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Abstract

The functional renormalization group equation for the quantum effective action is
a powerful tool to investigate non-perturbative phenomena in quantum field theories.
We discuss the application of manifest supersymmetric flow equations to the N = 1
Wess-Zumino model in two and three dimensions and the linear O(N) sigma model
in three dimensions in the large-N limit. The former is a toy model for dynamical
supersymmetry breaking, the latter for an exactly solvable field theory.

1 Introduction

Supersymmetry (susy) is an important ingredient for most theoretical developments beyond
the standard model, including supergravity and string theory. To study susy field theories at
intermediate and strong couplings non-perturbative methods are required. Unfortunately,
most methods are either perturbative or break susy explicitly. For example, any lattice
regularization breaks supersymmetry and one needs to fine-tune the bare parameters to
recover supersymmetry in the continuum limit [4, 5, 3, 8]. Only for particular susy models
with extended supersymmetry one may find a nilpotent combination of the supercharges and
this nilpotent charge may be used to recover a supersymmetric continuum limit. Clearly
what we need is an alternative, universally applicable and complementary non-perturbative
method. In the past functional renormalization group methods have been successfully applied
to many problems in strongly coupled quantum field theories [2, 1, 10, 6] and thus we
decided to adapt functional method to supersymmetric systems. Actually it is possible
to formulate renormalization group equations in superspace, such that the flow equations
yield supersymmetric effective actions on all scales [11, 12]. Here we consider supersymmetric
Yukawa models built from a real superfield Φ(x, θ) = φ(x)+θγ∗ψ(x)+ 1

2
(θγ∗θ)F (x) consisting

of a scalar field φ, a Majorana spinor ψ and an auxiliary field F . The (super)covariant
derivatives acting on Φ are given by D = ∂/∂θ + i(γµθ)∂µ and D = −∂/∂θ − i(θγµ)∂µ. For
more details we refer to our previous works on Wess-Zumino models in [7, 14, 13, 9].

The functional renormalization group can be formulated as a flow equation for the effec-
tive average action Γk. This scale dependent functional interpolates between the classical
action S = Γk=Λ at the UV-cutoff Λ and the full quantum effective action Γ = Γk=0 that
includes all quantum fluctuations (see Fig. 1, left panel). For a given initial condition ΓΛ at
the cutoff the effective average action is determined by the Wetterich equation [15],

∂kΓk =
1

2
STr

{[
Γ

(2)
k +Rk

]−1

∂kRk

}
. (1)
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Figure 1: left: A trajectory of the scale dependent effective action in theory space. right:
The flow of the scalar potential of the N = 1 Wess-Zumino model in two dimensions with
λ = 0.1 Λ and a2 = 0.3.

where k denotes the momentum scale. Here (Γ
(2)
k )ab =

−→
δ

δΨa
Γk
←−
δ
δΨb

is the second functional

derivative of Γk, where the indices a, b summarize all field components (internal and Lorentz
indices, spacetime or momentum coordinates). Here Ψ denotes the collection of component
fields and not the superfield. The flow equation contains an infrared regulator Rk derived
from a cutoff action quadratic in the fields. A general supersymmetric cutoff action has the
form ∆Sk = 1

2

∫
ddx ΦRkΦ|θγ∗θ, where the supersymmetric regulator is a function of super-

covariant derivatives, Rk ≡ f(Dγ∗D). Using the properties of D and D̄ one proves that
Rk = r1(∆) + r2(∆)Dγ∗D. The first term is a momentum-dependent mass and the second a
kinetic term with momentum-dependent coefficient. A consistent approximation scheme to
solve Eq. (1) is given by an expansion in super-covariant derivatives of the superfield. The
truncation of such an expansion preserves supersymmetry.

2 Wess-Zumino Model in two and three dimensions

Let us consider the two and three-dimensional Wess-Zumino model with one supersymmetry
as a toy model for dynamical susy breaking [16]. The action in superspace is given by

S =

∫
ddx

(
−1

2
DΦγ∗DΦ +W (Φ)

)∣∣∣∣
θγ∗θ

. (2)

After eliminating the auxiliary field F by its algebraic equation of motion the on-shell action
contains a real scalar field φ with bosonic potential V (φ) = W ′(φ)2/2 and a Majorana fermion
field ψ with Yukawa-type interaction to the scalar field. Unbroken susy is characterized by a
vanishing ground state energy and it depends on the superpotential whether susy-breaking
is possible or not. For W (φ) ∼ φ2n susy is always unbroken, whereas for W (φ) ∼ φ2n+1 susy
breaking is possible. We will focus on the more interesting latter case in these proceedings

In the lowest order truncation Γk[φ, F, ψ, ψ] =
∫

ddx (−1
2
DΦγ∗DΦ +Wk(Φ))

∣∣
θγ∗θ

and in

the following we calculate the flow of the effective superpotential Wk. A nex-to-leading field
independent wave function renormalization Zk can be implemented via Φ → ZkΦ in the
kinetic term, implying a non-vanishing anomalous dimension η = −∂t lnZ2

k .
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Figure 2: Phase diagram in two (left) and three dimensions (right)

The flow equation for the superpotential is obtained by projecting Eq. (1) onto the part
linear in the auxiliary field. To allow for spontaneous susy breaking we consider super-
potentials at the cutoff with odd highest power. Actually the regulator function r1 amounts
to just a φ-independent shift so that we can set it to zero without loss of generality. Thus
in what follows we choose r1 = 0 and r2 = (|k/p| − 1) θ(1− p2/k2) for which the momentum
integration can be done analytically, and the flow equation simplifies to

∂kWk(φ) = −k
d−1

Ad

W ′′
k (φ)

k2 +W ′′
k (φ)2

, A2 = 4π, A3 = 8π2. (3)

Expanding the superpotential into a power series, W ′
k = λk(φ

2 − a2
k) +

∑
n=2 b2n,kφ

2n the
flow equation turns into an infinite system of coupled ordinary differential equations for
the scale-dependent coefficients. As initial conditions at the cutoff we take b2n,Λ = 0 and
a double-well potential corresponding to unbroken susy. The flow of the bosonic potential
Vk(φ) = W ′

k(φ)2/2 in two dimensions with λΛ = Λ/10 and a2
Λ = 3/10 is shown in Fig. 1 (right

panel). The flow of the potential in three dimensions is very similar. As the scale k is lowered
to the infrared, a single-well potential emerges and we end up in the phase without susy. For
larger values of aΛ we end up in the supersymmetric phase. In the supersymmetric phase
the scalar mass is given by Z4

km
2
k,boson = W ′′ 2

k (χmin/Zk) = Z4
km

2
k,fermion and in the broken

phase by Z4
km

2
k,boson = W ′

k(0)W ′′′
k (0)∼ k1+η/2. We find that in the regime with broken susy

the curvature of the bosonic potential at the minimum and therefore the bosonic mass goes
to zero with the RG scale k as m(k) ∼ k1/ν . This behavior is governed by a critical exponent
ν which obeys the super-scaling relation

ν =
2

d− η
, η = −k∂k lnZ2

k , νd=2 ' 1.3 νd=3 ' 0.7 ,

where η denotes the anomalous dimension and d the spacetime dimension. We emphasize
that any measurement (e.g. lattice simulations) involves an IR cutoff (e.g. lattice size).
Hence we predict that any measurement will yield a bosonic mass proportional to the scale
provided by this IR cutoff.

The coupling a2
Λ is a control parameter for susy breaking both in two and three dimen-

sions. In Fig. 2 the phase diagram in the control-parameter plane (λΛ, a
2
ΛλΛ) is shown for
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both cases. As a signal for susy breaking we use a non-vanishing ground state energy. We
find a maximal value for susy breaking at λΛa

2
Λ ' 0.263 in two dimensions. This agrees with

a qualitative argument given by Witten [16] that spontaneous susy breaking is not possible
for large values of a2

Λ.
Let us turn to a discussion of the fixed points. For this we have to rescale the flow equa-

tion for the superpotential to dimensionless quantities wk(φ) = Wk(φ)/k and t = ln(k/Λ).
In two dimensions the field φ is dimensionless. The fixed points are characterized by the con-
dition ∂tw∗ = 0. In two dimensions this leads to a nonlinear ordinary differential equation
with a singularity at w′′k(φ) = 1. The superpotential has two relevant directions corre-
sponding to the coefficients of the terms φ0 and φ1. As only the second derivative of the
superpotential enters on the right hand side of Eq. (3) it is sufficient to consider the second
derivative of the fixed-point equation to get rid of the IR-unstable directions. To leading
order of the derivative expansion in two dimensions and with a polynomial expansion to
order 2n we have 2n non-Gaussian fixed points and one Gaussian fixed point. These fixed
points are labeled by the coupling λ∗n. As the absolute value of λ∗n decreases, the number of
IR unstable directions increases. The largest value of λ∗n has one IR unstable direction. The
real parts of these critical exponents at truncation order 16 are given in Table 2. The fixed
points found by a polynomial expansion correspond to Taylor expansions of periodic solu-
tions with |w′′(0)| < 2 |λcrit| = 0.982. The IR stable fixed point is given by w′′(0) = 2λcrit.

λ∗ Re (θI) of non-Gaussian fixed points, truncation at 2n=16
±.9816 −1.54 −7.43 −18.3 −37.3 −68.9 −120 −204 −351
±.8813 6.16 −1.64 −9.82 −25.6 −52.5 −96.9 −170 −300
±.7131 21.4 4.37 −1.57 −11.1 −30.1 −63.3 −120 −223
±.5152 28.7 13.3 3.33 −1.39 −11.6 −32.8 −71.7 −145
±.3158 20.0 20.0 8.40 2.57 −1.14 −11.6 −34.3 −80.4
±.1437 11.2 11.2 8.63 5.19 1.95 −.842 −11.1 −35.7
±.0322 4.20 4.20 2.86 2.72 2.72 1.47 −.540 −10.5
±.0003 1.57 1.57 1.43 1.43 1.14 .542 .542 −0.221

Table 1: The critical exponents of the two dimensional Wess-Zumino model at truncation
2n = 16 for the different non-Gaussian fixed point solutions labeled by the value of |λ∗|. IR
unstable directions are written in gray color.

In three dimensions there is only one non-trivial fixed point (pair), the supersymmetric
analogue of the Wilson-Fisher fixed point with a scalar potential that behaves like V (φ) ∼ φ6

for large values of φ. The critical exponents are listed in Table 2. Contrary to two dimensions
we observe a rapid convergence of the critical exponents with increasing order of truncation.

For the three-dimensional model at finite temperatures the integration in the timelike
direction

∫
dp0 is replaced by a summation over Matsubara frequencies. These sums can be

performed analytically. As the Matsubara frequencies are different for bosons and fermions
the flow equation for the ’superpotential’ obtained from a projection on the bosonic or
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2n critical exponents for different truncations
6 −0.799 −5.92 −20.9
8 −0.767 −4.83 −14.4 −38.2
10 −0.757 −4.35 −11.5 −26.9 −60.8
12 −0.756 −4.16 −9.94 −21.4 −43.8 −89.0
14 −0.756 −4.10 −9.13 −18.3 −35.1 −65.4 −123
16 −0.756 −4.08 −8.72 −16.4 −29.9 −52.9 −91.9 −163
18 −0.756 −4.08 −8.54 −15.2 −26.4 −45.0 −75.0 −124 −209

Table 2: The critical exponents at different truncations for the three-dimensional Wess-
Zumino model
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Figure 3: The phase diagram at finite temperatures

fermionic part of the flow equation differs by a temperature dependent factor

∂kW
′
k

bos
= − k2

8π2
W ′′′
k

k2 −W ′′2
k

(k2 +W ′′2
k )2

× Fbos(T, k) (4)

∂kW
′
k

ferm
= − k2

8π2
W ′′′
k

k2 −W ′′2
k

(k2 +W ′′2
k )2

× Fferm(T, k) (5)

with Fbos ∼ T and Fferm → 0 for large temperatures. For high temperatures the fermions
decouple from the flow as they have no Matsubara zero mode. This is the manifestation of
supersymmetry breaking at finite temperatures caused by thermal fluctuations. Although
susy is always broken at finite temperatures, due to different interactions of fermions and
bosons with the heat bath, the is still the Z2 symmetry. At zero temperature this symmetry
is spontaneously broken in the supersymmetric phase and it is not broken in case supersym-
metry is broken. The flow equation enables us to study the restoration of Z2 symmetry at
finite temperatures. Fig. 3 shows the corresponding phase diagram. The surface on the left
shows the phase boundary in the space spanned by temperature T/Λ and the value of the
couplings (λΛa

2
Λ) and λΛ at zero temperature. The curve on the right shows a slice of the

phase-boundary for fixed λΛ = 0.8. At sufficiently high temperature the Z2 symmetry is
always restored.
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3 Linear sigma models

As an example of a solvable flow equation we now discuss the three-dimensional linear sigma
model in the large-N limit. The model is built upon a real superfield Φ with N components

Φi(x, θ) = φi(x) + θ̄ψi(x) +
1

2
θ̄θF i(x).

The superfield defines an O(N)-invariant composite superfield R ≡ 1
2
ΦiΦi with components

R = %̄+ (θ̄ψi)φ
i +

1

2
θ̄θ

(
φiFi −

1

2
ψ̄iψi

)
, %̄ =

1

2
φiφi .

The composite superfield is used to define the O(N)-invariant supersymmetric action

S =

∫
d3x

[
−1

2
ΦiD̄DΦi + 2N W

(
R

N

)] ∣∣∣
θ̄θ
.

Note that the on-shell action contains the bosonic potential V (%̄) = %̄W ′ 2 (%̄/N). Thus,
for any polynomial W ′ we find V (0) = 0 and thus do not expect susy breaking in our RG
studies.

In the following we study the fixed point structure of this model in the limit of many com-
ponents N →∞ [9] and thus consider the rescaled dimensionless quantities ρ = 8π2%̄/(Nk)
and w(ρ) = 8π2W (%̄/N)/k2. We use an optimized cutoff function r2(p2) = (k/|p| − 1)θ(k2−
p2) for which the momentum integrals can be calculated analytically. This leads to the flow

∂tw − ρw′ + 2w = −
(

1− 1

N

)
w′

1 + w′2
− 1

N

(w′ + 2ρw′′)

1 + (w′ + 2ρw′′)2

of the dimensionless superpotential. Similar to the bosonic O(N) model the flow receives
two specific contributions. One from the N − 1 Goldstone modes (first term on the right)
and one from the single radial mode (second term on the right). The terms on the left hand
side encode the canonical scaling of the superpotential and the fields. In the limit N → ∞
the radial modes decouples and the flow equation simplifies to

∂tu+ ∂ρu

[
1− ρ− u2 3 + u2

(1 + u2)2

]
= −u,

where we have introduced u = w′ in order to simplify the notation. This nonlinear, 1st-order
PDE can be solved analytically via the method of characteristics which yields

ρ− 1

u
− F (u) = G(uet), F (u) =

u

1 + u2
+ 2 arctanu.

As initial condition we have to specify the superpotential u(ρ) at the UV-scale k = Λ, thus
fixing the RG-time dependent function G(uet). The fixed point solution

ρ = 1 +H(u∗) + c u∗, H(u∗) = u∗ F (u∗)

only depends on the real constant parameter c = G(uet). We conclude that the theory
possesses a one-parameter family of non-trivial fixed-point solutions, solely parametrized by
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Figure 4: Fixed point solutions in the large-N limit. left panel: global solution u∗(ρ), where
the axes are rescaled with x → x/(1 + |x|); right panel: fixed-point solutions u∗(ρ) in the
vicinity of the node ρ = 1. Specific lines refer to |c| = ∞ (horizontal line), |c| = π (green,
long-dashed lines), |c| = (π + 3)/2 (black, full lines) and c = 0 (red, dashed-dotted line).

the constant c, representing the inverse of the linear superfield coupling. All solutions have
a node at ρ = 1.

As Fig. 4 illustrates, there exist two classes of fixed point solutions. Solution in the first
class are globally well-defined for all values of ρ ∈ (−∞,∞). Solutions in the second class
are defined only on part of the ρ−u plane. In the weakly coupled regime, where |c| ≥ π, we
find a unique fixed-point solution in the physical domain ρ ≥ 0. The intermediate coupling
regime with (π+ 3)/2 ≤ |c| < π features two fixed-point solutions, one with a node at ρ = 1
and one without a node. However, in the strong coupling regime with |c| < (π + 3)/2 the
slope of the potentials diverge at some ρs > 0 such that the solutions are not defined for all
physical fields. Finally, we note that the solution with infinitely large coupling c−1 = ∞ is
closely related to the Wilson-Fisher fixed point of the 3d bosonic O(N) model.

In order to determine the universal critical scaling exponents, we consider the flow in the
vicinity of a fixed point, i.e. u(t, ρ) = u∗(ρ) + δu(t, ρ). Linearizing the flow equation in δu
yields the fluctuation equation and explicit solution

∂t δu =
u∗
u′∗

(
∂ρ −

(u∗u
′
∗)
′

u∗u′∗

)
δu =⇒ δu(t, u) =

∑
n

Cn e
λnt uλn+1

∗ u′∗ , (6)

where λn denotes the set of possible eigenvalues. Regularity of the perturbations at ρ = 1
then requires non-negative integer values for the exponent λn+1. Since the critical exponents
θn correspond to the negative eigenvalues, we find θn = 1 − n, n ∈ N0. Interestingly, we
obtained Gaussian critical exponents1 for non-Gaussian fixed points.

1The critical exponents θ coincide with the mass dimension of the corresponding couplings.
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4 Summary and outlook

The formulation in superspace is suitable to extend the functional renormalization group
to supersymmetric theories. We were able to derive the phase diagram for susy breaking
and to determine the fixed point structure in the local potential approximation with a con-
stant wave function renormalization for the N = 1 Wess-Zumino model in two and three
dimensions. We predict a super-scaling relation for the critical exponent corresponding to
the ubiquitous IR unstable direction. Furthermore, we solved the three-dimensional super-
symmetric O(N) model exactly in the large-N limit and found a line of non-Gaussian fixed
points, parametrized by the linear superfield coupling similar to the bosonic (φ2)3 theory.
This line is bounded by the Gaussian fixed point corresponding to vanishing coupling and a
fixed point characterized by an infinitely large linear coupling and related to the fixed point
of the 3d nonlinear sigma model as well as the Wilson-Fisher fixed point of the 3d spherical
model.

Some of the presented results where obtained in collaboration with J. Braun, H. Gies and
D. Litim. This work has been supported by the DFG under Wi 777/10-1 and GRK 1523.
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