any � dependene from the total energy, may introdue a seond �nite ambiguity in theCasimir energy. In setion 4 we shall study how the Casimir energy varies with this normalizationsale. In setion 5 we shall relate the Casimir energy to the one-loop e�etive energy, whih alsodepends on the normalization sale. The di�erene between the two is �nite, � independent,and proportional to the geometri term C2. In partiular, the Casimir and one-loop e�etiveenergies agree when C2 vanishes. The total energy, in the ontext of bag models, is onsideredin setion 6, and we shall verify that it is independent of �.6



4 The role of the normalization saleThe renormalized Casimir energy de�ned by equation (3.3) generially will depend on the nor-malization sale �. This should not, in fat, be surprising. As we shall soon see, the Casimirenergy is intimately related to one{loop physis, and the ourrene of anomalous sale depen-dene in one{loop �eld theory alulations is by now a well understood phenomenon [20, 21℄.This anomalous saling behaviour manifests itself in two ways: (i) the Casimir energy may de-pend on the normalization sale �; (ii) for onformally oupled �elds, the Casimir energy mayfail to sale as the inverse of the radius of the system. This e�et is related to the existene of theonformal anomaly (trae anomaly). Note however, that the Casimir energy, in isolation, annotbe measured. What is measurable is the total energy whih inludes (renormalized) zero-loopontributions along with the Casimir energy. If one knew the Lagrangian for the entire systemunder study (e.g., see the disussion of bag models later in this paper) then one would expressthe total energy in terms of running oupling onstant sand the normalization sale �. The totalenergy is independent of �. If the total Lagrangian is unknown, the Casimir energy still givesthe proper geometri dependene for the oder �h part of the total energy. In partiular, naivesaling behaviour of the total energy is violated. The sale � should be interpreted as a salethat summarizes the (unknown) physis assoiated with the boundaries, urvature, and masses;it must be determined experimentally.Consider the e�et of a hange in the normalization sale �! �0. From the de�nition of thezeta funtion it is easy to see that this indues a hange �3(s; �0) = (�0=�)2s � �3(s; �), so thatEreg(�; �0) = (�0=�)2� �Ereg(�; �). Now for any analyti funtion f(s) it is easy to see thatPP [f(s)�(s)℄ = f(s) � PP [�(s)℄ + f 0(s) � Res[�(s)℄: (4.1)This has the immediate onsequene thatECasimir(�0) = ECasimir(�)� �h� � C2(�)(4�)2 � ln ��0� � : (4.2)The dependene on the normalization sale is logarithmi, with a oeÆient given by the seondSeeley-De Witt oeÆient. (The ombination �C2 is, despite appearanes, independent of thesale �.) As is to be expeted, this dependene on normalization sale leads to a breakdownof sale ovariane. (It should be noted that C2 depends on R a2, and that a2 ontains a pieeproportional to the onformal anomaly [19℄, in fat T �� / a2, and, for a onformally oupledtheory, a2 is the onformal anomaly.)Now onsider the e�et of resaling the metri and masses: g3 ! �2 � g3, m! ��1 �m. Thishas a simple e�et on the eigenvalues of D3, namely: �n ! ��2 � �n. So for the zeta funtion�3(�2g3;��1m; s) = �2s � �3(g3;m; s): (4.3)Using the properties of the prinipal part presription we �ndECasimir(�2 � g3;��1 �m) = ECasimir(g3;m)� � �h� � C2(g3;m)(4�)2 � ln�� : (4.4)This is the generalization, allowing for massive partiles, of equation (1.2). It is easy to see thatif � ! 1 then ECasimir ! 0, thus the approah to massless partiles in Minkowski spae doesin fat lead to zero Casimir energy.To derive equation (1.2) of the introdution, we note that the radius of the manifold �2 g3is given by R(�2g3) = � R(g3). Then equation (4.4) may be written asECasimir(R) = �hR � f�0 � �1 � ln(�R)g; (4.5)7



where �1 = C2(g3; � = R(g3)�1)(4�)2�h ;�0 = �ECasimir(g3; �) �R(g3)�h �+ [�1 ln(�R(g3))℄: (4.6)Note that �0 and �1 are independent of the normalization sale �. A little thought will show onethat �1 depends only on the shape of the manifold, and are in fat independent of the radius ofthe manifold. The total energy must ontain a term with the same geometri struture as theCasimir energy Etot = �hR f�0(�)� �1 ln(�R)g+ : : : ; (4.7)where now �0(�) depends on � logarithmially so that Etot is independent of the normalizationsale. One might set the sale � arbitrarily, and determine the \running oupling onstant"�0 as a funtion of �. In the ontext of Casimir energy alulations it is natural to use analternative proedure: �x �0(�) to have the value determined by equation (4.6), and determine� experimentally. (This is ompletely analogous to the experimental determination of �QCD.)From (4.5) we see that if C2(g3) > 0, then the Casimir energy has an absolute minimumat Rmin = ��1 � exp(1 + j�0=�1j), with Emin = ��hj�1j=Rmin. If C2(g3) < 0 then the Casimirenergy is unbounded from below, approahing E ! �1 as R ! 0. (There is now an absolutemaximum at Rmax = ��1 � exp(1 + j�0=�1j) and Emax = +�hj�1j=Rmax. The sign of C2 is thusthe determining fator in deiding whether the Casimir e�et is repulsive or attrative for smallsizes. If C2(g3) = 0 then an absolute extremum ours at R =1 and E = 0.The appearane of the logarithmi dependene on the radius in (1.2), (4.4), and (4.5) isvery striking. One may quite justi�ably ask, would this term not have been seen in someof the many Casimir energy alulations in the literature? The answer is that in very manysituations enountered in the literature C2 vanishes. Spei�ally, in at 3-spae, with masslesspartiles, and any olletion of in�nitely thin boundaries one has C2 = 0 (for either Dirihlet orNeumann boundary onditions). In partiular, onsidering the ase of the eletromagneti �eld,any olletion of in�nitely thin perfet ondutors has C2 = 0. To see this, reall C2 = A2+B2.Now A2 = 0 sine we are in at spae. Further b2(y) ontains only odd powers of the seondfundamental form. In�nitely thin boundaries means that all boundaries onsist of two oppositelyoriented faes separated by an in�nitesimal distane. Thus the seond fundamental forms areequal and opposite on the two faes of eah boundary, and onsequently the net value of b2summed over the two faes of eah boundary vanishes. Thus B2 = 0, as required.The ase of Robin boundary onditions requires extra are. For Robin boundary onditions��=��(y) + (y)�(y) = 0 on the boundary. In this ase one still has C2 = 0 for thin boundaries,provided one makes the additional assumption that  (y+) = � (y�). That is, provided  isequal and opposite on the two faes of eah thin boundary layer.Some ases where C2 does not vanish have also been disussed in the literature. Thesesituations have oasioned some rather puzzled omments whih we shall disuss more fullybelow.
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5 The one{loop e�etive ation.We now onsider the relationship between the Casimir energy de�ned by (3.3) and the one{loop e�etive energy. As in the previous setion, we onsider an ultrastati spaetime withg4 = �(dx0)2+g3. To proeed we Wik rotate to imaginary time so that the Eulidean Laplaianis D4 = +�02+D3. The heat kernel then fatorizes, e�D4��2t = e��02��2t � e�D3��2t, so that forthe diagonal part of the heat kernel one has:K4(x; x; t) = 1p4���2 t �K3(x; x; t): (5.1)Now, de�ning T = R dx0= = \age of the universe", and applying the Mellin transform (2.2)one sees �4(s) = �Tp4� � �(s� 12 )�(s) � �3(s� 12): (5.2)Using Ee� � T = Se� = +12 ln detD = �12� 04(0), and the known analytiity properties of the zetafuntion yields: Ee� = ECasimir + 12�h� � [ (1) �  (�12)℄ � C2(4�)2 : (5.3)Where  (s) = d ln�(s)=ds is the digamma funtion. The e�etive energy and Casimir energydi�er, but the di�erene reets the inherent renormalization-sheme ambiguity introdued inthe Casimir energy by removing the pole in equation (3.2). The unambiguous parts of thee�etive and Casimir energies agree, illustrating a remarkably lose onnetion between zero-point energies and one-loop quantum e�ets. Note that when C2 = 0, so that the zeta-funtionregulated Casimir energy is unambiguous and �nite, Ee� = ECasimir.There are several variations on the onept of \vauum energy" in ommon irulation. Oneof these is the vauum{expetation{value of the integral of the 00 omponent of stress energy:EVauum = R < 0jT00j0 >. This version of the vauum energy is, in general, not equal to eitherone of ECasimir or Ee� . However, if one were to swith o� all interations, so that T00 ! TFree00 ,then an argument, (Presented, e.g., in the review artile [2℄), shows that under rather generalonditions ECasimir = R < 0jTFree00 j0 >. Yet another version of vauum energy is obtained byonsidering the full e�etive ation in plae of the one{loop e�etive ation and its orrespondinge�etive energy E1e� = �e�=T . Again this e�etive energy is quite distint from the other versionsof the vauum energy disussed above. These at least four subtly di�erent versions of the vauumenergy has unfortunate onsequenes insofar as many papers in the literature do not take theappropriate are to make these distintions.
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6 Comparison with standard results.In this setion we shall make onnetions between our formalism and some of the expliit alu-lations already available in the literature. While agreeing with many of those alulations, wereport some subtle di�erenes when onsidering solid ondutors and losely related aspet ofbag models.6.1 Parallel Plates:Consider a massless salar �eld satisfying Dirihlet boundary onditions on�ned between twoparallel plates of surfae area S held a distane L apart. The three dimensional heat kernelis easily seen to be K3(x; x; t) = K1(x; x; t)=(4���2t), whih upon integration over the volumebetween the plates yields K3(t) = �2S4�t �K1(t): (6.1)But K1(t) is expliitly known in terms of the eigenvalues of the redued one dimensional problem�n = n2=L2. Evaluation of the three-dimensional zeta funtion proeeds in a straightforwardmanner �3(s) = �2S�(s) Z 10 dt � ts�1 � 14�t � 1X0 exp(�tn2=�2L2)= �2S4� � (�L)2s�2 � 1s� 1 � �R(2s� 2): (6.2)Here �R is the ordinary Riemann zeta funtion. In taking the limit s ! �12 one does notenounter a pole, so the Casimir energy is simplyECasimir(L; S) = � 112� � 12 � �h2�SL3 � �R(�3): (6.3)It is a standard zeta funtion result that zR(�3) = 1120 , whih �nally leads to the well-knownstandard result [2℄. This alulation, though trivial, has expressed some important ideas. Theabsene of a pole in the s ! �12 limit an be traed bak to the fat that the plates are at.Beause the plates are at the seond fundamental form vanishes ( = 0), onsequently b2 = 0,and �nally C2 = 0. This has the additional interesting e�et that the at{plate Casimir energyis insensitive to the thikness of the plates.6.2 Cylindrial Shells and Spherial Shells:For ylindrial and spherial shells b2(outside) = �b2(inside), thus C2(net) = 0, and we maysafely use simple dimensional arguments to dedueEylinder / LR2 ;Esphere / 1R: (6.4)Note that these dimensional analysis results are merely assumed, not proved, in the standardanalyses of these problems [11, 12, 13℄. It was by no means lear, in the days before onformalanomalies beame a well understood part of �eld theory, that there is anything to prove inderiving (6.4). Fortunately, the naive result works for thin shells, but as we shall soon see, leadsto onfusion when applied to solid ondutors. It should be emphasized that the anellationof b2 between the inner and outer faes is the underlying ause of the \deliate anellationsbetween internal and external modes" noted by many authors [2℄.10



6.3 Solid Cylinders and Solid Spheres:For solid ondutors the \deliate anellations" alluded to previously no longer our. Indeedit is easy to see that C2(�;L;R)solid ylinder / L�R2C2(�;R)solid sphere / 1�R (6.5)Consequently the Casimir energy possesses a logarithmi dependene on the radius of thesesystems. The Casimir energy also depends on the normalization sale. In regularization shemessuh as proper-time regularization or a mode-sum ut-o� the pole assoiated with C2 manifestsitself as an divergent term that depends logarithmially on the ut{o� [8, 22℄. Suh logarithmidivergenes have in fat been enountered in some expliit alulations [15℄. Any term of theform ln(R�) may be re{ast as ln(R�) + ln(�=�); the ln(�=�) may then be absorbed into arenormalization of some appropriate piee of the energy, but a term of form ln(R�) alwaysremains in the renormalized energy (with the � dependene ompensated by some other term).6.4 Membranes:We now turn to a very di�erent physial system, that of a membrane. Membrane theory, asa generalization of string theory, has enjoyed some reent popularity [23, 24, 25℄. Consider aphysial �eld that is onstrained to propagate on the surfae of a losed stati membrane. As faras the Casimir e�et is onerned, this is equivalent to onsidering a 2+1 dimensional spaetime.The analysis of this paper ontinue to hold, with the sole exeption that the pole of the zetafuntion at s = �12 is now proportional to C 32 . Sine a 32 is automatially zero, this meansthat a losed (i.e., boundary-less) membrane automatially has C2 = 0. Consequently, zeta-funtion alulations of the Casimir e�et on any losed membrane are always guaranteed to notenounter a pole. This explains the otherwise quite miraulous anellation of poles enounteredin expliit omputations performed by Sawhill [26℄. Open membranes, on the other hand, maypossess poles in the zeta funtion as s ! �12 . The residues of suh poles are, however, tightlyonstrained.These above omments are also relevant to other physial systems: onsider any �eld theorythat gives rise to domain walls. It is very easy in suh theories to arrange for massless partilesto beome trapped on the domain wall. This suggests the interesting possibility that for suitablehoies of parameters and partile ontent, one may use the Casimir energy to stabilize smallspherial domain walls against ollapse. Preliminary alulations seem enouraging.At a more general level, the omments of this setion imply that the behaviour of the Casimire�et depends ruially on whether the total number of spaetime dimensions is even or odd.This will be disussed more fully when we make some omments on Kaluza{Klein models.6.5 Bag Models:Another physial situation where the Casimir e�et has been of great importane is in thebag models of QCD [14, 15, 16℄. As a �rst approximation, the idea is to treat quarks andgluons as massless partiles on�ned to the interior of some (3+1)-dimensional bounded regionof spaetime alled the bag. The free quark-gluon Lagrangian is then augmented by a \bagLagrangian" responsible for on�ning the quarks and gluons.The points we wish to make are twofold. First, generially C2 6= 0 for these bag models(barring fortuitous anellations between the e�ets of quark and gluon boundary onditions). In11



ut-o� regularizations of the mode sum this would orrespond to the appearane of a logarithmidivergene, as has indeed been reported by Milton [15℄. In our zeta-funtion approah theCasimir energy of the bag inludes a ln(�R)=R term. Sine we are working with a model thatis supposed to be an approximation to QCD, and sine we have argued that the Casimir energyis related to one{loop e�ets, it is natural for the bag models to expet � to be related to �QCD(�h� � �QCD).The seond point we wish to make onerns the (renormalized) bag energy. The total bagenergy depends on the zero-loop bag energy, plus the Casimir energy (i.e., one{loop physis), plushigher loop e�ets (presumably small). One of the great virtues of the zeta funtion approahis that it yields an e�etive way of alulating the Casimir energy without requiring a detailedanalysis of the renormalization properties of the bag energy. To extrat the struture of the(renormalizable) Bag Lagrangian the proper time uto� is more appropriate. In the proper timeformalism Ereg(�) = �h�p4� Z 1� dt t�3=2 tr0(e�tD3��2): (6.6)The resulting divergenes in the Casimir energy are desribed byEreg(�) � C0�2 + C 12�3=2 + C1� + C3=2�1=2 + C2 ln �+ �nite piees: (6.7)Thus the requirement of renormalizability of the energy implies that the zero-loop bag energyontains (at a minimum) the following termsE0 = Z
 2X0 gn an + Z�
 2X0 hn bn: (6.8)In at spaetime this simpli�es onsiderablyE0 = p � V + � � S + Z�
 �h1 b1 + h3=2 b3=2 + h2b2� : (6.9)Here p is the bag pressure, � is its surfae tension, the parameters h1, h3=2 and h2 do not appearto have standard names.If we approximate the bag as spherial, we an easily extrat the dependene of these termson bag radius h1 Z b1 = FR; (6.10)h3=2 Z b3=2 = k; (6.11)h2 Z b2 = h=R: (6.12)Whih allows us to write the zero-loop renormalized bag energy asE0 = p � V + � � S + FR+ k + h=R (6.13)It is to be emphasized that these parameters are to be determined by experiment; they annotbe alulated within the on�nes of the bag model. In priniple they would be alulable fromthe full theory of QCD. Adding the one-loop e�ets (Casimir energy) and de�ning Z = h + �0�nally yields Ebag = p � V + � � S + FR+ k + Z=R � �1 ln(�R)=R: (6.14)12



The only one of these parameters that is alulable using Casimir energy tehniques is �1. Inpartiular, the parameter Z is not alulable, but rather is to be experimentally determined.The terms involving p and � are standard. The term involving F has previously been disussedin the work of Milton [15℄. The o�set term k has (to the best of our knowledge) not previouslybeen disussed. We note in passing that the o�set piee k ontains a purely topologial pieeproportional to the Euler harateristi of the bag.
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7 Appliations to Kaluza{Klein theories.In this setion we seek to extrat some information onerning the one-loop ontributions to thee�etive four-dimensional osmologial and Newton onstants within the framework of Kaluza{Klein theory. Calulations along these lines have been arried out, for some spei� simplehoies of the internal geometry, in referenes [27, 28, 29, 30℄. We shall proeed with a bareminimum of assumptions. Consider a 4+d dimensional universe with d ompati�ed dimensions,M4+d =M4

. Assume the theory to possess multidimensional osmologial (�) and Newton(G) onstants. That isS4+d = � � Z pg4+d d4+dx+G�1 � Z R4+dpg4+d d4+dx+ � � � (7.1)Using the produt deomposition of spaetime one infers R4+d = R4 + Rd, so that for thetree{level four dimensional e�etive Cosmologial and Newton onstants one dedues:�e� = � � vol(
) +G�1 � Z
pgdRd;G�1e� = G�1 � vol(
): (7.2)To evaluate the one{loop ontributions to �e� and Ge� one uses the produt deompositionof spaetime to dedue a produt deomposition for the diagonal part of the heat kernelK(t) = K4(t) �Kd(t): (7.3)The asymptoti expansion of the four-dimensional heat kernel may now be used to obtain anexpansion for the zeta funtion�4+d(s) = 1X0 Cn(g4)(4�)2 � �(s� 2 + n)�(s) � �d(s� 2 + n): (7.4)This expansion is a formal one in the \size" of the ompati�ed dimensions. To justify the aboveexpansion onsider a \long wavelength" approximation implemented by resaling the externaldimensions: g4+d;� = g4;� � gd = (�2g4) � gd. In this situation the heat kernel enjoys theproperty that K4+d;�(t) = K4;�(t) �Kd(t) = K4(��2t) �Kd(t). Thus the limit �!1 allows oneto employ the asymptoti expansion of the heat kernel to obtain an asymptoti expansion forthe multi-dimensional zeta funtion�4+d;�(s) = NX0 Cn(g4)(4�)2 �4�2n �(s� 2 + n)�(s) �d(s� 2 + n) + o(�4�2n): (7.5)By abuse of notation we have rewritten this asymptoti expansion as the physially more rea-sonable (7.4). Now, reall that C0 = �4 R pg4 d4x and C1 = k � R R4pg4 d4x, (k is a onstantdepending on the statistis and spins of the elementary partiles present in the theory). Thismay be used to extrat the one-loop orretions to �e� and Ge��e� = � � vol(
) +G�1 � Z
pgRd � �42(4�)2 n12� 0d(�2)� 34�d(�2)o :G�1e� = G�1 � vol(
)� k � �22(4�)2 �� 0d(�1)� �d(�1)	 : (7.6)Observe that the zeta funtions appearing in the above are guaranteed to be analyti at all non-positive integers, so that these expressions are �nite as they stand. Further, the value of the zeta14



funtion at non-positive integers is (in priniple) known; for example �d(�2) = 2C2+(d=2)=(4�)d=2,and �d(�1) = �C1+(d=2)=(4�)d=2.Without evaluating equation (7.6) in full detail, we may pro�tably inquire as to the depen-dene of �e� and Ge� on the \radius" of the internal dimensions. The major point to be made isthat the ase of an odd number of internal dimensions behaves in a qualitatively di�erent man-ner form an even number of internal dimensions. Introduing appropriate onstants permits usto write �e� = ard + brd�2 + f�0 � �1 ln(�r)g r�4;G�1e� = a0rd + ��00 � �01 ln(�r)	 r�2: (7.7)The dimensionless onstants �1 and �01 are proportional to �d(�2) and �d(�1) respetively. Inany odd number of dimensions (provided the internal manifold has no boundary) these areguaranteed to vanish. Thus in an odd number of dimensions, �e� and Ge� have a simple power-law dependene on the radius of the ompat dimensions. This breaks down however, for anyeven number of dimensions where one observes the appearane of logarithmi dependenes onthe radius. We expet these logarithms to have signi�ant e�ets, but shall postpone furtheromments to another paper.
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8 ConlusionThe Casimir energy is a very useful onept, it may be viewed as the \zero point energy" ofthe vauum, and, from a slightly di�erent viewpoint, is also intimately related to one{loopphysis in the form of the one{loop E�etive energy. In this paper we have exhibited a uni�edframework that allows us to regularize and renormalize the zero point mode sum in a way thatis extremely general. Our de�nition yields a well behaved �nite quantity in many interestingphysial situations: e.g. in the presene of a bakground gravitational �eld, with massive ormassless partiles, and in the presene or absene of boundaries of the spae{time manifold.It is hoped that with this framework in plae, it will be possible to perform extensive expliitalulations.Note added in proofAfter submittal of this paper we were made aware of additional work by the Manhestergroup [32, 33, 34℄. For additional work on the relevane of the Casimir e�et to the stabil-ity of Kaluza{Klein models see referenes [35, 36, 37, 38℄. In addition we wish to thank EmilMottola for useful disussions.
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Appendix A The Seeley{de Witt oeÆients.The Seeley{de Witt oeÆients an(x) are independent of the applied boundary onditions, butthe oeÆients do depend on the spin of the �eld in question.a0(x) = 1: (A.1)a1(x) = k � R: (A.2)a2(x) = A(Weyl)2 + B[(Rii)2 � 13R2℄ + Cr2R+ DR2: (A.3)The boundary oeÆients bn(y) depend on the nature of the boundary onditions imposed.For Dirihlet or Neumann boundary onditionsb0(y) = 0: (A.4)b1=2(y) = �p�2 : (A.5)b1(y) = 13tr: (A.6)b3=2(y) = a(tr)2 + btr(2) + R (A.7)b2(y) = ~a(tr)3 +~b(tr2)(tr) + ~(tr3) + ~d(tr)R + ~eijRij + ~fr2(tr): (A.8)Where  is the seond fundamental form of �
, the boundary of 
. The urvatures appearingin bn are intrinsi urvatures omputed from the indued metri on the boundary. If one adoptsRobin boundary onditions ���� +  (y)�(y) = 0, then additional terms appear in bn for n � 1.Sine  has the same dimensions as , these extra terms are of the type exhibited above with 7!  .
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Appendix B Gamma Funtion Identities.We ollet some useful Gamma Funtion identities, see for instane [31℄. Take n 2 f0; 1; 2; � � �g:Res[�(�n+ �)℄ = (�)nn! : (B.1)PP [�(�n+ �)℄ = (�)n �  (n+ 1)�(n+ 1) =  (n+ 1) �Res[�(�n+ �)℄: (B.2)�(12 ) = p� (B.3)�(�12) = �p4�: (B.4) (1) = �: (B.5) (n) = � + n�1Xk=1 1k : (B.6) (12 ) = � � 2 ln 2: (B.7) (12 � n) = � � 2 ln 2 + 2Pnk=1 1(2k�1) : (B.8) (�12 ) = � � 2 ln 2 + 2: (B.9)
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