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to provide an elegant regularization method [2℄ for the evaluation of objets as one-loope�etive ations and Casimir energies, as disussed, for instane, in the reviews [3℄.In the ase of operators with a non positive-de�nite prinipal symbol, another spetralfuntion has been studied, known as �-funtion [4℄, whih haraterizes the spetral asym-metry of the operator. This spetral funtion was originally introdued in [5℄, where anindex theorem for manifolds with boundary was derived. In fat, the �-funtion of theDira operator, suitably restrited to the boundary, is proportional to the di�erene be-tween the anomaly and the index of the Dira operator, ating on funtions satisfyingnonloal Atiyah-Patodi-Singer (APS) boundary onditions. Some examples of appliationwere disussed in [6, 7℄.Suh nonloal boundary onditions were introdued mainly for mathematial reasons,although several appliations of this type of boundary value problems to physial systemshave emerged, ranging from one-loop quantum osmology [8℄, fermions propagating inexternal magneti �elds [9℄ or so-alled S�branes, whih are mapped into themselves underT�duality [10℄. So far, �-funtions have found their most interesting physial appliationsin the disussion of fermion number frationization [11℄: The frational part of the vauumharge is proportional to �(0). The ��funtion also appears as a ontribution to thephase of the fermioni determinants and, thus, to e�etive ations [12℄. Furthermore,both the index and the �-invariant of the Dira operator are related to sattering datavia a generalization of the well-known Levinson theorem [13℄. A thorough disussion ofthe index, �� and ��funtions in terms of boundary spetral funtions for APS boundaryproblems an be found in [14, 15℄.Alternatively, one may onsider the boundary value problem for the Dira operator atingon funtions that satisfy loal, bag-like, boundary onditions. These onditions are loselyrelated to those appearing in the e�etive models of quark on�nement known as MIT bagmodels [16℄, or their generalizations, the hiral bag models [17℄. The physial motivationfor studying these loal boundary onditions is thus lear.In this paper, we will study the Eulidean Dira operator in two dimensions, ating onfuntions satisfying loal bag-boundary onditions [18, 19℄. Suh boundary onditions are2



de�ned through the projetor in equation (3) of the next setion. They ontain a realparameter �, whih is to be interpreted as analyti ontinuation of the well known �-parameter in gauge theories. Indeed, for � 6= 0, the e�etive ations for the Dira fermionsontain a CP -breaking term proportional to � and proportional to the instanton number[19℄; for example 2 dimensions: �e� � � Z d2xF01 + : : :4 dimensions: �e� � � Z d4x�����F��F�� + : : :For � 6= 0 we will refer to the bag boundary onditions as hiral while, in the partiularase � = 0, we will all them non-hiral or pure MIT onditions. In both ases, the Diraoperator is self-adjoint. Moreover, in two dimensions, not only the �rst order boundaryvalue problem is ellipti, but also the assoiated seond order problem is so.One of the main harateristis of bag boundary onditions is that they lead to an asym-metry in the non-zero spetrum. Thus, in this paper we will study the boundary ontribu-tion to the spetral asymmetry for bag boundary onditions in two-dimensional Eulideanspae. The pure MIT ase was studied, for any even dimension, in [20℄. We will ompareour results to those in this referene whenever adequate.Note that, as in any even dimension, there is no volume ontribution to the asymmetry(for a proof see, for instane, [4℄; qualitatively, this is due to the existene of 5, whihantiommutes with the Dira operator). So, the boundary ontribution is also the totalasymmetry. In setion 3, the asymmetry will be expressed in terms of spetral funtionsof the boundary operator A. Throughout our alulation in that setion, we will assumethe manifold to be of produt type near the boundary, and A to be independent of thenormal variable.As an example of a produt manifold we will evaluate, in setion 4, the asymmetry in a�nite ylinder with twisted boundary onditions along the irle diretion, imposing APS-boundary onditions on one end of the ylinder and hiral bag onditions on the otherend. The result will be shown to be onsistent with our general predition in setion 3.In setion 5, we will ompute the spetral asymmetry in the ase of a disk (two-dimensional3



bag), for hiral bag boundary onditions. Note this is a non-produt ase; however, wewill suggest that the outome of this alulation might be understood from our generalresult in setion 3.Finally, setion 6 ontains the generalization to the ase in whih ertain gauge potentialsare present, as well as some omments onerning the extension of our results to higherdimensions.2 The heat kernel in terms of boundary eigenvaluesIn this setion we rewrite the known heat kernel for the free Eulidean Dira operatoron the semi-in�nite ylinder subjet to bag-boundary onditions, suh that the spetralresolution with respet to the boundary operator beomes transparent. To this end, it isonvenient to hoose a hiral representation for the Eulidean -matries in 2-dimensions,0 = �1; 1 = �2 and 5 = �i01 = �3: (1)Then, the free Dira operator takes the formP = i(0�0 + 1�1) = � 0 �1 +A��1 +A 0 � ; (2)where A is the boundary operator A = i�0;whih will play an important role in what follows. The eulidean \time"-oordinate 0 �x0 < � is tangential to the boundary at x1 = 0. The \spatial" variable x1 � 0 is normalto the boundary and grows toward the interior of the semi-in�nite ylinder. The projetorde�ning the loal bag boundary onditionB ��x1=0 = 0at the boundary x1 = 0 reads 4



B = 12(1� i5e5�n=) = 12(1 + i5e5�1) = 12 � 1 e�e�� 1 � ; (3)where n� is the outward oriented normal, n� = (0;�1).For onveniene we introdue the variables �� = x� � y� and � = x1 + y1. Then, the heatkernel of the assoiated seond order operator reads, in terms of the eigenvalues an of theboundary operator A,K(t; x; y) = 1�p4�tXn eian�0e�a2ntne��21=4t1l + e��2=4tM�N tanh �e��2=4th1� p4�tsinh 2� an eun(�;t)2erf�un(�; t)�io ; (4)where we introdued the abbreviationun(�; t) = �p4t � anpt tanh �and the omplementary error funtion,erf(x) = 2p� Z 1x dy e�y2 :Moreover, 1l denotes the 2�2-identity matrix,M = � e� sinh � � osh �� osh � �e�� sinh �� and N = � e� �1�1 e�� � sinh �:For �nite temperature �eld theory, in whih ase the Dira �eld is antiperiodi in x0 andhene the eigenvalues of the boundary operator are an = 2�(n + 1=2)=�, the result (4)oinides with the Fourier transform of equation (101) in [21℄.3 Boundary ontribution to the spetral asymmetry frombag boundary onditionsAs already ommented, sine the eulidean spae-time is even dimensional, there is nobulk ontribution to the asymmetry. To obtain the boundary ontribution, the eigenvalue5



problem for the Dira operator P should be investigated on a ollar neighborhood of theboundary. Here, we onsider instead the operator on the semi-in�nite ylinder extendingto x1 ! 1. As is well-known [20℄, sine we are treating a self-adjoint problem, thisyields the orret answer for an invertible boundary operator A. We shall disuss the noninvertible ase toward the end of this setion. Hene, for the moment, we assume an 6= 0for all n.Denoting the real eigenvalues of the Dira operator by �, the relevant spetral funtion is�(s; P ) =X� sign�j�js = ��s+ 12 ; P 2; P� = 1�� s+12 � Z 10 dt t s�12 Tr�P e�tP 2�: (5)The Dira trae an be omputed with the help oftr(0;11l) = tr(1M) = tr(1N) = 0 andtr(0M) = �2 osh � ; tr(0N) = �2 sinh � :From (4) one obtains for the Dira-trae of the kernel needed in equation (5)trhxjPe�tP 2 jyi = osh �e��2=4ti�p�t tr ��x0 Xn eian�0e�a2ntn1� tanh2 � ��h1� anp4�tsin 2� eun(�;t)2erf�un(�; t)�io! : (6)After performing the derivative with respet to x0, setting x� = y� and integrating overthe tangential variable, one is left with the following integral over the normal variablex1 � x:Tr�Pe�tP 2� =Xn ane�a2nt 1Z0 dxn 1p�t + an tanh � eu2n(2x;t) erf�un(2x; t)�o e�x2=tosh � ; (7)where we took into aount that for x� = y� we haveun(�; t) = un(2x; t) = xpt � anpt tanh �; x = x1:6



Now, we may use the simple identity�12 ��xhe�x2=t+u2n(2x;t)erf�un(2x; t)�i = e�x2=th 1p�t + an tanh � eu2n(2x;t)erf�un(2x; t)�ito rewrite the relevant trae as follows,Tr�Pe�tP 2� = � 12 osh �Xn ane�a2nt= osh2 � Z 10 dx ��x he�2xan tanh �erf (u(2x; t))i= 12Xn anosh �e�a2nt= osh2 �erf��pt tanh �an� : (8)The asymmetry is obtained by inserting (8) into (5) and, hene, it is given by�(s; P ) = 1�( s+12 )Xn an2 osh � Z 10 dt t s�12 e�a2nt= osh2 � h1� erf��pt tanh �an�i ;where erf is the error funtion,erf(x) = 1� erf(x) = 2p� Z x0 dy e�y2 :Finally, hanging variables to � = a2nt= osh2 �, interhanging the order of the integrationsand integrating over � one obtains the following rather expliit expression�(s; P ) = 12 oshs �Xn �a2n��s=2hsign(an) + I(s; �)i= 12 oshs �h�(s;A) + �( s2 ; A2)I(s; �)i; (9)where we have introdued the funtionI(s; �) = 2p� �( s2 + 1)�( s2 + 12) sinh �Z0 dx �1+x2��1�s=2:With �I(0; �) = 2 artan(sinh �) we obtain�(0; P ) = 12n�(0; A) + 2� �(0; A2) artan(sinh �)o : (10)7



Now, the seond term within the urly brakets an be seen to vanish, sine the boundaryis a losed manifold of odd dimensionality. In fat, in our ase, �(0; A2) = a1(A2) = 0,where a1(A2) is a heat kernel oeÆient in the notation of [4℄ (for details, see Theorem1.12.2 and Lemma 1.8.2 in this referene), and we are left with�(0; P ) = 12�(0; A) : (11)As far as A is invertible, this is the main result of this setion, relating the ��invariant ofthe Dira operator to the same invariant of the boundary operator. Note that the outomeis the same irrespetive of the value of �, i.e., it holds both for pure MIT and hiral bagonditions. The �rst ase was treated before in [20℄; our result oinides with the one givenin that referene (equation (4.16)), up to an overall fator 1=2. This disrepany seems tobe due to an extra fator of 2 in equations (4.7) and (4.8) in that referene. This extrafator is inonsistent with equation (4.10), and has seemingly propagated to Theorem 4.4in the same paper.Our result (11) hanges sign when the normal to the boundary points in the opposite dire-tion, sine then the non-diagonal entries in M and N hange sign and, as a onsequene,so does the Dira trae.As already pointed, (11) gives the whole spetral asymmetry when the boundary Diraoperator 0A is invertible. In fat, for suh ases it was proved in [20℄ (see also [22℄) thatthe asymmetry splits, in the adiabati (in�nite volume) limit, into the volume ontributionplus the in�nite ylinder one. Moreover, referene [23℄ shows that the spetral asymmetryis independent from the size of the manifold when the boundary value problem is selfadjoint, as in our ase. This, together with the vanishing of the volume ontribution ineven dimensions, leads to the previous onlusion.Now, we study the more subtle ase of a non-invertible boundary operator A. Then, asan be seen from (7), an = 0 would give no extra ontribution in the semi-in�nite ylinder.However, in this ase, the trae (8) an di�er in a substantial way from the orrespondingone in the ollar neighborhood. As explained in [22℄, both large t behaviors may bedi�erent, thus giving extra ontributions to the asymmetry in the ollar. This di�erene8



in high t behavior is due to the presene of \small" eigenvalues, vanishing as the inverseof the size of the manifold in the adiabati limit [24℄. These extra ontribution an bedetermined, modulo integers, by using the arguments in [4, 23, 25℄. To this end, onsiderthe one-parameter family of di�erential operatorsP� = P + 2�� �0; P0 = P:These operators share the same �-independent domain. They are invertible for � 6= 0 andan be made invertible for all � by subtrating the projetor on the subspae of smalleigenvalues related to the zero-modes at � = 0. This then yields a new family of operatorsP 0� and one obtains�(0; P�) = �(0; P 0�) modZ and dd��(0; P�) = dd��(0; P 0�):Then, di�erentiating with respet to � one �ndsdd��(0; P 0�) = 1�( s+12 ) dd� 1Z0 dt t s�12 Tr�P 0�e�tP 0�2���s=0= 1�( s+12 ) 1Z0 dt t s�12 TrhdP 0�d� �1 + 2t ddt�e�tP 0�2i��s=0= � 2� s� �( s+12 ) 1Z0 dt t s�12 Tr�0e�tP 0�2�+ 4���( s+12 ) Tr�t s+12 0e�tP 0�2�1t=0���s=0 ;(12)
where we performed a partial integration to arrive at the last equation. In addition, weused dP 0�=d� = 2�� 0. Sine P 0� � P� is an operator of �nite range we may safely skip theprime in the last line of the above formula. Finally, the very last term in equation (12)an be seen to vanish, whih gives, for the spetral ow (with almost the same alulationas the one starting with equation (6), exept that no derivative w.r.t x0 must be taken)dd��(0; P 0�) = ���Resjs=0h�( s+12 ; A2) + 2��(s+1; A) artan(sinh �)i : (13)Now, the seond term an be seen to vanish, sine (again with the notation of [4℄),9



p�Resjs=0�(s+1; A) = 2a0(A2; A) = 0. Moreover, p�Resjs=0�( s+12 ; A2) = 2a0(A2) = �� .Thus, one �nally has for the spetral ow, no matter whether A is invertible or notdd��(0; P�) = �1 (14)So, at variane with the ase treated in Theorem 2.3 of referene [25℄, the spetral owdoesn't vanish for bag boundary onditions. As a onsequene, the ontribution to theasymmetry oming from boundary zero modes is di�erent from an integer. This also seemsto disagree with the result in [20℄. Unfortunately, we were not able to trae the origin ofthis disrepany from the results presented in that referene. However, we will see, in thenext setion, an expliit example of how this works.4 The asymmetry in a �nite ylinderHere, we onsider the simple ase of the free Dira operator on a �nite \ylinder" andimpose twisted boundary onditions in the Eulidean time diretion (x0 ranges from 0 to�), non-loal APS boundary onditions at x1 = 0 and loal hiral bag boundary onditionsat x1 = L. (Note that twisting the boundary �ber is equivalent to introduing a onstantA0 gauge �eld in the Dira operator).APS L
x0 x1

bag
The eigenfuntions of the Dira operator (2) an be expanded in eigenfuntions of theboundary operator A = i�0, satisfying twisted boundary onditions in the time-diretionwith twist parameter �,  (x0 + �) = e2�i� (x0), as follows10



 =Xn  n(x1)eianx0 ;  n = � fngn� ; (15)where the eigenvalues of the boundary operator readan = 2�� (n+ �); n 2 Z:For de�niteness, we will onsider 0 � � < 1 suh that an � 0 is equivalent to n � 0and an < 0 to n < 0. A vanishing � orresponds to periodi boundary onditions, and� = 1=2 to anti-periodi (�nite temperature) boundary onditions. The mode-funtionsin (15) ful�ll the simple di�erential equationsg0n � angn = �fn and � f 0n � anfn = �gn:At x1 = 0, the APS boundary onditions requirean � 0 : fn(0) = 0 and an < 0 : gn(0) = 0 :Hene, the mode-funtions have the form n�0 � � � sinh�x1�an sinh�x1 � � osh�x1� ;  n<0 � ��an sinh�x1 + � osh�x1� sinh�x1 �with � =pa2n � �2. On these we must impose hiral bag boundary onditions at x1 = L.The projetor de�ning these onditions readsB = 12(1� i5e5�n=) = 12 � 1 �e��e�� 1 � ;and yields the following transendental equations(�e�� + an) sinhL�n(�) + �n(�) oshL�n(�) = 0; for n � 0(�e� + an) sinhL�n(�)� �n(�) oshL�n(�) = 0 for n < 0 (16)for the eigenvalues �(�) of the Dira operator on the �nite ylinder with APS and bagboundary onditions. With the evident relationa�n�1(�) = �an(1� �)11



one shows that the assignment(n; �; �; �) �! (�n� 1; 1 � �;��;��) (17)maps one of the lines of equation (16) into the other. Hene, it suÆes to onsider thease n � 0. The ontribution of the negative n to spetral funtions is taken into aountby exploiting the symmetry (17).Let us �rst study the asymmetry for � 6= 0, thus exluding the ase of a non-invertible A.From the well-known formulaX� ��s = 12�i I� dzzs f 0(z)f(z) ; (18)with f de�ned by the left hand side in the �rst line of equation (16), one obtains�(s; P ) = 12�i 1Xn=0Z� dzzs ddz log (an+ze��) sinhL�n(z) + �n(z) oshL�n(z)(an�ze��) sinhL�n(z) + �n(z) oshL�n(z)���! 1��; �! ��� : (19)with �n(z) = pan � z2. The urve � omes from 1 + i� to a small semi-irle avoidingthe origin and bak to +1� i�, surrounding the real positive axis ounterlokwise.=(z)
<(z)�zeroes of f(z)

12



Now, the ontour an be opened to the imaginary axis, and the irle around the originan be shrunken, sine the integrand vanishes at z = 0. After doing so, one gets�(s; P ) = 1i� 1Xn=0 1Z0 dtts os ��s2 � ddt log (an � it e��) tanhL�n(it) + �n(it)(an + it e��) tanhL�n(it) + �n(it) � ��! 1� �; �! ��� :Now, hanging variables aording to t = anu, one obtains�(s; P ) = 1i� 1Xn=0 os ��s2 �a�sn 1Z0 duus ddu log (1� iu e��) tanh[Lanp1 + u2℄ +p1 + u2(1 + iu e��) tanh[Lanp1 + u2℄ +p1 + u2�(�! 1� �; � ! ��) :The whole expression an be evaluated at s = 0, and one obtains the following simpleresult for the spetral asymmetry�(0; P ) = �12 [�H(0; �) � �H(0; 1� �)℄ = �� 12 ; (20)where �H is the Hurwitz �-funtion. In partiular, the asymmetry vanishes in the �nitetemperature ase (� = 12).As shown in the previous setion (equation (11)), bag boundary onditions give, in theabsene of boundary zero modes, a ontribution �12�(0; A) to the asymmetry. The minussign is due to the fat that, at x1 = L, the external normal is (0; 1). APS boundaryonditions give no ontribution at all and, as a onsequene, the total asymmetry is dueto bag boundary onditions. In this ase, it an easily be omputed in terms of Hurwitzzeta funtions�12�(0; A) = �12�2�� ��shXn�0(n+ �)�s �Xn>0(n� �)�s)i���s=0whih is seen to redue to equation (20).Let us �nally study the periodi ase, where a boundary zero mode does exist. The totalasymmetry an be obtained as follows: From the symmetry (17) it follows, that(n; �; �) �! (�n;��;��); n 6= 013



is a symmetry of the equations (16). The ontribution from this modes an be evaluatedas in the invertible ase, and it is seen to be 12 � 2� artan e�. Regarding n = 0, theontribution oming from these modes an be omputed diretly in terms of Hurwitz zetafuntions, and it gives �1 + 2� artan e�. So, the sum of both ontributions gives for thetotal asymmetry �(0; P ) = �12 .This result is again in omplete agreement with our general result in the previous setion.In fat, APS boundary onditions do not ontribute to the asymmetry mod Z. Theontribution of the loal boundary onditions mod Z an be gotten from the spetral owin equation (12). Hene,�(0; P0)� �(0; P1=2) = �(0; P0) = �12 (modZ):It is interesting to note that in all ases bag boundary onditions transform the would-beontribution to the index due to APS boundary onditions into a spetral asymmetry. Infat, the problem an be easily seen to present no zero modes.5 Spetral asymmetry in the diskIn this setion, we will study the spetral asymmetry for the free Dira operator in a disk,subjet to bag boundary onditions at the radius R and with arbitrary �. Note that weare dealing with a non-produt ase. However, we will suggest a plausible interpretationin terms of our results in 3. The Dira operator on the disk, subjet to nonloal APS-onditions has been arefully analyzed in [7, 13℄. In partiular, the onnetion to thesattering theory of P 2 has been lari�ed in [13℄.We hoose the same hiral representation as in setion (2) and take polar oordinates(r; '), suh that the free Dira operator takes the formP = i�r�r + '�'r �; with r = � 0 e�i'ei' 0 � ; ' = � 0 �ie�i'iei' 0 � : (21)Here, the angle ' is the boundary variable, and 0 � r � R is the outward-growing normalone. With n= = r the projetor de�ning bag boundary onditions at r = R reads14



B = 12�1� i5e5�r� = 12 � 1 �ie��i'ie��+i' 1 � ; (22)and the boundary operator at r = R isA = iR �':We expand the eigenfuntions of the Dira operator P in eigenfuntions of the total angularmomentum operator J = 1i ��' + 12�3;whih ommutes with both P and B, = 1Xn=�1 n� fn(r)ein'gn(r)ei(n+1)' � : (23)The radial mode-funtions are determined by the di�erential equation P = � , togetherwith the bag boundary onditions. The di�erential equation implies,fn = Jn�j�jr� and gn = �i sign(�)Jn+1�j�jr� ;where Jn is the Bessel funtion of integer order n. The boundary onditions with boundaryoperator (22) yieldJn�j�jR�� e�sign(�)Jn+1�j�jR� = 0; n 2 Z : (24)Here it is onvenient to onsider these onditions for positive and negative eigenvalues �separately. With the help of J�n(x) = (�)nJn(x) they an be written as follows:� > 0 : Jn(j�jR)� e�Jn+1(j�jR) = Jn(j�jR) + e��Jn+1(j�jR) = 0� < 0 : Jn(j�jR) + e�Jn+1(j�jR) = Jn(j�jR) � e��Jn+1(j�jR) = 0;where n = 0; 1; 2; : : :. Note these onditions are left invariant by the replaement(�; �) �! (��;��):15



Hene, with the help of (18) the spetral asymmetry is given by the following ontourintegral in the omplex plane�(s; P ) = 12�i 1Xn=0Z� dz z�s ddz log�Jn(zR)� e�Jn+1(zR)Jn(zR) + e�Jn+1(zR)�� (� ! ��)where the ontour � is the same as in (19). Again we deform the path of integration suhthat we integrate along the imaginary axis. After doing that, and using the de�nition ofthe modi�ed Bessel funtions,Jn(ix) = inIn(x) and Jn(�ix) = (�i)nIn(x);we obtain�(s; P ) = 1i� os �s2 1Xn=0 1Z0 dt t�s ddt log In(tR) + ie�In+1(tR)In(tR)� ie�In+1(tR) � (�!��): (25)It is onvenient to separate the ontribution from n = 0, whih an be evaluated at s = 0without problems. The orresponding integral gives�n=0(0; P ) = 1i� log I0(tR) + ie�I1(tR)I0(tR)� ie�I1(tR) ���10 � (� ! ��)= 1i� log 1 + ie�1� ie� � (� ! ��) = 4� h�4 � artan e��i (26)For the remaining subspaes, n 6= 0, we add and subtrat the �rst term in the Debyeexpansion of the modi�ed Bessel funtions.To this end, we hange variables aording to t = nu=R, so that�n 6=0(s; P ) = 1i� os �s2 1Xn=1� nR��s1Z0 duu�s ddu log In(nu) + ie�In+1(nu)In(nu)� ie�In+1(nu) � (�!��) : (27)The �rst term in the Debye expansion of the argument of the logarithm giveslog In(nu) + ie�In+1(nu)In(nu)� ie�In+1(nu) � logF (u; �); F (u; �) = �p1 + u2 � 1� iue��p1 + u2 � 1 + iue�� :16



When this is added and subtrated in equation (27), the subtrated part an be seen tovanish at s = 0, sine the integrand anels both at 0 and 1. Thus, we are left with�n 6=0(s; P ) = 1i� os �s2 1Xn=1� nR��s 1Z0 duu�s ddu logF (u; �)� (�! ��) ;whih yields a �nite expression for s = 0,�n 6=0(0; P ) = 1i� �R(0) log F (u; �)���10 � (�! ��) ;where �R is the Riemann zeta funtion. Inserting the values of F and �R(0) yields�n 6=0(0; P ) = 2� h artan e�� � �4 i : (28)When added to the ontribution in equation (26), this gives for the total asymmetry�(0; P ) = 2� � artan e� � �4 i = � 2� � artan e�� � �4 i : (29)This is, up to a sign, preisely the result predited by equation (10) when the eigenvaluesof A are of the form an = n=R, with n 2 Z. In fat, in this ase, �(0; A) = 0 and� 0(0; A2) = �1 (This last is evaluated in the subspae orthogonal to the zero mode). Thisan be interpreted as follows: The operator P in equation (21) is not of the form (2).However, it redues to suh a form (although with an r-dependent A) after hoosing theeigenfuntions as in (23). Now, due to the di�erent dependene on the tangent variable ofboth omponents in the spinors, 0A never goes through zero modes and the alulationin the in�nite ylinder seemingly gives the orret value for the asymmetry, even thoughthis is a non-produt example. On the disk the left hand side in (10) hanges sign sinethe oordinate r normal to the boundary inreases if one leaves the disk.6 CommentsAs already pointed out, our result in equation (11) gives the answer also in the preseneof a onstant A0 gauge �eld, whih an always be eliminated with the only onsequene of17
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