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We study the phases and fixed-point structure of two-dimensional supersymmetric Wess-Zumino
models with one supercharge. Our work is based on the functional renormalization group formulated
in terms of a manifestly off-shell supersymmetric flow equation for the effective action. Within
the derivative expansion, we solve the flow of the superpotential also including the anomalous
dimension of the superfield. The models exhibit a surprisingly rich fixed-point structure with a
discrete number of fixed-point superpotentials. Each fixed-point superpotential is characterized
by its number of nodes and by the number of RG relevant directions. In limiting cases, we find
periodic superpotentials and potentials which confine the fields to a compact target space. The
maximally IR-attractive fixed point has one relevant direction, the tuning of which distinguishes
between supersymmetric and broken phases. For the Wess-Zumino model defined near the Gaußian
fixed point, we determine the phase diagram and compute the corresponding ground-state masses.
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I. INTRODUCTION

Supersymmetry has become a well-received guiding
principle in the construction of particle-physics models
beyond the standard model. Whereas the resulting phe-
nomenology of these models is often worked out by per-
turbative analysis, the required breaking of supersymme-
try may be of nonperturbative origin; it is therefore typi-
cally parameterized into the models by a phenomenologi-
cal reasoning. For a proper understanding of the underly-
ing dynamical mechanisms of symmetry breaking which
is often related to collective condensation phenomena,
powerful and flexible nonperturbative methods specifi-
cally adapted to supersymmetric theories will eventually
be needed.

For many nonperturbative problems in field theory, lat-
tice formulations and simulations have proven successful.
As supersymmetry intertwines field transformations with
spacetime translations, discretizing spacetime often in-
duces a partial loss of supersymmetry. This problem also
goes along with the challenge of properly implementing
dynamical fermions on the lattice, currently witnessing
significant progress [1–4]. As completely new territory
is entered in these studies, nonperturbative continuum
methods which can preserve supersymmetry manifestly
can complement the lattice studies, eventually leading to
a coherent picture.

A promising candidate for a nonperturbative method
is the functional renormalization group (RG) which has
been successfully applied to a wide range of nonpertur-
bative problems such as critical phenomena, fermionic
systems, gauge theories and quantum gravity, see [5–
10] for reviews. A number of conceptual studies of su-
persymmetric theories has already been performed with
the functional RG. The delicate point here is, of course,
the construction and use of a manifestly supersymmetry-
preserving regulator. For instance, a supersymmetric
regulator for the 4d Wess-Zumino model has been pre-

sented in [11, 12]. A functional RG formulation of super-
symmetric Yang-Mills theory employing the superfield
formalism has been given in [13]; for applications, see
also [14, 15]. Recently, general theories of a scalar su-
perfield including the Wess-Zumino model have been in-
vestigated with a Polchinski-type RG equation in [16],
yielding a new approach to supersymmetric nonrenor-
malization theorems. A Wilsonian effective action for
the Wess-Zumino model by perturbatively iterating the
functional RG has been constructed in [17].

This work is devoted to the two-dimensional N = 1
Wess-Zumino model with a general superpotential, ex-
ploring the model beyond the realm of perturbative ex-
pansions around zero coupling. This is the simplest quan-
tum field theoretic and supersymmetric model where
the nonperturbative dynamical aspects of supersymme-
try breaking can be studied. The present study details
and generalizes our results presented in a recent Letter
[18], and builds on our earlier work on supersymmetric
quantum mechanics, where we have constructed a mani-
festly supersymmetric functional RG flow for the anhar-
monic oscillator [19]; see also [20, 21] for RG studies of
supersymmetric quantum mechanics.

Inspired by Witten’s work on the potential breaking of
supersymmetry in the Wess-Zumino model [22], pioneer-
ing nonperturbative lattice studies based on Hamiltonian
Monte-Carlo methods had early been performed for this
model by Ranft and Schiller [23]. More recently Beccaria
and coworkers [24, 25] re-investigated the phase diagram
and the ground-state energy of the model with similar
methods. Golterman and Petcher [26] formulated a lat-
tice action with a partially realized supersymmetry. An-
other lattice study of the Wess-Zumino model has been
performed by Catterall and Karamov [27]. The results
of these studies give a first glimpse into the properties of
the phase diagram as will be discussed in Sect. VII.

In the present paper, we use the functional RG equa-
tion for the superpotential W to study the phase struc-
ture of the N = 1 Wess-Zumino model in two dimen-
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sions. In Sect. III, we begin with recalling the off-shell
and on-shell effective potentials in a one-loop approxima-
tion and comment on certain flaws of the approximations.
The main part of this work is concerned with extending
and applying the manifestly supersymmetric RG tech-
niques developed in [19] in the context of supersymmet-
ric quantum mechanics. The manifestly supersymmetric
flow equation for the effective action is constructed in
Sect. IV. To first order in a derivative expansion of the
effective action, we solve the RG flow equation for the
effective superpotential in Sect. V.

In the fixed-point analysis performed in Sect. VI, al-
ready a simple polynomial expansion of the superpoten-
tial gives access to an infinite number of fixed points with
an increasing number of RG relevant directions. Beyond
the polynomial expansion, the flow equation for the full
superpotential reveals a variety of qualitatively different
solutions depending on the initial conditions: we find
periodic, sine-Gordon type solutions as well as sigma-
model type solutions confining the field values to a fi-
nite interval. At next-to-leading order, a nonzero anoma-
lous dimension governs the large-field asymptotics of the
fixed-point superpotentials, such that a family of regu-
lar fixed-point solutions arises. This family of superpo-
tentials shows oscillating behavior for small fields and
a standard asymptotics for large fields, similar to fixed-
point potentials for pure bosonic theories in two dimen-
sions [34, 35]. As a particularity of these supersymmetric
models, we identify a new scaling relation between the
leading critical exponent of the superpotential flow and
the anomalous dimension.

Finally, we study the phase diagram of a particular
Wess-Zumino model defined near the Gaußian fixed point
in terms of a quadratic superpotential perturbation in
Sect. VII. Depending on the initial values of the control
parameters of the potential, we observe a quantum phase
transition from the supersymmetric to the dynamically
broken phase. Following the lattice studies [24, 25, 28],
we calculate the critical value of the control parameter
for the phase transition as a function of the coupling λ
at the cutoff Λ, but now for all values of the coupling λ.
We also determine the fermionic and bosonic masses in
both phases.

II. WESS-ZUMINO MODEL

Two-dimensional Wess-Zumino models with one su-
persymmetry are particular Yukawa models where the
self-interaction of the scalar field determines the Yukawa
coupling. In an off-shell formulation they contain a scalar
field φ, a Majorana spinor field ψ and an auxiliary field
F . To maintain supersymmetry in every step of our cal-
culations we combine these fields to one real superfield

Φ(x, θ) = φ(x) + θ̄γ∗ψ(x) +
1

2
(θ̄γ∗θ)F (x). (1)

The anticommuting θ parameter in this expansion is a
constant Majorana spinor. Supersymmetry transforma-
tions are generated by the supercharges

Q = −i ∂
∂θ̄
− /∂θ, Q̄ = −i ∂

∂θ
− θ̄ /∂, (2)

which anticommute on space-time translations,
{Qα, Q̄β} = 2i/∂αβ . The transformation rules for
the component fields are obtained by comparing
coefficients in δΦ = iǭ[Q,Φ] and read

δφ = ǭγ∗ψ, δψ = (F + iγ∗/∂φ)ǫ,

δψ̄ = ǭ(F − i/∂φγ∗), δF = iǭ/∂ψ.
(3)

As usual the F term transforms into a total derivative
such that its space-time integral is invariant under su-
persymmetry transformations. The supercharges anti-
commute with the superderivatives

D =
∂

∂θ̄
+ i/∂θ, D̄ = − ∂

∂θ
− iθ̄ /∂, (4)

and up to a sign they obey the same anticommutation
rules as the supercharges, {Dα, D̄β} = −2i/∂αβ . In ex-
plicit calculations, one uses Fierz identities which all fol-
low from

ψχ̄ = − 1
2 χ̄ψ − 1

2γµ(χ̄γµψ)− 1
2γ∗(χ̄γ∗ψ), (5)

where γ∗ = iγ0γ1 anti-commutes with the γµ. It is useful
to keep in mind that for Majorana spinors the fermionic
bilinears have the symmetry properties

ψ̄χ = −χ̄ψ, ψ̄γµχ = −χ̄γµψ and ψ̄γ∗χ = χ̄γ∗ψ, (6)

such that the only Lorentz-invariant bilinear is ψ̄γ∗ψ
since ψ̄ψ = 0. Thus, we choose as Lagrangian density
L0 for the free theory the D term of

1
2 D̄Φγ∗DΦ = 1

2 ψ̄γ∗ψ + (θ̄γ∗ψ)F − iθ̄γµψ∂µφ− θ̄γ∗θL0.
(7)

In components it has the form

L0 = 1
2∂µφ∂

µφ+ i
4 ψ̄ /∂ψ − i

4∂µψ̄γ
µψ − 1

2F
2. (8)

In this work, we study a class of interacting theories,
where the interaction Lagrangian is given by the D term
of a superpotential W (Φ),

W (Φ) = W (φ) + θ̄γ∗ψW
′(φ)− 1

2 θ̄γ∗θL1. (9)

In components, L1 has the form

L1 = 1
2W

′′(φ)ψ̄γ∗ψ −W ′(φ)F. (10)

The sum of L0 and L1 defines the off-shell Lagrangian

density

L = 1
2∂µφ∂

µφ+ i
2 ψ̄ /∂ψ− 1

2F
2 + 1

2W
′′(φ)ψ̄γ∗ψ−W ′(φ)F,

(11)
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which gives rise to an invariant action. As expected for
a Euclidean model, this action is unbounded from below
and above. After eliminating the auxiliary field via its
algebraic equation of motion

F = −W ′(φ), (12)

we end up with the stable on-shell Lagrangian density

L = 1
2 (∂φ)2 + i

2 ψ̄ /∂ψ + 1
2W

′ 2(φ) + 1
2W

′′(φ) ψ̄γ∗ψ. (13)

This density is invariant under the non-linear on-shell
supersymmetry transformations

δφ = ǭγ∗ψ, δψ =
(

iγ∗ /∂φ−W ′(φ)
)

ǫ,

δψ̄ = ǭ
(

iγ∗/∂φ−W ′(φ)
)

.
(14)

For a polynomial superpotential W the supersymmet-
ric Yukawa models defined in Eq. (11) and (13) are per-
turbatively super-renormalizable. If the leading term in
the superpotential contains an even power of φ, W =
cφ2n + O(φ2n−1), supersymmetry cannot be broken by
quantum corrections. However, if the leading term con-
tains an odd power, supersymmetry may be broken.

III. ONE-LOOP PERTURBATION THEORY

Let us first discuss the effective potential in one-loop
approximation, which can be set up in both the on-shell
or the off-shell formulation. It is well-known that the
one-loop on-shell potential becomes artificially complex
for non-convex classical potentials [29]. This problem is
avoided in the off-shell one-loop formulation: here, keep-
ing first the auxiliary field in the one-loop calculation
and subsequently eliminating it by its quantum equation
of motion corresponds to a resummation of higher-order
terms in the on-shell formulation. We expect that this
potential is a better approximation to the exact effective
potential as compared to the one-loop on-shell poten-
tial. Indeed, we find a real and stable effective potential
based on the off-shell calculation. Similar observations
can be found in [30]. The corresponding problem in one-
dimensional supersymmetric systems has been carefully
analyzed by Bergner (see [31] and references therein).

A. On-shell effective potential

To calculate the one-loop potential in the on-shell for-
mulation, we need the fluctuation operators MF and MB

for the fermion and the remaining scalar, respectively.
For a homogeneous background field φ playing the role
of a mean field, these operators read

MB = p2 + V ′′ and MF = i/∂ + γ∗W
′′

⇒M2
F = (p2 +W ′′2)12,

(15)

where V = 1
2W

′ 2 is the classical potential for the scalar
field. In a finite box of size L, the momentum takes

the values pµ = 2πnµ/L with integer-valued nµ. The
fermionic integration yields the Pfaffian of MF,

Pf(MF) = ±
√

det(MF). (16)

We shall assume that the Pfaffian has a fixed sign, such
that we may replace the Pfaffian by the square root of the
determinant. In a perturbative approach and in the bro-
ken phase (with vanishing Witten index), this assump-
tion is justified.

For an operatorM with eigenvalues p2+C2 the deriva-
tive of the zeta function ζM (s) = tr(M/µ2)−s at the ori-
gin is

ζ′M (0) =
(CL)2

4π



ln

(

C

µ

)2

− 1 + 4
∑

nµ 6=0

K1(CLn)

CLn





(17)
with the last sum, which involves the MacDonald func-
tion, approaching zero exponentially fast with increasing
box sizes. Thus, in the thermodynamic limit the one-loop
effective potential in the zeta-function scheme is

U (1)
on =

1

2
W ′2 +

1

2L2

(

ζ′MF
(0)− ζ′MB

(0)
)

=
1

2
W ′2 − W ′′2

8π
[(1 +X) ln (1 +X)

+X ln(W ′′/µ)2 −X ],

(18)

with X = W ′W ′′′/W ′′2. The energy scale µ is fixed by
a renormalization condition. If we use a momentum cut-
off regularization instead of the ζ-function regularization
then we obtain the same result with µ replaced by the
cutoff Λ.

The effective potential becomes complex for non-
convex classical potentials V = 1

2W
′ 2. To be specific,

let us choose

W ′ = λ̄(φ2 − ā2) ⇒ V =
λ̄2

2
(φ2 − ā2)2. (19)

For negative ā2, the one-loop effective potential is real.
For positive ā2, it becomes complex for small fields
φ2 < ā2/3. For fields slightly bigger than ā/

√
3, the

potential is real and negative. This signals the failure
of the approximation since the effective potential must
be non-negative in a supersymmetric theory. Depend-
ing on the sign of the renormalized a2, we find both a
supersymmetric phase characterized by a non-vanishing

expectation value 〈φ〉 = φmin and U
(1)
on (φmin) = 0 and

a phase with 〈φ〉 = 0 and broken supersymmetry, see
Fig. 1. Here, the renormalization conditions are chosen
such that the minimum φmin agrees with the renormal-
ized value a in the supersymmetric phase. In the broken
phase, we use a simple renormalization condition by fix-
ing all parameters at the cutoff, µ = Λ. In both cases,
the renormalization condition could alternatively be for-
mulated in terms of Coleman-Weinberg renormalization
conditions by fixing the curvature of the potential at the
minimum to the physical mass.



4

B. Off-shell effective potential

In the off-shell formulation, the fluctuations of both
scalars (including the auxiliary field) and the fermion are
taken into account. The off-shell Lagrangian (11) gives
rise to the fluctuation operators in the background of
both a φ and an F mean field,

MB =

(

p2 − FW ′′′ −W ′′

−W ′′ −1

)

and MF = /p+ γ∗W
′′,

(20)
where the mean fields φ (as the argument of W ′′ and
W ′′′) and F are assumed to be homogeneous. It follows
that the ζ-function regularized one-loop off-shell poten-
tial reads

U
(1)
off = −1

2
F 2 − FW ′ − W ′′2

8π
[(1 + Y ) ln(1 + Y )

+Y ln(W ′′/µ)2 − Y ]

(21)

with Y = −FW ′′′/W ′′2. With a momentum cutoff regu-
larization, we obtain the same result with µ denoting the
cutoff. To eliminate the auxiliary field F , we must solve
the transcendental gap equation

∂FU
(1)
off = −F −W ′ +

W ′′′

8π
ln

(W ′′2 − FW ′′′)

µ2
= 0, (22)

and insert the solution for F back into U
(1)
off . For an

arbitrary φ, the gap equation always has a real solution
F leading to a real effective potential [32]. Concerning
supersymmetry breaking, we find the same qualitative
result as with the on-shell calculation: the sign of the
renormalized a2 determines the phase of the system.

Note that the on-shell and off-shell potentials (18) and
(21) have similar forms. In Fig. 1 the two potentials
are compared with each other and also with the classical
potential V . Of course, the same renormalization con-
ditions are used for the on- and off-shell potentials. For
positive a2, the scale parameter µ has been adjusted such
that the potentials take their minima at the same value
φmin = a. Note that the off-shell potential contains re-
summed contributions from higher order in ~. The reason
is that the solution F of (22) contains terms of higher or-
der in ~ and inserting the solution back into the effective
potential generates terms to all orders of ~ in the effec-
tive potential. By expanding the off-shell action in ~, the
first-order result agrees again with the complex on-shell
effective potential. The effective resummation contained
in the off-shell action is such that the effective potential
becomes real and non-negative everywhere, in particular,
at those points where the classical potential is not con-
vex. For a2 > 0, both one-loop potentials predict a phase
with broken Z2 symmetry and unbroken supersymmetry.
For a2 < 0, we find a phase with unbroken Z2 symmetry
and broken supersymmetry.

φ
a

V+       

U(1)
off,+

U(1)
on,+

V-        

U(1)
off,- 

U(1)
on,-

FIG. 1: The classical potential V and the on-shell and off-shell

effective potentials U
(1)
on and U

(1)
off in one-loop approximation.

The subscripts + and − denote the sign of ā2.

IV. SUPERSYMMETRIC RG FLOW

In this section, we will construct a manifestly super-
symmetric flow equation in the off-shell formulation. Our
approach is based on the functional RG formulated in
terms of a flow equation for the effective average action
Γk, i.e., the Wetterich equation, [33]

∂kΓk =
1

2
STr

{

[

Γ
(2)
k +Rk

]−1

∂kRk

}

. (23)

Here, Γk is a scale-dependent effective action; it inter-
polates between the microscopic or classical action S for
k → Λ, with Λ being the microscopic UV scale, and the
full quantum effective action Γ = Γk→0, being the stan-
dard generating functional for 1PI correlation functions.
The interpolating scale k denotes an infrared IR regulator
scale below which all fluctuations with momenta smaller
than k are suppressed. For k → 0, all fluctuations are
taken into account and we arrive at the full solution of
the quantum theory in terms of the effective action Γ.
The Wetterich equation defines an RG trajectory in the
space of action functionals with the classical action S
serving as initial condition.

In Eq. (23), we encounter the second functional deriva-
tive of Γk,

(

Γ
(2)
k

)

ab
=

−→
δ

δΨa
Γk

←−
δ

δΨb
, (24)

where the indices a, b summarize field components, in-
ternal and Lorentz indices, as well as spacetime or mo-
mentum coordinates. In the present case, we have
ΨT = (φ, F, ψ, ψ̄) where Ψ is not a superfield, but
merely a collection of fields. The momentum-dependent
regulator function Rk in Eq. (23) establishes the IR
suppression of modes below k. In the general case,
three properties of the regulator Rk(p) are essential: (i)
Rk(p)|p2/k2→0 > 0 which implements the IR regulariza-
tion, (ii) Rk(p)|k2/p2→0 = 0 which guarantees that the
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regulator vanishes for k → 0, (iii) Rk(p)|k→Λ→∞ → ∞
which serves to fix the theory at the classical action in
the UV. Different functional forms of Rk correspond to
different RG trajectories manifesting the RG scheme de-
pendence, but the end point Γk→0 → Γ remains invari-
ant.

The regularization preserves supersymmetry if the reg-
ulator contribution to the action ∆SK is supersymmetric,
see below. As the regulator needs to be quadratic in the
fields in order to maintain the one-loop structure of the
flow, a general supersymmetric quadratic form can be
constructed as a D term of a superfield operator ΦKΦ.
Here, K is a function of the two invariant and commuting
operators D̄γ∗D and D̄/∂D ∝ (D̄γ∗D)2. Since powers of
D̄γ∗D boil down to

(1
2 D̄γ∗D)2n = i

2 D̄/∂D(∂2)n−1 and

(1
2 D̄γ∗D)2n+1 = 1

2 D̄γ∗D(∂2)n,
(25)

where ∂2 is the standard Laplacian, any invariant and
quadratic regulator action is the superspace integral of

1

2
ΦD̄
(

r̃1(−∂2)− γ∗r2(−∂2)
)

DΦ. (26)

Expressed in component fields, we find

∆Sk =
1

2

∫

(φ, F )RB
k

(

φ

F

)

+
1

2

∫

ψ̄RF
kψ. (27)

In momentum space, i∂µ is replaced by pµ and the oper-
ators take the explicit form

RB
k =

(

p2r2 −r1
−r1 −r2

)

and RF
k = /p r2 + γ∗r1, (28)

where r1 = p2r̃1. Comparison with Eq. (20) reveals that
r1 plays the role of a momentum-dependent supersym-
metric mass term, whereas r2 can be viewed as a de-
formation of the momentum dependence of the kinetic
term.

This choice of the regulator guarantees a supersym-
metric RG trajectory; i.e., for a supersymmetric initial
condition Γk→Λ → S, the solution to the flow equation
Γk will remain manifestly supersymmetric for all k in-
cluding the endpoint Γ = Γk→0. This does not only
hold for the exact solution, but is also valid for trun-
cated effective actions, provided the truncation is built
from supersymmetric field operators.

V. LOCAL POTENTIAL APPROXIMATION

Various systematic and consistent approximation
schemes for the construction of Γk can be devised with

the flow equation. In this work, we use the derivative
expansion which is based on the underlying assumption
that the fully interacting theory remains sufficiently local
if formulated in the given set of field variables. In order to
preserve supersymmetry, we expand the effective action
in powers of super-covariant derivatives in the off-shell
formulation. This expansion allows for a systematic and
unique classification of all possible operators. A trun-
cation of the effective action to a finite derivative order
leads to a closed set of equations for the expansion pa-
rameters.

In this section, we concentrate on the leading-order
derivative expansion: the so-called local potential ap-
proximation. Here, the truncated effective Lagrangian is
given by Eq. (11) with a scale-dependent superpotential
Wk, such that the truncated effective action reads

Γk[φ, F, ψ̄, ψ] =

∫

d2x
(

1
2∂µφ∂

µφ+ i
2 ψ̄ /∂ψ − 1

2F
2

+ 1
2W

′′
k (φ)ψ̄γ∗ψ −W ′

k(φ)F
)

.

(29)

The derivation of the flow equation for the superpotential
parallels the corresponding one for supersymmetric quan-
tum mechanics given in a previous work [19]. Within the
approximation of constant mean fields, the second func-
tional derivative of the effective action plus regulator is

Γ
(2)
k +Rk =

(

A W ′′′
k e1 ⊗ ψ̄γ∗

W ′′′
k γ∗ψ ⊗ eT

1 B

)

,

e1 = (1, 0)T ,

(30)

where the operators on the diagonal read

A =

(

p2(1 + r2)− FW ′′′
k + 1

2W
(4)
k ψ̄γ∗ψ −W ′′

k − r1
−W ′′

k − r1 −1− r2

)

,

B = i(1 + r2)/p+ γ∗(r1 +W ′′
k ).

(31)

The inverse of the operator defined in Eq. (30) can be
written as follows,

1

Γ
(2)
k +Rk

=

(

GBB
k GBF

k

GFB
k GFF

k

)

=

(

A−1 0
0 B−1

)

K

(

A−1 0
0 B−1

)

,

(32)

where we have abbreviated
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K =

(

A+W ′′′2
k (ψ̄γ∗B

−1γ∗ψ) e1 ⊗ eT
1 −W ′′′

k e1 ⊗ ψ̄γ∗
−W ′′′

k γ∗ψ ⊗ eT
1 B − 1

2W
′′′2
k (eT

1 A
−1e1)(ψ̄γ∗ψ)γ∗

)

. (33)

In order to verify that Eq. (32) is the inverse of Eq. (30),
the Fierz identity ψ ⊗ ψ̄ = − 1

2γ∗(ψ̄γ∗ψ) is useful. This
result is inserted into the flow equation (23), which in
component notation reads

∂kΓk =
1

2
Tr
(

∂kR
B
k G

BB
k

)

− 1

2
Tr
(

∂kR
F
kG

FF
k

)

. (34)

The flow equation for W ′
k(φ) is obtained by projecting

both sides of this equation onto the term linear in the
auxilary field. This yields

∂kW
′
k(φ) = −W ′′′

k

∫

d2p

4π2

(

(1 + r2)(W
′′
k + r1)

∆2
∂kr1

+
p2(1 + r2)

2 − (W ′′
k + r1)

2

2∆2
∂kr2

)

, (35)

where we have introduced ∆ = p2(1+ r2)
2 +(W ′′

k + r1)
2.

Integrating with respect to φ and dropping an irrelevant
constant leads to

∂kWk(φ) =
1

2

∫

d2p

(2π)2
(r2 + 1)∂kr1 − (r1 +W ′′

k (φ))∂kr2
∆

.

(36)

This flow equation for the superpotential has exactly the
same structure as the corresponding flow equation in su-
persymmetric quantum mechanics [19]. This is not sur-
prising since supersymmetric quantum mechanics can be
obtained from this model through dimensional reduction.

Here we are interested in superpotentials for which the
map R ∋ φ → W ′(φ) ∈ R has winding number zero
as these potentials allow for dynamical supersymmetry
breaking. For a polynomialW this is the case if W ′ tends
asymptotically to an even power, W ′(φ) ∼ cφ2n. Then,
the highest power of W ′′(φ) is odd. This implies that the
mass-like regulator r1 does not screen but merely shift
possible zeroes of W ′′

k . Thus we may set r1 = 0 without
spoiling the IR properties of the flow.

In the present local-potential approximation, the sim-
ple cutoff function r2 = (k/|p|−1) θ(1−p2/k2) turns out
to be technically very convenient, since the momentum
integration in Eq. (36) can be performed analytically,

∂kWk(φ) =− k

4π

W ′′
k (φ)

k2 +W ′′
k (φ)2

. (37)

In order to calculate the bosonic potential V (φ) =
1
2W

′(φ)2, we only need the derivative of the superpo-
tential. The corresponding flow is

∂kW
′
k(φ) =−W ′′′

k (φ)
k

4π

k2 −W ′′
k (φ)2

(k2 +W ′′
k (φ)2)2

. (38)

This equation exhibits a particularity for any finite value
of k, as the sign of the flow depends on whether W ′′

k (φ)2

is smaller or larger than k2. For large φ, we generally
expect both (W ′′

k )2 and W ′′′
k to be large and positive forZ2 symmetric systems. In this case, the flow for large φ

tends to deplete the height of the potential. Of course,
for φ→∞, we expect the denominator of Eq. (38) to win
out over the numerator, such that the flow vanishes at
large field amplitudes. For small φ, or, more generally,
in the vicinity of local or global minima of W ′

k, there
can be an inner domain where (W ′′

k )2 < k2. For convex
potentials W ′

k with W ′′′
k > 0, the flow is negative here,

resulting in the tendency to flatten out this inner part of
the potential W ′

k. As the curvature W ′′′
k is related to the

masses of the excitations, the flow shows a clear tendency
to small masses if an inner domain with (W ′′

k )2 < k2

exists. As it will turn out later, this is a characteristic
property of the supersymmetry-broken phase.

Let us note in passing that the regulator used in the
present section can lead to artificial divergences at higher
orders in the derivative expansion, e.g., when a wave
function renormalization is included. Then a stronger
regulator in the IR is needed; see, App. A for calculations
at next-to-leading order in the derivative expansion.

VI. FIXED-POINT STRUCTURE

In this section, we investigate the fixed-point struc-
ture of the RG flow. We first concentrate on the
local-potential approximation and later include next-to-
leading-order terms in the derivative expansion. In fact,
it turns out that there is a qualitative difference of the
fixed-point superpotentials between the different orders.
Similar observations are known from two-dimensional
bosonic theories [34, 35] and are a particularity of two-
dimensional systems. Still, the local-potential flow is in-
teresting in its own right. Its IR flow is also quanti-
tatively relevant for studies of the phase diagram, see
Sect. VII.

Since RG fixed-point studies require a scaling form of
the flow equation, we switch to dimensionless quantities
w and t defined by Wk(φ) = kwt(φ) and t = ln(k/Λ). In
two dimensions, a scalar field is dimensionless such that
no dimensionful rescaling is required. The flow equation
(37) for the dimensionless quantities reads

∂twt(φ) + wt(φ) =− 1

4π

w′′
t (φ)

1 + w′′
t (φ)2

(39)

with ∂t = k∂k. The fixed points are characterized by
∂tw

′
∗ = 0. In the following, we solve the fixed-point equa-

tion by various methods.
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A. Polynomial expansion

For small values of the field, a polynomial approxima-
tion for w′

t is justified. If w′
t(φ) is an even function at

the cutoff scale then it remains even at all scales. Its
expansion reads w′

t(φ) = λt(φ
2 − a2

t ) + b4,tφ
4 + b6,tφ

6 +
b8,tφ

8 + . . . . The dimensionless couplings λt, bt,i relate to
the bare couplings λ̄, b̄i through λ̄ = kλt and b̄i = kbt,i.
ā is dimensionless, therefore we have ā = at.

Expanding both sides of the flow equation in terms
of φ, a comparison of coefficients leads to the following
system of coupled ordinary differential equations:

∂ta
2
t =

1

2π
− 6λ2

t · a2
t

π
+ a2

t

3b4,t

πλt

∂tλt =− 3b4,t

π
+

6λ3
t

π
− λt

∂tb4,t =− 15b6,t

2π
+

60b4,t · λ2
t

π
− 40λ5

t

π
− b4,t (40)

∂tb6,t =− 14b8,t

π
− 560b4,tλ

4
t

π
+

168b24,tλt

π

+
126b6,tλ

2
t

π
+

224λ7
t

π
− b6,t

...

∂tb2n,t =− (n+ 1)(n+ 2)

4π
bn+2,t + f2n (λt, b4,t, . . . , b2n,t) .

Note that only w′′ enters the right-hand side of the flow
equation (39); in particular, the lowest coupling constant
a2

t does not enter the equations for the higher order cou-
plings.

At a fixed point, the coupling constants, marked by an
asterisk, become scale invariant such that the left-hand
sides in Eq. (40) vanish. The corresponding system of
equations

b∗2n+2 =
4π

(n+ 1)(n+ 2)
f2n (λ∗, b∗4, . . . , b

∗
2n) (41)

can be solved iteratively due to the triangular form of
the system of flow equations (40). At a fixed point, b∗2n

is a polynomial of order 2n+ 1 in λ∗. Because of the Z2

symmetry of the system of equations, these polynomials
are odd. In particular, b∗4(λ

∗) = 2λ∗3 − πλ∗/3 such that
the projection of any fixed-point solution on the subspace
defined by the couplings λ∗ and b∗4 fall onto the curve
b∗4(λ

∗) depicted in Fig. 2. Inserting b∗4(λ
∗) into the first

equation in (40) yields (a∗)2 = 1/2π. Later, we shall
see that a2

t defines an IR unstable direction near a fixed
point.

Let us truncate the polynomial expansion of the flow
equation for wt and keep only terms up to order φ2n+1

in (39). This is equivalent to keeping the lowest n fixed
point equations which yield b∗2m(λ∗) for m ≤ n. In
the nth equation, the higher-order coupling b2n+2 occurs

-1.5
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 1

 1.5

-1 -0.5  0  0.5  1

b 4*

λ*

IR-stable fixed-points

Gaussian fixed-point

φ4  

φ6  

φ8  

φ10

φ12

φ14

φ16

φ18

φ20

φ22

b4*(λ)=2λ*3-πλ*/3

FIG. 2: Projection of the coefficients of all fixed points for
different truncations on the plane of the couplings λ and b4.

which we set to zero at the fixed point, b∗2n+2 = 0.1 This
leads to the polynomial equation

f2n(λ∗) = f2n (λ∗, b∗4(λ
∗), . . . , b∗2n(λ∗)) = 0, (42)

where the solutions b∗2m(λ∗) are to be inserted. With
Mathematica, we have checked up to order 2n = 22
that all 2n + 1 roots of the odd polynomial f2n(λ∗) of
order 2n+ 1 are real.

Due to the underlying Z2 symmetry, the remain-
ing fixed points of the truncated system come in pairs
±(λ∗, b∗4, . . . , b

∗
2n). Hence, we find n independent non-

trivial solutions to the fixed-point equations in addition
to the Gaußian fixed point where all couplings vanish.
As discussed in the next subsection, only one of these
solutions belongs to an infrared stable fixed point with
all but one eigenvalues in the stability matrix being pos-
itive (i.e., all but one critical exponents being negative).
It turns out that this infrared-stable fixed point corre-
sponds to the largest root of Eq. (42), as indicated in
Fig. 2. With increasing order of the polynomial trunca-
tion the root belonging to the IR-stable fixed point con-
verges to λcrit ≃ 0.9816. Roots belonging to any other
fixed point are bounded by

−λcrit < λ∗ < λcrit. (43)

In Fig. 3 (left panel), we have plotted the values for the
two lowest coefficients λ∗ and b∗4 at the infrared-stable
fixed point in the polynomial expansion for different or-
ders of truncations. We observe a rapid convergence with
increasing order of the polynomial approximation. This
suggests that the polynomial approximation to the su-
perpotential in the local potential approximation has ac-
ceptable convergence properties.

1 This prescription is not unique. Alternatively, we could set

b∗2n+2, for instance, equal to its perturbative one-loop value. In

any case, the choice b∗2n+2 = 0 used here is self-consistent in the

sense that the equations of b≤2n are closed and do not depend

on further input.
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coefficients at IR-fixed point

2n λ∗ b∗4 b∗6 b∗8 b∗10 b∗12 b∗14
2 0.7236

4 0.9019 0.5227

6 0.9535 0.7354 0.8372

8 0.9711 0.8148 1.199 1.694

10 0.9777 0.8451 1.345 2.420 3.801

12 0.9802 0.8570 1.402 2.716 5.401 9.030

14 0.9812 0.8617 1.425 2.836 6.054 12.77 22.23

TABLE I: The coefficients of the IR-stable fixed point poten-
tial for different truncations.

In Fig. 3 (right panel), we have plotted the inverse ratio
of successive couplings at the infrared-stable fixed point
for increasing truncation order. This facilitates an esti-
mate of the radius of convergence for a series expansion
of w′

∗ in powers of φ2,

r2con = lim
i→∞

∣

∣

∣

b∗2i

b∗2i+2

∣

∣

∣
.

An extrapolation leads to the approximate value r2con ≃
0.35 such that for |φ| < rcon the polynomial λ∗(φ2 −
a2) +

∑n
2 b

∗
2mφ

2m converges to the IR-stable fixed point
solution w′

∗. In Table I, the coefficients in the polynomial
approximations to w′

∗ at the IR-stable fixed point are
listed. Note that the fixed-point values are generically
regulator dependent, and thus are not directly related to
physical quantities.

1. Stability analysis and critical exponents

Whereas the values of the fixed-point couplings are reg-
ulator dependent, the critical exponents are universal and
give rise to a classification of the fixed points. The criti-
cal exponents are defined as the negative eigenvalues θI

of the stability matrix at the fixed point,

Bi
j =

∂(∂tbi)

∂bj

∣

∣

∣

∣

b=b∗
, Bi

jvI
j = −θIvI

i , (44)

where we have set b0 = a2
t , b2 = λ, and I labels the differ-

ent critical exponents θI and eigendirections vI
i . Critical

exponents with positive real part correspond to RG rel-
evant directions, whereas exponents with negative real
part mark irrelevant directions. Inserting the flow of λt

into that of a2
t , cf. Eq. (40), we obtain

∂ta
2
t =

1

2π
− a2

t −
a2

t

λt
∂tλt. (45)

We observe that the 00-component of the stability matrix
at any fixed-point yields, B0

0 = −1. This together with
the fact that the remainder of the first column vanishes,
Bi≥1

0 = 0, implies that a2
t is always an eigendirection of

Bi
j with corresponding critical exponent θ0 = 1. Note

that this result is manifestly regulator independent and
thus universal. We conclude that any fixed point of the
superpotential in the local-potential approximation has
at least one RG relevant direction. In analogy with po-
tential flows near the Wilson-Fisher fixed point of Ising-
like systems, we introduce the following notion for the
leading critical exponent corresponding to this relevant
direction:

νW =
1

θ0
= 1. (46)

Even though νW plays the same role for the superpoten-
tial flow as the critical exponent ν does for the poten-
tial flow in Ising-like systems, it should be stressed that
νW does not correspond to the scaling exponent of the
correlation length (as ν does in Ising-like systems). We
will later see that νW quantifies certain properties of the
phase diagram.

Depending on whether we study the UV or IR flow
of the system, the fixed points have a different meaning.
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λ∗ Critical exponents θI

±.9816 −1.54 −7.43 −18.3 −37.3 −68.9 −120 −204 −351

±.8813 6.16 −1.64 −9.82 −25.6 −52.5 −96.9 −170 −300

±.7131 21.4 4.37 −1.57 −11.1 −30.1 −63.3 −120 −223

±.5152 28.7 13.3 3.33 −1.39 −11.6 −32.8 −71.7 −145

±.3158 20.0 − 4.55 i 20.0 + 4.55 i 8.40 2.57 −1.14 −11.6 −34.3 −80.4

±.1437 11.2 + 9.02 i 11.2 − 9.02 i 8.63 5.19 1.95 −.842 −11.1 −35.7

±.0322 4.20 + 1.18 i 4.20 − 1.18 i 2.86 2.72 + 6.47 i 2.72 − 6.47 i 1.47 −.540 −10.5

±.0003 1.57 + .125 i 1.57 − .125 i 1.43 + .702 i 1.43 + .702 i 1.14 .542 + .982 i .542 + .982 i −0.221

0 1 1 1 1 1 1 1 1

TABLE II: Critical exponents θI (negative eigenvalues of the stability matrix) for a polynomial truncation at 2n = 16 for the
nine different fix points in the local-potential approximation. The first exponent θ0 = 1 which is common to all fixed points is
not shown here.

Towards the UV, any of the fixed points which we have
found can be used to define a UV completion of the model
in the sense of Weinberg’s asymptotic safety scenario [36].
All relevant directions emanating from the fixed point
span the critical hypersurface. The dimensionality of this
critical surface, i.e., the number of critical exponents with
Re θI ≥ 0, corresponds to the number of physical param-
eters which have to be fixed in order to unambiguously
define the flow towards the IR.2 Once these initial con-
ditions to the flow are provided, any other quantity or
correlation function can be predicted within the theory.
Since θ0 = 1, we conclude that any UV completion has
at least one physical parameter.

Within the local-potential approximation at order
2n = 16 of the polynomial expansion, the critical ex-
ponents θI≥1 are given in Table II for all 17 fixed-point
potentials. By using a different regulator, we check in
App. B that the regulator dependence of the relevant
positive critical exponents is rather small (up to 10% or
much less), which confirms the reliability of the present
truncation. Classifying the fixed-point potentials by the
slope λ∗ of the potential w′

t as a function of φ2 at φ2 = 0,
the number of relevant directions increases as the slope
|λ∗| decreases. The different fixed-point potentials in the
local-potential approximation – if they persist to higher
truncation orders – thus correspond to different UV com-
pletions of the present system with increasing physical
parameters. These different UV completions thus define
different nonperturbatively renormalized Wess-Zumino
models in two-dimensions.

As for the flow towards the IR, the fixed points can
generically be related with critical points in the phase di-
agram of the system. Since the relevant directions are IR
repulsive, fine-tuning the relevant direction to the fixed
point corresponds to tuning the system onto its critical

2 For marginal directions with Re θI = 0, the flow in the fixed-

point regime has to be studied beyond linear order. Depending

on the sign of the first non-vanishing order, these directions are

again either marginally relevant or irrelevant.

point. In this sense, the relevant direction corresponding
to a2

t with νW = 1/θ0 = 1 is similar to the temperature
parameter in Ising-like systems (or a mass parameter in
O(N)-type relativistic models). For instance, in the do-
main of attraction of the maximally IR-stable fixed point
with only a2

t as relevant direction, the tuning of a2
t dis-

tinguishes between the supersymmetric and symmetry-
broken phases of the model. More generally, if a system
is in the domain of attraction of a fixed-point with N
relevant directions, the phases of broken and unbroken
supersymmetry are separated by an N -dimensional hy-
persurface in the space of couplings.

There is one important difference to Ising-like systems:
the coupling a2

t associated with the one common relevant
direction does not feed back into the flow of the higher-
order couplings. Therefore, the remaining couplings are
attracted towards the maximally IR-stable fixed point
for any regular trajectory irrespective of the flow of a2

t .
3

We conclude that the maximally IR-stable fixed point
governs the flow towards the IR of w′′

t (φ) in the domain,
where the polynomial expansion is valid.

Let us finally mention that the critical exponent νW =
1/θ0 = 1 receives corrections at higher orders in the
derivative expansion, cf. Eq. (57). Still the relevance
of the maximally IR-stable fixed point for the IR flow of
the potential persists.

In Table III, we collected the eigenvalues (negative crit-
ical exponents) for the maximally IR-stable fix point for
different truncations.

B. Solving of the nonlinear differential equation

For large values of the scalar field, the polynomial trun-
cation is not valid anymore. Hence, we consider here
the full nonlinear ordinary differential equation that de-

3 Irregular trajectories can run to infinity at a finite value of k.

These divergences are either physically meaningless or signal the

breakdown of the truncation.
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2n λ∗ eigenvalues of the stability matrix

4 ±0.9019 16.35 1.846

6 ±0.9535 42.32 12.00 1.716

8 ±0.9711 79.83 30.67 9.951 1.635

10 ±0.9777 129.1 58.61 25.05 8.794 1.588

12 ±0.9802 190.6 96.49 47.97 21.75 8.101 1.561

14 ±0.9812 264.5 144.8 79.50 41.51 19.67 7.680 1.546

16 ±0.9816 351.2 204.1 120.3 68.90 37.25 18.30 7.427 1.539

TABLE III: Eigenvalues of the stability matrix (negative crit-
ical exponents) of the maximally IR-stable fix point for dif-
ferent polynomial truncations in the local-potential approxi-
mation. The first exponent θ0 = 1 is not shown here. For
the first subleading exponent (last column), the polynomial
expansion shows a satisfactory convergence.

scribes the fixed point potential in the local-potential ap-
proximation. In the polynomial approximation, the po-
tential wt and w′

t contain the IR-unstable coupling at

which does not flow into the fixed point. Upon differen-
tiation of the fixed-point equation for w′

∗(φ),

w′
∗ = −w

′′′
∗

4π

1− w′′ 2
∗

(1 + w′′ 2
∗ )2

, (47)

with respect to φ, we arrive at the following fixed-point
equation for the a∗ -independent function w′′

∗ (φ) ≡ u(φ),

(1− u4)u′′ = 2u′ 2 (3− u2)u− (1 + u2)3 4πu. (48)

Since a2
t does not appear in Eq. (48), we expect to find

a fully IR-stable solution to this nonlinear differential
equation (in addition to further solutions with IR unsta-
ble directions).

As before, we consider odd solutions u(φ) which are
fixed by the initial conditions u(0) = 0 and a finite value
for u′(0). In fact, we find a continuum of oscillatory
solutions that are defined for all values of φ. In addition,
we identify solutions that hit the singular line u(φ) = 1
of the differential equation (48) but can be continued
without cusps. Solutions of the second class exist only in
a finite φ range.

1. Oscillating solutions

Let us integrate the fixed-point equation (48) with ini-
tial conditions at −φ0 < 0 (see Fig. 4):

u(−φ0) = u0, u′(−φ0) = 0 where − 1 < u0 < 0.

The initial point is an extremum of the solution. The
differential equation (48) implies that this extremum is
indeed a minimum such that u approaches the φ axis
away from −φ0. Actually it must intersect the axis at
some point. Otherwise, it would possess a maximum at
some φ1 with u(−φ0) < u(φ1) < 0 or it would mono-
tonically approach the φ axis without crossing it. But

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4  0.6

u(
φ)

φ

-φ0 φ0

FIG. 4: Illustration of the discussion of oscillating solutions,
see text.

a maximum with −1 < u(φ1) < 0 contradicts the dif-
ferential equation (48) which implies that u′′(φ1) > 0.
Also, if u approached the φ axis monotonically from be-
low then near the axis the differential equation would
imply u′′ ≈ −4πu > 0. Therefore, the slope of u would
increase with increasing φ such that finally u would in-
tersect the φ axis.

We conclude that u must intersect the φ axis and we
may assume that this happens at φ = 0, such that the so-
lution starts off at the minimum at −φ0 < 0 and hits the
axis at the origin. This solution extends to an odd solu-
tion owing to the symmetry u(φ)→ −u(−φ) of the differ-
ential equation and hence has a maximum at φ0 > 0 with
0 < u(φ0) = −u(−φ0) < 1. Because of the translational
invariance φ→ φ+c and the symmetry u(φ)→ u(−φ) of
the fixed point equation the solution must be symmetric
relative to φ0, i.e. u(φ0−φ) = u(φ0+φ). This proves that
every solution with −1 < u(extrema) < 1 is periodic and
takes its values between −1 and 1. The lines u(φ) = ±1
repel solutions oscillating in the strip −1 < u < 1 as long
as the slope u′(0) = γ is less than γcrit ≃ 1.964. Solutions
with γ ≥ γcrit hit the singularity at u = 1.

In a similar fashion, one argues that there exists a sec-
ond class of solutions of the differential equation having
just one minimum with u > 1 or having just one maxi-
mum with u < −1. Solution in this class are not periodic
and never hit the singular line u = ±1. Since they cannot
be continuous and antisymmetric they are discarded.

2. Comparison with the polynomial expansion

In the preceding subsection, we have seen in the poly-
nomial expansions of the truncated system that the slope
γ = 2λ is bounded by 2λcrit ≃ 1.964. This is just the crit-
ical value γcrit for the existence of oscillating solutions of
the fixed point equation (48). We conjecture that a poly-
nomial solution belonging to a fixed point with two or
more relevant directions of the truncated systems, corre-
sponding to a non-maximal root of f2n in (42), converges
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FIG. 5: Left panel: Comparison between the numerical solution to the differential equation (ODE) and the polynomial ap-
proximation (Poly) to 16th order for three different fixed points. The fixed points FP1, FP2, and FP3 have the initial slope
γ = 0.287, 1.4262 and 1.963. The fixed point FP3 is the maximally IR-stable fixed-point. Right panel: The first derivative of
the potentials in Fig. 5.

to the Taylor series of an oscillating solution. In Fig. 5
(left panel), we have plotted three full numerical solu-
tions and the corresponding polynomial approximation
truncated at φ16 with the same initial value γ = 2λ. For
the first half period, we find an excellent agreement be-
tween polynomial approximation and numerical solution.

3. Solution with u(φ) = 1 for some field value φ

Regular periodic solutions only exist for −γcrit < γ <
γcrit. Increasing the slope at the origin gradually from 0
to γcrit, the value u(φmax) at the maximum approaches
the singular line u = 1 and finally hits the singularity at
the critical field φcrit ≃ 0.3704. At the same time the cur-
vature at the maximum tends to −∞. With increasing
order the IR stable fixed points for the polynomial trun-
cations converge to the Taylor expansion of the solution
with the critical slope γcrit.

In order to study the solutions near the singular line,
we insert the Taylor expansion u(φcrit + δφ) = u(φcrit) +
a1δφ + a2δφ

2/2 + . . . with u(φcrit) = 1 and compare
coefficients. One sees that the expansion coefficients are
finite if a1 = u′(φcrit) = ±

√
8π. If this condition is not

met, the solution hits the singular line u(φ) = 1 with
infinite slope, as can be seen by studying the differential
equation for the inverse function φ(u). The behavior of
a solution depends in an essential way on γ: if the initial
slope is less than γcrit then the solution is smooth and
periodic, if the initial slope is γcrit then it hits the singular
line u(φ) = 1 with slope

√
8π and if the initial slope

is bigger than γcrit then the solution hits the singular
line vertically; see Fig. 6. If we viewed the solutions
hitting the singular line as parametric continuation of
the periodic solutions as γ approaches γcrit, we would
reflect the solution at the singular line, similarly to the
solution FP3 in Fig. 5, left panel. For the maximally IR-
stable fixed-point solution with initial slope γcrit the slope

at φcrit would then jump from
√

8π to −
√

8π, as shown
in Fig. 5, right panel, where we depicted the function
u′(φ) = w′′′(φ) for three different values of the initial
slope γ = 2λ.

However, there is a way to extend the solutions hitting
the singular line without cusps. To see this more clearly
we note that v = 1/u fulfills almost the identical fixed-
point equation as u,

(1− v4)v′′ = 2v′ 2 (3− v2) v − 4π(1 + v2)3/v. (49)

Upon approaching the singular line u → 1 and v → 1,
the two equations (48) and (49) become identical. This
implies that near the singular line the reflection at the
singular line maps solutions into solutions. Thus, all so-
lutions with γ ≥ γcrit hitting the singular line vertically
or with slope

√
8π can be extended without cusps beyond

the singular line.
We have studied these solutions for large values u≫ 1.

It is not difficult to see that there exist no solutions with
u ∼ φα for large φ. (This will become different at next-
to-leading order in the derivative expansion.) We find
the asymptotic solution

uas(φ) = e
erf−1

“

±2
√

2 e−

c1
8π (φ+c2)

”

2− c1
8π (50)

with c1 ≃ −20.02 and c2 ≃ −0.423 for the maximally
IR-stable fixed point extended without cusp beyond the
singular line. It is finite only for

−φcrit,2 < φ < φcrit,2, φcrit,2 = 0.5823. (51)

An unbounded and cusp-free fixed point solution belongs
to a field theory with compact target space.

Let us summarize our findings. As a regular oscillat-
ing or a non-differentiable bouncing solution u(φ) is finite
for all values of the field, this implies a vanishing dimen-

sionful W ′′
k (φ) = ku(φ) as the scale k is lowered to the

infrared. The solutions which penetrate the singular line
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differential equation in local-potential approximation: (1)
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with just one extremum

u = 1 without a cusp are unbounded from below and
above and confine the field to a finite interval. The dif-
ferent types of solutions are depicted in Fig. 6.

C. Fixed points at next-to-leading order in the

derivative expansion

1. Next-to-leading-order flows

Two dimensional scalar field theories and their super-
symmetric extensions exhibit infinitely many scale invari-
ant fixed-points characterized by the central charge c of a
conformal field theory [37]. In the local potential approxi-
mation to scalar field theories, only periodic, sine-Gordon
type fixed-point solutions are accessible. At next-to-
leading order in the derivative expansion, one finds ad-
ditional non-periodic fixed-point solutions [34, 35]. Here
we find analogous results for the two-dimensional Wess-
Zumino model.

In this subsection, we consider fixed point solutions
with scale-dependent but field-independent wave func-
tion renormalization Zk in the next-to-leading order ap-
proximation. The corresponding flow equations are de-
rived in appendix A. The full next-to-leading-order ap-
proximation would include a field-dependent wave func-
tion renormalization Zk(Φ). For supersymmetric quan-
tum mechanics, this order has been computed in [19].
Here, we confine ourselves to the simpler approximation
Zk(Φ)→ Zk(0) ≡ Zk.

Let us introduce renormalized fields χ, by rescaling φ
with the wave function renormalization φ → χ = Zkφ.
This implies a dimensionless renormalized superpotential
wt(χ) = Wk(χ/Zk)/k. The calculation of the flow is out-
lined in App. A; in order to avoid artificial IR singulari-
ties, different regulator shape functions were used in com-
parison with the local-potential approximation: r1 = 0

and r2 = (k2/p2−1)θ(1−p2/k2). For the rescaled quan-
tities, the flow equations read

∂tw
′
t + w

′
t −

η

2
(χw

′
t)

′ =
1

4π

w
′′′
t

w
′′2
t

× (52)

[

ln
(

1 + w
′′2
t

)

(

1− η

2

3 + w
′′2
t

w
′′2
t

)

− 2w
′′2
t

1 + w
′′2
t

+
3η

2

]

,

η :=− ∂t lnZ2
k =

1

4π

(

w
′′′
k

w
′′
k
2

)2

× (53)

[

ηw
′′
k
2

1 + w
′′
k
2 − η ln

(

1 + w
′′
k
2
)

+
2w

′′
k
4

(1 + w
′′
k
2)2

]

χ=0

,

where we have dropped the arguments in wt(χ) for sim-
plicity. Since the anomalous dimension is assumed to
be constant in this approximation, we have projected
Eq. (53) onto χ = 0. Note that the limit w

′′
t (0) → 0

of the right-hand side of Eq. (53) exists, yielding

η =
4λ2

λ2 + 2π
. (54)

2. Polynomial expansion and superscaling relation

The polynomial expansion of the next-to-leading-order
superpotential flow equation in terms of dimensionless
renormalized couplings is given in App. A. For instance,
the flow of the renormalized parameter a2

t can be written
as (cf. Eq. (A12))

∂ta
2
t =

1

2π

(

1− η

4

)

−
(

1− η

2

)

a2
t −

a2
t

λt
∂tλt, (55)

which is the next-to-leading-order analogue of Eq. (45).
The renormalized couplings are related to their unrenor-
malized analogues by

λt =
1

k

1

Z3
k

λ̄k, a2
t = Z2

k ā
2
k. (56)

Similarly to the local-potential approximation, we ob-
serve that the 00-component of the stability matrix at
any fixed point yields B0

0 = −(1− η
2 ), where η = η∗ has

to be evaluated at the corresponding fixed point. Since
the remainder of the first column vanishes, B0

i≥1 = 0,

the coupling a2
t remains always an eigendirection of Bi

j

at any fixed point with a critical exponent θ0 = −(1− η
2 ),

implying a superscaling relation

νW ≡
1

θ0
=

2

2− η , (57)

where we have again introduced an Ising-like notation
for the critical exponent of the superpotential associated
with the a2

t direction. This is a remarkable relation as it
relates this superpotential exponent with the anomalous
dimension. Recall that in Ising-like systems the thermo-
dynamic main exponents (i.e., α, β, γ and δ) are related
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2n 2 4 6 8 10 12 14

η 0.3284 0.4194 0.4358 0.4386 0.4388 0.4387 0.4386

1/νW 0.8358 0.7903 0.7821 0.7807 0.7806 0.78065 0.7807

TABLE IV: Numerical verification of the superscaling rela-
tion (57): anomalous dimension η and the critical exponent
1/νW of a2 for increasing orders in a polynomial truncation
evaluated for the maximally IR-stable fixed-point.

among each other by scaling relations, and can be de-
duced from the correlation exponents ν and η by hyper-
scaling relations. Beyond that there is no general relation
between ν and η. The superscaling relation (57) thus rep-
resents a special feature of the present supersymmetric
model.

We would like to stress that Eq. (57) is an exact rela-
tion to next-to-leading order in the supercovariant deriva-
tive expansion of the effective action. In particular, the
inclusion of a field-dependent Zk(φ) implying η → η(φ)
does not modify the superscaling relation, since the su-
perscaling relation arises from the expansion in φ near
φ = 0. Beyond next-to-leading order, Eq. (57) might, in
fact, receive corrections, since higher-derivative operators
can still take influence on the flow of the superpotential
mediated by higher-order interactions between the scalar
field and the auxiliary field. Whether or not these in-
teractions play a role for the superscaling relation at the
fixed points needs to be clarified by future studies.

Within the present next-to-leading-order truncation, a
numerical determination of the critical exponents from
the full set of polynomially expanded flow equations, of
course, confirms the superscaling relation to a high accu-
racy. Numerical values for η and νW at the maximally
IR-stable fixed point for increasing order of polynomial
truncations are given in Table IV. We also observe a
rapid convergence of the polynomial expansion, yielding
our best estimates η ≃ 0.4386 and 1/νW ≃ 0.7807 for the
critical exponents at the maximally IR-stable fixed point.
As the anomalous dimension is comparatively large, we
expect significant quantitative corrections to arise from
higher orders in the derivative expansion.

As discussed below, the superscaling relation has an
immediate physical consequence for the IR flow of the
masses in the supersymmetry broken phase.

3. Fixed points of the nonlinear superpotential flow at

next-to-leading order

In order to go beyond the polynomial expansion, let
us first study the asymptotic behavior of the right-hand

side of the flow equation (52):

w
′′2
t → 0 :

η − 4

16π
w

′′′
t and (58)

w
′′2
t →∞ :

2− η
8π

w
′′′
t

w
′′2
t

ln(1 + w
′′2
t ). (59)

It turns out to be a self-consistent assumption that these
asymptotic right-hand sides are subdominant in compar-
ison with the left-hand side of Eq. (52) at a fixed point
∂tw

′
∗ = 0 both for small and large values of χ. From this,

it follows that w
′
∗ is proportional to χ2/η−1 for large w

′′
∗ .

In particular, w
′
∗ grows faster than any polynomial for

η = 0, in complete agreement with our previous results
in section VI.

Now, for a non-vanishing η we find a new class of so-
lutions. For these new solutions, we consider again the
derivative of Eq. (52). This leads to the following fixed
point equation for u = w

′′
∗ (note that u now contains a

wave function renormalization in contrast to section VI):

u′′

4π

[(

η(3 + u2)

2u4
− 1

u2

)

ln
(

1 + u2
)

+
2

1 + u2
− 3η

2u2

]

= (η − 1)u+
ηχ

2
u′ +

u′2

2π

[

1 + 3u2

u(1 + u2)2
− η(3 + 2u2)

u3(1 + u2)

+

(

η(6 + u2)

2u5
− 1

u3

)

ln
(

1 + u2
)

]

. (60)

For an initial condition in terms of an odd superpotential
WΛ at the UV scale k = Λ, wt is odd and the fixed point
solution u = w

′′
∗ vanishes at the origin. Thus for weak

fields we have u(χ) ≪ 1 and we may expand the loga-
rithm in powers of u. The resulting fixed point equation
for small u is regular for u→ 0 and reads

u′′

16π

(

(η − 4) + (6 − η)u2 +
5

6
(η − 2)u4 + . . .

)

=− uu′2

8π

(

(6− η) +
5

3
(η − 8)u2 +

21

10
(10− η)u4 + . . .

)

− η

2
χu′ − (η − 1)u. (61)

Following [34], we first consider η in Eq. (60) as a free
parameter. The initial conditions u(0) = 0 and u′(0) =
γ = 2λ are parameterized by the slope γ at the origin.
A solution of Eq. (60) with generic slope will run into a
singularity because the factor multiplying u′′ eventually
becomes zero. By fine-tuning the slope it is possible to
find regular solutions for a given value of η. In Fig. 7
(left panel) we show three regular potentials for η = 0.1.
For large values of χ, they behave like w

′′(χ) ∼ χ18.
These regular solutions define curves of fixed-point so-

lutions in the γ-η plane. This is shown in Fig. 7 (right
panel). For η = 2/3 we find a potential that behaves as
u ∼ χ in the asymptotic region. We do not find solu-
tions with larger values for η. For 0 < η < 2/3 it follows
from simple monotony arguments that the factor multi-
plying u

′′ in Eq. (60) has only one node at some value
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# nodes η νW

0 0.4386 1.2809

1 0.20 1.11

2 0.12 1.06

TABLE V: Critical exponents of the first fixed points.

φ0. The potentials are therefore regular if the right-hand
side of Eq. (60) vanishes for the same value φ0, which is
achieved by a fine-tuning of γ. The outermost curve in
Fig. 7 (right panel) corresponds to a potential w

′′
∗ with

no nodes, the next curve to potentials with one node and
the third curve to potentials with two nodes. We expect
to find more curves for small η and γ corresponding to
potentials with more nodes. In Fig. 7 (right panel) we
also display η(γ) = 4γ2/(γ2+8π) obtained from equation
(53).

The polynomial approximation to the fixed point solu-
tion of Eq. (52) and Eq. (53) converges to the maximally
IR-stable fixed point with η = 0.4386 and γ = 1.759,
which is just the point of intersection with the line of
fixed points corresponding to potentials with no nodes.
The intersection points of the η(γ) line with the other
lines of fixed points with higher numbers of nodes then
give estimates for the critical exponents of these other
fixed points at next-to-leading order in the derivative
expansion. E.g., we find η ≃ 0.20 for the fixed point
with one node and η ≃ 0.12 for the fixed point with two
nodes. The corresponding critical exponent νW then fol-
lows directly from the superscaling relation (57). They
are listed in Tab. V. The point characterized by η = 0
and γ = 3.529 in Fig. 7 (right panel) (see appendix B)
belongs to a solution of the type discussed in section VI,
where the maximally IR-stable solution can be extended
without cusps beyond the critical value of the potential

w
′′.

D. Synthesis: derivative expansion results at

leading order and next-to-leading order

At a first glance, the fixed-point potentials obtained
at the various orders in the derivative expansion seem
even qualitatively different. At leading-order, we find
oscillating solutions, solutions with cusps, and solutions
with a compact target space. By contrast, the next-to-
leading-order solutions admit superpotentials that can
be extended to infinite field amplitude with a standard
powerlaw asymptotics W ′(φ→∞) ∼ φ2/η−1 →∞.

Of course, there are also many similarities, as the
next-to-leading-order fixed-point potentials can be clas-
sified by their number of nodes, i.e., they typically ex-
hibit an oscillating behavior for small fields. In addi-
tion, we expect the occurrence of superpotentials with
singular structures at finite field values which have not
been searched for as systematically as in the leading-
order case.

The key to a unified understanding of both orders is
provided by the anomalous dimension η, as the new large
field asymptotics at next-to-leading order is induced by
a nonzero value for η. It should be kept in mind that we
deduce the nonzero value for η from a small-field expan-
sion of the full flow of the wave function renormalization
Zk(φ). Beyond this expansion, the anomalous dimen-
sion will acquire a field dependence η → η(φ). From
the general form of the flow equation, we expect that
the large-field limit is characterized by η(φ → ∞) → 0.
We therefore conjecture that the true large-field asymp-
totics of the fixed-point superpotentials lies in-between
the leading- and next-to-leading-order results. More pre-
cisely, we expect that a standard asymptotic behavior
W ′(φ → ∞) → ∞ persists, but the powerlaw behavior
φ2/η−1 may be replaced by a stronger divergence.
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In any case, the rapid convergence of the polynomial
expansion in both orders of the derivative expansion, as
well as quantitative agreement between observables de-
rived from the polynomial expansion and from the full so-
lution support the reliability of the overall picture arising
from the derivative expansion.

VII. THE GAUSSIAN WESS-ZUMINO MODEL

In principle, each of the fixed points defines a different
UV completion of the Wess-Zumino model and therefore
a different physical system with a different number of
physical parameters. In the following, we concentrate
on the Wess-Zumino model defined at the Gaußian fixed
point corresponding to an asymptotically free theory. At
least seemingly, this is a natural choice, as it has also
often been used in lattice computations. However, the
Gaußian fixed point actually has infinitely many relevant
directions, as is already revealed by perturbative power-
counting. As a consequence, there are strictly speaking
infinitely many physical parameters.

In practice, one usually starts with a classical superpo-
tential including quadratic perturbations of the Gaußian
fixed point, W ′

Λ = λ̄Λ(φ2 − ā2
Λ), at the UV cutoff k = Λ,

implying that infinitely many couplings have been set
to zero at that scale. Since the RG trajectories are not
regulator independent, it will still be difficult to com-
pare our results with those of, say, lattice computations,
as the same physical system with lattice regularization
might have a very different action at the lattice cutoff
Λ = π/a. In fact, we find a substantial quantitative
regulator dependence for non-universal quantities within
the functional RG calculations; see App. B which might
imply that a meaningful comparison with other methods
should only be made on a qualitative level.

On the other hand, one may interpret the choice of
the regulator as belonging to the definition of the theory
itself: the regulator together with the initial condition
in the form of a quadratic perturbation specifies the RG
trajectory uniquely also at a finite scale Λ. In the general
case, this viewpoint has the disadvantage that a change
of the cutoff scale Λ on the line of constant physics generi-
cally involves an adjustment of the couplings of infinitely
many operators. In order to find out how much these
operators actually affect the flow of the superpotential,
we have varied the cutoff scale Λ. For a given Λ, we ad-
just the couplings in W ′

Λ = λ̄Λ(φ2 − ā2
Λ) such that we

obtain fixed reference couplings aΛ0
and λΛ0

at a refer-
ence scale Λ0, ignoring higher-order couplings. This way
of looking at the cutoff-dependence is very much moti-
vated by similar procedures in recent lattice simulations
of the two-dimensional Wess-Zumino model in [4, 38].
For large enough Λ, the solutions of the flow equation
show that the dependence of, e.g., the ground state en-
ergy at k = 0 on the actual cutoff scale is small. This
observation helps making the viewpoint of including the
regulator in the definition of the theory practicably ap-

plicable. Still, it has to be emphasized that we observe
a significant regulator dependence of the nonuniversal
quantities, see App. B.

A. Numerical solution of the flow equation in

local-potential approximation

At the cutoff scale Λ, we start with W ′
Λ = λ̄Λ(φ2− ā2

Λ),
where λ̄Λφ

2 is a relevant perturbation of the Gaußian
fixed point. For large values of the field, the right-hand
side of Eq. (38) vanishes such that ∂kW

′
k ≃ 0 and the ef-

fective potential remains close to the classical potential.
It follows that the dimensionless potential wt = Wk/k
diverges for large φ in the infrared. On the other hand,
we expect that the dimensionful W ′′(φ) = kut(φ) con-
verges to zero for small fields, since ut can be attracted
by the maximally IR-stable fixed point and converges to
a bounded function u.

Because of the singularity in the fixed point equation
for u, the solution of the partial differential equation (38)
poses a numerical challenge. To meet this challenge,
we exploit the fact that the polynomial solutions with
scale-dependent coefficients (40) yield excellent approx-
imations to the solution of the full partial differential
equation for small fields φ < φcrit. For the fixed-point
solution, this has been demonstrated earlier, see Fig. 5,
left panel. Thus, we use a polynomial approximation
for |φ| < φcrit. For large fields |φ| > φcrit, the polyno-
mial approximation fails and we solve the partial differ-
ential equation numerically. As boundary conditions for
the numerical solutions, we impose W ′

k(φ) = W ′
Λ(φ) for

|φ| → ∞ and Wk(φcrit) equal to the polynomial approx-
imation at φcrit and scale k. Figure 8 (left panel) shows
the flow of such a potential.

B. The phase diagram

Depending on the parameters in W ′
Λ = λ̄Λ(φ2− ā2

Λ) we
may end up with a broken or unbroken supersymmetry
in the infrared. Note that λk is dimensionful, whereas ak

is dimensionless. The rescaled dimensionless couplings
have an index t = ln k/Λ, e.g. λk = kλt and ak = at.
In the following, we determine the parameter region for
which supersymmetry is dynamically broken. A criterion
for supersymmetry breaking is provided by a nonvanish-
ing ground state energy, given by the minimal value of
V (φ) = 1

2W
′ 2(φ), where W ′ = W ′

k→0. The ground state
energy is nonzero if and only if W ′(φ) > 0 for all φ. Since
W ′(φ) is minimal at the origin we may use the polynomial
approximation for which W ′

k(0) = −λk ·a2
k = −(kλt) ·a2

t .
The dimensionless coupling λt flows to the IR fixed-point
value λ∗, whereas the coupling a2

t diverges for k → 0 or
equivalently for t → −∞, such that the dimensionful
quantity k λt · a2

t converges to a finite value. This is a
direct consequence of the fact that the divergence of a2

t

at the fixed point is governed by the critical exponent
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θ0 = 1. The supersymmetric phase is characterized by
a2

t → +∞ and a double well potential W ′ 2
k , whereas the

broken phase is characterized by a2
t → −∞ and a single

well potential.
This gives rise to a strong analogy between dynami-

cal supersymmetry breaking in this and many other su-
persymmetric systems and quantum critical phenomena
in strongly correlated fermion systems [18]: both phe-
nomena are governed by a control parameter of the (su-
per-)potential which plays the role of a bosonic mass
term; see, e.g., [39] for an RG treatment of a semi-metal–
superfluid quantum phase transition in a fermionic sys-
tem. This control parameter, which is usually called δ in
quantum critical phenomena, is associated to the combi-
nation δ = λ̄Λ · ā2

Λ/Λ in our case. The critical value δcr
of the control parameter marks a quantum critical point
of a quantum phase transition.

In Fig. 8 (right panel), we depict the phase diagram
in the space of dimensionful couplings λ̄Λ and λ̄Λ · ā2

Λ in
units of the UV cutoff Λ for increasing truncation order.

In the φ2 truncation, the system of differential equa-
tions reads (see equation (40))

∂ta
2
t =

1

2π
− 6λ2

t · a2
t

π
, ∂tλt = −λt +

6λ3
t

π
, (62)

which can be solved analytically. The phase transition
curve in the (λ̄Λā

2
Λ, λ̄) plane is given by the initial values

for which a2
t→−∞ changes sign. This condition yields

λ̄Λā
2
Λ

Λ
=

arcsin(α)√
24π α

, α2 = 1− πΛ

6λ̄Λ
. (63)

In order to find the approximate phase transition curve
for the higher order polynomial truncations, we have in-
tegrated the corresponding systems of flow equations nu-
merically. From the φ2 to the φ4 truncation, the transi-
tion curve moves considerably upwards because the cou-
pling b4,t enters the flow equation for a2

t in Eq. (40).

The higher couplings b6,t, b8,t, . . . enter the differential
equation for at only indirectly, and, as a result, the ap-
proximate phase transition curves converge rapidly with
increasing order of the truncation. We find that there
exists a critical value for the cutoff parameter λ̄Λā

2
Λ|crit

characterizing the phase transition in the strong coupling
limit λ̄Λ →∞. To lowest order, Eq. (63) leads to a crit-

ical value of λ̄Λā
2
Λ|crit/Λ =

√

π/96 ≃ 0.181. Our best
estimate for this critical value derived from a numerical
higher-order solution is λ̄Λā

2
Λ|crit/Λ ≃ 0.263. We con-

clude that supersymmetry can never be broken dynami-
cally above this critical value. This agrees qualitatively
with earlier results in the literature [22, 25].

A more quantitative comparison to lattice simulation
is inflicted by the strong regulator dependence of nonuni-
versal quantities, such as the bare critical coupling val-
ues discussed above, see also App. B. For instance in
[24, 25], the phase diagram and the ground state en-
ergy of the present model were investigated anew. For a
fixed λ̄Λ/Λ = 0.5, a phase transition from a state with
broken to a state with unbroken supersymmetry was ob-
served at the critical value (λ̄ā2)|crit/Λ = 0.48. With
two different methods they obtained 0.40 and 0.52 for
this critical value but they state 0.48 to be the most
solid value. In these works, the thermodynamic limit has
been performed without an accompanying continuum ex-
trapolation. On the other hand, the quoted numbers for
(λ̄ā2)Λ were in reasonable good agreement with earlier
results obtained with the help of the worldline path in-
tegral method [28]. As demonstrated in App. B, a direct
comparison of bare quantities between the present work
and [24, 25] is anyway not meaningful due to the scheme
dependence. If more lattice points in the phase diagram
were available, dimensionless coupling ratios could be
compared which are likely to be less affected by scheme
dependencies.
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C. Mass scaling

The scale-dependent bosonic mass can be read off from
the bosonic potential in the on-shell formulation, which
is given by V̄k(φ) = 1

2 (W ′
k(φ))2 in our truncation. In

terms of renormalized fields χ = Zkφ, the dimensionful
renormalized bosonic potential and bosonic mass thus is

Vk(χ) =
1

2

1

Z2
k

(

W ′
k(χ/Zk)

)2
, m2

k = V ′′
k (χmin), (64)

where χmin denotes the minimum of the effective poten-
tial Vk(χ). The true mass can then be read off in the
limit m = limk→0mk.

In the broken phase, the minimum of both Vk and W ′
k

is at χ = 0, such that the bosonic mass yields

m2
k =

1

Z4
k

W ′
k(0)W ′′′

k (0) = 2k2 λ2
t |a2

t |, (65)

where we have used the fact that the renormalized pa-
rameter a2

t is negative. Assuming that the system is
dominated by the maximally IR-stable fixed point with
λt → λ∗ and a2

t ∼ k−1/νW , the renormalized mass scales
as

m2
k ∼ k1+ η

2 (66)

where we have employed the superscaling relation (57).
For η > −2, the renormalized bosonic mass scales to zero
upon attraction of the maximally IR-stable fixed point.
Indeed, for the Gaußian Wess-Zumino model considered
here, we observe that the flow in the broken phase is al-
ways attracted by the maximally IR-stable fixed point.
Together with the fact that the broken phase also goes
along with a massless goldstino, we conclude that the
broken phase remains massless in both degrees of free-
dom.

In a certain sense, the underlying limit k → 0 repre-
sents an extreme point of view. Any experiment as well
as any lattice simulation will involve an IR cutoff scale km

characterizing the measurement, e.g., the scale of a mo-
mentum transfer, the detector size or the lattice volume.
Any measurement therefore is not sensitive to k → 0 but
to k → km > 0. We conclude that any measurement of
the bosonic mass in the broken phase will give a nonzero
answer proportional to the measurement scale, whereas
the goldstino will be truly massless.

In the broken phase, the superscaling relation also has
a special consequence for the unrenormalized potential.
We observe that

W ′(0) = −λ̄kā
2
k = −kZkλta

2
t ∼ k1− η

2 k−1/νW → const.,
(67)

where we have used Eq. (57) and Zk ∼ k−η/2. There-
fore, the flow of the superpotential freezes out near the
origin if the system is in the domain of attraction of the
maximally IR-stable fixed point.
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FIG. 9: Renormalized mass at different scales k as a function
of the initial condition λ̄Λā2

Λ at an initial coupling of λ̄Λ = 0.1.

In the supersymmetric phase, the bosonic as well as
the fermionic mass is given by

m2
k =

1

Z4
k

(

W ′′
k (χmin/Zk)

)2
, (68)

where we made use of the fact that W ′
k vanishes at the

minimum. For typical flows, W ′′
k remains positive at the

minimum also in the k → 0 limit. This leads to a generic
decoupling of the massive modes, once k drops below
the mass threshold. For an accurate inclusion of this
mass decoupling, also the anomalous dimension needs to
be evaluated at the minimum χmin, implying η → 0 for
k2 ≪ m2

k, cf. Eq. (53).
For simplicity, we confine ourselves to the local-

potential approximation and set Zk → 1, η → 0 for a
computation of the masses across the phase transition.
Our results are displayed in Fig. 9 as a function of the
initial-condition parameter λ̄Λā

2
Λ of the relevant direc-

tion. The calculation has been performed at an initial
value for the coupling of λ̄Λ/Λ = 0.1. We observe a
critical value of λ̄Λā

2
Λ|crit/Λ ≃ 0.045, above which super-

symmetry remains unbroken and the theory is massive.
Both masses vanish at the quantum phase transition. Be-
low the critical value, supersymmetry is broken and the
goldstino is massless. The bosonic mass also approaches
zero for k → 0, but remains finite for any finite value of
k, potentially representing a measurement scale.

VIII. CONCLUSIONS

In this work, we have constructed a manifestly super-
symmetric flow equation for the application of the func-
tional RG to the two dimensional N = 1 Wess-Zumino
model. The regularization turns out to be similar to the
one in supersymmetric quantum mechanics. This is not
surprising since supersymmetric quantum mechanics can
be derived from the Wess-Zumino model by a dimen-
sional reduction.
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For approximate solutions to the flow equation, we
have employed an expansion of the effective action in
terms of field operators containing increasing powers
of supercovariant derivatives. This provides a system-
atic approximation scheme that preserves supersymme-
try. We obtain a flow equation for the superpotential and,
at next-to-leading order, for the wave function renormal-
ization.

The Wess-Zumino model has a highly nontrivial fixed-
point structure in terms of scaling solutions for the su-
perpotential. At leading- as well as next-to-leading order
in the derivative expansion, we find fixed-point superpo-
tentials which can be classified by an increasing number
of relevant directions. At leading order, the classification
of fixed-point solutions can largely be done on analyti-
cal grounds. Here, we find oscillating sine-Gordon-type
or even bouncing solutions on the one hand, and solu-
tions confining the field to a compact target space on
the other hand. For the regular oscillating solutions, the
large-field asymptotics is turned into a standard form
W ′(φ → ∞) → ∞ at next-to-leading order, where the
fixed-point superpotentials can be classified also accord-
ing to their number of nodes. This is reminiscent to
fixed points of the effective potential in two-dimensional
bosonic theories which can be related to conformal field
theories [34, 35]. Exploring the connection between the
present supersymmetric models at their fixed points and
conformal field theories remains an interesting question
for future work.

Each fixed point defines its own universality class, the
physics of which is determined by the RG relevant direc-
tions of the fixed points. In other words, each fixed point
defines a different Wess-Zumino model with the number
of physical parameters given by the number of relevant
directions. One extreme is provided by the Gaußian fixed
point which has infinitely many relevant directions in
agreement with perturbative power-counting arguments.
The other extreme is given by the maximally IR-stable
fixed point which has only one relevant direction. We
have demonstrated that this relevant direction is exactly
given by a2

t and is shared by all other fixed points as well.

At leading- and next-to-leading order, the critical ex-
ponent associated with this relevant a2

t direction can be
computed exactly. At next-to-leading order, this yields
an intriguing relation between this critical exponent of
the superpotential νW = 1/θ0 and the anomalous di-
mension η of the field. As such a relation between criti-
cal exponents associated with correlation functions is not
known from Ising-type systems (where thermodynamical
exponents are related by scaling relations among each
other and by hyperscaling relations to the correlation
exponents), this superscaling relation appears to be a
unique property of supersymmetric theories.

The superscaling relation has a direct consequence for
the renormalized superpotential W at the origin in field
space. It dictates a freeze out of the derivative of the
superpotential at the origin in the deep IR, if the system
is governed by one of the fixed points.

As an example for a model with dynamical supersym-
metry breaking, we considered the Wess-Zumino model
defined by a quadratic perturbation of the Gaußian fixed
point. In addition to the initial coupling value λ|Λ, the
model has a control parameter λa2|Λ the value of which
decides about the realization of supersymmetry by the
ground state of the theory. At a given coupling, super-
symmetry can only be broken for λa2|Λ below a certain
critical value which is in accord with a general argument
by Witten. We have computed the critical line of quan-
tum phase transitions in the coupling–control-parameter
plane for a wide range from weak to strong coupling.
Most importantly, the control parameter stays finite even
at arbitrarily large coupling.

We have also computed the masses of the lowest
fermionic and bosonic excitations across the quantum
phase transition. In the supersymmetric phase, both
masses are equal and nonzero, but drop to zero at the
phase transition. In the broken phase, the fermion has
a massless goldstino mode. We observe that the boson
also becomes massless in the broken phase in the deep
IR, k → 0, but stays finite for any finite k. Associating
k with a typical measurement momentum scale (say, in-
verse length of a detector), our results predict that the
bosonic mass in the broken phase is proportional to the
momentum scale set by the detector.

The critical properties of the quantum phase transition
remain an interesting open problem. In this work, we
have considered the ground state energy or the bosonic
and fermionic masses of the theory as order parameters
for the symmetry. In our numerical results, we have
found no hint for typical scaling behavior of these quan-
tities near the phase transition so far. Actually, a true
field-valued order parameter is given in terms of the ex-
pectation value of the auxiliary field F . It is therefore
natural to expect that order-parameter fluctuations of
the F field play an important role near criticality and
eventually establish a scaling behavior. Technically, this
requires the inclusion of potential terms for the F field.
As these appear at higher orders in the supercovariant
derivative expansion, a quantitative description of the
critical regime remains a technical challenge.

From the perspective of the functional-RG tool box,
we have solved the flow equation for the superpotential
both in a polynomial expansion as well as with a full nu-
merical solution of the corresponding partial differential
equation. Whereas the polynomial approximation for the
potential is only reliable in the vicinity of its expansion
point with a finite radius of convergence, it often suffices
to extract reliable quantitative information about phys-
ical observables such as critical exponents or the phase
diagram.

In the context of the phase diagram of the Gaußian
Wess-Zumino model, we have expressed our concern that
a quantitative comparison with other methods such as
lattice simulations can be plagued by the fact that the
model has infinitely many relevant directions. As a di-
rect consequence, the results of the model defined by a
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certain (say quadratic) perturbation of the fixed point at
a fixed UV scale Λ are regulator dependent, as this defin-
ing initial condition is not universal. A much better com-
parison could arise from defining a Wess-Zumino model,
e.g., in the vicinity of the next-to-maximally IR-stable
fixed point, where there are only two relevant directions
and thus two tunable physical parameters. Fixing these
parameters in terms of two observables, all other quanti-
ties are a universal scheme-independent prediction of the
theory.
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Appendix A: Flow equation with wave function

renormalization

At next-to-leading order in the derivative expansion,
a field-independent wave function renormalization is in-
cluded in the truncation via

Γk[φ, F, ψ̄, ψ] =

∫

d2x
[

Z2
k

(

1
2∂µφ∂

µφ+ i
2 ψ̄ /∂ψ − 1

2F
2
)

+ 1
2W

′′
k (φ)ψ̄γ∗ψ −W ′

k(φ)F
]

. (A1)

The cutoff action reads

∆Sk =
1

2

∫

(φ, F )Z2
kR

B
k

(

φ

F

)

+
1

2

∫

dx2ψ̄Z2
kR

F
kψ, (A2)

with RB
k and RF

k given in Eq. (28). The flow equation
for the superpotential is obtained by a projection onto
the terms linear in the auxiliary field and by integration
with respect to φ. We obtain a similar flow equation as
in Eq. (36),

∂kWk(φ) =
1

2

∫

d2p

4π2

(1 + r2)Z
2
k ∂k(r1Z

2
k)

∆

− 1

2

∫

d2p

4π2

(W ′′
k (φ) + r1Z

2
k)∂k(r2Z

2
k)

∆
.

(A3)

Including the wave function renormalization, the expres-
sion in the denominator reads

∆ = Z4
k p

2(1 + r2)
2 + (W ′′

k + r1Z
2
k)2. (A4)

For the flow of the wave function renormalization, we
project the flow equation onto the terms quadratic in the
auxiliary field. As we consider only a field-independent

wave function renormalization, we can also project onto
φ = 0

∂kZ
2 = −W ′′′

k (φ)2Z2
k

∫

d2p

4π2
(1 + r2)×

[

2Z2
k

(

W ′′
k (φ) + r1Z

2
k

)

(1 + r2)

∆3
∂k(r1Z

2
k) (A5)

+
Z4

kp
2(1 + r2)

2 −
(

W ′′
k (φ) + r1Z

2
k

)2

∆3
∂k(r2Z

2
k)

]

φ=0

.

As regulator shape functions, we choose r1 = 0 and r2 =
(k2/p2−1)θ(1−p2/k2) for which the momentum integrals
in the flow equations can be calculated analytically. We
obtain

∂kWk =− W ′′
k

2∂k(k2Z2
k) + k4Z4

k∂kZ
2
k

8πW ′′
k

3 ln

(

1 +
W ′′

k
2

k2Z4
k

)

,

+
k2∂kZ

2
k

8πW ′′
k

(A6)

∂kZ
2
k =

k

4π

(

ZkW
′′′
k

W ′′
k

2

)2 [

W ′′
k

2
k∂kZ

2
k

W ′′
k

2 + k2Z4
k

(A7)

−k∂kZ
2
k ln

(

1 +
W ′′

k
2

k2Z4
k

)

− 2W ′′
k

4
Z2

k

(W ′′
k

2 + k2Z4
k)2

]

φ=0

.

For the renormalized fields, χ = Zkφ, the superpo-
tential scales as Wk(χ) = Wk(φ) and W

′
k = W ′

k/Zk,
W ′′

k = W ′′
k /Z

2
k , . . . In terms of the anomalous dimension

η = −∂tZ
2
k/Z

2
k , the preceding flow equations read

k∂kWk(χ) =
η

2
χW

′
k −

η k2

8πW ′′
k

(A8)

+
(η − 2)k2W ′′

k
2 + ηk4

8πW ′′
k

3 ln

(

1 +
W ′′

k
2

k2

)

,

η =
k2

4π

(

W
′′′

k

W ′′
k

2

)2 [

ηW ′′
k

2

W ′′
k

2 + k2
(A9)

−η ln

(

1 +
W ′′

k
2

k2

)

+
2W ′′

k
4

(W ′′
k

2 + k2)2

]

φ=0

.

In terms of the dimensionless superpotential w(χ) =
W (χ)/k, this reads

∂twk(χ) =
η

2
χw

′
k −wk −

η

8πw
′′
k

+
(η − 2)w′′

k
2
+ η

8πw
′′
k
3 ln

(

1 + w
′′
k
2
)

, (A10)

η =
1

4π

(

w
′′′
k

w
′′
k
2

)2 [

ηw′′
k
2

w
′′
k
2 + 1

−η ln
(

1 + w
′′
k
2
)

+
2w

′′
k
4

(w′′
k
2 + 1)2

]

φ=0

, (A11)

which agrees with Eqs. (52) and (53).
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1. Polynomial approximation

Next, we perform a polynomial expansion of the super-
potential flow Eq. (A10) including wave function renor-
malization. We use the conventions w

′
t(χ) = λt(χ

2 −
a2

t ) +
∑N

n=1 b2n,tχ
2n, leading to the following system of

coupled equations:

ηt =
(4− ηt)λ

2
t

2π
(A12)

∂ta
2
t =

1

8π
(4 − ηt)− ηta

2
t

− a2
t

λt

(

3
(

λ3
t − b4,t

)

π
−
(

2λ3
t − 3b4,t

)

ηt

4π

)

∂tλt =− λt +
3
(

λ3
t − b4,t

)

π
−
(

2λ3
t − 3b4,t

)

ηt

4π
+

3

2
ηtλt

∂tb4,t =− b4,t −
5(8− ηt)λ

5
t − 15b4,t(6− ηt)λ

2
t

3π
(A13)

− 45b6,t(4− ηt)

24π
+

5

2
ηtb4,t

∂tb6,t =− b6,t −
7b8,t(4− ηt)

2π
− 70b4,t(8− ηt)λ

4
t

3π

+
28(10− ηt)λ

7
t

5π
+

7(3b6,tλ
2
t + 4b24,tλt)(6− ηt)

2π

+
7

2
ηtb6,t

...

Again, the first-order coupling at does not influence the
higher-order flows. Setting the left-hand side to zero,
we find a nonlinear system of algebraic equations for the
fixed-point couplings. The solutions determine the coeffi-
cients of the fixed-point superpotential in the polynomial
expansion.

For a truncation at 2nth order, we again find 2n + 1
real fixed points. As proved in the main text, each fixed
point has at least one relevant direction which is provided
by the a2

t direction. The maximally IR-stable fixed point
has only this relevant (IR-unstable) direction. The other
fixed points can be classified according to their increasing
number of further relevant directions. The Gaußian fixed
point remains fully UV attractive also at this order of the
derivative expansion.

Appendix B: Regulator dependence

In this appendix, we repeat several studies of the
local-potential approximation as done in the main text
but now for a different regulator shape function r2 =
(k2/p2−1)θ(p2/k2−1). This is actually equivalent to the
regulator used for at next-to-leading order in the main
text. On the one hand, this regulator comparison gives a
rough estimate of how nonuniversal quantities may vary.

coefficients at IR-fixed point

2n λ∗ b∗4 b∗6 b∗8 b∗10 b∗12 b∗14
2 1.023

4 1.405 1.301

6 1.540 2.040 3.097

8 1.593 2.374 4.868 8.651

10 1.615 2.523 5.725 13.38 26.00

12 1.625 2.590 6.124 15.70 39.55 81.19

14 1.629 2.620 6.308 16.79 46.11 121.8 259.4

TABLE VI: Coefficients of the first few couplings in a polyno-
mial expansion of the fixed-point superpotential at the max-
imally IR stable fixed-point for different truncations. The
expected nonuniversal deviations from Tab. I are due to the
use of a different regulator.

On the other hand, it supports all structural results of
the main text, which should in any case be universal.

The flow equation for the superpotential (36) now
takes the form

∂kWk(φ) =
k

4πW ′′
k (φ)

ln

(

k2

k2 +W ′′
k (φ)2

)

. (B1)

In terms of the dimensionless quantity kwt = Wk, this
reads

∂twt(φ) + wt(φ) = − ln
(

1 + w′′
t (φ)2

)

4πw′′
t (φ)

. (B2)

This equation is regular at w′′ = 0 since ln(1 + x) =

x − x2

2 + x3

3 ∓ . . . for small x. The second derivative of
this equation at the fixed point ∂tw∗ = 0 is given by
(u = w′′

∗ )

u′′ =
4πu3

(

u2 + 1
)

(u2 + 1) ln (u2 + 1)− 2u2
(B3)

+
2u
(

u2 − 1
)

u′2

(u2 + 1) (2u2 − ln (u2 + 1) (u2 + 1))
+

2u′2

u
,

which agrees with Eq. (60) in the limit η = 0. It has the
same singularity structure as the corresponding Eq. (48)
for the simpler regulator used in the main text. The
fourth derivative becomes singular if

u2 =
1

2
(u2 + 1) ln(u2 + 1) ⇒ u ≃ 1.9803, (B4)

(to be compared with the singular point u = 1 for the
simpler regulator). Overall, we find the same types of
solutions as discussed in section VI. In particular, we
again find oscillatory solutions and a maximally IR-stable
fixed point with one relevant direction.

A polynomial expansion of Eq. (B3) with u = 2λ2
tφ +

∑N
n=2 2n · b2n,tφ

2n−1 yields a system of algebraic equa-
tions that determine the expansion coefficients of the
fixed-point potential. This system is given by Eq. (A13)
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FIG. 10: Left panel: fixed-point superpotentials calculated from Eq. (B3) with λ = 1.6295 for the maximally IR-stable fixed-
point and λ = 1.0411 for an IR-unstable fixed-point. Right panel: Comparison between the critical bare values for (λa2)t=0

characterizing the phase transition calculated with the regulators r2 = (k/p− 1)θ(p2/k2
− 1) and r2 = (k2/p2

− 1)θ(p2/k2
− 1).

The difference is attributed to a strong scheme dependence of this nonuniversal quantity.

λ∗ Critical exponents θI

±1.6315 −1.31 −7.10 −19.3 −42.7 −84.8 −158 −285 −522

±1.4399 5.43 −1.49 −10.1 −28.2 −61.8 −122 −227 −426

±1.1463 19.5 4.07 −1.51 −11.8 −33.9 −75.7 −152 −298

±.81753 28.1 12.4 3.23 −1.39 −12.5 −37.3 −85.7 −182

±.49584 20.4 + 3.09i 20.4 − 3.09i 8.06 2.54 −1.16 −12.5 −38.9 −95.0

±.22322 11.9 + 8.85i 11.9 − 8.85i 8.69 5.07 1.96 −0.859 −12.0 −39.8

±.04903 4.27 + 1.14i 4.27 − 1.14i 2.91 + 6.63i 2.91 − 6.63i 2.84 1.47 −0.547 −11.1

±0.00042 1.57 + 0.125i 1.57 − 0.125i 1.43 + 0.70i 1.43 − 0.703i 1.14 0.542 + 0.982i 0.542 − 0.982i −0.222

0 1 1 1 1 1 1 1 1

TABLE VII: Critical exponents θI (negative eigenvalues of the stability matrix) for a polynomial truncation at 2n = 16 for the
nine different fix points in the local-potential approximation. The first exponent θ0 = 1 which is common to all fixed points
is not shown here. This table should be compared with Tab. II which has been computed with a different regulator. For all
positive critical exponents, we find a remarkable degree of universality, as these exponents for the different regulators differ if
at all by at most 10%. The subleading negative critical exponents show larger variations.

without the equation for a2, with η = 0 and the deriva-
tives with respect to t set equal to zero.

The results for the fixed-point couplings for the maxi-
mally IR-stable fixed-point are displayed in Tab. VI for
different truncations. A comparison with Tab. I reveals
the regulator-dependent variations of these nonuniversal
quantities.

We find that the coupling λ∗ converges quickly. Again,
the polynomial expansion provides a good approximation
to the solution of the partial differential equation for the
first half period. This is displayed in Fig. 10, left panel.

By contrast, the universal critical exponents θI at the
fixed points are much less regulator dependent. This is
demonstrated in Tab. VII which should be read side by
side with Tab. II for a different regulator. For all positive

critical exponents, we find a remarkable degree of uni-
versality, as these exponents for the different regulators
differ – if at all – by at most 10%. The subleading neg-
ative critical exponents show larger variations and thus
require higher orders in the derivative expansion for a
quantitatively reliable prediction.

We also calculate the phase diagram with this regula-
tor for a truncation at 2n = 10 and compare both reg-
ulators r2 = (k/ |p| − 1)θ(p2/k2 − 1) and r2 = (k2/p2 −
1)θ(p2/k2 − 1) in Fig. 10, right panel. The nonuniversal
values for λa at the phase transition differ roughly by
a factor of two. This clearly demonstrates that a naive
comparison of bare couplings is substantially inflicted by
the regularization scheme.
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