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AbstratThe WZNW theories (for a non-ompat form of the gauge groups) areredued to a series of integrable theories that interpolate between WZNWtheories and the orresponding Toda theories. They desribe a set of WZNW�elds in interation with eah other and with a two-dimensional gravitational�eld. An algorithm for onstruting the general solutions, and a formula thatrelates the Virasoro and Ka-Moody entres of the redued theories is given,together with a (onformally non-invariant) extension of the redution to obtainaÆne Toda theories.* permanent address: Dublin Institute for Advaned Studies, 10 BurlingtonRoad, Dublin 4, Ireland 1



In some previous reports it was shown that Toda �eld theories ould be regardedas linearly onstrained Wess-Zumino-Novikov-Witten (WZNW) theories, andthat, by regarding them in this way, one ould obtain a simple derivationof the general solutions of the Toda �eld equations [1℄ and a simple intuitivetreatment of the assoiatedW-algebras [2℄. In the present note we wish to showthat the WZNW -Toda redution generalizes naturally to produe a series ofonformally invariant integrable theories whih interpolate between the WZNWand Toda theories. These theories ontain WZNW �elds belonging to reduibleWZNW groups, with the irreduible piees in nearest neighbour interation,thus providing a natural generalization of Toda theories. A remarkable featureof the theories is the emergene of a �eld whih plays the role of the two-dimensional gravitational density p�g. Further features are the ease with whihthe general solutions of the �eld equations in these theories an be obtainedfrom the well-known WZNW solution, and the formula for the entres of theVirasoro algebra in terms of the WZNW entre k, whih is exatly the sameas in the Toda ase, but with the redution parameter re-identi�ed. A �nalfeature is that the redution proedure an be extended to obtain also the(non-onformally invariant) aÆne Toda theories.We begin by realling the standard WZNW theory with LagrangianSW = k2 Z d2x ���(g�1��g)(g�1��g)� 2k3 Z (g�1dg)3 ; g 2 G; (1)where G is a semi-simple Lie group and the boundary of the 3-dimensional(topologial) integral is just the 2-spae of the kineti term [3℄. The �eldequations for this Lagrangian are��J(x) = �+ ~J(x) = 0; (2a)where J(x) = �+g(x)g�1(x) and ~J(x) = g�1(x)��g(x); (2b)x� being 12 (x0�x1) or 12 (x0�ix1), aording to whether the spae is Minkowskianor Eulidean. These equations show that J(x) and ~J(x) are funtions of x+ andx� only, and the general solution for g(x) is g(x)= g(x+) ~g(x�), where g and ~gare arbitrary elements of G. Beause the urrent omponents Ja = tr (�aJ),and similiarly for ~J , where �a are the generators of G, are the Noether urrentsfor the invariane of SW with respet to g ! hg; gh, where h2G; h onstant,they satisfy Ka-Moody (KM) algebras of the form[Ja(x+); Jb(y+)℄ = �fab J(x+) + kgab=�x+�Æ(x+ � y+): (3)2



Furthermore, beause the ation (1) is onformally invariant the energy-momentumdensity is traeless and the T++ � T and T�� � ~T omponents are funtion ofx+ and x� only, and satisfy Virasoro algebras of the form[T (x+); T (y+)℄ = �2T (x+) + T 0(x+)�x+ + 12�3x+� Æ(x+�y+); (4)where  is a entral term (that in general depends on the KM entre k). Ifone hooses for T (x) the standard Sommer�eld-Sugawara generators, whihare normal-ordered bilinears in the urrents in highest weight representations,one has [T (x+); Ja(y+)℄ = Ja(x+) Æ0(x+�y+); (5)whih shows that the urrents are tensors (primary �elds) of onformal weightunity with respet to the onformal group generated by these T (x+) [4℄.Our redution will require us to set some of the urrent-omponents equalto (non-zero) onstants, but as they are vetors with respet to T this annotbe done without violating the onformal invariane generated by T (x+) and~T (x�) (just as, in QFT, the vauum expetation value of a tensor of non-zerorank annot be set equal to a non-zero onstant without violating Lorentz in-variane). Hene our proedure will be to modify the energy-momentum tensordensities so that at least some of the urrents beome onformal salars. Themodi�ation is as follows: First we hoose as gauge-group G the (maximallynon-ompat) real Lie group whih is generated by the real linear span of theCartan basis fHi; E�g of the Lie algebra. Letting ~�j denote the l (=rank) simpleroots of G and ~mi their duals, i.e. the l fundamental oweights, satisfying(~mi; ~�j) = Æij : (6)Then hoose a vetor ~Æ in root spae whih is a sum of any subset of the ~mi,i.e. hoose ~Æ =Xa ~ma; f~mag � f~mig; (7)(e.g. ~Æ = (1; 1; 0; 1; 0); (1; 0; 0; 1; 1) et. in a oweight bases for l=5) and use ~Æto de�ne a privileged element H = ÆiHi of the Cartan algebra. Beause (~Æ; ~�j)is zero or unity, the element H has the property that for the simple root-vetors[H;E�a℄ = E�a and [H;E�j ℄ = 0; �j 6= �a; (8)3



and sine all the roots E� of G are obtained by ommutation from the E�j andE��j , we see that H provides a natural integer grading of the Lie algebra,[H;Eh�℄ = h�Eh�; (9)where h� = (~Æ; ~�) 2 Z and h� � 0 for positive roots and h� � 0 for negativeroots. In partiular the little algebra of H (whih inludes at least the Cartansubalgebra of G) has zero grade. We shall denote by B the little group ofG generated by this little algebra. The set of all possible little groups B isharaterized by the fat that their ompat forms B are just the little groupsin the adjoint representation of the ompat form G of G. (This an be seenby noting that in the ompat form of G every element of the Lie algebraan be onjugated into the Cartan, where its little group is determined by thenumber of zeros in its oweight basis). Letting fJ i(x+); J�(x+)g denote theKM-urrent omponents in the Cartan basis, the required modi�ation of theenergy momentum tensor may be written asT (x+)! L(x+) = T (x+)� J 0H(x+); where JH(x+) = tr�J(x+)H� ; (10)that is where JH(x+) is the urrent omponent in the diretion H (and a similarmodi�ation for ~T but with plus ~J 0H(x�)). The subtration of J 0H from T hasno e�et on the urrents belonging to the little group B of G (exept for JHitself) sine JH ommutes with all these urrents, but it has a two-fold e�eton the remaining urrents. First, the transformation law for JH itself beomesfL(x+); JH(y+)g = JH(x+) Æ0 � ktrH2 Æ00; (11)where k is the KM entre. This equation shows that JH no longer transformslinearly, and hene not as a onformal tenor but transforms as a spin-oneonnetion. The seond e�et of the modi�ation (10) is to hange the trans-formation law (5) for the urrents J� tofL(x+); J�(y+)g = (1 + h�)J�(x+) Æ0 + h�(J�)0(x+) Æ (12)whih shows that they transform as tensors of onformal spin (1+h�; 0) insteadof (1; 0). In partiular the urrent omponents J��1 (we use the same notationas earlier, i.e. the subsript denotes the grade of the root �) transform asonformal salars. Similarly for the ~J�1 .4



Sine the urrents J��1 and ~J�1 are onformal salars they an be madeonstant without violating onformal invariane, and our main onstraints willin fat be J��1(x+) = �� and ~J�1 (x�) = ��; (13)where ��; �� are non-zero onstants. However, sine all the negative andpositive urrents J��p and ~J�p , p=1; 2; :: an be generated by ommutation fromJ��1 and ~J�1 (and the urrents of the little group B) respetively, we annotimpose (13) onsistently unless we also impose the onstraintsJ��p(x+) = 0 and ~J�p (x�) = 0; p = 2; 3; ::: : (14)Eqns. (14,15) represent our full set of onstraints on the KM urrents of theWZNW theory and may be summarized asJneg(x+) = M and ~Jpos(x�) = ~M; (15)where M and ~M are onstant matries of grade �1 and 1 respetively, that is[H;M ℄ =�M and [H; ~M ℄ = ~M . They are �rst-lass onstraints, and from (15)are seen to be just speial solutions of (some of) the WZNW �eld equations.To obtain a more intuitive piture of their meaning let us onsider for examplethe ase G = SL(9; R) and ~Æ = (0; 0; 0; 1; 0; 1; 0; 0), so that the little group Bis S�GL(4; R) � GL(2; R) � GL(3; R)�. Then the onstrained urrents are asshown in Fig. 1. Finally we note that, like all �rst lass onstraints, theonstraints (15) generate a system of gauge transformations, and that these arejust the KM transformations orresponding to the (dimG�dimB)=2 -dimensionalnilpotent subgroups of G generated by the root-vetors E� and E�� ((~Æ; ~�) > 0),respetively. The gauge freedom an be used to gauge (dimG�dimB)=2 of theremaining urrents to zero. This leaves only dimB 'true' urrents, and the gaugean be hosen so that these are the urrents jb = �+b b�1 and ~jb = b�1��b, b 2 B,of the little group B.We now wish to show that the onstraints (15) redue the WZNW theoryfor G to a theory whih ontains two-dimensional gravity and a set of WZNW�elds belonging to the subgroup B interating with eah other and the grav-itational �eld. To show this we �rst note that the WZNW group G admits aloal Gauss deompositionG = ABC; ; g = ab g 2 G; a 2 A; et.; (16)5



where B is the little group and A and C are the nilpotent subgroups disussedabove. (Although the deomposition is only loal, the whole group an beovered by a �nite number of pathes with the deomposition (16) multipliedby a onstant matrix in eah path). We then show that the partial onstraints(15) for the full KM urrents J and ~J are equivalent to the full onstraintsj(x) = b�1(x)M b(x) and ~ja(x) = b(x) ~M b�1(x) (17)for the partial urrents j and ~ja belonging to the subgroups C and A respe-tively. Note that ontrary to the full urrents J and and ~J the partial urrentsare not hiral sine the group elements a; b and  in the Gauss deomposi-tion (16) are not hiral. To establish the equivalene of (15) and (17) let usonsider J and j for example. In an obvious notation we have, for g = abJ = �+gg�1 = (ab+ + ab++ a+b)�1b�1a�1= abjb�1a�1 + ajba�1 + ja: (18)Sine the last two terms in (18) are non-negative by the de�nition of A;B andC, we then have Jneg = (abjb�1a�1)neg; (19)and thus the ondition for J in (15) may be written as(abjb�1a�1)neg = M: (20)Sine M is already negative, (20) an be written as(abjb�1a�1 �M) = Q where Q � 0; (21)or, by onjugating with a, asbjb�1 �M = (a�1Ma�M) + a�1Qa: (22)But sine (a�1) and (a�1�1) are stritly positive and M has grade minus one,both expressions on the right of (22) are non-negative. On the other hand, theexpression on the left of (22) is stritly negative by de�nition. Hene eah sideof (22) must be zero separately. Thus, the ondition (15) for J(x+) implies(17) for j(x). Conversely, it is easy to hek from (18) that (17) for j(x)implies (15) for J(x+). This result, together with the orresponging result for~J and ~ja, establishes the required equivalene of (15) and (17).6



Let us now deompose the WZNW �eld equations with respet to theGauss deomposition g = ab. After some straightforward algebra one obtainsa�1 ��J a = ��jb � [bjb�1; ~ja℄ + ��(bjb�1) + b f�+(b�1~jab)g b�1 = 0; (23)and similiarly for ~J . If we now impose the onstraints in the form (17) the lasttwo terms in (23) vanish beause M; ~M are onstant, and we obtain��jb = [M; b ~Mb�1℄ and �+~jb = [b�1Mb; ~M ℄; (24)where one set of �eld equations follow from the other by onjugation with b.The eqs. (24) are the required �eld equations for the �elds b of the little groupB. Note that they do not involve the �elds a;  of the subgroups A and C ofG, and thus are self-ontained. They an be derived from the e�etive ationSeff [b℄ = SW [b℄� Z d2x tr (Mb ~Mb�1): (25)This ation shows that the b-�elds are just a set of WZNW �elds belonging tothe (reduible) WZNW group B, with a (non-derivative) oupling between thenearest-neighbour irreduible bloks, whih are linked by the non-zero grade� onstant matries M; ~M (see Fig. 1). In fat the ation (25) is the naturalgeneralization of the Toda ation for abelian �elds to the ase of non-abelianWZNW �elds, and in the speial ase when B is abelian (i.e. is the Cartansubgroup of G) all simple roots have weight one and we havetr (Mb ~Mb�1) =Xi;j �i�j tr(E��ie�pHpE�je��qHq) = Xsimple � 2(�; �)~�2 e(~�;~�); (26)so (25) redues to the usual Toda ation [5℄. Thus in general the onstraintsredue the standard WZNW theory for the irreduible group G to an interatingWZNW theory for the reduible little group B.We next wish to show that the Lagrangian (25) ontains also a two-dimensional gravitational �eld, and that, with respet to this �eld it is notonly onformally, but general oordinate invariant. To show this we note thatsine, by de�nition, the group GL(1) generated by the privileged element H isin the entre of the little group B, the little group B may be written (loally)as a diret produt B = GL(1)� B̂. Hene if we write the b-�elds in the formb(x) = b̂(x) exp(�(x)H) the ation (25) may be written asSeff (b̂; h) = SW (b̂) + trH22 Z d2x �+����� Z d2x e�(x)tr(Mb̂ ~Mb̂�1); (27)7



where the fator exp(�(x)) appears in the last integral beause the M; ~M haveH-grade �1. We then reall that the urrent omponents of jb orthogonal to Hhave onformal weights one and that ��� transforms as a spin one onnetion.It follows that b̂ is a onformal salar and exp(�) has onformal weights (1; 1).On aount of this it is permissible, indeed quite natural, to introdue a urved2-manifold with metri tensor g�� de�ned asg��(x) = e�(x) ��� ; (28)where ��� is the 2-dimensional Minkowskian (or Eulidean) metri. Then theation (27) may be written in the formSeff (b̂; g��) = Z d2xp�gn12trH2 Rr�2R� tr�Mb̂ ~Mb̂�1�o+ SW (b̂; g�� ; ) (29)where of ourse SW (b̂; g��)means that in the kineti term of SW (b̂), the Minkowskian����� : �� : is replaed by p�gg���� :�� : . If it is understood that the onformalsalarity of b̂ is extended to salarity with respet to general oordinate trans-formations then the general oordinate invariane of Seff in the form (29) ismanifest. One sees, therefore, that the redution provides us not only with aonformally invariant self-interating WZNW theory, but with a uni�ed theoryof WZNW theory and (2-dimensional) gravity.Note that, in the form (29), the energy momentum tensor T�� de�ned as1=p�g � ÆS=Æg�� is automatially traeless due to the �eld equation for exp(�) =p�g, ÆSÆp�g = ÆSÆg�� Æg��Æp�g = �g�� T�� = 0; (30)and it is easy to verify that the Virasoro densities L = T��+JH and ~L = ~T+�� ~JHintrodued earlier in order to redue the WZNW theory oinide exatly withthe T++ and T�� omponents of this energy-momentum tensor T�� . Note alsothat one exp(�(x)) is identi�ed as p�g it de�nes a ovariant derivative (e.g.on vetors r� = �� + ��) with Christo�el symbols �� = ���, and that theexistene of this ovariant derivative explains why the H-omponents of theurrents loose their tensorial (primary �eld) harater under redution. Thepoint is that the urrents r+b b�1 and b�1r�b formed with r� are tensors,whereas the atual urrents �+b b�1 and b�1��b are not, but sinejb = �+b b�1 = r+b b�1 �H�+; (31)8



and similiarly for ~jb, the non-ovariant piees our only for the H-omponentsof the urrents.We now turn to the general solution of the �eld equation (24). Sine theonstraints satisfy the �eld equations (indeed are speial solutions to some ofthem) the general solution must be of the usual WZNW form [3℄g(x) = g(x+)~g(x�): (32)The only new feature is that g(x+) and ~g(x�) are no longer ompletely freebut are subjet to the onstraints on the urrents. To see the e�et of theonstraints, we ignore them for the moment and make a Gauss deompostionof all the g's in (32) to obtaina(x)b(x)(x) = a(x+)b(x+)(x+) � ~a(x�)~b(x�)~(x�): (33)From (33) one sees that the B-omponent b(x) of g(x) is the the B-omponentin the Gauss-deomposition of b(x+)(x+) � ~a(x�)~b(x�). Furthermore, if(x+) � ~a(x�) = �(x)�(x)(x) (34)is the Gauss deomposition of ~a alone, then the required Gauss-deompositionof b~a~b is [b(x+)�(x)b�1(x+)℄ [b(x+)�(x)~b(x�)℄ [~b�1(x�)(x)~b(x�)℄; (35)and so the required b(x) omponent of g(x) isb(x) = b(x+)�(x)~b(x�): (36)Let us now impose the onstraints, whih from (17) are just�+ �1 = b�1Mb and ~a�1��~a = ~b ~M~b�1; (37)and thus determine (x+) and ~a(x�) in terms of b(x+) and ~b(x�) respetively (upto onstant matries whih an be absorbed in b;~b). Sine the matrix �(x) isdetermined uniquely by (x+) and ~a(x�) from (34) we then see that the role ofthe onstraints is to determine the matrix �(x) in terms of the matries b(x+)and ~b(x�). Thus, the general solution of the �eld equation for the reduedsystem is (36), where b(x+) and ~b(x�) are arbitrary and �(x) is determined in9



terms of b(x+) and ~b(x�) by (34) and (37). Eq. (36) should be ompared tothe non-interating WZNW solution for b(x) whih is (36) with �=1.From the above disussion we see that the algorithm for onstruting thegeneral solution is to take arbitrary matries b(x+); ~b(x�), solve (37) for (x+)and ~a(x�), and determine �(x) (algebraially) from (34). It might be thoughtthat this proedure only shifts the problem to solving another set of di�erentialequations, namely (37), but beause of the nilpoteny of the groups A and C,these an be solved by suessive integration of already known quantities. Infat, if (x+) is deomposed into its H-omponents h(x+) the solution is givenby the �nite series(x+) = 1 +Xh h(x+) where h+1 = x+Z0 dy b�1(y)M b(y)h(y) (38)and similiarly for ~a(x�). To illustrate the algorithm in more detail let us onsiderthe 'Liouville' analogue in whih the little group B has only two irreduiblebloks, for de�niteness G = SL(n;R) and B = S�GL(p;R)
GL(q; R)� for p+q=n.ThenH = � pn1q 00 � qn1p � b(x) = � b1(x) 00 b2(x)� M = � 0 0m 0� ~M = � 0 ~m0 0 � ;(39)and the Gauss deomposition (34) is(x+)~a(x�) = � 1 0l(x+) 1�� 1 ~r(x�)0 1 �= � 1 u(x)0 1 �� (�y)�1 00 �(x)�� 1 0v(x) 1� ; (40)where �(x) = 1+ l(x+)~r(x�) and (u; v) = (~r��1;��1l). Thus � =diag((�y)�1;�)and the solutions for the bloks in b(x) areb1(x) = b1(x+) 1�y(x)) ~b1(x�) and b2(x) = b2(x+)�(x)~b2(x�): (41)It remains therefore only to ompute l(x+) and r(x�) from the �nite series (38).It is easy to see that the series terminates after one step and thusl(x+) = x+Z0 dy b�12 (y)mb1(y) and r(x�) = x�Z0 dy ~b1(y) ~m~b�12 (y): (42)10



Aordingly, (41) and (42), where �(x) = 1+ l(x+)r(x�) is the general solutionfor the two-blok ase. Note that the solution (41) for b1(x) generalizes thegeneral solution b21(x) = �+l(x+) [1 + l(x+)~r(x�)℄�2 ��~r(x�) (43)of the Liouville equation, and redues to it for G = SL(2; R). Note also thatwhen p=q the two-blok system admits the reexion symmetryb1  ! (by2)�1 ; ~M  ! (My)�1 (44)and that if one identi�es b1 with (bt2)�1 one obtains a simple WZNW �eld inself-interation (or, more preisely a WZNW �eld ~b in interation with itselfand with the gravitational Liouville �eld exp(�)).As a �rst step toward quantization of the redued theories we ompute theirVirasoro entres in terms of the KM entres k, assuming only that quantizationrequires the use of highest-weight (Fok-spae) representations. There aretwo main ontributions. First, there is the diret ontribution of the modi�edenergy-momentum tensor L(x+), namely,L = dimG1 + g=k � 12ktrH2; (45)where g is the dual Coxeter number of the group G, the �rst term is the wellknown entre of the Sommer�eld-Sugawara energy-momentum tensor [4℄, andthe seond term omes from the J 0H(x+)-modi�ation. Seond there is theontribution from the BRST ghost-pairs due to the onstraints (15) or (17)and the orresponding gauge-�xing onstraints. As is well known the ghost-ontribution takes the formgh = �2Xj>0 [1 + 6j(j � 1)℄; (46)where j is the onformal weight of the ghosts [6℄. But sine these are just theweights of the orresponding onstrained urrents, (46) may be written asgh = �(dimG� dimB)� 6 tr(adjH)2 + 12X�>0(~�; ~Æ)= dimB � dimG� 12 trH2 + 24(~�; ~Æ); (47)11



where ~� is half the sum of the positive roots. Adding (47) and (45), and usingthe Freudenthal-deVries formula g dimG = 12~� 2, we obtain �nally = L + gh = dimB � 12 ~� 2k + g � 12(g + k)trH2 + 24(~�; ~Æ)= dimB � 12� ~�pk + g �pk + g ~Æ�2: (48)This generalizes the formula obtained previously for the Toda theory [2℄, andredues to it for B=Cartan (dimB = l) and ~Æ=sum of all the fundamentaloweights=half the sum of the positive oroots. Note that for the simply-laed Toda ase the formula redues to  = l�12~� 2(��1=�)2, where �2 = k+g,whih is reminisent of the general formulae for deenerate onformal �eldtheories. But the formula (48) was obtained only under the assumption thatthe representations were highest weight, and, until some other onditions suhas unitarity or rationality are added, the value of (k + g) is unknown. It ouldeven be negative, in whih ase the two negative signs in (48) would be replaedby positive one, a result that has been obtained using a ompletely di�erentquantization proedure in ref. [7℄.Finally, we onsider the possibility of generalizing the redution proesseven further. For this we note that the redution of the WZNW �eld equationsin (23) is atually valid for the deomposition g = ab of g 2 G into any threea; b and  and for any hoie of onstant matries M ~M , not merely when B is alittle group, A;C are nilpotent, and M; ~M have grade �1. The only di�erene isthat, in the general ase, the redution is not neessarily onformally invariant,there is no analogue of the gravitational �eld exp(�(x)), and the onstraintsj = b�1Mb and ~ja = b ~Mb�1; (49)are not, in general, expressible as linear onstraints for the full WZNW urrentsJ(x+) and ~J(x�).For example, if we hoose B as in the usual Toda theory, but hoose thematries M; ~M in (49) asM = X� simple��E�� + �E and ~M = X� simple ��E� + �E� ; (50)where ~ is the highest root, then the �eld equations for the �elds �� belongingto the diagonal subgroup B (b=exp(��H�)) are, from (24),r2~� = � Xsimple� ~�e (~�;~�) + ~e�(~;~�); where ~� =X 2~�~� 2 ��; (51)12



and we have set 2����=~� 2 and 2��=~ 2. These are just the (non-onformally-invariant) equations of aÆne Toda �eld theory [8℄. In partiular for G = SL(2; R)we have r2� = � sinh�; where � = �=p2; (52)whih is just the sinh-Gordon equation.Aknowledgements:We are grateful to J. Balog, L. Dabrowski, L. Feher, P. Forgas, S. Lukyanov,A. Morozow, M. Olshanetsky and L. Palla for disussions and helpful ritiismduring the ourse of this work.
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Figure aption:Fig. 1: The speial element H of the Cartan subgroup, the onstant Matrix Mof H-grade �1, the little group B and the ontrained urrent J for the groupSL(9; R) and ~Æ=(0; 0; 0; 1; 0; 1; 0; 0).
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