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The QCD phase diagram at densities relevant to neutron starsremains elusive, mainly due to the fermion-sign
problem. At the same time, a plethora of possible phases has been predicted in models. MeanwhileG2-QCD,
for which theSU(3) gauge group of QCD is replaced by the exceptional Lie groupG2, does not have a sign
problem and can be simulated at such densities using standard lattice techniques. It thus provides benchmarks
to models and functional continuum methods, and it serves tounravel the nature of possible phases of strongly
interacting matter at high densities. Instrumental in understanding these phases is thatG2-QCD has fermionic
baryons, and that it can therefore sustain a baryonic Fermi surface. Because the baryon spectrum ofG2-QCD
also contains bosonic diquark and probably other more exotic states, it is important to understand this spectrum
before one can disentangle the corresponding contributions to the baryon density. Here we present the first
systematic study of this spectrum from lattice simulationsat different quark masses. This allows us to relate
the mass hierarchy, ranging from scalar would-be-Goldstone bosons and intermediate vector bosons to theG2-
nucleons and deltas, to individual structures observed in the total baryon density at finite chemical potential.

PACS numbers:

I. INTRODUCTION

Understanding neutron stars requires to understand the equilibrium properties of nuclear and hadronic matter [1, 2] atlow
temperature and high density. This is essential in every stage starting from neutron star formation and cooling to neutron star
mergers, and hence ultimately to understanding the synthesis of the heavy elements. A serious technical obstacle in this process
is the infamous fermion-sign problem, which prevents efficient numerical simulations of the underlying theory of nuclei and
hadrons, QCD [3–5]. Although substantial progress has beenachieved with models and functional continuum methods [1, 6–8],
input from lattice simulations remains indispensable.

There have been several approaches to circumvent the sign problem, e.g. analytic continuations from imaginary [9–11] or
isospin [12, 13] chemical potential which fail, however, when phase transitions are encountered. Another possibilityis to
combine strong-coupling and hopping expansion techniquesto derive an effective theory for heavy quarks [14, 15] whoserange
of applicability must then be assessed. Further alternatives might be provided by stochastic approaches [16], but it isas yet
unclear whether they will eventually solve the problem in QCD.

A complementary strategy is to use QCD-like theories without a sign problem. This strategy serves two aims. One is to
provide numerical benchmarks for model building [1, 6] and continuum methods [7, 8], for continuations from imaginary or
isospin chemical potential, and equally so for the effective lattice theories for heavy quarks. The other is to gain insight into the
genuine properties of gauge theories other than QCD at finitedensities, and to exploit analogies with other physical systems such
as ultracold fermionic quantum gases. Such QCD-like theories include two-color QCD [17–23] and adjoint QCD [17, 24–26].
However, neither of these directly compare well with QCD. Two-color QCD with fundamental quarks does not have fermionic
baryons [17, 18], while adjoint QCD is known to behave ratherdifferently from QCD already in the quenched case [27].

We have recently added another such replacement theory,G2-QCD [28, 29], and shown that it is possible to simulate this
theory at finite density and temperature. This permitted a first view of the full phase diagram ofG2-QCD. We will discuss the
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properties of this theory in detail in Section II. Here, it suffices to state that it can be simulated without fermion-signproblem at
finite density, it does have fermionic baryons, and its properties in the quenched case are very similar to QCD as well. Especially
this last observation has quite interesting implications for the role of the center symmetry in QCD. A brief review and guide to
the literature is given in [30].

In order to better understand the physical picture behind the phase diagram of this theory, however, one needs to understand its
hadronic spectrum. In [29] we studied a few low-lying statesto give a rough estimate of the scales involved in the simulations.
To firmly identify the properties of various finite densisty phases, we need a much clearer picture of the hadron masses andthe
corresponding hierarchy of mass scales. These can be deduced from the spectrum of hadronic states in the vacuum. To deter-
mine this spectrum from lattice Monte-Carlo simulations isthe main purpose of the present article. We discuss the theoretical
foundations of (lattice) spectroscopy forG2-QCD in Section III. While the lattice determination of the spectrum is in principle
straightforward, it is a rather challenging task, when it comes to the details which we describe in Section IV. The results for
spectra obtained with two different quark masses are presented in Section V.

To show that this information is indeed relevant for understanding the phase diagram we relate these results in an explorative
way to the dependence of the quark density on their chemical potential in Section VI. We thereby observe various structures
corresponding to the hierarchy of scales in the spectrum given by the baryon masses per quark number. Especially, we find an
onset at half the would-be-Goldstone mass, a stepwise increase in density at half the intermediate vector boson mass, and a rapid
further growth setting in at around one third of the nucleons’ mass which is characteristic of their fermionic nature andwhich
might be a manifestation ofG2 nuclear matter. The results indeed suggest that the theory has a rich phase structure, and that
baryon-dominated regions of the phase diagram exist beforethe density is eventually dominated by quarks and lattice artifacts
at large chemical potentials. This is of significant importance, as it might indeed point towards the presence of a baryonic Fermi
surface, makingG2-QCD a viable model to understand generic features of the finite density phases of the strong interaction.

Our results are summarized once more together with our conclusions in Section VII. Note that some preliminary material was
already presented in [30].

II. GENERAL PROPERTIES OF G2-QCD

The action ofNf flavour QCD with arbitrary gauge groupG in Minkowski space-time is given by

S =

∫

d4x tr

{

−1

4
FµνF

µν+

Nf
∑

n=1

Ψ̄n (i γ
µ(∂µ − gAµ)−m)Ψn

}

,

(1)

with Aµ an element of the corresponding gauge algebrag. For QCD, the gauge group is SU(3), but here we will use instead
the exceptional Lie groupG2. For the sake of completeness, we will briefly review the construction of the gauge groupG2 in
Section II A, reviewing parts of Ref. [28], before we turn towards the quark sector. The most important ingredient is the Dirac
operator, to be discussed in Section II B, and the realization of chiral symmetry discussed in Section II C. BecauseG2 is a real
group, chiral symmetry breaking and the concept of baryon number require special attention, as described in Section II D.

A. Construction of the gauge groupG2

G2 is the smallest of the five exceptional simple Lie groups and it is also the smallest simple and simply connected Lie group
which has a trivial center. AsSU(3), the gauge group of the strong interactions, it has rank2. The fundamental representations
are7-dimensional and14-dimensional, the latter coinciding with the adjoint representation. The elements ofG2 can be viewed
as elements ofSO(7) subject to seven independent cubic constraints for the7-dimensional matrices representing the Lie algebra
of SO(7) [28, 31],

Tabc = Tdef gda geb gfc, (2)

whereT is a totally antisymmetric tensor. There are thusNc = 7 quark colors and 14 gluons inG2.
The constraints (2) reduce the number of generators from21 for SO(7) to 14 for the groupG2. In addition,G2 is connected

to SU(3) through the embedding ofSU(3) as a subgroup ofG2 according to [32, 33]

G2/SU(3) ∼ SO(7)/SO(6) ∼ S6. (3)
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This means that every elementU of G2 can be written as

U = S · V with S ∈ G2/SU(3)

and V ∈ SU(3).
(4)

In the pureG2 gauge theory [34–36] this decomposition is in fact being used to speed up the numerical simulations. SinceG2

is a subgroup ofSO(7), all representations are real and one can always choose a real basis for the Lie algebra. A possible real
representation for the 14 generators is given explicitly inRefs. [37, 38].

B. The spectrum of the Dirac operator

For lattice Monte-Carlo methods to be applicable, the determinant of the Euclidean Dirac operator has to be non-negative. The
continuum Dirac operator is given by

D[A,m, µ] = γE
µ(∂µ − gAµ)−m+ γE0µ. (5)

where the Euclidean gamma matrices are Hermitian. As in QCD it satisfies

D(µ)† γ5 = γ5 D(−µ∗) (6)

and the fermion determinant is real at imaginary chemical potential. In addition, however, theG2 Dirac operator also satisfies
the relation

D(µ)∗ T = T D(µ∗) with

T = Cγ5, T ∗ T = −1, T † = T−1,
(7)

whereC is charge conjugation matrix. If such a unitary operatorT exists then the eigenvalues of the Dirac operator come
in complex conjugate pairs and all real eigenvalues are doubly degenerate [17, 18], analogous to the Kramers degeneracyof
time-reversal invariant spin Hamiltonians. Therefore

detD[A,m, µ] ≥ 0 for µ ∈ R. (8)

This property of the fermion determinant makes Markov chainMonte-Carlo techniques applicable even at finite densities, be-
cause the path integral measureDAµ detD[A,m, µ] e−SB then essentially provides a probability distribution.

C. Chiral symmetry

In [17], the chiral symmetry of different gauge groups has been investigated. Here we review the details forG2, see also [28].
Under charge conjugation the matter part of the Lagrange density transforms, up to boundary terms, as

L[ΨC, A,m] = L[Ψ,−AT ,m], (9)

with Ψ = (Ψ1, . . . ,ΨNf). Therefore, the charge conjugated spinorΨC fulfills the same equations of motion asΨ if the gauge
field obeys the condition

AT
µ = −Aµ = −Aa

µTa. (10)

Since every representation ofG2 is real, the generatorsTa of the algebrag2 can be chosen as anti-symmetric real-valued7 × 7
matrices and hence Equation (10) holds.

It is then possible to write the matter part of the action (1) as a sum over2Nf Majorana spinorsλn

L[Ψ, A] =Ψ̄ (i γµ(∂µ − gAµ)−m)Ψ

=λ̄ (i γµ(∂µ − gAµ)−m)λ
(11)

with λ = (χ , η) = (λ1, . . . , λ2Nf ). Hereλ obeys the Majorana conditionλC = Cλ̄T = λ, λ̄C = −λTC−1 = λ̄, and it is related
to the Dirac spinor as

Ψ =χ+ i η , Ψ̄ = χ̄− i η̄ ,

ΨC =χ− i η , Ψ̄C = χ̄+ i η̄.
(12)
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Therefore, it follows thatG2-QCD possesses an extended flavour symmetry as compared to SU(3)-QCD.
The action is invariant under theSO(2Nf)V vector transformations

λ 7→ eβ⊗1λ (13)

with a real and antisymmetricβ ∈ so(2Nf), and under the axial transformations

λ 7→ eiα⊗γ5λ (14)

with a real symmetric matrixα. These do not form a group, but the transformations with diagonalα form the groupU(1)2Nf and
those withα ∝ 1 among them generate the axialU(1). Due to the Majorana constraint left- and right-handed spinors cannot be
rotated independently. The general transformation is a composition of an axial- and a vector transformation,

λ 7→ eβ⊗1eiα⊗γ5λ ≡ V (α, β)λ

V = U(α, β)⊗ PL + U∗(α, β)⊗ PR,
(15)

with anU(2Nf)-matrixU(α, β) = eβeiα, in agreement with the results in [28]. Following the same arguments as in QCD it
is expected that the axialU(1) is broken by the axial anomaly such that only an extendedSU(2Nf) × Z(2)B chiral symmetry
remains.

D. Chiral symmetry breaking and baryon number

In the presence of a non-vanishingDirac mass term(or a non-vanishing chiral condensate) the theory is no longer invariant
under the axial transformations. Therefore the non-anomalous chiral symmetry is expected to be broken explicitly (or sponta-
neously) to its maximal vector subgroup,

SU(2Nf)⊗ Z(2)B m7→ SO(2Nf)V ⊗ Z(2)B, (16)

leading toNf(2Nf + 1)− 1 (would-be) Goldstone bosons.
The (baryon)chemical potentialfor a Dirac fermion enters the partition function as an off-diagonal term in Majorana flavor
space,

L =Ψ̄
(

i /D −m+ i γ0 µ
)

Ψ

=

(

χ̄
η̄

)(

i /D −m i γ0 µ
−i γ0 µ i /D −m

)(

χ
η

)

.
(17)

With chemical potential but vanishing Dirac mass the remaining chiral symmetry is thus the same as in QCD,

SU(2Nf)⊗ Z(2)B µ7→
SU(Nf)A ⊗ SU(Nf)V ⊗ U(1)B/Z(Nf).

(18)

Form 6= 0 the remaining chiral symmetry is further broken as

SU(Nf)A ⊗ SU(Nf)V ⊗ U(1)B/Z(Nf)
µ,m7→

SU(Nf)V ⊗ U(1)B/Z(Nf).
(19)

If one first introduces a mass and only afterwards a chemical potential then one notices, that forµ 6= 0 the Lagrangian is off-
diagonal in the Majorana basis such that is not possible to transform the Majorana components of a Dirac spinor independently.
Therefore, the vector symmetrySO(2Nf)V of the massive theory is further reduced to transformationsthat do not interchange
the Majorana spinors. But then also complex transformations are allowed, leading to the residualSU(Nf)V symmetry group.

The pattern of chiral symmetry breaking inG2-QCD is summarized in Figure 1. If chiral symmetry is spontaneously broken,
the axial chiral multiplet becomes massless according to Goldstone’s theorem. In contrast to QCD, because of the extended
chiral symmetry group, already in the case of a single Dirac flavor it contains a non-trivialSU(2) and chiral symmetry breaking
is possible. This is one reason why in the following onlyG2-QCD with a single Dirac flavourNf = 1 is investigated. The chiral
symmetry is then given by

SU(2)⊗ Z(2)B. (20)
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U(2Nf)

SU(2Nf)⊗Z(2)B SO(2Nf )V ⊗ Z(2)B
SU(Nf)A ⊗ SU(Nf)V ⊗ U(1)B/Z(Nf) SU(Nf)V ⊗ U(1)B/Z(Nf)

anomaly

m,
〈

Ψ̄Ψ
〉

µ

m,
〈

Ψ̄Ψ
〉

µ

FIG. 1: Pattern of chiral symmetry breaking inG2-QCD.

The corresponding creation operators for the Goldstone bosons are given by

d(0++) =χ̄γ5η = Ψ̄Cγ5Ψ− Ψ̄γ5Ψ
C,

d(0+−) =
1√
2
(χ̄γ5χ− η̄γ5η) = Ψ̄Cγ5Ψ+ Ψ̄γ5Ψ

C.
(21)

As usual, baryon numbernB is here defined as the transformation behaviour of an operator under theU(1) subgroup of the
vector chiral transformation,

Ψ 7→ einBαΨ, (22)

such that a quark has baryon numbernB = 1 and an anti-quarknB = −1. With this definition of baryon number the Goldstone
bosons havenB = 2. They are scalar diquarks instead of pseudoscalar mesons asin QCD.

III. SPECTROSCOPY FOR Nf = 1 G2-QCD

The possible quark and gluon content of (colorless) bound states is determined by the tensor products ofG2-QCD. Quarks inG2

transform under the7-dimensional fundamental representation, gluons under the 14-dimensional fundamental (and at the same
time adjoint) representation. The decomposition of tensorproducts of the lowest-dimensional representations into irreducible
representations is given by

(7)⊗ (7) = (1)⊕ (7)⊕ (14)⊕ (27),

(7)⊗ (7)⊗ (7) = (1)⊕ 4 · (7)⊕ 2 · (14)⊕ 3 · (27)⊕ 2 · (64)⊕ (77′),

(14)⊗ (14) = (1)⊕ (14)⊕ (27)⊕ (77)⊕ (77′),

(14)⊗ (14)⊗ (14) = (1)⊕ (7)⊕ 5 · (14)⊕ 3 · (27)⊕ · · · ,
(7)⊗ (14)⊗ (14)⊗ (14) = (1)⊕ · · · .

(23)

Thus we expect to find bound states for every integer quark numbernq. Mesons havenq = 0, diquarksnq = 2, and nucleons
nq = 3. In addition, there are more exotic bound states of gluons and quarks, for example a hybrid withnq = 1. Especially the
latter state would be important, as the nucleons will only bestable in the chiral limit, if the hybrid is heavier than the nucleon.
Of course, more complicated states with higher baryon numbers are possible, as well as glueballs, but are expected to play no
role either in the vacuum, or at the moderate densities we investigate here.

In the following we give an overview over our implementationof possible bound states forNf = 2, see Tables I-IV. The
subset of states of the1-flavour model, treated numerically below, are easily recognized.

In all tablesO is the interpolating operator used to extract the mass in simulations,T the behaviour of the wave function
under change of position, spin, colour and flavour (S stands for symmetric, A for anti-symmetric), and the spin (J), parity (P )
and charge conjugation (C) quantum numbers. States with baryon number0 and3 are also present in QCD while the others are
additional states ofG2-QCD.

In our simulations the states of the2-flavour model are included by partial quenching, that meanswe are dealing with two
valence quark flavours, but only one sea quark flavour. In QCD,this is a surprisingly good approximation, see e. g. [39], and
there is no obvious reason why this should be different inG2-QCD.
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Name O T J P C
π ūγ5d SASS 0 - +
η ūγ5u SASS 0 - +
a ūd SASS 0 + +
f ūu SASS 0 + +
ρ ūγµd SSSA 1 - +
ω ūγµu SSSA 1 - +
b ūγ5γµd SSSA 1 + +
h ūγ5γµu SSSA 1 + +

TABLE I: Bound states ofG2-QCD with2 flavours and baryon numbernB = 0. For details see text.

Name O T J P C
N ′ T abc(ūaγ5db)uc SAAA 1/2 ± ±

∆′ T abc(ūaγµub)uc SSAS 3/2 ± ±

Hybrid ǫabcdefgu
aF bc

µνF
de
µνF

fg
µν SSSS 1/2 ± ±

TABLE II: Bound states with baryon numbernB = 1. For details see text.

There is one particular caveat, which is due to the limitation in computational resources for this project. The diquark correla-
tion function that we measure on the lattice is given by

Cd(x, y) =
〈

d(0++)(x) d(0++)†(y)
〉

=
〈

d(0+−)(x) d(0+−)†(y)
〉

=

〈

χ̄(x)γ5χ(x) χ̄(y)γ5, χ(y)

〉 (24)

showing that the diquark masses are degenerate and its correlation functions contain only connected contributions, like for
example the correlation function for the pion in QCD. The corresponding correlation function for theη meson reads

Cη(x, y) =
〈

η(x) η†(y)
〉

=2

〈

χ̄(x)γ5χ(x) χ̄(y)γ5χ(y)

〉

+ Cd(x, y)
(25)

The difference between theη and the diquark correlation function is only the disconnected contribution. Therefore, uncertainties
in the treatment of the disconnected contribution can blur the line between theη and the diquarks.

Analog relations lead for the partially quenched calculations performed here to some relations between flavour singletdiquark
masses and flavour non-singlet meson masses,

md(0+) =mπ(0−)

md(0−) =ma(0+)

md(1+) =mρ(1−)

md(1−) =mb(1+).

(26)

Thus, for every diquark there is a flavour non-singlet meson with the same mass but opposite parity.

Name O T J P C
d(0++) ūCγ5u+ c.c. SASS 0 + +
d(0+−) ūCγ5u− c.c. SASS 0 + -
d(0−+) ūCu+ c.c. SASS 0 - +
d(0−−) ūCu− c.c. SASS 0 - -
d(1++) ūCγµd− d̄Cγµu+ c.c. SSSA 1 + +
d(1+−) ūCγµd− d̄Cγµu− c.c. SSSA 1 + -
d(1−+) ūCγ5γµd− d̄Cγ5γµu+ c.c. SSSA 1 - +
d(1−−) ūCγ5γµd− d̄Cγ5γµu− c.c. SSSA 1 - -

TABLE III: Bound states with baryon numbernB = 2. For details see text.
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Name O T J P C
N T abc(ūC

aγ5db)uc SAAA 1/2 ± ±

∆ T abc(ūC
aγµub)uc SSAS 3/2 ± ±

TABLE IV: Bound states with baryon numbernB = 3. For details see text.

IV. ALGORITHMIC CONSIDERATIONS

In our lattice simulations we use a Hybrid Monte-Carlo algorithm [40] to generate the probability distribution. Our implemen-
tation is based on [35], where the algorithm was applied toG2-Yang-Mills-Higgs theory.

For the gauge action we choose the tree-level improved Symanzik gauge action [41–44]

S[U ] = β

Nc

{

c0
∑

�

tr (1− ReU�)+

c1
∑

��

tr (1− ReU��)

}

.

(27)

Here,U� stands for the plaquette variable andU�� for a rectangular path around two plaquettes. The parameters are given by
c0 = 1− 8c1, c1 = −1/2. Note that our convention is to factorize the number of colors fromβ.

For the fermion part, we use the ordinary Wilson action without improvements [3]. Though we cannot expect good chiral
properties in this case, we can avoid rooting for staggered fermion. Using unrooted staggered fermions, and thus four flavours,
would on the one hand create far too many Goldstone bosons, and would possibly put the theory too close or in the conformal
window, according to the two-loopβ-function. Fermion implementations with better chiral properties are unfortunately beyond
our numerical resources.

For the fermion determinant we use pseudo-fermions together with a rational approximation of the inverse fermion matrix
(RHMC algorithm) [45]. In the case of Dirac fermions the pathintegral is given by1

Z =

∫

DΨDΨ̄DUe−S[U ]−tr Ψ̄DΨ

=N
∫

DU det (D[U ]) e−S[U ]

=N
∫

DU det
(

M [U ] 12
)

e−S[U ],

(28)

whereD is the fermion operator andM = D†D is a Hermitian and positive operator. IntroducingNPF complex-valued pseudo-
fermionsφ [46], one can write the partition function as

Z =

∫

DUDφ exp{−SB[U , φ]} with

SB[U , φ] = S[U ] + tr

NPF
∑

p=1

φ†
pM

−qφp,

(29)

whereSB is the bosonic action andq is given byq = 1
2NPF

. In the RHMC dynamicsM−q is replaced by a rational approximation
according to

r(x) = x−q ≈ α0 +

NR
∑

r=1

αr

x+ βr
. (30)

For any rational numberq the coefficientsα andβ can be calculated with the Remez algorithm [47]. The numerical accuracy
of the approximation in the intervalI = [xMin, xMax] depends on the number of termsNR in (30) and the numerical accuracy

1 Below, tr denotes the integral overd-dimensional space-time and the trace over all internal degrees of freedom.
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of the coefficientsα andβ. In the followingrS(x), S = {I, ǫ, q} denotes a rational approximation of the functionx−q with
ǫ = sup

x∈I
||r(x) − x−q||.

In order to obtain an exact update algorithm, the bosonic action is written in the form

SB[U , φ] = S[U ] + Smd(M) + Sacc(M) + Srw(M), (31)

where the different contributions are given by

Smd =tr

NPF
∑

p=1

φ†
prSmd

φp,

Sacc =tr

NPF
∑

p=1

φ†
p (rSacc

(M)− rSmd
(M))φp,

Srw =tr

NPF
∑

p=1

φ†
p

(

M−q − rSacc
(M)

)

φp .

(32)

The sumS[U ] + Smd(M) is used in the calculation of the HMC molecular dynamics, thesumS[U ] + Smd(M) + Sacc(M) in
the Metropolis acceptance step of the HMC algorithm and the last termSrw(M) in a reweighting step to assure an exact update
algorithm.

In practice, the reweighting step is not necessary since it is more efficient to chooserSacc
such that it approximatesM−q up

to machine precision. For the generation of the pseudo-fermion fields from a Gaussian distributed vector the square rootof M q

is needed as well. This is achieved by an approximationrSpf
(M) ≈ M q/2. To obtain an exact update algorithm, the following

choices are made,

rSpf
(M) ={I ⊇ Σ(M), 10−16,−q/2},

rSacc
(M) ={I ⊇ Σ(M), 10−16, q},

(33)

whereΣ(M) = [λmin, λmax] is the spectral range of the Hermitian operatorM . In most of the simulations, an approximation for
the pseudo-fermion and acceptance step approximation of degreeNR = 25 is used in an intervalI = [10−7, 10].

The free parameters left to optimize the algorithm are the integration scheme used in the molecular dynamics and the degree
and approximation range of the molecular dynamics rationalapproximationrSmd

(M). The inversions of the matrixM in the
rational approximations are calculated with a multiple-mass conjugate gradient solver (MMCG) [48] which is able to compute
all terms of (30) within a single inversion of the fermion matrix M .

A. Symplectic integration and multiple time scales

In order to speed up our simulation, we use integration on different time scales in an HMC trajectory. The simplest possible
integration scheme is the leap-frog scheme [49]. The time evolutionT from τ = 0 to τ = tHMC with step sizeδτ = tHMC

n with
the leap-frog time evolution operatorTLF can be written as

T (tHMC, δτ) =TLF(δτ)
n ,

TLF(δτ) =TS(
1

2
δτ)TU (δτ)TS(

1

2
δτ) ,

(34)

whereTS describes time evolution for the momenta andTU for the fields. An improved second-order integrator is givenby the
Sexton-Weingarten scheme [50],

TSW(δτ) =TS(
δτ

6
)TU (

δτ

2
)

×TS(
2δτ

3
)TU(

δτ

2
)TS(

δτ

6
).

(35)

A fourth order integrator is given by [51]

T4(δτ) = TS(ρδτ)TU (λδτ)TS(θδτ)

×TU((1 − 2λ)
δτ

2
)TS((1− 2(θ + ρ))δτ)

×TU((1− 2λ)
δτ

2
)TS(θδτ)

×TU(λδτ)TS(ρδτ),

(36)
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with parameter values

ρ =0.1786178958448091,

θ =0.06626458266981843 and

λ =0.7123418310626056.

(37)

Higher order integrators are constructed in [52]. Further improvement can be achieved by integration on multiple time scales
[53]. For this purpose an arbitrary integratorTs (here s stands for the integration scheme) is written as a function of the basic
time evolution operatorsTS andTU and the integration step sizeδτ , Ts = Ts(TS , TU , δτ).

If the action can be written as a sum of contributionsSj , i.e. S = S1 + S2 + . . . , then multiple time scale integration can be
defined by the recursion relation

T j
sj
(TSj

, TU , δτj) =

T j
sj
(TSj

, [T j−1
sj−1

(TSj−1 , TU , δτj/nj) ]
nj , δτj) ,

(38)

whereSj denotes the subset of the action that should be taken into account in the computation of the ‘force’ on thej-th time
scale with step sizeδτj . Here, we often use a two time-scale integration, which is a combination of the Sexton-Weingarten
scheme with the leap-frog scheme,

T (δτ) =TS0(
δτ

2
)TSW(TS1 , TU , δτ)TS0(

δτ

2
)

=TS0(
δτ

2
)TS1(

δτ

6
)TU (

δτ

2
)

×TS1(
2δτ

3
)TU(

δτ

2
)TS1(

δτ

6
)TS0(

δτ

2
).

(39)

Here, the ‘force’ according toS1 has to be calculated twice as often as the ‘force’ belonging to S0.
Another scheme often used is the combination of a fourth order integrator with the Sexton-Weingarten scheme or with the

simple leap-frog scheme. Multiple-time-scale integration is efficient if parts of the action with large contribution to the HMC
‘force’ are cheap in computation time.

B. Optimization of the RHMC algorithm

The efficiency of the RHMC algorithm depends crucially on thelowest eigenvalues entering the condition numberκ ≈ λmax/λmin

of the Hermitian operator used in the rational approximation. The number of total inversion steps for a given precisionδmax (the
inversion precision for the lowest mass, i.e. the lowest value ofβr) in the MMCG solver increases significantly with decreasing
values of the constantsβr in the rational approximation. Fortunately, the force contribution in the RHMC algorithm is for small
constants also significantly lower than for larger constants (the reason is thatαr decreases also with decreasingβr). Only in the
case of very small eigenvalues, the force from these lowest eigenmodes becomes more important.

This feature of the RHMC algorithm can now be used to optimizethe algorithm with respect to computation time. Two
different strategies are useful: The first is to integrate the terms with smallerβr on a coarser time scale than the terms with larger
βr, i.e. larger force. The second is to increase the lower boundof the approximation interval, resulting in larger values of βr and
a possibly smaller degree of the rational function used for the molecular dynamics. This reduces the number of CG-steps for a
given inversion precisionδmax significantly.

Further optimization can be achieved by increasing the precision δmax used for the inversion, leading also to a significantly
reduced number of CG-steps. The best choice of course depends on the given problem and is in general a combination of both
strategies. Further optimizations implemented include even-odd preconditioning [54] as well as an exact computationof a few
lowest eigenvalues in the MMCG solver. According to [55], the optimal number of pseudo-fermions is roughly given by the
condition number of the fermion matrix,Nopt

PF ≈ 1
n lnκ(M).

C. Fermionic correlation functions

For the computation of the connected part of the correlationfunction, the fermion matrix is inverted on a point-like source in
space and time at a randomly chosen lattice pointy, leading to the point-to-all propagator. Here,Nc × Ns (number of colours
times the dimension of the representation of the Clifford algebra) inversions of the fermion matrix with the CG solver have to be
made.
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The disconnected diagrams, and for instance observables like the chiral condensate or the quark number density, are calculated
with the stochastic estimator technique (SET) [56, 57]. Here every element of the fermion propagator is calculated as anensemble
average over a noisy estimatorη,

∆̃ij = lim
Nest→∞

〈

η†jχi

〉

with

χ = ∆̃η and lim
Nest→∞

〈

η†i ηj

〉

= δij .
(40)

In practice, the ensemble average is taken over a finite number of Nest noisy estimators, where the sourceη is given by Gaussian
orZ(2) noise, satisfying the last equation in (40). The sink is again calculated with a CG solver, making a total ofNest matrix
inversions to obtain an estimator for every matrix element of the propagator. In the case of local lattice averaged observables,
like the chiral condensate, a number ofNest ≈ 10 estimators is sufficient to get a reliable result. For the disconnected part of
four-point correlation functions (many) more estimators are necessary.

We note that we extract masses from the correlatorsC(t) by fits of the type

C(t) = a cosh(mt) + b cosh(m∗t), (41)

or with a singlecosh-fit, where a double-cosh fit was not possible. The quoted errors denote only the statistical error from a
simultaneous up- or down-shift of the correlation functionby one standard deviation.

We identify the smaller of the two parametersm andm∗ in (41) as the ground state mass, and mark the next higher masswith
an asterisk ’*’. We do not make any attempt to identify whether these are genuine excited states or merely scattering states, and,
as noted in section III, we use a single operator per quantum number channel. We also do not attempt to identify whether the
lowest state is a genuine bound state or a scattering state, even if it appears energetically favorable for them to decay.For some
states we are also limited by statistics, and thus could not measure the mass of all relevant channels. This applies especially to
the hybrids. We therefore have to assume in the following that at least the ground states are reasonably stable states.

V. LATTICE SPECTROSCOPY RESULTS

In order to fix our parameters we compute the diquark masses and the proton mass for different parameters of the inverse gauge
couplingβ and the hopping parameterκ on a83 × 16 lattice. We make here the implicit assumption that the nucleon is (quasi-)
stable, i. e. it is not energetically favorable or possible for it to decay into a hybrid and a diquark. Since the hybrids were too
noisy to obtain reliable results, we could not check this assumption.
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0.60 0.70 0.80 0.90 1.00 1.10
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am
d(0+)

FIG. 2: Mass of the pseudo Goldstone boson as a function ofβ for κ = 0.147.

To assess the distance from the chiral limit, we first comparethe Goldstone sector to the nucleon sector. In Figure 2 thed(0+)
mass is shown as a function of the inverse gauge couplingβ for a fixed value of the hopping parameterκ. In Figure 3 the proton
mass is plotted for the same parameters.

Care has to be taken, asG2-QCD possesses an unphysical lattice bulk phase at strong coupling where monopoles condense.
The critical inverse gauge coupling for the transition to the physical weak coupling phase depends on the hopping parameter. For
κ = 0.147 it is located aroundβ ≈ 0.90. We observe that in the bulk phase the lattice diquark mass isonly weakly dependent
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FIG. 3: Mass of the proton as a function ofβ for κ = 0.147.

on the gauge coupling and therefore the lattice spacing doesnot depend onβ. Above the transition, the lattice diquark mass
decreases with increasing inverse gauge coupling. Since the bulk transition is a crossover (at least for infinitely heavy quarks
[34, 58]) we have to choose a gauge coupling for our simulations that is far above the transition point. For our spectroscopy
results we have checked that the monopole density is always below one percent of the monopole saturation density in the bulk
phase.
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FIG. 4: Mass of the0+ and the1+ diquark as a function ofκ for β = 0.96.

Ensemble β κ md(0+)a mNa md(0+) [MeV] a [fm] a−1 [MeV] MC
Heavy 1.05 0.147 0.59(2) 1.70(9) 326 0.357(33) 552(50) 7K
Light 0.96 0.159 0.43(2) 1.63(13) 247 0.343(45) 575(75) 5K

TABLE V: Parameters for two different ensembles. All results are from a83 × 16 lattice.

For heavy quarks the ratio of diquark and proton mass should be 2/3 while it should go to zero in the chiral limit. A second
mass ratio to fix the bare parameters is the ratio of the0+ and the1+ diquark. For heavy quarks only the number of quarks
is important and the ratio should be one while in the chiral limit the spin zero diquark becomes massless while the spin one
diquarks stay massive. The results for the masses are shown in Figure 4 as a function ofκ and fixedβ. Indeed we see that for
smaller Goldstone masses the ratio increases. In the following we discuss two different ensembles with parameters shown in
Table V. In the following, we will set our mass scale by the proton mass,mN = 938 MeV.

The mass spectrum for the heavy quark ensemble is shown in Fig. 5. The diquark masses are almost degenerate. Also theη
has essentially the same mass as the diquarks. For the nucleons there is almost no mass splitting between parity even and odd
states.
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FIG. 5: Mass spectrum of the heavy ensemble
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FIG. 6: Mass spectrum of the light ensemble

In the light ensemble, shown in Figure 6, the diquark masses are no longer degenerate. We observe a significant mass splitting
between parity even and odd states as well as between scalar and vector diquarks. Especially, the Goldstone boson becomes the
lightest state, with theη also being somewhat heavier. This mass difference comes entirely from the disconnected part of the
meson correlation function in (25). For the nucleons we alsoobserve different masses for parity even and odd states and the
spin 1/2 and spin 3/2 representations. Thus, the spectrum isindeed consistent with spontaneous chiral symmetry breaking, in
accordance with quenched [27] and previous results [29]. Especially, we find three clearly different scales in the lightspectrum:
A Goldstone scale, an intermediate boson scale set by the remaining diquarks, and the nucleon scale set by theN and∆.

VI. G2-QCD AT ZERO TEMPERATURE AND FINITE BARYON DENSITY

A. Scales at finite density

In [29] we already provided an overview over the full phase diagram ofG2-QCD as a function of temperature and baryon density.
We will now show that the different hadronic scales observedin the spectra in Figs. 5 and 6 reflect themselves in the structure
of the finite density phase diagram.

The first scale, the Goldstone scale, must be related to the onset transition to baryonic matter, since the Goldstones carry quark
number. This follows immediately from the silver blaze property of quantum field theories [59] at zero temperature and finite
density.

To investigate this regime, we have calculated the quark number densitynq given by

nq =
1

V

∂ lnZ

∂µ
. (42)

In [29] we observed that for small values of the chemical potential the system remains in the vacuum, i. e. the quark number
density vanishes, which is expected due to the silver blaze property. When increasing the chemical potential further the quark
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number density starts rising, indicating that baryonic matter is present and the system is no longer in the vacuum state.At
even larger values ofµ the quark number density saturates. The value of the saturation matches the theoretical prediction of
nq,max = 2Nc = 14 [29]. This is depicted in Fig. 7.

The same figure shows the dependence of the Polyakov loop on the chemical potential fromµ = 0 up to saturation. The
decrease of the Polyakov loop close to saturation also indicates that the system enters a quasi-quenched phase, where the quark
dynamics freezes out [19, 29]. This emphasizes that foraµ ≈ 1 lattice artifacts start to dominate the system. However, this is for
both ensembles at an already high quark chemical potential of about 550 MeV, corresponding to a nucleon chemical potential of
1.65 GeV.
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FIG. 7: The quark number density (red) and the Polyakov loop (green)as a function of chemical potential are shown.
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FIG. 8: The onset transition observed in the quark number density iscompared to half of the mass of the lightest state, the0+ diquark, for
different gauge couplingsβ, and thus different quark masses.

A closer look into this phase diagram at zero temperature shows that the quark number density already jumps, or very quickly
rises, to a very small but nonzero value already at a very small chemical potential. In Figure 8 this onset transition is compared
to half of the mass of the lightest baryon, the Goldstone0+ diquark. For various values ofβ very good agreement is found.
This is the expected manifestation of the silver blaze property for baryon chemical potential, i. e. half of the mass of the lightest
bound state carrying baryon number is a lower bound for the onset transition to a non-vacuum state2.

For larger values of the chemical potential a series of plateaus develop where the quark number density is almost constant,
see Figure 9 for the heavy ensemble and Figure 10 for the lightensemble. In both cases, we observe at intermediate chemical

2 Note that a finite lattice is strictly speaking never at zero temperature, and therefore the silver blaze property is never exactly realized. However, such violations
are expected to be exponentially suppressed by the spatial volume, which effectively determines the residual temperature. We do indeed observe such artifacts.
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FIG. 9: Shown is the quark number density compared to baryon mass divided by baryon number for theheavy ensemble.
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FIG. 10: Shown is the quark number density compared to baryon mass divided by baryon number for thelight ensemble.

potential interesting structures, which will be discussedbelow. At aroundaµ = 0.6 for the heavy ensemble andaµ = 0.55 for
the light ensemble the quark number density starts increasing again and no further plateau is observed.

It is quite interesting to compare these transitions to the masses of the diquarks and baryons normalized by their baryon
number.

For the heavy ensemble, in addition to the silver blaze transition due to the diquark states we find good agreement of the∆
mass with the point where the quark number density increaseswithout building a plateau.

For the light ensemble the two transitions ataµ ≈ 0.22 andaµ ≈ 0.32, each followed by a plateau, see Figure 10, can
be related to the observation of the splitting of the0+ and0− diquark masses. Again the transition ataµ ≈ 0.55 is in good
agreement with the∆ mass divided by three.

For both ensembles our observation is thus that transitionsin the quark number density coincide with hadron masses divided by
their baryon number. For a bosonic hadron a plateau is formedafter the transition while for a fermionic hadron the quark number
density increases further with increasing chemical potential. In both ensembles we observe also a transition ataµ ≈ 0.52 (heavy
ensemble) andaµ ≈ 0.38 (light ensemble) that does not coincide with any of our spectroscopic states. Since this transition is
followed by a plateau we speculate that this state might alsobe a bosonic hadron. A possible candidate could for example be a
bound state of four quarks. However, this may also relate to some of the known states, if their masses turn out to be significantly
dependent on the chemical potential. It is also possible that additional collective excitations arise, if any of the phases sustain a
Bose-Einstein condensate, as has been argued for the low-density phase in two-color QCD [17–23].

This question is not simple to decide, as it is not clear how toreliably and unambiguously determine the mass of (quasi-)
particles at finite density in lattice simulations. However, it will be crucial to understand it in the future.
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B. Free fermions

Further interesting insights can be gained by comparing theresults with the corresponding ones for non-interacting systems of
fermionic particles. On the one hand, this can test whether the idea of (quasi-free) fermions or fermionic quasi-particles describe
the theory adequately at some densities. On the other hand, the saturation effects should also yield a quasi-free behavior,
indicating the onset of lattice artifacts. We will only consider here the heavy ensemble, as for the light ensemble the acceptance
rate dropped seriously in the range ofaµ = 0.7 to aµ ≈ 1.5, and we can therefore not really assess the intermediate and
saturation regime yet.
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FIG. 11: Fit of the quark number density for the heavy ensemble with the density for free lattice fermions.

We begin with the fermion density for a theory of free lattice(Wilson) fermions with mass̃m = m+ d = 1/(2κ). It can be
derived in analogy to the staggered result of [18] and is given by

nfree
f (µ, m̃)/nsat

f =

∑

p̃

2i
√

1− p̃20 (
∑

i p̃i − m̃)

4 + m̃2 − 2m̃
∑

µ p̃µ

(

∑

ν>µ p̃ν − m̃
)

(43)

where the sum extends over all lattice momenta

p̃0 = cos

(

2π

Nt

(

k0 +
1

2

)

− iµ

)

and

p̃i = cos

(

2πki
Ns

)

with

k0 = 1 . . .Nt and ki = 1 . . .Ns.

(44)

When we tried to fit our data for the heavy ensemble to this formula with fitting parametersκ (which entersm̃) andnsat
f we

observed that the behaviour changes at aroundaµ ≈ 1, see Figure 11. Aboveaµ = 1 the best fit for the data yieldsκ = 0.162
andnsat

f = 14.4. This is in good agreement with the values for free quarks ofκ = 0.147 andnsat
f = nsat

q = 14. Although we
expect that for very large values ofµ the theory is exactly described by free quarks, in this intermediate region the Polyakov loop
is not constant, and also the contribution of gluons to the free energy has not yet reached its quenched limit [29]. This might
explain deviations from the exact values. Still, the rathergood fit suggests strongly that foraµ > 1 lattice artifacts become
important.

Below aµ = 1 the data are very good described byκ = 0.211 andnsat
f = 4.02. The theoretical value for the saturation of a

lattice gas of free∆-baryons isnsat
B = 4. This suggests that betweenaµ ≈ 0.6 andaµ ≈ 1.0 the main contribution to the quark

number density may come from fermionic baryons, in agreement with our findings in the last section. Somewhat surprisingly
these fermionic baryons would behave very much like a non-interacting gas. One should note, however, that formally theκ value
yields a negative mass. This is a consequence of using Wilsonfermions. In principle we would have to correct for the additive
mass shift. However, we do not yet knowκcritical to do so. Determining it will require substantial amounts ofcalculation time,
currently beyond our reach.
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VII. CONCLUSIONS

We have presented a detailed study of the hadronic spectrum of G2-QCD. We found that for sufficiently small quark masses a
splitting of the spectrum is observed into a Goldstone sector, an intermediate bosonic sector, and a nucleonic sector, quite similar
to the situation in ordinary QCD. The spectrum also shows strong evidence of spontaneous chiral symmetry breaking, likethe
emergence of the aforementioned Goldstone bosons, or the non-degeneracy of parity partners. Therefore, the hadronic physics
appears to be qualitatively similar to QCD, even tough thereare many more states in the spectrum. Unfortunately we couldnot
reliably determine the mass of the lightest hybrid, though this would be crucial in assuring that the nucleon dynamics istruly
similar to QCD. This will require a much more sophisticated spectroscopy analysis in the future.

We have also shown that the scale hierarchy of the vacuum reflects itself in the phase structure at finite densities. We found a
number of transitions, particular for light quark mass, which correlate with the scales of the hadron spectrum. In fact,we found
even an additional transition. This already indicates a very rich phase structure of the theory at finite densities. We also find
some hints that a phase dominated by fermionic hadrons may exist at quark chemical potentials of about 300-600 MeV.

Besides understanding in more detail the already observed phase structure, the next logical step is to go to smaller lattice
spacings. This would ensure that we can disentangle the transition occurring at the nucleon scale from possible latticeartifacts.
Also, larger volumes will be necessary to reduce artifacts from the residual temperature. Both steps are necessary to show
whether a genuine nuclear matter phase is present, which would be of central importance for a qualitative understandingof
fermionic effects in finite density QCD, and eventually neutron stars.
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