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1 Introdu
tionInstantons are self-dual solutions of the pure Yang-Mills equations [1℄. For the 
lassi
algroups the 
omplete set of instanton solutions on R 4 (and via stereographi
 proje
tion S4)have been known for over twenty years. Although even now some important details remainobs
ure. For example, what is the metri
 on the k-instanton moduli spa
e [2, 3, 4℄ forR 4 instantons? This is an important ingredient in the instanton-theoreti
 
he
ks [5, 6, 7℄of the Seiberg-Witten results [8℄ in N = 2 supersymmetri
 Yang Mills theory. For otherfour manifolds even less is known. A parti
ularly important manifold is the four torus T4.Firstly, it is 
ompa
t, thereby removing from the outset, any infrared divergen
es. Unlikeother 
ompa
t four manifolds (e.g. S4 orK3) the four torus retains translational invarian
e,and is 
at. However, while T4 has all these attra
tive features the only known expli
it T4instanton solutions are some redu
ible 
onstant 
urvature solutions due to 't Hooft [9℄.These exist only for spe
ial values of the periods and 
an only represent singular points inthe moduli spa
e of a given instanton se
tor. The possibility that these 
onstant 
urvaturesolutions are the only instantons on T4 was ruled out a long time ago by Taubes [10℄.However, using the Nahm transformation, it 
an be shown that there exist no untwistedinstantons with unit topologi
al 
harge on T4 [11, 12℄. The work of Taubes establishedthe existen
e of instantons in all higher topologi
al 
harge se
tors. A similar pattern isfollowed by the O(3) sigma model instantons on T2 [13℄. Here the one instanton se
tor isempty, and this 
orresponds to the statement that there are no ellipti
 fun
tions with asingle simple pole in the fundamental torus.How should one start to look for instanton solutions on T4? An obvious approa
h wouldbe to adapt to the torus the te
hniques developed in the late 1970's for the R 4 problem.Loosely speaking, we seek periodi
 versions of these ans�atze, sin
e instantons on T4 
an beviewed as periodi
 solutions1 on R 4. The general solution to the instanton problem on R 4was provided by Atiyah, Drinfeld, Hit
hin and Manin (ADHM) [14℄. This work redu
esthe problem of 
onstru
ting instantons on R 4 or S4 to an exer
ise in algebra. To 
onstru
tan instanton with topologi
al 
harge k one must �nd a quaternioni
 (k+1)�k matrix,M ,obeying 
ertain non-linear reality 
onditions. However, while this 
onstru
tion is purelyalgebrai
, its stru
ture is very mu
h tied to the manifold R 4 or S4, and it appears diÆ
ult1They 
an only be periodi
 in a singular gauge. 1



to `make it periodi
' in a simple way. An important sub
lass of solutions is provided by the't Hooft ansatz [15, 16, 17, 18℄. This 
onverts a (singular) positive solution of the Lapla
eequation into an SU(2) instanton. Sin
e this is a linear equation, it seems that we simplyhave to �nd a periodi
 solution of the Lapla
e equation to 
onstru
t an instanton on thetorus. However, it is not too diÆ
ult to show that it is impossible to 
onstru
t a positivesolution of the Lapla
e equation on T4 with a

eptable singularities (i.e. singularities whi
hdo not show up in the Yang-Mills a
tion density).In this paper we render the ADHM 
onstru
tion periodi
 by `brute for
e', in that weregard instantons on the torus as a periodi
 latti
e of instantons on R 4. We start withADHM data 
orresponding to an in�nite array of instantons embedded in R 4. While ourinitial obje
tive was to extra
t the T4 instantons, we will see that the less ambitious targetto have periodi
ity in fewer than four dire
tions o�ers 
onsiderable te
hni
al simpli�
ation.To that end we 
onsider the appli
ation of the ADHM method to SU(2) Yang-Mills onTn � R 4�n for n = 1; 2; 3; 4. Although T4 has no one instanton solution, S1 � R 3, T2 � R 2and T3 � R should have [12℄. Again the O(3)-sigma model provides a useful hint, sin
ewhile there are no one-instantons on T2, one-instanton solutions have been 
onstru
ted onS1 � R [19℄. As the R 4 topologi
al 
harge of a Tn � R 4�n instanton is in�nite we have todeal with an in�nite dimensional M matrix. For the k-instanton problem on Tn � R 4�n,M 
an be related to a U(k) Weyl operator on ~Tn, ~Tn being the torus dual to Tn. This isa manifestation of the Nahm transformation [20, 21℄.Re
ently this programme has been implemented by Kraan and van Baal in the one-instanton se
tor of SU(N) gauge theory on S1�R 3 [22, 23℄. Equivalent results were derivedindependently by Lee and Lu [24℄. These works revealed a vivid `monopole 
onstituent'pi
ture of 
alorons (see also [25, 26, 27, 28℄). There is however an important pitfall in thiswhole approa
h; even if one has 
onstru
ted a Weyl operator on ~Tn via the ADHM methodone must 
he
k that it a
tually leads to a well de�ned gauge potential on Tn�R 4�n.2 Herewe solve the ADHM 
onstraints for the one instanton problem on Tn � R 4�n and giveparti
ular solutions for the two instanton 
ase. However, we are only able to expli
itly
he
k that these sometimes lead to a well de�ned gauge potential for n = 2. This isbe
ause the te
hni
al task of solving the Weyl equation on ~Tn be
omes more involved for2For n = 1 the pro
edure always leads to a well de�ned instanton.2



higher n. We will see that the n = 2 
ase (i.e. T2 � R 2) boils down to a spe
i�
 AharonovBohm problem 3 on ~T2. A stringy interpretation of T2 � R 2 instantons 
an be found in[32℄. Our gauge potential on T2 � R 2 is well de�ned only if we apply 
ertain 
onstraintson the ADHM parameters. In the one instanton se
tor there is an upper limit on thes
ale parameter. For our sub
lass of two instantons further 
onstraints emerge. The two`
omponent' instantons must share a 
ommon s
ale parameter whi
h itself is bounded fromabove. Furthermore, the relative group orientation of the two instantons is 
onstrained.The outline of this paper is as follows. In 
hapter 2 we brie
y re
all the standard ADHM
onstru
tion on R 4 and then explain in a general way how it 
an be `made periodi
' inone or more dire
tions. In 
hapter 3 we solve the ADHM 
onstraints for the one-instantonproblem on Tn� R 4�n. The asso
iated Weyl operator on ~Tn is given expli
itly in terms ofa spe
i�
 Green's fun
tion for the Lapla
e operator on ~Tn. Then we spe
ialise to T2� R 2,where the Weyl equations seem to be more manageable than in the general 
ase. Finallyin 
hapter 4 we dis
uss the two instanton problem. Some te
hni
al results are given in theappendi
es.During the writing up of this paper we be
ame aware of some related work by Jardim.In a series of papers [33, 34, 35℄ a mathemati
ally sophisti
ated analysis of the Nahmtransformation on T2 � R 2 has been given. A somewhat more physi
al a

ount 
an befound in [36℄ where the Jardim formalism is applied to periodi
 monopoles, i.e. instantonson S1 � R 2 so that the dual torus is ~S1 � R instead of ~T2.2 ADHM 
onstru
tionIn this 
hapter we review the standard ADHM 
onstru
tion on R4. We then explain howthe formalism 
an be extended to Tn � R 4�n. This is a straightforward extension of theS1 � R 3 formalism.2.1 ADHM on R4Closely following the presentation of Christ Weinberg and Stanton [37℄ (see also [38℄) webrie
y re
all the ADHM 
onstru
tion. For simpli
ity we spe
ialise to the gauge group3To our knowledge the extensive literature on the AB problem (see for example [29, 30, 31℄) does notexpli
itly ta
kle this spe
i�
 
ase. 3



SU(2). We wish to 
onstru
t a self-dual SU(2) Yang-Mills �eld A�(x) on R 4 with topo-logi
al 
harge or instanton numberk = � 116�2 ZR 4 d4x tr (F��F��) : (2.1)Here the Yang-Mills �eld strength isF�� = ��A� � ��A� + [A�; A�℄; (2.2)and the gauge �eld A� 
an be viewed as a 2� 2 anti-Hermitian tra
eless matrix. However,one 
an equally regard A� as being a purely imaginary quaternion. Re
all that the spa
eof quaternions H has four generators i� = (1; î; ĵ; k̂) where the î, ĵ, k̂ anti
ommute andsatisfy î2 = ĵ2 = k̂2 = �1; îĵk̂ = �1: (2.3)The transition ba
k to the standard Pauli matrix language 
an be made via the identi�-
ations î$ �i�1, ĵ $ �i�2, k̂ $ �i�3. We will use � to denote quaternioni
 
onjugation(i.e. 1� = 1, î� = �î, ĵ� = �ĵ, k̂� = �k̂). In the following y should be understood as thetranspose of the quaternioni
 
onjugate.The re
ipe for 
onstru
ting a self-dual A� with instanton number k is as follows. Onesimply has to 
onstru
t a k + 1� k quaternioni
 matrix M with the following properties:i) the k � k matrix M yM is real.ii)M is linear in the quaternion x � x0+x1 î+x2ĵ+x3k̂ formed from the four Eu
lidean
oordinates.The 
orresponding anti-hermitian self-dual gauge potential is given byA�(x) = N y(x)��N(x); (2.4)where N(x) is a k + 1 
omponent 
olumn ve
tor satisfyingM yN = 0; and N yN = 1: (2.5)Without loss of generality one may assume M has the following form [37, 38℄M = � v̂M � ; (2.6)4



where v is a k-
omponent row ve
tor v made up of k 
onstant quaternionsv = (q1 q2 ::: qk): (2.7)These quaternions en
ode the s
ales and SU(2) group orientation of the k `
omponent'instantons. M̂ is a k � k matrix with the following `
anoni
al' formM̂ij(x) = Æij(yi � x) + bij: (2.8)bij is independent of x, symmetri
 and has no diagonal entries (bij = 0 for i = j). Thereality of M yM translates into the following non-linear requirement on bij12(q�i qj � q�j qi) + (yi � yj)�bij + 12 kXl=1 �b�liblj � b�ljbli� = rij; (2.9)for some real k � k matrix r. The yi 
an be interpreted as the quaternioni
 positions ofthe instantons. One 
an immediately write down a 
olumn ve
tor N satisfying (2.5)N = 0B� up�� 1p� �M̂ y��1 vy u 1CA ; (2.10)and � = 1 + vM̂�1 �M̂ y��1 vy: (2.11)Here u is an arbitrary, possibly x-dependent unit quaternion; di�erent 
hoi
es for u yieldgauge equivalent Yang-Mills �elds. Observe that it is ne
essary to invert the 
anoni
alform M̂ to extra
t the �nal gauge potential. In the singular gauge u(x) = 1, the potential
an be written, A� = � 12�v �M̂�1��M̂ y�1 � ��(M̂�1)M̂ y�1� vy: (2.12)The 
orresponding �eld strength readsF�� = 1�vM̂�1i� f i��(M̂ y)�1vy � [�$ �℄; (2.13)where f is the real k � k matrixf = (M yM)�1 = M̂�1(M̂ y)�1 � 1�M̂�1(M̂ y)�1vyvM̂�1(M̂ y)�1: (2.14)5



The reality of f ensures that F�� is self-dual.One immediately sees that A�(x) is una�e
ted by the following transformation on theADHM data M̂ ! O�1M̂O; v ! vO; (2.15)where O is a k�k real orthogonal matrix. Invoking this freedom one may argue that rij 
anbe set to zero [37℄. With this 
hoi
e bij is fully determined by the 8k parameters en
odedin the qi and yi. Three of these parameters 
orrespond to the global gauge symmetry. Thisfreedom 
an be �xed by taking q1 to be real, leaving 8k� 3 genuine moduli parameters. Atrivial but useful 
onsequen
e of the `symmetry' (2.15) is that the qi are determined onlyup to a sign. If we 
ip the sign of one of the qi, say q3 ! �q3, then this 
orresponds tothe orthogonal transformation O = diag(1; 1;�1; 1; 1; ::::).2.2 ADHM on Tn � R4�nWe view Tn as Rn modulo a n dimensional latti
e � generated by n quaternions e0, e1,... ,en�1 
orresponding to n orthogonal ve
tors. The periods or equivalently the Eu
lideanlengths of the ei are denoted by Li; i = 0; 1; :::; n�1. First we will show how (in prin
iple)one 
an produ
e instantons whi
h in the singular gauge (i.e. u(x) = 1 as in eqn. (2.12))are periodi
 with respe
t to shifts by the latti
e generators,A�(x+ ei) = A�(x); i = 0; 1; ::; n� 1: (2.16)Later we will 
onsider a more general periodi
ity property whi
h proved 
ru
ial in obtainingnew 1-instanton solutions on S1 � R 3. To 
onstru
t a k-instanton on Tn � R 4�n � R 4=�
onsider the following set up. For every � 2 � we have instantons at the positions yi+� withrespe
tive s
ale/orientation quaternions qi where i = 1; 2; :::; k enumerates the instantonsin the fundamental 
ell. The quaternions yi give the instanton positions in the fundamental
ell. Thus, our M̂ and v now have the following stru
turev�i = qi; M̂��ij = ÆijÆ��(yi + �� x) + b��ij ; i; j = 1; 2; :::; k; �; � 2 �: (2.17)The matrix b��ij has the propertiesb��ij = b��ji ; b��ii = 0 (no sum); (2.18)6



and 12(v�i �v�j � v�j �v�i ) + (yi � yj + �� �)�b��ij + 12 kXl=1 X
2� �b
�li �b
�lj � b
�lj �b
�li � = 0: (2.19)Now that M̂ is an in�nite dimensional matrix the non-linear 
onstraint appears mu
h moreformidable than its R 4 
ounterpart (2.9). Moreover, even if we 
an solve the 
onstraintwe still fa
e the problem of inverting M̂ . We see that the 
onstraint implies b��ij has thefollowing property b̂��ij = b��� 0ij ; �; � 2 �: (2.20)At this point it is useful to perform a Fourier transform [22℄;vi(z) =X�2� v�i e�i��z; M̂ij(z)Æn(z � z0) = X�;�2� M̂��ij ei��z�i��z0; (2.21)where Æn(z � z0) is a n-dimensional delta fun
tion whi
h is periodi
 with respe
t to thedual latti
e ~� = fz 2 Rnj(2�)�1z � � 2 Z for all � 2 �g: (2.22)Here � � z denotes the usual s
alar produ
t in Rn, i.e. � � z = Pn�1j=0 �jzj. The deltafun
tion has the Fourier representationÆn(z) = 1~VX�2� ei��z; (2.23)where ~V = (2�)n=L0L1:::Ln�1; (2.24)is the volume of the dual torus ~Tn := Rn=~�. Using (2.17) M̂ij 
an be written as follows~V�1M̂ij(z) = Æij  �idz � x + 1k kXl=1 yl!� iÂij(z); dz = n�1Xi=0 ii�zi ; (2.25)and �iÂij(z) = Æij  yi � 1k kXl=1 yl!+X�2� b�0ij ei��z; (2.26)7




an be regarded as a SU(k) (U(1) for k = 1) potential on the dual torus ~Tn. From now onwe will assume (without loss of generality) thatkXl=1 yl = 0; (2.27)so that ~V�1M̂ij(z) = Æij(�idz�x)� iÂij(z). The z-spa
e analogue of M 
an be written asM = � vi(z0)M̂ij(z)Æn(z � z0) � : (2.28)We also require M y M y = � (vy)i(z) (M̂ y)ij(z)Æn(z � z0) � ; (2.29)where (vy)i(z) =X�2� (v�i )� ei��z; (M̂ y)ij(z)Æn(z � z0) = X�;�2��M��ji �� ei��z�i��z0; (2.30)so that ~V�1M̂ yij(z) = Æij(�id�z � x�)� iÂ�ij(z). We now 
onsider the produ
t M yM(M yM)ij(z; z0) = (vy)i(z)vj(z0) + ~V�1 Z ~Tn dnw(M̂ y)ik(z)Æn(z � w)M̂kj(w)Æn(w � z0)= (vy)i(z)vj(z0)+~V�2 �Æik(�id�z � x�)� iÂ�ik(z)� �Ækj(�idz � x)� iÂkj(z)� Æ(z � z0):(2.31)In z-spa
e the 
onstraint that M yM is real redu
es to the self-duality equation for theSU(k) ( or U(1) ) potential Âij(z), but with delta fun
tion sour
es. These sour
es 
omefrom the (vy)i(z)vj(z0) term; with the 
hoi
e (2.17) we have vi(z) = ~VqiÆn(z).It is also possible to arrange so that in the singular gauge u(x) = 1, A�(x) is periodi
modulo global gauge transformations. This is a
hieved by repla
ing v�i = qi withv�i = e(��!)l̂qi; (2.32)where ! is an element of the dual torus and l̂ is a purely imaginary unit quaternion. Inthe u(x) = 1 gauge, the instanton potential has the following periodi
ity propertiesA�(x+ ei) = e(ei�!)l̂A�(x)e�(ei�!)l̂: (2.33)8



This 
hoi
e of v�i still entails delta fun
tion sour
es on the dual torusvi(z) = 12 ~V h�1� il̂� Æn(z � !) + �1 + il̂� Æn(z + !)i qi: (2.34)�1 + il̂� and �1� il̂� are proje
tors in the sense that�1� il̂�2 = 2�1� il̂� ; �1 + il̂��1� il̂� = 0: (2.35)Looking at the expression (2.12) for the R 4 gauge potential we see that it suÆ
es to
ompute the k-
omponent row ve
tor n := vM̂�1. The Tn � R 4�n analogue of this obje
tis the z-dependent k-
omponent row ve
tor, n(z), with 
omponentsnj(z) = ~V�1Xi Z ~Tn dnz0 vi(z0)M̂�1ij (z0; z); (2.36)and similarly the k-
omponent 
olumn ve
tor ny(z) has 
omponents(ny)i(z) = ~V�1Pj R ~Tn dnz0(M̂ y)�1ij (z; z0)(vy)j(z0). HereM̂�1ij (z; z0) =P�;� �M̂�1���ij ei��z�i��z0, so thatM̂(z)M̂�1(z; z0) = ~V2Æn(z � z0): (2.37)Using (2.34) we havenj(z) = 12 �1� il̂� qiM̂�1ij (!; z) + 12 �1 + il̂� qiM̂�1ij (�!; z); (2.38)whi
h redu
es to nj(z) = qiM̂�1ij (0; z) in the periodi
 
ase (! = 0). The Tn � R 4�n gaugepotential 
an be writtenA� = � ~V�12� Z ~Tn dnz �n(z)��ny(z)� ��(n(z))ny(z)� ; (2.39)where � is now � = 1 + ~V�1 Z ~Tn dnz n(z)ny(z): (2.40)Note that the integrand, n(z)ny(z) in (2.40) is not ne
essarily real, although the integralitself, R dnz n(z)ny(z), is real and positive (see se
tion 3.2).The 
orresponding �eld strength isF�� = V�2� Z ~Tn dnz Z ~Tn dnz0n(z)i�f(z; z0) i��ny(z0)� [�$ �℄; (2.41)9



where the Green's fun
tion f(z; z0) isf(z; z0) = (M yM)�1(z; z0) (2.42)= ~V�1 Z ~Tn dnyM̂�1(z; y)(M̂ y)�1(y; z0)� ~V�2� Z ~Tn dnyM̂�1(z; y)ny(y) Z ~Tn dny0n(y0)(M̂ y)�1(y0; z0):As we shall see, all the formulae in this se
tion require parti
ularly 
areful handling forn > 1.3 One-instantonsIn this 
hapter we 
onsider in some detail the one instanton problem on Tn � R 4�n. Inparti
ular we expli
itly determine the ADHM matrixM . Under the Fourier transform thisbe
omes a Weyl operator asso
iated with an Abelian self-dual potential Â(z) on the dualtorus ~Tn. Unfortunately we do not have a general approa
h to the solution of su
h Weylequations. In se
tion 3.2 we 
on
entrate our attention on the ~T2 Weyl equation (
orre-sponding to one instantons on T2 � R 2) where Â(z) is an Aharonov Bohm potential on~T2. The ADHM 
onstru
tion of the instanton potential A�(x) and F��(x) is 
onsidered.For values of x restri
ted to a two dimensional subspa
e of T2�R 2 
losed forms for A�(x)and F�� are given. From a mathemati
al standpoint the 
al
ulation is not 
ompletely sat-isfa
tory; a formal limiting pro
edure is employed to obtain the gauge potential. However,we are able to 
he
k that the �eld strength is self-dual and that tr(F��)2 is non-zero andsmooth. Moreover, in se
tion 3.3 we see that our potential 
an be interpreted as the Nahmtransform of the AB potential Â(z). More spe
i�
ally, we identify the two Nahm zeromodes asso
iated with Â(z).3.1 ADHM 
onstraints for Tn � R4�nLet us start by 
onsidering 1-instanton solutions on Tn�R 4�n. If we seek instantons whi
hare stri
tly periodi
 in the u(x) = 1 gauge we are immediately restri
ted to S1 � R 3. Thisis be
ause all the instantons in our latti
e will, by 
onstru
tion, have the same s
ale/grouporientation q1 and hen
e be of the 't Hooft type. Sin
e the 't Hooft instantons on S1 � R 3are well known [39℄ we will examine the more general instanton array (2.32).10



Without loss of generality we 
an assume that q1 is a real quaternion whi
h we identifyas the `s
ale' �, so that v� = e(��!)l̂�; (3.1)where we have dropped the redundant 1 subs
ript on v�. The M̂ matrix has the formM̂�� = Æ��(�� x) + b��: (3.2)We now have to determine the b matrix via (2.19). Under the Fourier transformation thisis a self-duality equation on the dual torus ~Tn. However, it is instru
tive to examine the
onstraint equation in the original (matrix) variables. In Appendix A we will argue thatfor k = 1 the quadrati
 term in (2.19) is zero, i.e. the b matrix is simplyb�� = � 12(�� �)� �v��v� � v��v�� = �2(�� �)� l̂ sin [(�� �) � !℄ ; � 6= �: (3.3)In order to 
onstru
t the potential we must now invert the M̂ matrix. To fa
ilitate thiswe perform the Fourier transform elaborated in se
tion 2.2,~V�1M̂(z) = �idz � x� iÂ(z); (3.4)where Â(z) is the U(1) potential Â(z) = i�2dz�(z)l̂; (3.5)and � is the real fun
tion�(z) = �12 X�2�n0 exp[i� � (z + !)℄� exp[i� � (z � !)℄j�j2 ; (3.6)whi
h is a Green's fun
tion for the Lapla
e operator on ~Tndzd�z�(z) = ~V2 [Æn(z + !)� Æn(z � !)℄ : (3.7)Clearly �(z) is an odd fun
tion �(�z) = ��(z): (3.8)Writing Â(z) = Pn�1l=0 ilÂl(z), one 
an 
he
k that the Abelian �eld strength F̂ij(z) =�iÂj � �jÂi is self-dual, ex
ept at the singularities z = �!.11



3.2 One-instantons on T2 � R2Sin
e our latti
e is two dimensional we may take e0 to be real and e1 to be proportionalto the purely imaginary unit quaternion l̂ 4. Now rewrite the quaternion z as followsz = z0 + l̂z1 = 12 �1� il̂� z + 12 �1 + il̂� �z; (3.9)where z = z0 + iz1, �z = z0 � iz1 denote standard 
omplex 
oordinates. We 
an write theFourier transformed M̂ as follows~V�1M̂(z) = �idz � x� iÂ0(z)� il̂Â1(z); (3.10)where Â0 = �i�2�z1�; Â1 = i�2�z0�; (3.11)and � is the Green's fun
tion de�ned by (3.6). Sin
e we are on ~T2 we 
an write � dire
tlyin terms of Ja
obi theta fun
tions5�(z) = ~V8� log ���� �L02� (z + w) + 12 + iL02L1 ; iL0L1 ����2���� �L02� (z� w) + 12 + iL02L1 ; iL0L1 ����2 + (z� �z)(w� �w)4 � iw � �w4L1 ; (3.12)where w = !0 + i!1, �w = !0 � i!1. The asso
iated �eld strength is given by F̂01 = i�2��,whi
h is zero ex
ept at z = �!. At the points ! + ~�; ~� 2 ~� we have a `
ux tube' ofstrength 12�2 ~V , and at the points �! + ~�; ~� 2 ~� we have 
ux tubes of strength �12�2 ~V.What about the x term in (3.10)? It will prove 
onvenient to de
ompose x into twopie
es x = xjj + x?; (3.13)where xjj and x? respe
tively 
ommute and anti
ommute with l̂. Therefore the xjj 
on-tribution just amounts to shifting Â0 and Â1 by 
onstants, while x? is akin to a massterm.4We 
an always perform an O(4) Lorentz transformation to arrange this.5We follow the notation of Mumford [40℄; �(z; �) = P1n=�1 e�in2�+2�inz. In the fundamental torus�(z; �) has a single zero at z = 12+ 12� , and has the periodi
ity properties �(z+1; �) = �(z; �); �(z+�; �) =e��i��2�iz�(z; �). 12



Figure 1: Flux tubes threading the dual torus at the points !+ ~� and �!+ ~� with equaland opposite strengths.We 
an write M̂(z) as follows~V�1M̂(z) = e�il̂�2�(z) ��idz � xjj� eil̂�2�(z) � x?: (3.14)This is not a pure gauge de
omposition sin
e the argument of the exponential is not a purephase. If x? = 0, one 
an immediately write down a formal inverse for M̂M̂�1(z; z0) = ~Ve�il̂�2�(z)G(z � z0)eil̂�2�(z0); (3.15)where G(z � z0) is the periodi
 free Green's fun
tion de�ned by6��idz � xjj�G(z � z0) = Æ2(z � z0); (3.16)and has the Fourier series representationG(z � z0) = ~V�1X�2� ei��(z�z0)�� xjj : (3.17)The inverse (3.15) obviously satis�es M̂(z)M̂�1(z; z0) = ~V2Æ2(z�z0) for z 6= �!. However,due to the singularities at z = �! some 
aution is 
alled for when interpreting (3.15) asthe inverse of M̂ . We will return to this point in the next se
tion. For now we will sti
kwith (3.15). G(z) 
an be de
omposed as followsG(z) = 12 �1� il̂�G�(z) + 12 �1 + il̂�G+(z); (3.18)6This Green's fun
tion exists for xjj =2 �. 13



where G�(z) are the following standard (i.e. 
omplex rather than quaternioni
) free Green'sfun
tions ��i�z � 12�xjj�G+(z) = 12Æ2(z); ��i��z � 12xjj�G�(z) = 12Æ2(z): (3.19)Here �z = 12(�z0 � i�z1), xjj = (xjj)0 + i(xjj)1 and the bar denotes 
omplex 
onjugation.Evidently G+(z) = G�(�z): (3.20)Now that we have the inverse of M̂ (at least for x? = 0) let us start the 
omputationof the gauge potential A�(x). As was emphasized in the introdu
tion it is not guaranteedthat A�(x) a
tually exists. We begin by 
onsidering �(x) for our putative one-instanton.Inserting (3.15) into (2.38) yieldsn(z) = �~V2 h�1� il̂� e�2(�(!)��(z))G�(! � z) (3.21)+ �1 + il̂� e��2(�(�!)��(z))G+(�! � z)i :We now appear to be in trouble; �(z) ! �1 as z ! �!, and so n(z) is proportional tothe `in�nite' 
onstant e�2�(!). Thus it appears that our use of the inverse (3.15) was indeedunwarranted. Note that this problem is absent on S1 � R 3; while the derivative of �(z)is dis
ontinuous at z = �!, �(�!) is well de�ned. For now we will pro
eed formally andtreat �(!) = ��(�!) as if it were a �nite 
onstant. The integrand in (2.40) isn(z)ny(z) = �2 ~V2e2�2�(!)2 h�1� il̂� e�2�2�(z)jG�(! � z)j2 (3.22)+�1 + il̂� e2�2�(z)jG+(�! � z)j2i :Here ny(z) = n�(�z): Clearly the integrand (3.22) has singularities over and above thequestionable e2�2�(!) fa
tor. We also note that n(z)ny(z) is not real. Now we will arguethat these singularities are integrable provided0 < �2 ~V < 4�: (3.23)In the neighbourhood of z = ! we have the following singularity pro�lejG�(! � z)j2 / 1jz� wj2 ; jG+(�! � z)j2 non-singular: (3.24)14



jG�(! � z)j2 has a non-integrable singularity at z = !. However, we must also 
onsiderthe behaviour of �(z) at z = ! �(z) � � ~V4� log jz� wj: (3.25)Near z = ! we have jG�(! � z)j2e�2�2�(z) / jz� wj�2+�2 ~V=(2�): (3.26)This singularity is integrable for �2 > 0. In fa
t if we take �2 ~V � 4� the singularity disap-pears. However, then jG�(!� z)j2e�2�2�(z) will not be integrable at z = �!. A

ordingly,for integrability at both z = ! and z = �! we must impose (3.23).The bound (3.23) is nothing but the statement that �2, the square of the ADHM sizeparameter, should not ex
eed the volume of the two-torus T2. Looking at the Abelian U(1)potential Â(z) the bound is quite natural. Given that its asso
iated �eld strength is zeroaway from the 
uxes one 
an formally write it as a pure gauge, i.e. Âi(z) = �zi�(z). �(z)is of 
ourse singular at the 
uxes, but for 0 < �2 ~V < 4� has a bran
h 
ut joining the two
uxes. At the 
riti
al value �2 ~V = 4� the bran
h 
ut disappears, i.e. � is single-valuedon ~T2. Then Â(z) is truly a pure gauge and hen
e physi
ally indistinguishable from the�2 ~V = 0 
ase.Let us now return to the problem of the in�nite 
onstant e�2�(!) whi
h seems to renderour instanton meaningless. De�ne a `�nite' n as follows�~Vnf(z) := e��2�(!)n(z): (3.27)For x? = 0 we have nf(z) = 12 �1� il̂� e��2�(z)G�(! � z) + 12 �1 + il̂� e�2�(z)G+(�! � z),whi
h is �nite ex
ept at the 
uxes z = �!. The gauge potential 
an be writtenA�(x) = �R ~T2 d2z hnf (z)��nyf(z)� �� (nf (z))nyf (z)i2�e�2�2�(!)��2 ~V�1 + R ~T2 d2z nf(z)nyf (z)� ; (3.28)where the �� derivative is with respe
t to x�. The only remnant of the in�nite 
onstantis the e�2�2�(!) term in the denominator of (3.28); this exponential 
an be interpreted as`zero', i.e. for our �nal potential we should takeA�(x) = �R ~T2 d2z hnf (z)��nyf (z)� ��(nf (z))nyf(z)i2�f(x) ; (3.29)15



where �f(x) = Z ~T2 d2z nf(z)nyf (z): (3.30)Although nf (z)nyf (z) is not real a short 
al
ulation suÆ
es to express �f in a manifestlyreal and positive form (here we use that �(z) is an odd fun
tion, i.e. equation (3.8))�f (xjj) = Z ~T2 d2z e�2�2�(z)jG�(! � z)j2: (3.31)So �nally, the role of the in�nite 
onstant is simply to expunge the 1 from the de�nition of�. Without the 1 the in�nite 
onstant simply drops out of the �nal potential A�(x). Thisis in sharp 
ontrast to the situation on S1�R 3, where the 1 term must be kept sin
e �(!)is a �nite 
onstant.While (3.29) represents the �nal gauge potential we have only given nf(z) and �fexpli
itly for the spe
ial 
ase x? = 0. To 
onstru
t nf (z) for x? 6= 0 is non-trivial. If wetry to bring the x? inside the bra
ket of equation (3.14) we get~V�1M̂(z) = e�il̂�2�(z) ��idz � xjj � x?e�2il̂�2�(z)� eil̂�2�(z): (3.32)Pro
eeding as in the x? = 0 
ase we 
an write the inverse as followsM̂�1(z; z0) = ~Ve�il̂�2�(z) ~G(z; z0)eil̂�2�(z0); (3.33)where ~G(z; z0) is no longer a free Green's fun
tion��idz � xjj � x?e�2il̂�2�(z)� ~G(z; z0) = Æ2(z � z0): (3.34)Inserting (3.33) into (3.27) yieldsnf(z) = 12 h�1� il̂� ~G(!; z) + �1 + il̂� ~G(�!; z)i eil̂�2�(z): (3.35)A more detailed dis
ussion of the properties of nf for x? 6= 0 will be given elsewhere.The �eld strength derived from (3.29) isF�� = ~V�1�f (x) Z ~T2 d2z Z ~T2 d2z0 nf (z) i� f(z; z0) i�� nyf (z0)� [�$ �℄; (3.36)
16



where f(z; z0) isf(z; z0) = ~V�1 Z ~T2 d2yM̂�1(z; y)(M̂ y)�1(y; z0) (3.37)� ~V�1�f (x) Z ~T2 d2yM̂�1(z; y)nyf(y) Z ~T2 d2y0nf(y0)(M̂ y)�1(y0; z0):Equations (3.36) and (3.37) are `�nite' forms of (2.41) and (2.42), respe
tively; as with thegauge potential the n(z) ve
tor is repla
ed with its �nite form, nf (z), and the 1 in � isremoved.Sin
e on the plane x? = 0 the expli
it form of nf(z) and M̂�1(z; z0) are at hand we 
analso give a 
losed form for f(z; z0):f(z; z0) = 12 �1� il̂� f�(z; z0) + 12 �1 + il̂� f+(z; z0); (3.38)where f�(z; z0) = ~Ve��2�(z)g�(z; z0)e��2�(z0); (3.39)and g�(z; z0) = Z ~T2 d2yG�(z � y)e�2�2�(y)G�(y � z0) (3.40)� 1�f Z ~T2 d2yG�(z � y)e�2�2�(y)G�(�! + y)� Z ~T2 d2y0G�(�! � y0)e�2�2�(y0)G�(y0 � z0):A suÆ
ient 
ondition for the self-duality of F��(x) is that f(z; z0) 
ommutes with thequaternions. This 
ondition is equivalent tog+(z; z0) = e2�2�(z)g�(z; z0)e2�2�(z0): (3.41)A (somewhat roundabout) proof of (3.41) is given in Appendix B.To sum up, the gauge potential, A�(x), and hen
e the �eld strength, F��(x), 
an bewritten in terms of the `renormalised' nf (z). We have expli
itly determined nf (z) on theplane x? = 0. At the point x = 0 (i.e. xjj = x? = 0) nf and hen
e A� is ill de�ned. Thisis no surprise sin
e we are working in the singular gauge u(x) = 1. The singularity has itsorigins in the zero mode stru
ture of the G�(z); we 
an writeG+(z) = � 1~V�xjj +G0+(z); G�(z) = � 1~Vxjj +G0�(z); (3.42)17



where the G0�(z) have no zero modes and are thus well de�ned for xjj = 0. AlthoughA� diverges at x = 0, lo
al gauge invariants su
h as tr(F��)2 (no sum) should be smooth(presumably C1). As for the �eld strength itself, F��(x), this is not smooth at x = 0, butits 
omponents must be bounded. Let us 
onsider F�� at x? = 0 with xjj � 0. For xjj � 0the zero modes in (3.42) dominate and so we have7nf (z) � �e��2�(z)2xjj ~V �1� il̂�� e�2�(z)2�xjj ~V �1 + il̂� ; (3.43)thus �f � 
jxjjj2 ~V2 ; (3.44)where 
 = Z ~T2 d2z e2�2�(z): (3.45)Plugging (3.43) and (3.44) into the �eld strength formula (3.36) we see that in order tohave a bounded F�� in the vi
inity of x = 0, f(z; z0) must be well behaved for xjj � 0. Tosee this 
onsider, F01 = F23, whi
h for x? = 0 and xjj � 0 has the formF01 � �2i1 ~V�1
 Z ~T2 d2z Z ~T2 d2z0 e�2�(z)e�2�(z0)f(z; z0): (3.46)F02 and F03 are a bit more 
ompli
ated; here one �nds phases of the form �xjj=xjj whi
hdo not have de�nite values at xjj = 0. These phases are an artifa
t of the singular gauge;tr(F02)2 and tr(F03)2 are well behaved at xjj = 0. We now show that f(z; z0) is smooth inthe vi
inity of xjj � 0. Sin
e the exponentials in (3.39) are xjj-independent it suÆ
es toshow that g+(z; z0) has a well de�ned xjj ! 0 limit. Glan
ing at (3.40) one sees that the�rst term in g+(z; z0) has double and single poles in xjj and �xjj. These poles are 
an
elledby the se
ond term. After some algebra one �nds thatg+(z; z0) = Z ~T2 d2y �G0+(z � y)�G0+(�! � y)� e2�2�(y) �G0�(y � z0)�G0�(y + !)��1
 Z ~T2 d2y e2�2�(y) �G0+(z � y)�G0+(�! � y)�� Z ~T2 d2y0 e2�2�(y0) �G0�(y0 � z0)�G0�(y0 + !)�+O(xjj); (3.47)7Stri
tly speaking (3.43) is only good away from z = �!. But as we are always dealing with integrablesingularities we may safely employ (3.43) under the integral sign.18



whi
h is well de�ned at xjj = 0. A similar expression 
an be obtained for g�(z; z0). From(3.39) the integrand in (3.46) is simply g+(z; z0) and so all we have to do is to integratethe right hand side of (3.47) over z and z0. Sin
e the G0�(z) integrate to zero this is trivial.Putting all this together yieldsF01 = �2i1 ~V2
 �Z ~T2 d2y e2�2�(y)jG0+(�! � y)j2 (3.48)�1
 ����Z ~T2 d2y e2�2�(y)G0+(�! � y)����2#+O(xjj):The 
ontent of the bra
kets is stri
tly positive, i.e. we have not simply determined the �eldstrength at a point where it is zero.3.3 Nahm transform interpretationIn the previous se
tion we implemented the ADHM 
onstru
tion in the one-instanton se
torfor T2 � R 2. However, in 
ontrast to the 
aloron problem n(z) appears not to exist. Thiswas 
ir
umvented by formally extra
ting an in�nite fa
tor to obtain the `�nite' nf(z). Herewe will explain pre
isely how the gauge potential (3.29) 
an be interpreted as the Nahmtransform of the AB potential (3.11). We would like to stress that this does not entail thekind of formal manipulations we used to derive (3.29) in the �rst pla
e via the ADHM
onstru
tion.The Weyl operator on ~T2 asso
iated with Â(z) has two square integrable zero modes8. These modes 
an be identi�ed with the 
olumns of nyf(z) when the quaternioni
 obje
tnf (z) is re
ast as a 2� 2 matrix with 
omplex entries. To set the s
ene let us brie
y re
allhow the Nahm transformation is formulated on T4. Consider a self-dual SU(N) potentialA�(x) on T4 with instanton number k. Then one studies the Weyl operator asso
iatedwith the U(N) potential obtained by adding a 
onstant abelian potential �iz� to A�Dz(A) = i�D�z (A); D�z = �� + A�(x)� iz�: (3.49)Provided 
ertain mathemati
al te
hni
alities are met Dy = �i��D�z (A) has k square inte-grable zero modes  iz(x) with i = 1; 2; :::; k. For 
onvenien
e we take them to be normalised8In ref [36℄ where the dual torus was take to be ~S1�R a limiting 
ase of ~T2, dim(kerD̂y) = 2 was alsoobtained. 19



to unity. The U(k) potentialÂij� (z) = ZT4 d4x izy(x) ��z� jz(x); (3.50)is a self-dual potential on the dual torus ~T4 with instanton number N . On T4 this pro
edureis involutive and (in a suitable gauge) free of singularities.Let us write the Weyl operator asso
iated with the AB potential (3.11) as a 2 � 2matrix: � i2Dyx(Â) = S � i��z + 12xjj � i��z� 12x?�12�x? i�z + 12�xjj + i�z� �S�1; (3.51)where 9 S = (1l � i�2)=p2 and x? = x2 + ix3. For x? = 0 one 
an write down twosquare-integrable zero modes for Dyx(Â) 1x(z) = 1p�f S � e�2�(z)G�(z + !)0 � ;  2x(z) = 1p�f S � 0e��2�(z)G+(z � !) � : (3.52)Both zero modes are singular at z = �!. Inserting these (normalised) zero modes into(3.50) yields exa
tly the same potential (dis
arding the U(1) part of the U(2) 
onne
tion) as
onstru
ted in the previous se
tion. If one writes nyf as a 2�2 matrix the 
olumns are (uptoa normalisation fa
tor) the Nahm zero modes. As should be 
lear from the 
onsiderationsof the previous se
tion it is non-trivial to obtain the zero modes for x? 6= 0. The 
ru
ialfeature of these zero modes is that although they are singular at the 
uxes z = �! the Weylequation does not have sour
es, i.e. Dyx(Â) ix(z) is exa
tly zero. Basi
ally, the dampingexponentials soften the singularities of the Green's fun
tions G�(z + !) and G+(z � !) sothat no delta fun
tion sour
es o

ur on the right hand side of the Weyl equation.It is also instru
tive to 
ompare the situation on T2�R 2 with the 
aloron 
ase (S1�R 3).It is easy to write down the 
orresponding zero modes on ~S1 for the 
aloron problem.One simply repla
es the ~T2 Green's fun
tions �, G+ and G� with their ~S1 
ounterparts.However, in this 
ase the Weyl equations do have sour
es. The e��2�(z), being �nite atz = �!, have no damping e�e
t on the G�. Be
ause of these sour
es, dire
t insertion ofthe ~S1 `zero modes' into (3.50) does not yield a self-dual potential on S1 � R 3. Rather,one has to 
hange the normalisation of the zero modes to 
ompensate for the sour
es. Thisamounts to in
luding 1 in the de�nition of �.9S is a unitary transformation with the property S�1�1S = �3, S�1�2S = �2 and S�1�3S = ��1.20



Given that the ~T2 Weyl operator has perfe
t zero modes what exa
tly is the status ofthe inverse of M̂ introdu
ed in the previous se
tion? What is 
lear is that our M̂�1(z; z0)is not the inverse of M̂ on the spa
e of square integrable spinors; no su
h inverse exists.Our M̂�1(z; z0) 
an be viewed as the inverse of M̂ on a spa
e of fun
tions on ~T2 havingsofter singularities at the 
uxes than the zero modes. In any 
ase M̂�1(z; z0) only entersat intermediate stages of the 
al
ulation. What is important is nf (z), whi
h, as we haveshown here, en
odes two perfe
t zero modes of our Weyl operator.Thus it seems there are three types of Nahm transformation. First and foremost isthe T4 transformation where all potentials and attendant zero modes are smooth. ForTn � R 4�n; n < 4 the self-duality equations on ~Tn have sour
e terms. The Weyl zeromodes on ~Tn are also singular but for n = 2 (and presumably n = 3) there are no sour
eterms in the Weyl equation and so (3.50) 
an be applied without modi�
ation. For n = 1(and n = 0 for that matter) the Weyl equation has sour
e terms whi
h are �nessed byaltering the normalisation of the zero modes.4 Two-instantonsThe two-instanton problem on the torus presents new 
hallenges. In parti
ular, the Nahmpotential, Â(z), on ~Tn is non-Abelian; for k = 2 instantons Â(z) is an SU(2) potential. In
ontrast to the one-instanton 
ase the determination of Â(z) is itself a non-trivial exer
ise.For T2 � R 2 and S1 � R 3 the �eld strength asso
iated with the Nahm potentials is zero,ex
ept at the singularities. But even here we do not have 
losed forms for Â(z). In se
tion4.1 we give some parti
ular solutions to the k = 2 ADHM 
onstraints. The asso
iated Weylequations for the T2 � R 2 problem are investigated in se
tion 4.2. This analysis is verysimilar to that of se
tion 3.2 for the one instantons. Indeed, the resulting two-instantons
an be viewed as twisted one instantons when the torus is 
ut in half.4.1 ADHM 
onstraints on Tn � R4�nIn the previous 
hapter we 
onsidered the general one-instanton whi
h (apart for S1� R 3)is non-periodi
. For k = 2 the ADHM 
onstraint (2.19) is obviously more 
ompli
ated.In parti
ular, the quadrati
 term in (2.19) is, in general, non-zero. There is however onesimpli�
ation at the two-instanton level; there exist non trivial solutions of the ADHM21




onstraints whi
h 
orrespond to periodi
 gauge potentials on Tn � R 4�n. This is be
ausewe 
an 
hoose the two `
omponent' instantons to have a di�erent orientation in groupspa
e.For simpli
ity, let us restri
t ourselves to the periodi
 
ase. Then for k = 2 we 
anwrite v and M̂ as followsv = (v�1 v�2 ); M̂ = � M̂��11 M̂��12M̂��21 M̂��22 � ; (4.1)where v�1 = q1, v�2 = q2, andM̂��11 = Æ��(�+ y1 � x) + b��11 ; M̂��12 = M̂��21 = b��12M̂��22 = Æ��(�+ y2 � x) + b��22 : (4.2)We now have to determine the b matri
es via (2.19). In the one instanton 
al
ulation werelied on the vanishing of the quadrati
 term in (2.19). While this will not hold, in general,for the two instanton 
ase there may be parti
ular solutions where the quadrati
 term iszero. Indeed on R 4, the k = 2 problem is expedited by the vanishing of the quadrati
 termin (2.9) [37℄. If the quadrati
 term in (2.19) is zero, the b matri
es readb��11 = b��22 = 0; b��12 = � 12(�� � + y1 � y2)�Q; (4.3)where Q = q�1q2 � q�2q1: (4.4)In Appendix A we will prove that if 2(y1 � y2) 2 � and y1 � y2 =2 � then the quadrati
term does indeed vanish. For example this happens for y1 � y2 = 12(e0 + e1 + ::: + en�1).This means that the latti
e points of the se
ond `spe
ies' of instanton lie exa
tly at themidpoints (see �gure 2) of the latti
e points of the �rst.In the spe
ial 
ase n = 1 (i.e. the 
aloron problem) one only needs y1�y2 to be parallelto e0 for the quadrati
 term to vanish. This is a 
onsequen
e of the fa
t that for S1 � R 3one may take e0 and hen
e the elements of � to be real. For n > 1, 2(y1 � y2) 2 � is ane
essary 
ondition for the vanishing of the quadrati
 term. Thus for 2(y1� y2) =2 � (4.3)is an approximation; (4.3) is then the �rst term of a power series expansion in the s
aleparameters. 22



Figure 2: One `spe
ies' of instantons lying at the midpoints of the latti
e points of theother spe
ies of instantons.Let us 
on
entrate on the 
ases where the quadrati
 terms does vanish. Fourier trans-formation yields ~V�1M̂ = �idz � x+ Â(z), where Â(z) is the SU(2) potential�iÂ(z) = � 12(y1 � y2) 12 ie�i(y1�y2)�zdz (z)Q�12 iei(y1�y2)�zdz (�z)Q 12(y2 � y1) � ; (4.5)and  (z) =X�2� ei(�+y1�y2)�zj� + y1 � y2j2 : (4.6) (z) is a Green's fun
tion for the Lapla
e operator on ~Tndzd�z (z) = �~Vei(y1�y2)�zÆn(z): (4.7)Observe that  is non-periodi
 (z + ~ei) = ei(y1�y2)�~ei (z); (4.8)where ~ei refers to the dual basis; ~ei � ej = 2�Æij. Now if 2(y1 � y2) 2 � and (y1 � y2) =2 �, (z) will be antiperiodi
 in at least one dire
tion, and periodi
 in the remaining dire
tions.One 
an also see that for these spe
ial values of y1 � y2,  (z) is real. The reality of  is asuÆ
ient 
ondition for the potential (4.5) to be self-dual.We now appear to have to deal with a non-Abelian Weyl operator. In what follows theinversion problem is redu
ed to an Abelian problem mu
h like that for the one instanton23




ase. Of 
ourse, in the light of the previous 
hapter due 
are regarding the meaning of theinverse is in order. M̂ 
an be rewritten as follows~V�1M̂ = e� i2 (y1�y2)�z�3P�1� D+ 00 D� �Pe i2 (y1�y2)�z�3 ; (4.9)where D� are the (Abelian) Weyl operatorsD� = �idz � x� 12dz Q; P = 1p2(1l + i�1): (4.10)The inverse of M̂ is simplyM̂�1(z; z0) = ~Ve� i2 (y1�y2)�z �3P�1�(z; z0)Pe i2 (y1�y2)�z0�3 ; (4.11)where �(z; z0) is a Green's fun
tion for the diagonal operator diag(D+; D�). Note thatthe exponentials in the de
omposition of M̂�1(z; z0) are not periodi
. To ensure a periodi
M̂�1(z; z0) we must impose 
ertain non-periodi
 boundary 
onditions on �(z; z0). Sin
e werequire M̂(z)M̂�1(z; z0) = ~V2Æn(z � z0), then it follows that� D+ 00 D� ��(z; z0) = Pe i2 (z�z0)�(y1�y2)�3P�1Æn(z � z0): (4.12)It is 
onvenient to absorb the exponential fa
tor into the delta fun
tion. That is, 
onsiderthe following (non-periodi
) delta fun
tionsÆn1 (z) = e i2 z�(y1�y2)Æn(z); Æn2 (z) = e� i2 z�(y1�y2)Æn(z): (4.13)Using the following four (Abelian) Green's fun
tions, ��i (z; z0); i = 1; 2, whereD�z ��i (z; z0) = Æni (z � z0): (4.14)� 
an be written as�(z; z0) = 12 � �+1 +�+2 i ��+1 ��+2 ��i ���1 ���2 � ��1 +��2 � (z; z0): (4.15)A

ordinglyM̂�1(z; z0) = ~V2 e� i2 z�(y1�y2)�3 � �+1 +��1 �i ���2 ��+2 �i ���1 ��+1 � �+2 +��2 � (z; z0)e i2 z0�(y1�y2)�3 :(4.16)24



4.2 Two-instanton on T2 � R2Mu
h as in se
tion 3.2 we may take e0 to be real and e1 to be proportional to Q. ThusQ̂ = Q=jQj plays the same role as l̂ did in the previous se
tion. Indeed, the analogue of(3.9) is just z = 12 �1� iQ̂� z + 12 �1 + iQ̂��z. We 
an write the Abelian Dira
 operatorsD� de�ned in (4.10) as followsD� = e�12 iQ (z) ��idz � xjj� e�12 iQ (z) � x?: (4.17)For the 
ase y2 � y1 = 12(e0 + e1), we have (z) = ~V4� log ���� �L04� z + iL04L1 ; iL02L1����2���� �L04� z + 12 ; iL02L1����2 ; (4.18)whi
h is antiperiodi
 in both dire
tions.When x? = 0, the four Green's fun
tions ��i read10��1 (z; z0) = e�12 iQ (z) hG1(z � z0) 
osh �12 jQj (z0)��G2(z � z0)iQ̂ sinh �12 jQj (z0)�i��2 (z; z0) = e�12 iQ (z) hG2(z � z0) 
osh �12 jQj (z0)��G1(z � z0)iQ̂ sinh �12 jQj (z0)�i ;(4.19)where the Gi(z � z0) are (non-periodi
) free Green's fun
tions de�ned as��idz � xjj�Gi(z � z0) = Æ2i (z � z0); i = 1; 2: (4.20)Inserting (4.19) into (4.16) yieldsM̂�1(z; z0) = ~V	(z)� G1(z � z0) 00 G2(z � z0) �	�1(z0); (4.21)where 	(z) is the 2� 2 matrix	(z) =  e�12 i(y1�y2)�z 
osh �12 jQj (z)� Q̂e�12 i(y1�y2)�z sinh �12 jQj (z)��Q̂e12 i(y1�y2)�z sinh �12 jQj (z)� e12 i(y1�y2)�z 
osh �12 jQj (z)� ! : (4.22)The two 
omponent row ve
tor n(z) isn(z) = ~V(q1 ; q2)	(0)� G1(�z) 00 G2(�z) �	�1(z): (4.23)10Note that ��i (z; z0) = e�iQ (z)Gi(z � z0)e�iQ (z0) is not 
orre
t, sin
e one has to take into a

ountthe non-periodi
ity of the exponentials e�iQ = 
osh (jQj )� iQ̂ sinh (jQj ).25



Again we en
ounter in�nite 
onstants;  (z)!1 as z ! 0 and so all entries of the matrix	(0) are `in�nite'. As in se
tion 3.2 we will temporarily treat 	(0) as a �nite obje
t. Inthe light of our one instanton 
al
ulation we expe
t some 
onstraints on q1 and q2. We 
an
hoose q1 to be real. In appendix B we show that for n(z)ny(z) to be integrable requiresthat (q1; q2) = �(1; Q̂); (4.24)where � is a 
ommon s
ale parameter sin
e jq1j = jq2j = �. Observe that the relativegroup orientation of the two instantons is �xed. If the orientation of the �rst instantonlies at the `North pole' of S3 � SU(2), then the orientation of the se
ond instanton sits onthe equator. Mu
h as in the one instanton 
ase the absen
e of non-integrable singularitiesleads to an upper bound on the s
ale parameter0 < �2 ~V < 2�: (4.25)Another 
onsequen
e of (4.24) is that (q1; q2) is an eigenve
tor of the in�nite matrix 	(0),i.e. (q1; q2)	(0) = e12 jQj (0)(q1; q2). As in the one instanton 
al
ulation we de�ne a `�nite'row ve
tor �~Vnf (z) = e�12 jQj (0)n(z). The �nal gauge potential is obtained by repla
ingn(z) with nf(z) in (2.39) and repla
ing (2.40) with � = ~V�1�f = ~V�1 R ~T2 nf (z)nyf (z):In the 
ourse of the 
onstru
tion a number of 
onstraints have been put on the ADHMdata. It is helpful to divide these 
onstraints into two. The �rst 
onstraints are simplythose imposed by hand to a
hieve te
hni
al simpli�
ation, i.e. we imposed periodi
ity andthe midpoint 
ondition in order that we 
ould exa
tly determine the Weyl operator. Inaddition to these 
onstraints we were for
ed to impose the additional 
onstraints (4.24)and (4.25). By virtue of the midpoint pres
ription and (4.24) our two instantons begin toresemble one instantons if we 
ut T2 in half. In fa
t if we had 
hosen y1 � y2 = 12e0 ory1 � y2 = 12e1 instead of y1 � y2 = 12(e0 + e1) then our `two instanton' would be nothingmore than a `doubled' one instanton. That is one 
an always produ
e a two-instantonon Tn � R 4�n by taking a one instanton and doubling one of the periods. To show thisequivalen
e one simply 
ompares the `two instanton' with y1�y2 = 12e0 or y1�y2 = 12e1 withthe one instanton with ! = 14~e0 or ! = 14~e1. Then using the qi ! �qi symmetry mentionedat the end of se
tion 2.2 one 
an show that the two sets of ADHM data 
orrespond to thesame instanton. The two instanton 
orresponding to y1 � y2 = 12(e0 + e1) appears to be26



`genuine' in the sense it is not equivalent to some one-instanton solution. However it seemsplausible that the y1 � y2 = 12(e0 + e1) 
ase 
orresponds to a twisted one instanton (thetwisted Nahm transformation is dis
ussed in [41℄).5 Dis
ussionIn this paper we have des
ribed in a general way how to implement the ADHM 
onstru
-tion of SU(2) instantons on Tn � R 4�n. The �rst step (whi
h 
orresponds to solving thequadrati
 ADHM 
onstraint) is to 
onstru
t a self-dual SU(k) (U(1) for k = 1) potential,Â(z), on the dual torus ~Tn (here k is the topologi
al 
harge). Â(z) has singularities whi
hare determined by the ADHM data (i.e. the s
ales, positions and group orientation ofthe `
omponent' instantons). We have 
onstru
ted the Weyl operators 
orresponding tothe general one-instanton and some two instantons on Tn � R 4�n. However, the problemof solving the Weyl equations poses a 
onsiderable te
hni
al 
hallenge. One is thereforemotivated to start with lower values of n. We have 
onsidered the n = 2 problem in somedetail.The solutions here are not deformations of 't Hooft instantons; the 't Hooft ansatz failsto provide solutions on T2�R 2. Unlike for S1�R 3 we are for
ed to impose 
onstraints on theADHM parameters in order to guarantee a well de�ned potential on T2�R 2. In parti
ular,we �nd an upper bound on the s
ale parameters; for the one-instanton, �2 ~V < 4� and forour restri
ted two-instanton we found that �2 ~V < 2� (here we were for
ed to give the two
omponent instantons a 
ommon s
ale parameter).For n > 2, i.e. T3 � R and T4, the Weyl equations seem more problemati
. Whilethe T2 � R 2 Weyl operator 
orresponds to an Aharonov-Bohm problem on ~T2, on T3 � Rwe have to solve the Weyl equation on ~T3 in the (self-dual) ba
kground of an ele
tri
 andmagneti
 dipole �eld [42℄. For T4 the one instanton 
al
ulation should fail. Presumablythere is no way to avoid non-integrable singularities. For our restri
ted two instantons theprospe
ts seem a little brighter. This is be
ause these seemingly 
orrespond to twisted oneinstantons (or even 12 instantons in the presen
e of non-orthogonal twists). There is noknown obsta
le to the existen
e of su
h obje
ts on T4.Although the T3� R and T4 problems 
ertainly merit more attention the T2� R 2 
aserequires further development. Even in the 1-instanton se
tor we were only able to provide27




losed forms for A�(x) and F��(x) in a 2-dimensional subspa
e (x? = 0) of T2 � R 2. Toobtain analyti
 results for x? 6= 0 requires progress in dealing with massive Aharonov-Bohm type Dira
 equations on ~T2. Furthermore, we have said nothing about the geometryof the moduli spa
e or the 
onstituent monopoles of our instantons. One 
ould numeri
allyplot the a
tion density of the one instantons in the plane x? = 0 to see if there are twopeaks asso
iated with the two expe
ted monopole 
onstituents.A
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 term in (2.19)In this appendix we show that the quadrati
 term in (2.19) vanishes for the one instantonand parti
ular two instanton des
ribed in 
hapter 4.Let us start with the one instanton. The quadrati
 term in question isR�� =X
2� �b
��b
� � b
��b
�� : (A.1)Assuming R�� = 0 leads to (3.3). Inserting this into (A.1) givesR�� = ��4 X
2�nf�;�g l̂� 1(
 � �)� 1
 � � � 1(
 � �)� 1
 � �� l̂� sin [(�� 
) � !℄ sin [(� � 
) � !℄ : (A.2)It is 
lear that ea
h summand in (A.2) does not separately vanish. Rather there is a pairwise
an
ellation; for ea
h 
 2 � n f�; �g there is exa
tly one other latti
e point 
0 2 � n f�; �gso that the two summands add up to zero. It is apparent that the appropriate 
hoi
e for
0 is 
0 = �
 + � + �: If 2
 = �+ �, i.e. 
0 = 
, then the summand itself vanishes.28



The argument is similar for the two instanton of se
tion 4. Here the quadrati
 term isR��ij =X
2� �b
�1i �b
�1j � b
�1j �b
�1i + b
�2i �b
�2j � b
�2j �b
�2i � : (A.3)Inserting (4.3) gives R��12 = R��21 = 0, andR��22 = X
2� �b
�12 �b
�12 � b
�12 �b
�12 � (A.4)= �14X
2��Q 1
 � � + y1 � y2 1(
 � � + y1 � y2)�Q�Q 1
 � � + y1 � y2 1(
 � � + y1 � y2)�Q� :Now we will show that R22 is zero for 2(y1 � y2) 2 �. As in the one instanton 
ase ea
hsummand in (A.4) does not separately vanish. For ea
h 
 2 � there is one other latti
epoint 
0 2 � so that the two summands add up to zero
0 = �
 + � + � � 2(y1 � y2): (A.5)Sin
e 
0 2 � we require 2(y1 � y2) 2 �. If 2
 = � + �� 2(y1 � y2) then 
0 = 
 so that wedo not have two 
ounterbalan
ing summands. However, in this 
ase the summand itselfvanishes.B Equation (3.41)In this appendix we outline a proof of (3.41) whi
h, for x? = 0, is equivalent to thestatement that f(z; z0) 
ommutes with the quaternions. In the 
aloron problem one simplynotes that f is the inverse ofM yM whi
h by 
onstru
tion 
ommutes with the quaternions.We 
ould also expli
itly 
he
k that our f is the inverse of M yM . However, we would fa
ethe thorny problem of 
oin
ident 
uxes and sour
es [43, 44, 45℄. Therefore, we will adopta more pedestrian approa
h. Before we embark on this we note that for z+ z0 = 0 a trivial
hange of variables in the integrals de�ning g�(z; z0) suÆ
es to verify (3.41). For z+z0 6= 0we have a more indire
t argument. When z 6= ! it is easy to 
he
k that��i��z � 12xjj� e�2�2�(z) ��i�z � 12�xjj� �g+(z; z0)� e2�2�(z)g�(z; z0)e2�2�(z0)� = 0: (B.1)29



This shows that the left and right hand sides of (3.41) satisfy the same di�erential equa-tions. To 
omplete the argument we must show that they obey the same boundary 
on-ditions. Clearly both are periodi
 on ~T2, but we also need to show that g+(z; z0) ande2�2�(z)g�(z; z0)e2�2�(z0) have the same asymptoti
s at the 
uxes. Let us examine g�(z; z0)in the neighbourhood of z = !. One 
an see that g+(!; z0) is well de�ned for �2 ~V < 2�,while g�(!; z0) = 0. This does not 
ontradi
t (3.41) sin
e the exponential e2�2�(z) di-verges as �jz � wj��2 ~V=(2�) for z � ! where � is a 
onstant. Consisten
y requires thatg�(z; z0) � ��1jz � wj�2 ~V=(2�)g+(!; z0)e�2�2�(z0) for z � !. One 
an show that g�(z; z0)de
ays as it should in the limit z ! ! by 
onsidering the derivative of g�(z; z0):��i��z � 12xjj� g�(z; z0) = 12e�2�2�(z)G+(z � z0) (B.2)�e�2�2�(z)2�f G+(�! + z) Z ~T2 d2y0G�(! � y0)e�2�2�(y0)G+(y0 � z0):In the neighbourhood of z = !, 2�G+(�! + z) � i=(�z � �w), and so the se
ond term in(B.2) dominates (provided z0 6= �!). Integrating yieldsg�(z; z0) � 1�2 ~V��f jz� wj�2 ~V=(2�) Z ~T2 d2y0G�(! � y0)e�2�2�(y0)G+(y0 � z0); (B.3)whi
h indeed de
ays 
orre
tly. Full agreement with (3.41) requiresg+(!; z0) = e2�2�(z0)�2 ~V�f Z ~T2 d2y0G�(! � y0)e�2�2�(y0)G+(y0 � z0): (B.4)To 
he
k this one simply notes that away from z0 = �! the left and right hand sides areannihilated by the same di�erential operator, �i�z0 � 12�xjj � 2i�2�z0�(z0)� �i��z0 � 12xjj�. Itis simple to also 
he
k that they agree in the neighbourhoods of z0 = �! whi
h 
ompletesthe proof.C Two instanton singularitiesConsider the 2-
omponent row ve
tors v� = (1; �Q̂) whi
h are (formally) eigenve
tors of	(0) in that v�	(0) = e�12 jQj (0)v�. We now make the de
omposition (q1; q2) = �+v+ +��v� where the quaternions �� are not 
ompletely free sin
e q�1q2 � q�2q1 = Q. Theintegrand in the de�nition of � is~V�1n(z)ny(z) = j�+j2ejQj (0) �G+(�z)G�+(z)e�jQj (z) + G�(�z)G��(z)ejQj (z)� (C.1)30



+j��j2e�jQj (0) �G+(�z)G�+(z)ejQj (z) + G�(�z)G��(z)e�jQj (z)�+terms linear in �+��� and ����+,where we have employed the notationG�(z) = G1(z)�G2(z); (C.2)not to be 
onfused with the G�(z) introdu
ed in se
tion 3.2! First, let us 
onsider thesingularity stru
ture of the free Green's fun
tions G�(z) whi
h satisfy (�idz � x)G�(z) =Æ1(z) � Æ2(z): Now Æ21(z) and Æ22(z) are zero ex
ept for all dual latti
e points (z 2 ~�).However Æ21(z) + Æ22(z) is only singular at half of the latti
e points, while Æ21(z) � Æ22(z) issingular at the remaining dual latti
e points. This 
an be seen from the following identitiesÆ21(z) + Æ22(z) = 2 
os �12(y1 � y2) � z� Æ2(z); Æ21(z)� Æ22(z) = 2i sin �12(y1 � y2) � z� Æ2(z):(C.3)Now sin
e 2(y1 � y2) 2 � it follows that 12(y1 � y2) � z = 12�n; n 2 Z for z 2 ~� whi
hmeans that either the sine or the 
osine must be zero for z 2 ~�. In parti
ular, we see thatunlike Æ21(z)+Æ22(z), Æ21(z)�Æ22(z) has no singularity at z = 0. Thus we 
on
lude that G�(z)has no singularity at z = 0. In the neighbourhood of z = 0 we haveG+(�z)G�+(z) / 1jzj2 ; G�(�z)G��(z) non-singular. (C.4)We also require the behaviour of  (z) at z = 0,  (z) � �(~V=2�) log jzj. Near z = 0 wehaveG+(�z)G�+(z)e�jQj (z) / jzj�2+jQj~V=(2�); G+(�z)G�+(z)ejQj (z) / jzj�2�jQj~V=(2�): (C.5)The se
ond part of (C.5), i.e. G+(�z)G�+(z)ejQj (z) is non-integrable. However, this term isabsent in the j�+j2 
ontribution to (C.1) and so if we make the 
hoi
e �� = 0 we do noten
ounter this singularity. The �rst part of (C.5) is an integrable singularity for jQj > 0.In fa
t if we take jQj~V > 4� the singularity disappears. However, then G�(�z)G��(z)ejQj (z)will be
ome non integrable. A

ordingly, for the singularities in (2.40) to be integrable werequire �� = 0; and 0 < jQj~V < 4� whi
h implies (4.24) and (4.25).
31
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