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The Thirring model is a four-fermion theory with a current-current interaction and U(2N) chiral symmetry.
It is closely related to three-dimensional QED and other models used to describe properties of graphene. In
addition it serves as a toy model to study chiral symmetry breaking. In the limit of flavour number N → 1/2 it is
equivalent to the Gross-Neveu model, which shows a parity-breaking discrete phase transition. The model was
already studied with different methods, including Dyson-Schwinger equations, functional renormalisation group
methods and lattice simulations. Most studies agree that there is a phase transition from a symmetric phase to a
spontaneously broken phase for a small number of fermion flavours, but no symmetry breaking for large N . But
there is no consensus on the critical flavour number N cr above which there is no phase transition anymore and on
further details of the critical behaviour. Values of N found in the literature vary between 2 and 7.

All earlier lattice studies were performed with staggered fermions. Thus it is questionable if in the continuum
limit the lattice model recovers the internal symmetries of the continuum model. We present new results from
lattice Monte Carlo simulations of the Thirring model with SLAC fermions which exactly implement all internal
symmetries of the continuum model even at finite lattice spacing. If we reformulate the model in an irreducible
representation of the Clifford algebra, we find, in contradiction to earlier results, that the behaviour for even and
odd flavour numbers is very different: For even flavour numbers, chiral and parity symmetry are always unbroken.
For odd flavour numbers parity symmetry is spontaneously broken below the critical flavour number N cr

ir = 9
while chiral symmetry is still unbroken.

I. INTRODUCTION

The Thirring model [1] is a fermionic quantum field theory
with a current-current interaction. While it was originally
studied in two spacetime dimensions, a lot of recent works
concern its three-dimensional version with a varying number
ofN flavours. This model is renormalisable in a 1/N-expansion
for 2 < d < 4 [2–5]. Its Lagrangian in Euclidean spacetime is
given by

L = Ψ̄aiΓµ∂µΨa −
g2

2N

(
Ψ̄aΓµΨa

)2
a = 1, . . . , N (1)

with summation over fermion flavours. In three dimensions,
an irreducible representation of the Clifford algebra is two-
dimensional, but we will start with a reducible representa-
tion here and take the well-known Γµ-matrices of the four-
dimensional theory with four-component spinor fields Ψa.
This is motivated by a strong similarity to three-dimensional
QED [5–8], that is often used to model electronic properties of
materials like graphene [9, 10] or high-temperature supercon-
ductors [11, 12].

The Thirring model is also interesting on its own, because
it has a large continuous chiral symmetry. It is believed, that
spontaneous breaking of this symmetry can happen with the
pattern

U(2N)→ U(N)⊗ U(N), (2)
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but only for a small number of flavours. A critical flavour
number N cr should exist, such that chiral symmetry breaking
(csb) only occurs for N < N cr. The main focus of our work is
to find the value of N cr for the reducible Thirring model.

While there is a broad agreement on this general behaviour
in the literature, the predictions for N cr vary to some extent.
Numerous works employing a large-N expansion are available:
There are different studies using Dyson-Schwinger equations
(DSE), the first [13] reporting N cr ≈ 3.24. Later work [6, 14]
found N cr ≈ 4.32 in the limit g2 → ∞. By constructing an
effective potential by an inversion method, Kondo [15] reports
N cr = 2 for infinite Thirring coupling. Additionally, these
works report relations between chiral condensate, N and g2,
that are qualitatively not in agreement with each other.

A recent extensive study [16, 17] of four-fermion theories
with functional renormalisation group methods spotted a struc-
ture with three interacting fixed points in the plane spanned by
Thirring and Gross-Neveu coupling. The fixed point governing
the critical behaviour of the Thirring model is only on the axis
of pure Thirring interaction forN →∞, while it is off the axis
for any finite N . Contrary, for small N this fixed point is dom-
inated by another four-fermion interaction, showing dynamical
generation of a fermion mass. This is not the case for large N .
Balancing this competition, the authors find N cr ≈ 5.1(7).

Regarding lattice field theory, many simulations with
staggered fermions and a small mass were performed so far.
With a setup using the standard Hybrid Monte Carlo (HMC) al-
gorithm, simulations are only possible with an integer number
of flavours. Since for staggered fermions each lattice flavour
corresponds to two continuum flavours [18], only simulations
with even N are possible. The first results [19] report a change
of the chiral behaviour for 2 < N cr < 6. Another series of
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publications [20–22] used the same algorithm with a slightly
different action and found chiral symmetry breaking with a
second order phase transition for N = 2 and N = 4, while the
transition for N = 6 is different. The authors claim that in the
latter case there is a first order transition with coexisting sym-
metric and broken phases. They conclude that N cr is between
4 and 6. Simulations with a hybrid molecular dynamics (HMD)
algorithm were performed in [23], allowing also for odd and
non-integer values of N . The authors present a phase diagram
in the (N, g2) plane with a critical line. Along this line, the
critical exponents and the order of phase transition changes
from a second order transition at N = 4 to a first order trans-
ition at N = 6. For N = 5 the simulations did not lead to a
conclusive result.

In a more recent lattice study [24] with this setup, simula-
tions in the limit g2 →∞ were performed, in order to compare
the results with those from DSE approaches. To ensure trans-
versality of the vacuum polarisation tensor for large N on the
lattice, a renormalisation of the coupling was necessary. The
renormalised coupling at leading order in 1/N is

g2
R =

g2

1− g2J(m)
with J(m)→ 2

3
, (3)

where the integral J(m) is given in [21]. Obviously, g2
R gets

negative, if the bare coupling g2 is larger than 3/2. Thus the
strong coupling limit is reached for finite bare coupling. For
stronger bare couplings, an unphysical phase is present. All
these works found a non-monotonic behaviour of the chiral
condensate and it is argued, that its maximum corresponds to
the point where the renormalised coupling becomes negative,
although the coupling at the maximum does not match the value
of 3/2. Looking at the maximal value of the chiral condensate
for different N at small masses, the authors concluded that
N cr = 6.6(1).

The fermion bag approach was applied by Chandrasekharan
[25] to study the Thirring model with a single staggered fla-
vour, corresponding to N = 2, and to obtain critical exponents
for the csb phase transition [26, 27]. This was the first lattice
work in the chiral limit m = 0. But since staggered fermions
do not preserve all internal symmetries it is not clear, if the
correct symmetry breaking pattern (2) is recovered in the con-
tinuum limit. In a subsequent work the authors [28] observe,
that their lattice version of the Thirring model has the same
symmetry and critical exponents as the Gross-Neveu model.
This seems to contradict our knowledge about the continuum
models. More recently, a first study with domain wall fermions
was done [29]. Contrary to the older works, no remnant of csb
was found in the extrapolation m→ 0 for N = 2. Very recent
preliminary results [30] for N = 1 showed no csb either.

In the present work we follow an alternative route and simu-
late the Thirring model with chiral SLAC fermions [31, 32]. It
is well-known that these fermions should not be used in lattice
gauge theories [33]. But they have been successfully applied
to simulate supersymmetric Yukawa models [34–38], where
also the renormalisability of lattice perturbation theory with
SLAC fermions up to one-loop was established. With these
fermions the step scaling function of the non-linear O(3) sigma
model has been calculated to high accuracy on moderately

large lattices, see [39]. Thus there are good reasons to believe
that they work well for four-fermion theories. SLAC fermions
admit the exact internal symmetry at any finite lattice spacing.
Nevertheless, it was difficult to establish csb at any N in first
investigations [40, 41]. Including an explicit breaking, a phys-
ical phase transition was observed, but it seems to merge with
the artefact transition explained around (3), leaving no reliable
trace of csb when performing the limit to the massless Thirring
model. An attempt to use Fierz identities to reformulate the
Thirring model showed a very strong sign problem prevent-
ing HMC simulations [41]. The present work will present an
approach to circumvent these problems and gives a definite
answer about the existence and values of the critical flavour
number. We shall see that there is no symmetry breaking in all
models with integer N . This is in complete agreement with the
absence of bilinear condensation in three-dimensional QED
with an even number of massless irreducible flavours [42]. In
contrast, we present numerical evidence that all models with
half-integer N ≤ N cr = 9/2 show a symmetry breaking.

To ease the computations, we also consider the Thirring
model in the irreducible representation, where the chiral sym-
metry is merely a flavour symmetry. Then, dynamical gener-
ation of a fermion mass is associated to a spontaneous break-
ing of parity. This was studied by DSE in the large-N limit,
where a dynamically generated mass was found [43], implying
N cr → ∞. Employing Fierz identities when computing the
effective potential a different parity breaking pattern emerged
in [44, 45]: a dynamical mass generation for two and three
irreducible flavours is seen, whereas the potential becomes un-
bounded from below for N →∞. Similarly, in the functional
Schrödinger picture no symmetry breaking in the large N limit
was found, while it appears when higher-order corrections in
1/N are included [46].

With the help of an auxiliary vector field vµ the Lagrangian
(1) can be written in the equivalent form

L = Ψ̄a iΓµDµΨa + λvµv
µ, λ =

N

2g2
(4)

with ’covariant derivative’ Dµ = ∂µ − ivµ. In an adapted base
the reducible matrices Γµ and reducible spinors take the form

Γµ = σ3 ⊗ γµ, Ψa =

(
ψ1,a

ψ2,a

)
, Ψ̄a =

(
ψ̄1,a, ψ̄2,a

)
, (5)

where the two-dimensional γµ form an irreducible representa-
tion of the Clifford algebra in three dimensions. For massless
fermions the overall sign of /D = γµ(∂µ − ivµ) in

L = ψ̄1,a i /Dψ1,a − ψ̄2,a i /Dψ2,a + λvµv
µ (6)

is irrelevant and the model withN reducible flavours is equival-
ent to the model with Nir = 2N irreducible flavours, for which
the second term in (6) has a positive sign. For massive fermions
this is not true anymore: when integrating out irreducible fer-
mions a parity violating (imaginary) Chern-Simons-like term
is generated1. In contrast, the fermionic determinant is real

1 More accurately: an imaginary Chern-Simons term is generated in the
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for reducible massive fermions and we do not expect parity
breaking in models with reducible fermions.

This paper is organised as follows: In section II, we sum-
marize the symmetries of the Thirring model in the reducible
and an irreducible representation. The relation between both
formulations is further discussed. Then in section III we use
a Fierz identity to rewrite the Lagrangian for irreducible fer-
mions. The main derivation of the effective potential for local
condensates can be found in section IV, while its symmetries
are studied in section V. We also give the explicit forms of
the potential for Nir = 1 and 2. Next we study the effective
potential in the strong coupling limit in section VI, before we
present our main results from numerical simulations in sec-
tion VII. Finally, a discussion of our findings and a comparison
with previous results can be found in section VIII.

II. CONTINUUM SYMMETRIES

First we discuss the internal symmetries of the Thirring model
in three dimensions. The results look different for N fermions
in the 4-dimensional reducible representation of the Lorentz
group and Nir fermions in a 2-dimensional irreducible repres-
entation. The flavour numbers are related as Nir = 2N .

In the reducible representation Ψa is a four-component Dirac
spinor where a = 1, . . . , N labels the flavours. The theory
possesses a U(2N) chiral symmetry generated by

T = Tf ⊗ {1, Γ4, Γ5, iΓ4 Γ5} (7)

where Tf ∈ u(N) generates rotations in flavour space. A Dirac
spinor transforms under the chiral and flavour rotations as

Ψ →eiTaf ⊗(ta1 1+ta2 Γ4+ta3 Γ5+i ta4 Γ4 Γ5) Ψ

Ψ̄ →Ψ̄ e−iTaf ⊗(ta1 1−t
a
2 Γ4−ta3 Γ5+i ta4 Γ4 Γ5).

(8)

Furthermore, the theory is invariant under a discrete Z2 parity
transformation

Ψ(x)→ iΓ1 Γ4 Ψ(x′) with x′ = (x0,−x1, x2), (9)

where alternative formulations using Γ5 instead of Γ4 are pos-
sible. A detailed discussion of both continuous and discrete
symmetries can be found in [13, 16]. In total, the global sym-
metry group is U(2N) ⊗ Z2. Now, we can define a parity-
even chiral condensate Σ = Ψ̄Ψ and a parity-odd condens-
ate Σ45 = Ψ̄ iΓ4 Γ5 Ψ . The chiral condensate Σ is an order
parameter for spontaneous breaking of the continuous chiral
symmetry according to

U(2N)⊗ Z2
Σ→ U(N)⊗ U(N)⊗ Z2 (10)

while the parity condensate Σ45 serves as an order parameter
for discrete parity breaking

U(2N)⊗ Z2
Σ45→ U(2N). (11)

limit m → ∞. For small m the imaginary part of the effective action is
proportional to the η-invariant.

For calculations it is often more convenient to reformulate
the Thirring model in an irreducible representation. A useful
reduction is given by

Γµ =σ3 ⊗ γµ , Γ4 = σ2 ⊗ 1 ,
Γ5 =σ1 ⊗ 1 and iΓ4 Γ5 = σ3 ⊗ 1 .

(12)

In order to obtain a standard kinetic term in the irreducible
representation, we decompose the N four-component Ψa as

Ψa =

(
ψ1,a

ψ2,a

)
and Ψ̄a = (ψ̄1,a,−ψ̄2,a) , (13)

where ψi,a are two-component spinors in a fixed irreducible
representation. With this decomposition, the Lagrangian is
given by

L = ψ̄α i /∂ ψα −
g2

2Nf

(
ψ̄αγµψα

)2
, (14)

where the irreducible flavour index α = (i, a) assumes 2N =
Nir different values. Note the difference to the decomposition
(5). The condensates are

Σ =

N∑
a=1

(
ψ̄1,aψ1,a − ψ̄2,aψ2,a

)
and (15)

π = Σ45 =

Nir∑
α=1

ψ̄αψα. (16)

The parity condensate in the reducible representation π turns
into a chiral condensate in the irreducible representation, while
for even Nir the former chiral condensate now has a flavour-
staggered structure. This already indicates that in the irredu-
cible representation the behaviour is different for even and odd
flavour numbers Nir. We will further investigate this difference
in the next sections.

The continuous chiral symmetry of the reducible Thirring
model becomes a pure flavour symmetry in the irreducible
representation, i.e. the theory is invariant under U(Nir) flavour
transformations given by

ψ → U ψ and ψ̄ → ψ̄ U† (17)

with a unitary matrix U = exp(i ti Ti) acting in flavour space
only. Here, the Ti are generators of the algebra u(Nir). Due to
its relation to the chiral transformations of the 4-component
spinors, this flavour symmetry will still be called chiral sym-
metry in the following, although the concept of chirality does
not exist in odd dimensions.

The parity transformation of the 4-component spinors turns
into a combination of flavour rotations and a parity transforma-
tion in the irreducible representation, that is given by

ψ(x)→ γ1ψ(x′) and ψ̄(x)→ −ψ̄(x′) γ1. (18)

The irreducible chiral condensate π is invariant under chiral
transformations (i.e. 2-component flavour rotations) while it
breaks the discrete Z2 parity symmetry.
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III. FIERZ IDENTITIES

To integrate over the fermionic fields in the functional integral,
it is useful to ’linearise’ the four-fermion term by a Hubbard
Stratonovich transformation, which transforms the Lagrangian
(14) into the equivalent form

L = ψ̄
(
i/∂ + γµvµ

)
ψ + λ v2

µ (19)

with λ = N/2g2 and three real scalar fields vµ. After integration
over the ψα we obtain the effective action

Seff = −Nir ln det
(
i/∂ + γµvµ

)
+ λ

∫
d3x vµ(x)2. (20)

Note that this action is not gauge invariant and vµ should not
be viewed as gauge potential2.

A technical problem arises if one discretises this formulation
on a (hypercubic) lattice to perform Monte Carlo simulations.
Since vµ is invariant under chiral transformations there is no
natural order parameter for chiral symmetry breaking in the
massless theory. But the advantage of the vector formulation
is that except for Nir = 1 it is free of a fermion sign problem.
This is obvious for even Nir since i/∂ + γµvµ is hermitian. For
odd Nir we never observed a negative sign in our Monte Carlo
simulations except for Nir = 1.

We can circumvent the technical problem by applying a
Fierz transformation to the four-fermion interaction(

ψ̄αγµψα
)2

= −2
(
ψ̄αψβ

) (
ψ̄βψα

)
−
(
ψ̄αψα

)2
. (21)

This identity was for example also applied in [44, 45]. The
transformed Lagrangian reads

L = ψ̄ i /∂ ψ +
g2

Nf

(
ψ̄αψβ

) (
ψ̄βψα

)
+

g2

2Nf

(
ψ̄ψ
)2
. (22)

Now applying the Hubbard Stratonovich transformation, we
can reproduce the four-fermion terms with the help of a matrix-
valued field,

L = ψ̄
(

i /∂ + iT +
i

2
trT

)
ψ +

λ

2
trT 2 +

λ

4
(trT )2 , (23)

where T = T † is a generic u(Nir)-algebra valued field i.e.

T = ti Ti with i = 1 . . . Nir
2. (24)

Under a chiral transformation the components of T transform
according to

T → U T U†, U ∈ U(Nir) , (25)

such that their expectation values serve as order parameters
for chiral symmetry breaking. They are related to fermionic
condensates by DSEs. Unfortunately, this formulation of the
model suffers from a severe sign problem on the lattice [41].

2 It could be promoted to a gauge potential after introducing a Stückelberg
field [6].

IV. EFFECTIVE POTENTIAL

The vector formulation (19) and matrix formulation (23) each
have their own advantages and disadvantages. The former can,
except for Nir = 1, be simulated without sign problem, but
information about chiral symmetry is not directly accessible.
On the other hand, in the matrix formulation we have direct
access to order parameters for csb, but there is a strong sign
problem that prevents reliable simulations. We proceed with
an analytical treatment in the matrix formulation and calculate
the resulting expectation values in the vector formulation. We
begin with splitting the matrix field in (23) as

T (x) = T c(x) + T⊥(x), (26)

where the first term is in the Cartan subalgebra of u(Nir) and
the second in its orthogonal complement. We shall introduce
a dual variables formulation in section IV A and afterwards
present a calculation of the (constraint) effective potential

Veff(T
c) =− ln

∫
DT Dφ e−Seff(T,φ) δ(T c − T c(x0))

=− ln

2Nir∑
n=0

Nir∑
i=1

an,i (ti)
n
, T c = tiH

i ,

in which the constraint fixes the field at an arbitrary point
x0 to the prescribed value T c in section IV B. The matrix
field T (x0) is hermitian and can be diagonalized by a global
chiral transformation. Hence it is sufficient to calculate the
effective potential for a field in the Cartan subalgebra with
generators Hi. In section IV C we will relate the coefficients
an,i to expectation values of observables On,i in the vector
field formulation,

an,i = 〈On,i〉vµ . (27)

This allows us to employ Monte Carlo simulations in the vector
field formulation to calculate the effective potential defined in
the matrix formulation.

A. The partition function in the dual variables formulation

First we reformulate the partition function of the Thirring
model with massive fermions in terms of discrete spin (or
dual) variables. Then we take derivatives with respect to the
mass to relate observables in the dual formulation to powers
of fermionic bilinears. Actually we introduce an x-dependent
and diagonal fermion mass matrix

M(x) = diag(m1(x), . . . ,mNir(x)). (28)

The partition function for the massive model is now given by
(integral over spacetime is assumed in the exponent)

Z(λ,M) =
(π
λ

)V
2

∫
DT ZF [T,M ] e−

λ
2 trT 2−λ4 (trT )2

,

(29)
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where the fermionic partition function ZF [T,M ] is given by
the fermionic integral

ZF [T,M ] =

∫
Dψ̄Dψ e−ψ̄ i /∂ ψe−ψ̄ iH ψ. (30)

Here, the shifted field H = T + 1
2 trT +M was introduced.

With spinor index i and flavour indices α and β the product
expansion of the second exponent leads to

ZF [T,M ] =

∫
Dψ̄Dψ e−ψ̄ i /∂ ψ

∏
xiαβ

(
1− ψ̄αxi iHαβ

x ψβxi

)
,

(31)
where we used that ψαxi and ψ̄αxi are Grassmann variables. A
similar expansion is met in the fermion bag approach, where
one expands the integrand directly in powers of the four-
fermion term [27]. After integrating over the auxiliary field
the two expansions yield the same results, although the inter-
mediate expressions are different. A related expansion is also
encountered in attempts to dualise gauge theories [47].

At this point we introduce a spin field kαβxi ∈ {0, 1} = Z2,
rearrange the weight function as a sum over configurations of
the k-field and perform the integration over the fermions to get

ZF [T,M ] =
∑
{kαβxi }

(−i)k det
(
i /∂[k]

)∏
xαβ

(
Hαβ
x

)kαβx , (32)

where we introduced the abbreviations

kαβx =
∑
i

kαβxi = kαβx0 + kαβx1 , k =
∑
xiαβ

kαβxi (33)

and /∂[k] is the matrix in which the {xiα}-th row and {xiβ}-th
column of /∂ are removed whenever kαβxi = 1. A similar ex-
pansion in terms of minors of a fermionic matrix was recently
presented within a transfer matrix approach in [48]. It is im-
portant to note that in the minor expansion there are constraints
on the spin field kαβxi in order to get non-vanishing contribu-
tions to the weight function: Due to ψαxiψ

α
xi = ψ̄αxiψ̄

α
xi = 0 for

fixed x, i the sum over rows and columns of the matrix kαβ

has to be zero or one,∑
α

kαβxi ∈ {0, 1} and
∑
β

kαβxi ∈ {0, 1}. (34)

Summing over the spinor index i leads to the following local
constraints on the elements of the matrix kx = (kαβx ) in (33):∑

α

kαβx ∈ {0, 1, 2} and
∑
β

kαβx ∈ {0, 1, 2}. (35)

We will summarise these constraints in a local constraints
function

δconstr(kx) =

{
1 all local constraints are fulfilled,
0 else.

(36)

Inserting (32) into the partition function (29) we observe that
all contributions, with the exception of the minors, are given

by a product over the lattice sites. After rescaling the variables
T̃ =

√
λT and M̃ =

√
λM the partition function reads

Z(λ, M̃) = C
∑
{kαβxi }

λ−
k
2 det

(
/∂[k]

)
·
∏
x

δconstr(kx)Wloc
(
kx, M̃(x)

) (37)

with overall factor C = (π/λ)γ/2, where γ = V (Nir
2 + 1).

The local weight function is defined for any kx by

Wloc(k, M̃) =

∫ Nir
2∏

i=1

(
dt̃i√
π

)
e−

1
2 tr T̃ 2− 1

4 (tr T̃ )2

·
∏
αβ

(
T̃αβ +

1

2
tr T̃ δαβ + M̃αβ

)kαβ
.

(38)

In the following we drop the tilde above variables again to
simplify our notation. Because of (35) the exponent kαβ only
takes the values 0, 1 and 2. The integration variables are the
expansion coefficients in T = tiTi.

The integration over the non-Cartan fields is performed in
appendix A and leads to the final form of the local weight
function

Wloc(k,M) = wo(k⊥)Wp(k)(M) (39)

where p(k) = (k11, k22, . . . ) is the Nir-component vector
that collects the diagonal entries of kαβ . Recall that these
entries can assume the values 0, 1 or 2. In addition, the first
factor wo(k⊥) is a non-negative integer depending on the non-
diagonal entries of the matrix (kαβ). The explicit form of wo
is given in appendix A. The second factor is an integral over
the Cartan subalgebra,

Wp(M) =

∫ Nir∏
i=1

(
dti√
π

)
e−t A t

·
∏
α

(
Tαα +

1

2
trT +mα

)pα
.

(40)

The symmetric matrix A in the exponent can be written as

Aij =
1

2
tr (HiHj) +

1

4
trHi trHj (41)

and the integration is only over the Cartan subalgebra with
generators Hi. Although the final result does not depend on a
specific choice of the generators, we use the generators given
in appendix A for the explicit calculations. Wp is a polynomial
in mα of degree pα. The explicit form of Wloc(k,M) is also
given in appendix A.

In this form it looks like the partition function can be sim-
ulated with a fermion bag like algorithm. Unfortunately the
minors induce a severe sign problem. So far we could solve
this problem for Nir = 1, where we applied the fermion bag
algorithm to the model with chiral SLAC fermions [49]. In the
following we refer to the integer number k in (33) as lattice
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filling factor, because it counts how many fermions take part in
the local interaction. Due to Pauli blocking it can only take the
values k = 0, . . . , 2V Nir. In the strong coupling limit (λ→ 0)
we find k = 2V Nir on every configuration such that every
lattice site is occupied by the maximal number of fermions.
Here we expect strong lattice artefacts due to saturation effects.
In the weak coupling limit (λ → ∞) we have k = 0 and the
theory reduces to a theory of free fermions on the lattice.

B. Effective potential

In this section we derive an effective theory for the local chiral
condensates 〈ψ̄αψα〉 (no sum), or equivalently the expectation
values of scalar fields in the Cartan subalgebra, that are related
to the condensates by DSEs. Therefore, we constrain the local
mass matrix defined in (28) to

M = diag(m1, . . . ,mNir) δx,x0
(42)

with a fixed lattice point x0 and determine the dependence
of the partition function on the parameters mα. This allows
us to relate contributions to the partition function Z(λ,M) in
the dual formulation to expectation values of chirally invariant
local observables in the original vector formulation by differ-
entiating with respect to this local mass parameters. Formally,
the M -dependent partition function is given by

Z(λ,M) =
∑
P

∑
p∈SP

apWp(M) , (43)

where the first sum extends over the (Nir + 1)(Nir + 2)/2
triplets

P = (P0, P1, P2). (44)

The elements of P obey

Pk ∈ {0, 1, . . . , Nir} and
2∑
k=0

Pk = Nir . (45)

The second sum in (43) extends over the

Vol(SP) =
Nir!

P0!P1!P2!
(46)

permutations SP of the Nir-tuple p with P0 elements equal
to zero, P1 elements equal to one and P2 elements equal to
two. Altogether the double sum in (43) consists of 3Nir terms.
The coefficients ap depend on λ, on the volume and on further
details of the lattice formulation as for example the choice of
lattice fermion derivative.

When all flavours have the same mass, (mα = m), the
coefficients ap do not depend on a specific permutation (per-
mutation of flavours) but only on the three numbers Pk and we
can write the partition function as

Z(λ,m) =
∑
P
aP ·Vol(SP)WP(m) , (47)

where

WP(m) = Wpsort(M)|M(mα→m)

with psort = (0, . . . , 0︸ ︷︷ ︸
P0 times

, 1, . . . , 1︸ ︷︷ ︸
P1 times

, 2, . . . , 2︸ ︷︷ ︸
P2 times

) (48)

is the weight of a particular representative in an orbit of the
permutation group.

The constraint effective potential in the limit of a constant
mass in flavour space is then given by the negative logarithm
of the distribution function, i.e.

Veff(λ, T,m) =
1

2
tr(T c)2 +

1

4
(trT c)2

− ln

(∑
P

aP
∑
p∈SP

Nir∏
α=1

(
Tαα +

1

2
trT +m

)pα)
.

(49)

Here, we have to sum over all permutations again, because no
integration over the diagonal scalar fields is performed in the
effective potential.

C. Relation to observables

In order to relate the coefficients aP to expectation values, we
take derivatives of the partition function (43) with respect to
the local masses mα and afterwards set mα = m. With the
definition of moments of the Gaussian weights

Wp,q(m) =

Nir∏
α=1

(
∂ qα

∂mqα
α

)
Wp(M)

∣∣∣
mα→m

(50)

we can write the partition function and its derivatives with
respect to the local masses as

Zq(λ,m) =
∑
P
aP

∑
p∈SP

Wp,q(m). (51)

Since Wp(M) is a polynomial of degree pα in mα we only
get a non-zero result in (50) when qα ≤ pα. In the limit of
a constant mass in flavour space, the expectation values Zq

do not depend on the ordering of the flavours, but only on the
number Q0 of zeroth, Q1 of first and Q2 of second derivatives.
Denoting the triple {Q0, Q1, Q2} byQ we can write

σQ =
1

Vol(SQ)

∑
q∈SQ

Zq(λ,m). (52)

The index setsQ and P are identical, with the constraints that
their three entries sum to Nir. The sum in (52) is over the
Vol(SQ) = Nir!/(Q0!Q1!Q2!) permutations SQ of q. The de-
rivatives of the partition sum are directly related to expectation
values via

σQ = λ−
|q|
2 Z ·

〈∏
α

(
ψ̄αψα

)qα 〉
. (53)
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Here, the right-hand side can be computed, up to the arbitrary
normalization factor Z = σNir,0,0, with conventional simu-
lations of the Thirring model in the vector field formulation.
Inserting (51) in (52), we obtain

σQ =
∑
P
aP

∑
p∈SP

1

Vol(SP)

∑
q∈SQ

Wp,q(m). (54)

We can also write this equation as a matrix equation

σQ =KQP aP with

KQP =
∑
p∈SP

1

Vol(SQ)

∑
q∈SQ

Wp,q(m) (55)

whereK is a square matrix that can always be represented in an
upper triangular form (due to qα ≤ pα) with non-zero diagonal
elements. Therefore a unique solution for the coefficients aP
is given by

~a = K−1 ~σ. (56)

For symmetry reasons, the double sum for the matrix coeffi-
cients simplifies to

KQP =
Vol(SP)

Vol(SQ)

∑
q∈SQ

Wp(P),q(m), (57)

where p(P) is one representative in the equivalence class
defined by P . In this way, we can uniquely relate the coef-
ficients ~a to expectation values ~σ of the Thirring model. Al-
ternatively, the coefficients ~a can be calculated directly with a
fermion bag simulation of the partition function (37).

V. SYMMETRIES OF THE EFFECTIVE POTENTIAL

A suitable order parameter for chiral symmetry breaking is the
position of the global minimum of the effective potential. We
can simplify the discussion of the potential, if we locally apply
a chiral transformation such that the local condensates are in
the Cartan subalgebra of u(Nir). As part of the remaining
symmetry of the Cartan subalgebra, it is possible to exchange
flavours and the sign of the condensate, without changing
physics. Therefore, minima of the effective potential can only
occur in the directions

T c
min =

2x

Nir

±1
. . .
±1

 ∈ ZNir
2 , (58)

where x ∼ (ψ̄ψ)α is a free parameter. These directions where
also spotted by the simulation results for the full effective
potential. Once a direction is fixed we are left with the problem
of finding the minimizing x. Physically equivalent solutions
are related by a reflection x→ −x or a permutation of flavours.
The latter is given by the action of the Weyl group of U(Nir).

We conclude that physically distinct solutions are characterized
by the trace of T c

min

trT c
min =

2x

Nir
n with

n =

{
0, 2, 4, . . . , Nir Nir even
1, 3, 5, . . . , Nir Nir odd.

(59)

This leads to nsol =
[

1
2Nir

]
+ 1 different solutions for the

potential. Every solution gives rise to a different breaking
pattern of chiral symmetry, leaving different subgroups intact.
A non-vanishing expectation value in direction n breaks the
symmetry down to

U(Nir)→ U(n+)⊗ U(n−), n± =
Nir ± n

2
. (60)

A symmetric breaking with n+ = n− is only possible for even
Nir with n = 0. This is the proposed breaking of the reducible
Thirring model. For the solution with n = Nir and x 6= 0,
only parity symmetry is broken. Therefore, the solution with
n = 0 is called a Thirring-like breaking while the solution
with n = Nir is called a Gross-Neveu-like breaking.

Along the different directions, the effective potential in the
massless case is

Veff(x, n) =
2Nir + n2

Nir
2 x2 (61)

− ln

(∑
P
aP

∑
p∈SP

(n+ 2)|p|<(n− 2)|p|>
(
x

Nir

)|p|)
,

where the exponents are given by the (partial) sums,

|p|< =
∑
α≤n+

pα, |p|> =
∑
α>n+

pα, |p| =
Nir∑
α=1

pα . (62)

In the massive case n± 2 in (61) is replaced by n± 2 +mNir.
Evaluating the above potential in the Thirring-like direction,
we get

V Th
eff (x) =

2x2

Nir

− ln

(∑
P

aP
∑
p∈SP

(−1)|p|>
(

2x

Nir

)|p|) (63)

and in the Gross-Neveu-like direction

V GN
eff (x) =

Nir + 2

Nir
x2

− ln

(∑
P

aP
∑
p∈SP

(
Nir + 2

Nir
x

)|p|)
.

(64)

An important quantity to determine chiral symmetry breaking
is the curvature κ of the effective potential at the origin,

κ(n) =
d2Veff(x, n)

dx2

∣∣∣∣
x=0

. (65)
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Possible phase transitions are expected to be second order.
Thus, we conclude that chiral symmetry is unbroken if all
curvatures κ(n) are positive, while it is spontaneously broken
if at least one of the κ(n) is negative.

A. Effective theory for Nir = 1

For one irreducible flavour the Thirring model is equivalent
to the Gross-Neveu model. This follows from the Fierz iden-
tity (21) for one flavour. For massless fermions the integral (40)
vanishes for p = (1) such that only p = (0) and p = (2)
remain. Likewise only multi-derivatives with q = (0) and
q = (2) appear. The K-matrix is then given by

K =

(
1 3

2
0 2

)
. (66)

The explicit form of the matrix depends on the normalization
of the generators Hi given in appendix A. With the arbitrary
normalization σ1,0,0 = 1, we find for the coefficients ~a

a1,0,0 = 1− 3

4
σ0,0,1 and a0,0,1 =

1

2
σ0,0,1 , (67)

and obtain for the effective potential

Veff(x) = 3x2 − ln
(

1− 3

4
σ0,0,1 +

9

2
σ0,0,1x

2
)
. (68)

The curvature of the potential at the origin is then

κ = 18
σ0,0,1 − 4/9

σ0,0,1 − 4/3
, σ0,0,1 =

1

λ

〈(
ψ̄ψ
)2〉

m=0
. (69)

At the critical inverse coupling λc the curvature vanishes and
we get σ0,0,1(λc) = 4/9. The condensate

〈
(ψ̄ψ)2

〉
is later

calculated within the strong coupling expansion since Monte
Carlo simulations in the vector formulation face a severe sign
problem.

The fermion bag approach, which is free of a sign problem
and directly yields the coefficients ~a, will be discussed in a
follow-up paper [49].

B. Effective theory for Nir = 2

For two massless irreducible flavours the Thirring model is
equivalent to the massless reducible model with N = 1. For
a vanishing m the non-vanishing p-configurations are p =
{(0, 0), (1, 1), (2, 0), (0, 2), (2, 2)}. The configurations p =
(0, 2) and p = (2, 0) are equivalent under flavour exchange
and the corresponding coefficients are the same. The weights
are listed in Table I. The K-Matrix and its inverse are then
given by

K =

1 1
2 3 11

4
0 1 0 2
0 0 2 3
0 0 0 4

 , K−1 =


1 − 1

2 −
3
2

11
16

0 1 0 − 1
2

0 0 1
2 − 3

8
0 0 0 1

4

 . (70)

I a p W(0,0) W(1,1) W(2,0) W(0,2) W(2,2)

1 a2,0,0 (0, 0) 1 0 0 0 0
2 a0,2,0 (1, 1) 1

2
1 0 0 0

3 a1,0,1 (2, 0) 3
2

0 2 0 0
3 a1,0,1 (0, 2) 3

2
0 0 2 0

4 a0,0,2 (2, 2) 11
4

2 3 3 4

Table I. Configurations and weights for Nir = 2 in the massless limit.

We obtain with the normalization σ2,0,0 = 1

a2,0,0 =1− 1

2
σ0,2,0 −

3

2
σ1,0,1 +

11

16
σ0,0,2 ,

a0,2,0 =σ0,2,0 −
1

2
σ0,0,2 ,

a1,0,1 =
1

2
σ1,0,1 −

3

8
σ0,0,2 ,

a0,0,2 =
1

4
σ0,0,2.

(71)

The Gross-Neveu-type potential is given by

V GN
eff (x) = 2x2 (72)

− ln
(
a2,0,0 + 4 a0,2,0 x

2 + 8 a1,0,1 x
2 + 16 a0,0,2 x

4
)

and the Thirring-type potential by

V Th
eff (x) = x2 (73)

− ln
(
a2,0,0 − a0,2,0 x

2 + 2 a1,0,1 x
2 + a0,0,2 x

4
)
.

In the following sections, the observables σ are calculated first
in the strong coupling expansion and after that with Monte
Carlo simulations in the vector formulation of the Thirring
model which for Nir ≥ 2 has no sign problem.

VI. STRONG COUPLING EXPANSION

In this section we compute the effective potential in the strong
coupling expansion. The lattice partition function in the pres-
ence of fermion sources is given by

Z[η, η̄] =

∫
DvDψDψ̄ e

−
∑
x

(λ v2−ψ̄(i/∂+/v)ψ−ψ̄η−η̄ψ)

= K

[
δ

δη
,
δ

δη̄

] ∫
DvDψDψ̄ e

−
∑
x

(λ v2−ψ̄/vψ−ψ̄η−η̄ψ) (74)

where the sum is over all lattice points x and where we already
use dimensionless fields and inverse coupling λ. The kinetic
operator is given by

K

[
δ

δη
,
δ

δη̄

]
= e
−

∑
x,y

δ
δηx

i/∂xy
δ
δη̄y (75)

and /∂xy is a lattice regularised derivative operator. With a
rescaling of the sources according to χ = λ1/4 η we shift the
explicit λ dependence to the kinetic operator. Furthermore,
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derivatives with respect to the sources χ exactly reproduce the
expectation values (52) needed in the effective potential. After
performing the integration over the vector field and the fermi-
ons (details are given in appendix B), we obtain our master
equation for the strong coupling expansion

Z[χ, χ̄] = K

[
δ

δχ
,
δ

δχ̄
, λ

]
∏
x

Nir∑
k=0

Γ ( 3
2 +Nir − k)

Γ (2k + 2)

(
(χ̄x γµ χx)2

)k
.

(76)

In the following we are only interested in local fermionic ob-
servables. Therefore, after applying the kinetic operator K we
set the source χ at all points x with the exception of x0 to zero.
With the definitions

K(n) =(−1)n
λn/2

n!

(∑
x,y

δ

δχx
i/∂xy

δ

δχ̄y

)n
,

F (k)(x) =
Γ ( 3

2 +Nir − k)

Γ (2k + 2)

(
(χ̄x γµ χx)2

)k (77)

we can write the partition function as

Z[χx0 , χ̄x0 ] =
∑
n

K(n)
∏
x

∑
k

F (k)(x)
∣∣∣
χx 6=x0

=0
. (78)

In appendix B we show, that in the infinite volume limit and
up to any finite order n in the expansion of the kinetic operator,
the partition function has the form

Z[χx0 , χ̄x0 ] = C(λ)
∑
k

F (k)(x0) (79)

= C(λ)

Nir∑
k=0

Γ ( 3
2 +Nir − k)

Γ (2k + 2)

(
(χ̄x0 γµ χx0)2

)k
,

where C(λ) is an unknown function that cancels in expectation
values. Then the solution for the expectation values is

σQ = λ−Q2−Q1/2

Q1∏
α=1

∂mα

Q1+Q2∏
β=Q1+1

∂2
mβ

lnZ(M)
∣∣∣
M=0

=
Γ ( 3

2 +Nir −Q2)

Γ ( 3
2 +Nir)

δQ1,0 .

(80)
For the vector interaction we obtain

1

4λ

〈(
ψ̄γµψ

)2〉
= Nir (81)

and it follows that the normalized lattice filling factor takes its
maximal value 〈knorm〉 = 1. In conclusion, within the strong
coupling expansion we are not able to leave the strong coupling
phase where strong lattice artefacts dominate due to complete
Pauli blocking on every lattice site.

A. Results for the effective potential

With the observables from the strong coupling expansion we
can calculate the effective potential in the lattice artefact phase,
that was discussed around (3), in the infinite volume limit. The
results for various flavour numbers Nir are shown in Figure 1.
For Nir = 1, the Gross-Neveu-type potential reads

V GN
eff (x) = 2x2 + ln

(
1

4x2

)
= −2 ln(2x) + 2x2. (82)

It has a global minimum at x = ±1/
√

2 and parity symmetry
is spontaneously broken. Its curvature at the origin diverges.

For odd flavour numbers parity symmetry is always broken
at strong coupling with a minimum of the potential in the
Gross-Neveu-like direction. With increasing Nir the curvature
at the origin decreases. Extrapolating the curvature of the
Gross-Neveu-type potential to Nir = ∞ predicts a broken
symmetry in this limit. At strong lattice coupling there is no
critical flavour number and parity symmetry is always broken
for odd Nir. For Nir = 7 we observe that the potential with
n = 1 has a positive curvature while this is not the case for
smaller Nir, indicating that the breaking of parity symmetry
becomes weaker for larger flavour numbers.

For Nir = 2, the potentials at strong coupling read

V GN
eff (x) =2x2 − ln

(
8x4 − 4x2 + 1

)
+ ln

(
15

8

)
= ln

(
15

8

)
+ 6x2 − 32x6

3
+O

(
x8
)

V Th
eff (x) =x2 − ln

(
x4 + 2x2 + 2

)
+ ln

(
15

4

)
= ln

(
15

8

)
+
x6

6
+O

(
x8
)
.

(83)

The curvature in the Gross-Neveu direction is positive. In the
Thirring-like direction the leading power is x6 with a positive
coefficient such that the minimum of the potential is at x = 0.
Hence chiral symmetry is unbroken. For larger even Nir the
curvature in all directions is positive. In conclusion, chiral and
parity symmetry is unbroken for any even Nir and parity sym-
metry is broken for any odd Nir in the strong coupling limit.
In the next section we will investigate with Monte Carlo sim-
ulations whether these results hold outside the lattice artefact
phase and in the continuum limit.

VII. SIMULATION RESULTS

The simulations have been performed with the lattice action

S(λ) = Nir

(
λ

2

∑
x

v2
µ(x)− ln det(i /D)

)
(84)

for fermions in the irreducible representation of the Clifford
algebra with γµ = σµ. Note, that we have rescaled λ→ Nirλ
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Figure 1. Effective potentials in the strong coupling expansion for Nir = 1, 2, 3, 4, 5, 7 with different values of n.

for our simulations. We use the SLAC derivative for fermions
with hermitian Dirac operator

i /D = σµ
(
i ∂SLAC
µ + vµ

)
(85)

because it preserves the continuum U(Nir) chiral symmetry
and the discrete parity symmetry exactly even at finite lattice
spacing. Note that Wilson fermions in the irreducible represent-
ation also preserve the continuum chiral symmetry but break
parity. In order to implement antiperiodic boundary conditions
for the fermions in time direction, we simulate on lattices with
volumes V = L × (L − 1)2 with even L. Most of our sim-
ulations have been carried out on lattices with L = 8, 12, 16
and 20 with statistics of 1 000 to 10 000 configurations. For all
flavour numbers we use a rational HMC algorithm with(

det
(
/D /D
†)Nir/2NPF

)NPF

, (86)

where the number of pseudofermions is NPF = 2Nir. In order
to calculate the expectation values of powers of the condensate,
we use Nest = 200×Nir stochastic estimators for the fermion
propagator on every Monte Carlo configuration.

The fermion determinant det(i /D) is real but not necessarily
positive. Therefore we do not have a sign problem for even
flavour numbers. Furthermore, simulations on smaller lattices,
where we can compute the fermion determinant numerically,
showed that we only have a sign problem for Nir = 1. In
this case, the sign problem can be solved with a fermion bag
inspired algorithm and appropriate resummations of certain
weights. More details on the sign problem will be published in
[49]. For Nir = 2 to Nir = 11 we determined the observables
σQ in (53) via Monte Carlo simulations in the vector formula-

tion and calculated the effective potential with the formalism
described in the previous sections.

The potentials for Nir = 4 and corresponding values of n
on a 16 × 15 × 15 lattice are depicted in Figure 2 for λ =

0.00
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1.00
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-1.00 -0.50 0.00 0.50 1.00

V (x)

x

n = 4 (GN)
n = 2

n = 0 (TH)

Figure 2. Effective potentials for Nir = 4 and λ = 0.118 along
the different directions labelled by n = 0, 2 and 4 on a lattice with
L = 16.

0.118. Statistical errors are always obtained with a Jackknife
procedure and are indicated by the width of the curves. It turns
out that for every value of λ the minimum of the potential is
always at the origin x = 0. Therefore we conclude that there is
no spontaneous chiral or parity symmetry breaking forNir = 4,
at least on the lattice with L = 16.

For Nir = 5 the potentials are depicted in Figure 3 for two
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Figure 3. Effective potentials for Nir = 5 at λ = 0.102 (upper panel)
and λ = 0.118 (lower panel) for the different directions n = 1, 3 and
5 on a lattice with L = 16.

values of λ. For λ = 0.102 the potential has two global minima
in the Gross-Neveu direction at x ≈ ± 0.22 while for the larger
value λ = 0.118 the minimum of the potential is at x = 0. This
suggests that for Nir = 5 parity is broken at strong couplings
(small λ). On larger lattices this result still holds true.

To check, that our conclusions are not blurred by lattice
artefacts we investigated the transition from the strong to weak
coupling regime more carefully and determined the critical
coupling where the lattice theory shows a transition from an
artificial lattice phase at strong coupling to a continuum phase
at weak coupling for all simulated Nir. In the lattice artefact
phase and in the infinite volume limit, observables should only
trivially depend on λ. An important quantity to investigate
here is the first derivative of the partition function with respect
to λ. It is connected to the normalized fermion filling factor in
the dual variables approach

〈knorm〉 =
〈k〉

2V Nir
∈ [0, 1] , (87)

where k has been defined in (33), and therefore is an interesting
quantity to investigate lattice artefacts. The relation is

λ

2NirV

d lnZ(λ)

dλ
= C + 〈knorm〉 (λ) , (88)
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Figure 4. Lattice filling factor 〈knorm〉 for different Nir and lattices
volumes. Larger volumes are indicated by a darker colour shade.
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Figure 5. Derivative of the lattice filling factor 〈knorm〉 for Nir = 9
and different lattice volumes.

where the constant C only depends on the flavour number. At
the transition from the lattice artefact phase to the physical
weak coupling phase, we expect a jump or a peak in the first
derivative ∂λ 〈knorm〉. The critical value λ∗ is then obtained as
the position of the jump (or peak) in the infinite volume limit.
The results for 〈knorm〉 are shown in Figure 4 for different Nir
and volumes. Below λ∗, the expectation value 〈knorm〉 depends
only weakly on the volume and increases towards its strong
coupling value 〈knorm〉 = 1 with increasing lattice volume. The
curves for different volumes intersect close to the critical λ∗.
In the physical phase 〈knorm〉 decreases with increasing lattice
volume.

The variation of 〈knorm〉with λ forNir = 9 is depicted in Fig-
ure 5. It stays finite in the infinite volume limit and develops a
jump at the critical coupling. We observe that for larger flavour
numbers the curves for L = 16 and L = 20 lie almost on top
of each other, indicating that finite volume effects are already
small on these relatively small lattices. Even for smaller Nir,
finite volume effects are small on the larger lattices. Therefore,
we identify the critical coupling on our largest lattice as infinite
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volume coupling λ∗. The relatively small finite size effects are
an additional advantage of the SLAC derivative that approx-
imates the continuum derivative for a fixed number of lattice
points much better than the naive central derivative used for
Wilson or staggered fermions [35]. The results for the critical
λ∗ for all Nir between 1 and 11 are displayed in Table II. The
results for Nir = 1 on lattice size L = 8 were obtained with
a fermion bag algorithm directly calculating the coefficients
aP of the effective potential. The lower curve in the phase
diagram Figure 8 shows the phase boundary, separating the
strong coupling lattice artefact regime from the physical weak
coupling regime. We see that with increasing flavour number
the critical value λ∗ decreases monotonically.

After having localized the transition point between the arte-
fact and physical phase, we calculate the curvature κ of the
effective potential at the origin as a function of λ and compare
the critical value λc, at which the curvature vanishes, to the crit-
ical value λ∗ of the artefact transition. For even Nir we show κ
for both the Gross-Neveu-like breaking as well as the Thirring-
like breaking. The results for Nir ∈ {2, 4} are depicted in
Figure 6, together with the results from the strong coupling
expansion (solid lines). The grey bars show the allowed critical
values λ∗. For Nir = 2 the curvature in the Thirring direction
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Figure 6. Curvature of the effective potential at the origin for Nir = 2
(top) and Nir = 4 (bottom) compared to the critical coupling λ∗ (grey
bar). The width of the grey bar indicates the statistical error of λ∗.

vanishes at strong coupling and increases at the transition from
the strong coupling lattice artefact phase to the weak coupling
physical phase. The potential in the Gross-Neveu direction is
always positive. Therefore, we conclude, that there is no chiral
symmetry breaking for Nir = 2, which corresponds to one re-
ducible flavour. For Nir = 4 the curvature for all directions is
always positive and there is clearly no chiral symmetry break-
ing. We also checked this for larger even numbers of flavours
with the same result: Chiral symmetry is always unbroken
for even flavour numbers. This implies that there is no spon-
taneous symmetry breaking for all reducible Thirring models.
This is one important conclusion of our work which conflicts
with earlier findings but agrees with very recent simulations
[30, 41, 42].

For odd flavour numbers there is no Thirring-like potential.
Furthermore we checked that the minimum of the full potential
is either at the origin or in the Gross-Neveu direction. There-
fore we show the curvature in the Gross-Neveu direction in
Figure 7 forNir = 3, 5, 7, 9 and 11 on the 16×152 lattice. The
critical inverse coupling λc is defined by vanishing curvature
and values are shown in Table III. Again we compare the
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0.5

1.0

1.5

2.0

0.00 0.05 0.10 0.15 0.20 0.25

κ

λ

Nir = 3 5 7 9 11

Figure 7. Curvature of the effective potential for different odd flavour
numbers Nir on the lattice with L = 16 (darker shade) and L =
20 (lighter shade). The coloured bars and their widths denote the
corresponding transition from the lattice artefact phase to the physical
phase at λ∗ including the statistical error.

coupling λc to the critical value of the strong-coupling trans-
ition λ∗. For Nir = 3, 5 and 7 we observe that the parity phase
transition at λc lies within the physical phase, i.e. λc > λ∗ and
we conclude that parity symmetry is spontaneously broken for
these flavour numbers. For Nir = 11 the curvature is always
positive and therefore parity symmetry is always unbroken.
For Nir = 9 both critical couplings coincide within error bars
and it is still unclear whether parity symmetry is spontaneously
broken or not.

The upper curve in Figure 8 shows the linear interpolation
between the critical values λc for the Thirring model with odd
flavour numbers. We conclude, that the critical flavour number
for parity breaking is N cr

ir = 9. The minimum xmin of the
effective potential is an order parameter for the breaking of
parity symmetry and therefore related to a parity condensate
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Nir 1 2 3 4 5 7 9 11
λ∗(L = 8) 0.35(1) 0.223(6) 0.158(4) 0.122(4) 0.098(2) 0.073(2) 0.058(2) 0.048(2)
λ∗(L = 12) – 0.214(4) 0.149(4) 0.114(3) 0.094(3) 0.068(2) 0.054(2) 0.046(2)
λ∗(L = 16) – 0.208(4) 0.146(4) 0.112(3) 0.091(2) 0.067(1) 0.054(1) 0.045(1)
λ∗(L = 20) – – – – – 0.066(1) 0.053(1) 0.045(1)

Table II. Critical λ∗ for different flavour numbers and lattice volumes. For larger lattices there are small finite size effects. Simulations for
Nir = 1 were done with a fermion bag algorithm.

Nir 1 3 5 7 9 11
λc(L = 16) 0.39(1) 0.172(2) 0.110(4) 0.077(1) 0.054(2) –
λc(L = 20) – – – 0.074(2) 0.051(2) –

Table III. Critical inverse coupling λc on a lattice with L = 16 and
L = 20 separating the parity broken from the parity symmetric phase.
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Parity symmetric phase

Parity broken phase

Figure 8. Phase diagram for odd flavour numbers. The lower curve
separates the strong coupling lattice artefact phase from the physical
weak coupling phase and is known for odd and even flavour numbers.
The upper curve for odd flavour numbers shows the physical phase
transition associated with breaking of the discrete parity symmetry.

π. For a second order phase transition, π should decrease
continuously to zero with increasing coupling λ. In Figure 9
we show the condensate for different odd flavour numbers
in the physical phase on a lattice with L = 16. For Nir ∈
{3, 5, 7} it decreases monotonically to zero while for Nir = 9
the condensate approaches zero at vanishing renormalized
inverse coupling λR = λ− λ∗. This observation is consistent
with the scenario proposed in [6, 14, 15] where parity at the
critical flavour number is only broken at vanishing inverse
coupling.

The length dimension of the physical inverse coupling is
[λphys] = −1 and therefore the dimensionless lattice coupling
is related to a physical coupling by aλphys = λ. In the cases,
where we did not find a second-order phase transition, we can
perform the continuum limit by λR → 0 for a fixed physical
inverse coupling within the physical phase. For odd Nir < N cr

ir ,
where we spotted a second-order phase transition, we build the
continuum limit by λ→ λc, corresponding to a non-Gaussian
fixed point. Both limits coincide for Nir = N cr

ir .
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Figure 9. Parity condensate π ∼ xmin for odd flavour numbers in
the physical phase as a function of the renormalized inverse coupling
λR = λ− λ∗.

VIII. CONCLUSIONS AND DISCUSSION

Our main observation is, that the irreducible Thirring model
with an odd number of irreducible flavours behaves different
compared to the model with an even number of flavours. For
massless fermions the latter class is equivalent to the class of
well-studied reducible models with N = 2Nir. While for odd
flavour numbers we find a critical flavour number N cr

ir = 9
below which the Thirring model shows spontaneous parity
breaking, for even flavour numbers, neither parity nor chiral
symmetry is broken. This implies that no spontaneous breaking
of chiral symmetry exists for all reducible models, which are
usually discussed in the literature. Our earlier, more straightfor-
ward simulations with SLAC fermions already pointed to this
result [40, 41]. Furthermore our conclusions are also consistent
with recent simulations with domain wall fermions [29, 30].

Regarding the older lattice simulations with staggered fer-
mions [19–24], including the fermion bag formulation [27],
their results seem not to be valid for the reducible Thirring
model, likely because their lattice formulation does not have
the correct symmetry. To see this more clearly we should
recall that for massive fermions the reducible models are no
longer equivalent to the irreducible models with Nir = 2N
flavours. For reducible massive models log det(i /D + im) is
real and does not contain any imaginary Chern-Simons-type
term as it does for all irreducible massive models. After the
infinite volume limit has been taken the zero-mass limits of the
reducible models are not equal to the zero-mass limits of the
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irreducible models with Nir = 2N . Thus any lattice simula-
tion (or any other regularization) which needs a fine-tuning to
reach the chiral limit may yield erroneous results. It may very
well happen that instead of the massless reducible model one
simulates an irreducible model at small masses. This could be
a partial explanation why the earlier prediction 8 < N cr

ir < 12
is consistent with ours, but only for odd flavour numbers in the
irreducible representation.

Also note, that most of the previous analytical studies focus
on csb in the reducible representation assuming conservation
of the reducible parity (9) [6, 14, 15, 43] or do not distin-
guish between irreducible and reducible models [13, 46]. For
example, the authors of [13] use DSEs to investigate mass
generation either from parity or chiral symmetry breaking and
find N cr ≈ 12.97/D where D is the dimension of the repres-
entation of the Clifford algebra. These earlier results are not
consistent with ours and other ongoing simulations with chiral
fermions [29, 30], where csb is not present at all.

Not much emphasis was put on parity breaking for odd
flavour numbers in the irreducible representation, but most
studies found a cancellation of the Chern-Simons terms for
evenNir [6, 15, 43]. As discussed above, this is a delicate issue
and the answer depends on the order of limits limV→∞ and
limm→0. We obtained our results for zero masses in a finite
volume in which case the fermion determinant is real and no
(imaginary) Chern-Simons term can be generated. In case one
considers the Thirring model onR3 then such a term can show
up for even Nir [44, 45, 50]. It also can show up if one uses a
regularization which breaks chiral symmetry explicitly.

To obtain our novel results it was essential to employ chiral
fermions. But with massless chiral fermions it seems im-
possible to calculate the chiral condensates directly [40]. The
main ingredient to circumvent this difficulty was to use both
the vector and the matrix formulations of the Thirring models.
By introducing auxiliary (local) masses we could relate expan-
sion coefficients for effective potentials of a massless model in
the matrix formulation to expectation values of condensates in
the vector formulation of the same model. The actual proof and
explicit mapping from coefficients to condensates are based
on a reformulation of the matrix models in terms of dual spin
variables kαβxi . They are introduced to represent the result of
the integration over the fermionic variables.

Our analytic results hold for other types of chiral fermions.
Actually, at present we replace SLAC fermions by overlap
fermions in our simulation code to calculate the condensates
related to the coefficients of effective potentials3. We expect to
find comparable results as for SLAC fermions and in particular
a similar value for N cr

ir .
We already mentioned that the irreducible one-flavour model

(which is equivalent to the irreducible one-flavour Gross-Neveu
model) has a severe sign problem. We could show that in the
dual formulation there are subtle cancellations of terms such
that the sign problem actually goes away [49]. It would be
interesting to show that a similar fermion bag type algorithm
without sign problems exists for multi-flavour Thirring models.

3 In collaboration with Rajamani Narayanan.
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Appendix A: Fermion bag

Here we present further details concerning the functional
integral in the dual formulation introduced in section IV A. We
summarize relevant results up to the point, where simulations
with a fermion bag algorithm are possible. For that purpose it
is convenient to use the Lagrangian

L = ψ̄
(
i /∂ + iT + iφ

)
ψ +

λ

2
trT 2 + λφ2, (A1)

with an additional scalar field φ in place of the equivalent Lag-
rangian (23). In the formulation with scalar field the occurring
integrals over the hermitian matrix T are more readily calcu-
lated. The equivalence of the two formulations can be seen
after splitting T into its trace free contribution and a multiple
of the identity. Then one observes that the integration over
trT in the formulation (23) and over trT and φ in the for-
mulation (A1) yield the same results, up to an overall factor
∝ λV/2. The transition to dual variables is the same as for the
Lagrangian without scalar field, the only difference being that
the matrix (Hαβ

x ) in the interaction term is now

Hαβ
x = Tαβx + φxδ

αβ +Mαβ
x , (A2)

and this gives rise to a slightly different local weight and an
additional integration over φ. Instead of (38) one obtains

Wloc(k,M) =

∫ Nir
2∏

i=1

(
dti√
π

)∫
dφ e−

1
2 trT 2−φ2

·
∏
αβ

(
Tαβ + φ δαβ +Mαβ

)kαβ
,

(A3)

up to an irrelevant overall factor ∝
√
λ. Since T is hermitian,

the exponential function factorizes as follows:

e−
1
2 trT 2

=
∏
α<β

e−|T
αβ|2 ∏

α

e−(Tαα)2

. (A4)

It implies the following factorization of the local weight,

Wloc(k,M) =

∫
dφ e−φ

2

Wp(k)(φ,M)wo(k⊥) , (A5)

where the integral over the off-diagonal matrix elements pro-
duces the M - and φ-independent factor

wo(k⊥) =
∏
α<β

W⊥(kαβ , kβα) . (A6)
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The functionW⊥ is determined by a complex Gaussian integral

W⊥(k, k′) =

∫
dzdz̄

π
e−|z|

2

zk(z∗)k
′

= k! δkk′ (A7)

leading to the local constraints kαβ = kβα. Thus we obtain

wo(k⊥) =
∏
α<β

(kαβ) ! (A8)

Recall that the entries of the symmetric matrix (kαβ) must
obey the local constraints in (35).

The integral over the Cartan variables leads to a term similar
to (40) and is given by

Wp(k)(φ,M) =

∫ Nir∏
i=1

(
dti√
π

)
e−tAt

·
∏
α

(Tαα + φ+mα)
pα(k)

(A9)

with pα(k) = kαα ∈ {0, 1, 2}. Note that the diagonal matrix
elements Tαα are linear functions in the integration variables
ti. The symmetric positive matrix A has matrix elements

Aij =
1

2
tr (HiHj) (A10)

and differs slightly from the matrix (41) in the formulation
without scalar field φ. The normalization of the generators Hi

is such that

tr(HiHj) =



4
Nir+2 0 0 0 . . . 0

0 2 −1 0 . . . 0

0 −1 2 −1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2


. (A11)

The final integration over the variables ti yields the factor

Wp(φ,M) =
∏

α:pα=1

(φ+mα)
∏

α:pα=2

(
1 + (φ+mα)2

)
. (A12)

In the limit of m → 0, the φ-integral (A5) vanishes for odd
P1 and for even P1 is given by the confluent hypergeometric
function,

Wloc(k) = wo(k⊥)Γ
(1+P1

2

)
U
(1+P1

2
,

3+P1

2
+ P2, 1

)
,

(A13)
where, as in the main body of the text, the number Pk with
k ∈ {0, 1, 2} counts the number of indices pα with pα = k. In
this form, the local weights are suitable for simulations with a
fermion bag algorithm. Unfortunately, this formulation does
not solve the sign problem that was introduced by the Fierz
transformation.

Appendix B: Strong coupling expansion

The partition function in the vector formulation of the Thirring
model with fermionic sources is given by (74). Here we per-
form the integration over the vector field vµ and the fermions.
After rescaling the vector field according to ṽµ =

√
λvµ (and

afterwards dropping the tilde) the integration over the fermions
yields

Z[η, η̄] = (λ)
−(3/2+Nir)V K

[
δ

δη
,
δ

δη̄

]
∫
Dv

(
det /vx

)Nir
e
−

∑
x
v2
x
e

∑
x

√
λ η̄x

1
/vx
ηx
.

(B1)

The integral over the vector field factorizes and we can expand
in powers of the fermionic bilinear in the exponent,

Z[η, η̄] = (λ)
−(3/2+Nir)V K

[
δ

δη
,
δ

δη̄

]
∫
Dv e

−
∑
x

(v2
x+Nir ln v2

x)
e

√
λ
∑
x
η̄x/vxηx/v

2
x

= (λ)
−( 3

2 +Nir)V K

[
δ

δη
,
δ

δη̄

]∏
x

Nir∑
k=0

Ik(ηx, η̄x),

(B2)
where Ik is the 3-dimensional one-site integral

Ik(η, η̄) =
λk

(2k)!

∫
d3v e−v

2

(v2)Nir−2k (η̄ /v η)
2k
. (B3)

Here, we already used that only even powers of /v contribute
to the integrals over vµ. In spherical coordinates v = rv̂, the
integration over the radial direction is simple and we obtain

Ik(η, η̄) =
λk

(2k)!

∫
dr d2v̂ e−r

2

r2(Nir+1−k)
(
η̄ /̂v η

)2k
=
λkΓ

(
3
2 +Nir − k

)
2(2k)!

∫
S2

d2v̂
(
η̄ /̂v η

)2k (B4)

The remaining integral can be calculated from the generating
function

z(j) =

∫
d2v̂ e

∑
jµv̂µ = 4π

sinh |j|
|j|

, j ∈ R3 , (B5)

by taking derivatives. This way we find∫
d2v̂ (η̄γµη v̂µ)

2k
=

(
η̄γµη

∂

∂jµ

)2k

z(j)
∣∣∣
j=0

=
4π

2k + 1

(
(η̄ γµ η)2

)k
.

(B6)

Hence, the integral over the vector field yields

Ik(η, η̄) = 2π
λk Γ ( 3

2 +Nir − k)

Γ (2k + 2)

(
(η̄ γµ η)2

)k
(B7)

such that the final expression for the partition function after
integration over vector and fermion fields is given by (76).
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In the main body of the paper, just after equation (78), we
remark that in the infinite volume limit the partition function
only has a trivial dependence on the inverse coupling λ and
that local expectation values do not depend on λ at all. In order
to show this, we write the n-th order in the corresponding
expansion as a sum over the configurations ǩ = {kx|x 6= x0},
where kx is the order of the function F (kx)(x). We obtain for
the partition function

Z(n)[χx0
, χ̄x0

] = K(n)
∏
x

∑
kx

F (kx)(x)
∣∣∣
χx6=x0

=0
(B8)

=
∑
ǩ

K(n)
∏
x6=x0

F (kx)(x)
∑
kx0

F (kx0
)(x0)

∣∣∣
χx 6=x0

=0
,

where a particular the point x = x0 was singled out, because
we later differentiate the partition function with respect to
the source at this point. The operator K(n) contains (n, n)
derivatives with respect to (χ, χ̄) at all lattice points while the
function F (k)(x) contains (2k, 2k) fermion sources (χ, χ̄) at
the lattice point x. Symbolically, we introduce the operator
D(i,i), that collects (i, i) derivatives together with the 2i sums
over the lattice points. This allows us to write the partition
function as

Z(n)[χx0
, χ̄x0

] =

n∑
i=1

A(i)B(i) (B9)

with the functions A and B defined as

A(i) =

(
D(i,i)

∑
ǩ

∏
x 6=x0

F (kx)(x)

)∣∣∣∣∣
χ=0

,

B(i) =D(n−i,n−i)
∑
kx0

F (kx0
)(x0).

(B10)

To investigate the volume dependence of the A functions we
act with i derivatives on the F functions and afterwards set
the sources to zero. Only terms with 2

∑
kx = i yield a non-

vanishing contribution to the partition function. Furthermore,
we need more than one lattice point, because the massless
inverse fermion propagator vanishes for x = y (this is true
for SLAC-fermions on lattices with even L). Therefore, the
number nx of lattice points with sources in the product of the
F function is nx = 2 , . . . , i/2. For the first lattice point, we
have V − 1 possibilities, for the second lattice point V − 2 etc.
Thus the volume dependence of A(i) is

A(i) ∼
i/2∑
nx=2

anx

(
V − 1

nx

)
−→
V�i

i/2∑
nx=2

anx
V nx

nx!
. (B11)

We conclude that the dominant contribution to the partition
function in the infinite volume limit and for a fixed order of
the expansion is

Z(n)[χx0 , χ̄x0 ] = A(n)B(n) ∼ C(λ)
∑
k

F (k)(x0). (B12)

This leads to the form of the partition function given in (79).
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