Chapter 6

Functional Schrodinger
Equation for Fermions in
External Gauge Fields

In some applications the language of wave functionals and the functional
Schrédinger equation has provided valuable insights (See, e. g., [1] and
[2] for a review). One big advantage of the Schrodinger picture is that
the intuitive picture of evolving wave functions, so successful in quantum
mechanics, can be extended to problems in field theory. It is of course
still an open problem whether the existence of the Schrodinger picture can
be proved rigorously. At least in the case of renormalizable scalar field
theories it has been demonstrated that a functional Schrodinger equation
with respect to a global time parameter exists at each order of perturbation
theory [3]. For arbitrary local time variations an explicit calculation has
verified the validity of the Schrodinger equation up to two loops [4].

An important field of application is quantum gravity. Since quantum
general relativity is non-renormalizable at the perturbative level, one has
to develop non-perturbative methods, provided the theory is viable at all.
There have been remarkable developments in canonical quantum gravity in
recent years which have so far culminated in the discovery, by using the
functional Schrédinger picture, of exact formal solutions to all constraint
equations [5]. The use of wave functionals has also been useful in perform-
ing semi classical approximations, for example in the derivation of formal
correction terms to the Schrédinger equation from quantum gravity [6]. It
may thus turn out to be very useful for later applications to explore the
potentialities of the functional Schrodinger picture in ordinary field theory.
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In this chapter couple fermionic matter to gauge fields. Apart from the
last paragraph we limit ourselves to the case where the gauge field can be
treated semi classically, i.e. we discuss the functional Schrodinger equation
for the fermionic wave functional in a prescribed external gauge field. Most
of our work deals with QFD but we also give some results for the non-
Abelian case.

We start by giving a brief review of the functional Schrodinger equation
for fermions following, with elaborations, the work of Floreanini and Jackiw
[8]. Gaussian states are used as generalized vacuum states, but contrary
to the bosonic case one has to fix a filling prescription for the Dirac sea
to select a particular vacuum. Section 6.1.3 is concerned with the time-
dependent Schrodinger equation. We give its formal solution for arbitrary
external fields in terms of solutions of the (first-quantized) Dirac equation.

We then proceed to calculate the exact ground state for arbitrary ex-
ternal fields in two dimensional QFED in both the massless and the massive
case (section 6.2). We give explicit expressions for the expectation values
of the Hamiltonian, the electric charge, and the axial charge with respect
to this ground state. Regularization is performed through gauge-invariant
point splitting. All results are given for the case of finite as well as infinite
space intervals. The finite case allows a careful discussion of the dependence
of the Casimir energy on the chosen boundary conditions.

The extension to non-Abelian fields in two dimensions is straightforward
and is worked out in section 6.3. We give the exact ground state as well as
the expectations values for the Hamiltonian, the electric and axial charges.

In section 6.4 then proceed to discuss applications of the time - depen-
dent Schrodinger equation. The particle creation rate for constant external
electric fields is calculated in this framework and the classical result found
by Schwinger is recovered (section 6.4.1). In the massless case in two di-
mensions we calculate the anomalous particle production rate for arbitrary
external fields. Its interpretation in the functional language is very trans-
parent — the anomalous production rate is basically due to the dependence
of the filling prescription on the external field (section 6.4.2).

Finally we go beyond the external field approximation and discuss briefly
some subtleties connected with the interpretation of Gauss law. We show
that, except for the case when anomalies violating gauge invariance are
present, the interpretation of the Gauss constraint as a generator of gauge
transformation can be rescued even if it does no longer annihilate gauge
invariant states. We also present a brief outlook on possible future work.
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6.1 Functional Schrodinger equation for fermions

6.1.1 Commutation relations and inner product

In this section we give a brief review of the canonical formalism for QE D and
the functional Schrodinger picture. Unless otherwise stated, the dimension
D of spacetime is left arbitrary. The Lagrangian density is given by

1 P
L= _ZF’WFM + i (Dyy* —m)ip, (6.1)

where
D, =0, +ieA,

is the covariant derivative associated with the electromagnetic potential A,,.
The canonical momenta read

m =0, m =Fyp=FE, m, =iyl (6.2)

so that the total Hamiltonian is given by
H = /d:z: §E +ZF 1F;j -l—/dﬂndyz/; (x)h(z,y)(y)
+ / dzA® (el — VE), (6.3)

where 9
h(z,y) = —ivoviﬁé(:v —y) + 7 (m + ev' 4;)0(z — ) (6.4)

plays the role of a first quantized Dirac Hamiltonian in an external electro-
magnetic field. We will denote with h( the first quantized Hamiltonian
without external field. We note that x and y is a shorthand notation for a
vector in (D —1) dimensional space, and the metric convention for spacetime
is diag(1, —1 — 1,...). Variation of (6.3) with respect to A° yields the Gauss
constraint

VE = eyl (6.5)

In the following we use the gauge condition A° = 0. The commutation
relations read .
[Ai(z), B (y)] = id70(x — y) (6.6)

for the electromagnetic field, and

{tha (@), 9} (1)} = dapd(z —y) (6.7)

for the fermion fields. All other commutators (anticommutators) vanish.
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In the functional Schrodinger picture we represent these commutation
relations by acting with the field operators on physical states \I/[u,uT,A]
according to

- 10 1 ) 1 )
) — — ! —( I —)
- 'L'(SAJ', T/)a_>\/§<ua+5u];>’ T/)a_>\/§ ua+(5Ua ’ (6-8)

and A is represented by multiplication. Note that u, and u, are Grassmann
variables, and ¥ is not an eigenstate of either ¢ or . An alternative
representation has been used, for example, in [9], where 1) is represented,
as in the bosonic case, by multiplication with u, and 9! is represented by
d/du. Since, however, the Hermitian conjugate of u in that representation
is not given by uf, but by 6/6u, we find it easier for our discussion to resort
to the representation (6.8).

The Grassmann character of the fermion fields requires a careful treat-
ment of the inner product [8]. If one defines the inner product by the
functional integration (we do in the following not explicitly write out the
electromagnetic field and the spinor indices)

(T, |0y) = /DMDW’{% = (| T, )", (6.9)

the dual U* of a state W is not given by ordinary complex conjugation, but
by the expression

T*[u, ul] = /DETDE exp (ﬂu]L + ﬂTu) la,al]. (6.10)

Here, ¥ is the hermitian conjugate of ¥. We have used a compact nota-
tion, i. e., tu = [dziqa(x)uq(x), etc. Note the analogy to the Bargmann
representation for the harmonic oscillator in quantum mechanics.

A special role is played by Gaussian states,

¥ = exp (uTQu) , (6.11)

since this generalizes the notion of a Fock vacuum; 2 is sometimes called
the “covariance.” If we apply the above rules to such a state we find

T[a,a'] = exp (aTQTa) : (6.12)

and for the dual, applying the familiar rules of Grassmann integration,

U u,ul] = /DﬂTDﬂ exp (’E’U,T + afu+ ﬂTQTE)
(6.13)
= det(—Qf)exp (uT(Qt)flu) .

One then finds for (¥|¥) the expression
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(U]w)

det(—Q") /DUTDU exp (uT [(Q]L)f1 + Q] u)

(6.14)
= det(1 4+ QfQ).

An important difference to the bosonic case is the fact that the state ¥[u, uf]
is not an overlap with fields states, U[u,u!] # (u,u!|¥), since the inner
product is an ordinary number, whereas ¥ can be expanded in terms of
Grassmann variables.

6.1.2 Solution of the stationary Schrodinger equation

Here we look for the ground state of the Dirac Hamiltonian in an external
electromagnetic field, i. e., we solve the stationary Schrodinger equation

(/ dxdwa(x)h(x,y)w(y)> U= H,¥ = EyU. (6.15)
If 1, are the eigenmodes of the first quantized Hamiltonian A,
h¢n = En'(/)na (616)

we can expand the field operators 1 and ¢! as
Y= Zanwn ) T/)T = ZGLT/}L
n n
where a,, (af) is the usual annihilation (creation) operator. Then,
Hy =Y Epalay,.
n
We can also expand u and u! in terms of these eigenmodes
u(@) = untpn(z), ul(z) = ulyf(z).
n n

Note that

) )
Su@) ;W;(x)m

to guarantee that du(z)/du(y) = é(x — y). Inserting these expansions into
the expression for Hy, we find

1 o ]
i ta = -
Hy = > En E, <un + 6un> (un + 5u;ﬂ> . (6.17)

We want to apply this Hamiltonian on the Gaussian state (6.11). To that
purpose we note that

ufQu = Z ! Qi (6.18)

n,m
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with

QUz,y) =D Qumthn (2)9], (). (6.19)
We then find o
Hy¥ = %Trh(l + )
+ %g%uﬁ(énk — Qi) Er (01 + Qi) w 0. (6.20)

Upon comparison with (6.15) we see that the ground state energy is given
by

1 1
Ey = 5Trh(1+9) = izn:En(HQm), (6.21)

and that, since the second term in (6.20) must vanish, the elements of ,,
are given by

Qum = £onm.- (6.22)
There still remains some arbitrariness how one distributes the numbers 1
and —1 among the elements of Q2. This arbitrariness can be removed by the
use of the annihilation operators introduced above. We have

0 ]
n n

1

(6.23)

We demand that the ground state ¥ be annihilated by a,, for positive energies
E,, i e,

(6.24)

dago] 0 Q=16 >0
nERE YU if Q=+l E, <0

This selects a specific ground state and is equivalent to say, in a more heuris-
tic language, that a specific prescription for the filling of the Dirac sea has
been chosen. From (6.19) we thus find for the covariance
Qa,y) = Y- dal@)Pi(y) = D va(@)9h(y). (6.25)
E,<0 En,>0
Tt is very convenient, and we will make extensive use of it later on, to express
this relation in terms of projectors,

1FQ
Q=P_—P;, where P,= :FT (6.26)
project on positive and negative energies, respectively:
P,P.=P.P =0, P2P=P,, P2P=P_, P, +P_=1. (6.27)
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We also note the operator expression for €2, which follows from the vanishing
of the second term in (6.20), reads:

J0 - QR +9) =0= PP (6.28)

In case that the external electromagnetic field vanishes we can give easily an
explicit expression for 2. In momentum space, the solution corresponding
to the filling prescription (6.24) reads

h
Q) (p.p) = ——=2b(p — p/
(0) (pap) /71)2 5 (p p )7

where hq) is the A-independent part of (6.4). This can most easily be seen
by calculating the vacuum energy Fj. From (6.21) we have, since h(g) has
vanishing trace,

(6.29)

1 1 1
n n

1 1V
— T/ n2? 2 _ _= /d3 /2 2.
5 pe+m 2 2n)? p\/ D+ m

Use has been made here of the fact that the square of h is given by h%o) =

(6.30)

p? +m?. For later use we give the explicit result for two and four spacetime
dimensions. In two dimensions we have,

Q—_;_pm Q—;_mp
O Frm\m p ) COT e\ p om 63D

in the chiral and Dirac representations, respectively. In the four dimensional
case we have, in the Dirac representation,

1 m o-p
Q) = ———— : 6.32
© F2+m2<g.p _m> (6.32)

where o are the Pauli matrices.

We conclude this part with a discussion of the two-point function
<¢a($)1/12 (y)), where the expectation value is computed with respect to the
above ground state. For this we need the two-point function of wu! which
we now calculate, using (6.11) and (6.13),

(ua(@)ulb(y))  det(—0Qt)
(O]9 = (O /DuTDuua(:c)ug(y)

- exp (uJ‘[(QJ‘)_1 + Q]u)
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_ det(—QF) 52 D
(YY) 5na<x>6ng(y)/ P

- exp (uJ‘[(QT)_1 + Qu + nu + nTuT) |n=nt=0
_ det(1 4+ QTQ) K
(Y Gne()en)(y)
=[N~ + Q52 y),

exp (@) + Q] ') [,y

where (6.14) has been used. In the present case, where @ = Qf and Q2 = 1,

this reads ;
)~ Lus(a) (6.3

If we apply ¢a(x)z/12;(y) on the ground state, we find
1
Pa(@)ph(y)T = 3 (Gapd(x —y) = Qap(e,)) ¥

(ua (@) + Qas (@, w)us (w)) (uf (y) — ul (2)25 (2, 1)) T,

where a summation (integration) over repeated indices (variables) is under-
stood.

Using the result (6.33) we find eventually for the desired two-point func-
tion the expression

2t
%Eﬁf)l# - %(5055@ —y) = Qap(z,y)),

or, in operator notation and with respect to a normalized state,

(W) (1) = 51~ Qe,9)) = Pa(o,9). (634

Thus, if one knows the covariance, one can calculate all two-point functions,
and vice versa. We finally note that excited states can be easily generated
by applying the above creation operator a;‘l on the ground state, leading to
a Gaussian times some polynomial.

6.1.3 Solution of the time-dependent Schrodinger equation

In this subsection we discuss the solution of the functional Schrodinger equa-
tion for fermions in an external electromagnetic field,

(/ dxdy¢*(x)h(x,y)¢(y)) U =HyU =7, (6.35)
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where, again, h is given explicitly by (6.4). Equation (6.35) follows from a
semiclassical expansion of the full functional Schrédinger equation [7]. We
make again a Gaussian ansatz,

U = N(t)exp (uTQ(t)u) , (6.36)

where Q and N now depend on time. The state (6.36) may be thought
as an evolving vacuum state. Inserting this ansatz into (6.35) we find two
equations for N and €2 which read, in operator notation,

dln N 1
] = —Trh) .
1 7 5 (6.37)
. 1
1 = 5(1 —Q)h(1 4+ Q). (6.38)

An important special case is given if {2 can be written in terms of the pro-
jectors (6.26). As in the case of the stationary equation this is equivalent to
Q*=1.

One physical application we have in mind is to choose the free solution
in, say, the asymptotic past and study its evolution under the influence of
an external electromagnetic field according to (6.35). It is important to
note that (6.38) preserves the property Q2 = 1. Thus, Q(¢) can always be
written as in (6.26) provided Q2(ty) = 1 for some “initial time” #;. This can
easily be seen: One first verifies that the inverse of Q, Q~!, obeys the same
differential equation as (6.38). From the uniqueness of the solution we thus
have Q(tg) = Q '(ty) = Q(t) = Q 1(t) & Q2(t) = 1.

Eq. (6.38) is solved by

Q) = (Qt) — C) (R + ), (6.39)
where C' is a time-independent operator, and the operator Q(¢) satisfies
iQ = hQ. (6.40)

One may wish, for example, to choose for 2 the “free solution” (6.25) in the
asymptotic past, i.e., one demands that {2 approaches Qy = P_ — P, for
t — —oo. This would correspond to the choice

C=P,, and Q(t) 2=°P_.

The time evolution according to (6.35) will then in general induce a time
dependence of ©Q which may deviate, at late times, from the asymptotic
“free” solution. This can then be interpreted as particle creation and will
be explicitly discussed below.

The significance of the result (6.39,6.40) consists in the reduction of
the solution of the full functional equation (6.35) to the solution of a “first
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quantized” problem — Eq. (6.40) is nothing but the Dirac equation with an
external electromagnetic field.

After the solution for € has been found, the prefactor N can be imme-
diately determined from (6.37) to read

N(t) = Nyexp (—% / tTr(hQ)ds) .

The time-independent factor Ny can be fixed if ¥ is normalized, i. e.
(¥|¥) =1, and one finds, using (6.14),

N(t) = det™'/2(1 + Q1Q) exp (—% /t Re Tr(hQ)ds) : (6.41)

We now address the question of particle creation. We first note that the
absolute square of the matrix element of two Gaussians, ¥y and Vs, with
corresponding covariances {21 and 2o, is given by the expression

1+ Q70,1 + Qi)
(1+ 0701 + Ql0,)

(W1 [Ws)|* = det (6.42)

In the following we will take for ¥y the time-evolved in-vacuum and for W,
the vacuum state at late times. The corresponding covariances will be called
Q(t) and g, respectively. As discussed above, we demand (%) to approach
the “free covariance” Qg at + — —oo. Since Qy = Qf and Q% =1, the desired
transition element (6.42) reads

(1+Q92(t) (1 + 2 (1))

(T1]T3)]” = det 2(1 + QF(1)Q(t))

(6.43)

To get the desired expression (6.39) for Q, which for the present case reads

Qt) = (Q(t) — P+) (Q() + P+) ™", (6.44)

it is first necessary to solve (6.40) for Q(¢). This is most conveniently done
by the ansatz

Q) =D xalt)xi,

where x,, (without argument) denotes a negative frequency eigenfunction
of the Dirac Hamiltonian h, and x,(¢) denotes the solution of (6.40) which
approaches y, in the asymptotic limit £ — —oo. Therefore,

t —
Q(t) B ZXnX;[z =P,
n
as required. It will prove to be convenient if one expands x,(t) as follows,
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Xn(t) = anm(t)Xm + Bnm (£)Pm, (6.45)

where 1, is a positive frequency eigenfunction of h, and «, 8 are the time-
dependent Bogolubov coefficients associated with this expansion. Since h
is hermitian, the norm (x,(¢), xm (%)) is conserved, and we choose it to be
equal to one. The Bogolubov coefficients are then normalized according to

laf? + |8)* = 1. (6.46)

Note that this is different from the bosonic case where the analogous ex-
pression contains a minus sign.

The operator Q(t) + Py in (6.44) is then given by the expression

Q)+ Py =Y (mmXmXh + Bamtbmxh) + 3= vutid,

n,m

from where its inverse is found to read

(Q(t) + Py)~ anw* > oy, ﬁtnxn+2xn agixt.

n,s,t

One can then write down the desired expression for (¢),

n n,s,t

= Q+2Y Ynay Bmxl = Q +2B,

n,s,t

(6.47)

where we have introduced an operator B, which in the position representa-
tion is given by

= Z Pu() gy Bin X1 (y).

n,s,t

It maps negative energy eigenfunctions into positive ones, and it annihilates
positive energy eigenfunctions. Conversely, its adjoint

z,y) =Y Xs(2)ay Bmth) (y)

n,s,t

maps positive energy eigenfunctions into negative ones and annihilates neg-
ative energy eigenfunctions. Note that B and B' are nilpotent operators.

One then finds for the various terms in the transition element (6.43) the
expressions
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Qf(H)Qy =1-2BT, | QQ(t) =1 - 2B,

6.48
Qf(t)Q(t) =1—-2B — 2Bt + 4B'B, (6.48)

and one has
(1-B)(1 - B
(1-B - Bt +2BtB)’

(W[ W2)[* = det (6.49)
Written in the basis (1, x)7, the various operators in (6.48) are given by the
maftrix expressions

0 o' 0 0
B:(O Oﬂ> : BT:<(a15)T 0), (6.50)

One immediately verifies that det(1 — B) = det(1 — Bf) = 1. Therefore,
using (2.63),

(| T5)|? = det™' (1 — B — Bt —2B'B)
=det™'(1+ a7 'BBTaT) =det™' (1 4+ 87(1 = 8H)~'8)  (6.51)
= det™' 87" (1 — BBT) 7' B = det(1 - BB").

The interpretation of this result is obvious. The determinant is less than one
for non-vanishing Bogolubov coefficient 8, which signals particle creation.
Note that the analogous expression in the bosonic case reads [7] det ™' (1 +
BT, which is only equal to (6.51) for small 5. We will apply the above
result to the calculation of particle creation in an external electric field in
section 6.4.

6.2 Ground state for QFE D,

6.2.1 The massless case

Calculation of the covariance: In the following we shall give explicit
results for the ground state of QE D> in arbitrary external electromag-
netic fields by applying the method developed in the last section. Two-
dimensional massless QED is also known as the Schwinger model [10]. Tt
has been explicitly solved and found to be equivalent to the theory of a free
massive scalar field (see [11] for some literature on the Schwinger model). In
this paper we also address some issues for the Schwinger model on a finite
space [12, 42]. The Hamiltonian formalism for the Schwinger model has
been discussed in [13] and [14].

It is convenient to discuss the massless and the massive case separately
since it is adequate to use the chiral representation for the Gamma matrices
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in the massless case and the Dirac representation in the massive case. For
m = 0 we thus use

o_ (01 1 0 1 o1 _ [ -1 0

The first-quantized Hamiltonian h (6.4) is then given explicitly by (with
Al = A)

— Zax - eA( ) 0 _
To find the ground state of the stationary Schrodinger equation we have
to solve the ”first-quantized” problem (6.16), i. e., to find the spectrum of
(6.53),

We quantize the fields in a finite interval, z € [0, L], and impose the bound-

ary condition .
(e + L) = Ty (), (6.55)

where a and 8 are the vectorial and chiral twists, respectively. Writing

Pn = ( o ) (6.56)

the diagonality of h yields two decoupled equations for ¢, and yx,, corre-
sponding to a decomposition into right- and left handed fermions. One finds
from (6.54) and (6.55) for the right handed part

on(z) = %exp [—i <E5x+e/0x A)] ,

6.57
Ef = %(n—a—m—%/fAz%”(n—as), o
and for the left handed part
wr = Jpeml(te-e 4]
B o= T atp)+ 3/ A= §) (659
" L L L
Here we have introduced
e (L
¢:a+ﬂ+%/0 A and ¢_a—5+—/ A. (6.59)
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The covariance (6.25) also splits into a right- and left handed part

Qz,y) = ( Q*%':’y) Q(?E’y) ) (6.60)

where

Q(z,y) = > ¢ula = D nl=

ER<0 ER>0 (6 61)
Q_(z,y) = Z Xn (T Z Xn(Z ‘
EL<0 EL>0

From (6.57) and (6.58) one recognizes that EER >0forn>¢and EL >0
for n < ¢. Inserting all this into (6.61) one finds

Qi(z,y) = — Z exp (zE’ x)—i—ie/jA)

ER<0

_f Z exp <iE§(y—$)+ie/:A>

EE>0

y
= %exp <i6/x A-I-i?(x—y)) X

(%exp { 27rm ] Z exp [ 27rm (z — y)]>

n>¢

L
= Zexp(ze/ A-I-2;_Jm( [¢]—— T—y )
1

sin 7 (z — y)

: (6.62)

where [¢] denotes the biggest integer smaller or equal than ¢.
The left handed part, Q_(z,y), is calculated in the same way, and found
to read

1

sin T(z —y)
(6.63)

2ms

Q (2.9) =~ o (ie [ A+ TG~ 8] - o - )

In the limit L — oo the covariance is given by the expression

Qz,y) = %exp <i6/:A> P <xiy> ( (1) _01 ) , (6.64)

where P denotes the principal value. This result is in accordance with [8].
We make a final remark on the existence of large gauge transformations, i.
e. gauge transformations which cannot be obtained from the identity in a
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continuous way. As can be seen from the expressions for the energy, (6.57)
and (6.58), such gauge transformations change the fluxes ¢ and ¢ by an
integer. Since the eigenfunctions in (6.57) and (6.58) remain unchanged,
and the covariance contains only the fractional part of the flux (see (6.62)
and (6.63)), the wave functional (6.11) remains invariant.

Charges and energy: Now we shall calculate the expectation values of
the charge, chiral charge, and energy with respect to the ground state derived
above.
The components of the electric current are given by
i° = e =vlo+xIx=jr+i-,

-1

. . (6.65)
it = Oy = —plo+xTx = —5 + 4.

The total charge and chiral charge are

Q= /dxj+ +/dxj_ =Q++0Q-, and Q5=Q4—Q-, (6.66)

respectively. These expressions contain products of the field operators and
thus require a regularization prescription. The procedure employed here is
to first perform a point splitting and then to subtract the expectation value
for vanishing external field. After the point splitting is removed, one is left
with a finite result. The crucial point to note is that the point splitting has
to be done in a gauge invariant way. We thus define the following “point
splitted” quantities

pilz,y) = o @)l Ao(y) and p_(z,y) = xT (@) 2 x(y)

and they are explicitly gauge invariant. Applying p; on the vacuum state
(6.11) we find

¥ = %exp <z’e /xy A) <u‘£ (z) + 5u15(a:)> <u1(y) + 5u§(y)> 1\

= %exp <7le /j A) (0(z —y) + Qi (y,x))T (6.67)

b5 exp (ie / ’ A) (0l () — Q4 (2, 2)ul (2)) x
(u1(y) + Q4 (y, 2)u(2)) 7,

where, again, an integration over repeated variables is understood. If we set
z = y and integrate over z, the last term on the right-hand side of (6.67)
vanishes since (1 — Q4)(1 + Q4) = 0 according to (6.28). Subtracting the
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expression for vanishing A field, the first term after the second equation sign
on the right-hand side of (6.67) reads

%exp <7:6 /xy A> Q+(y,$) — %Q(O) (y,I) (668)
:%exp (%(QS—W—%)(y—x)) y%x— ¢(_>¢0+O($_y)’

where we have expanded the sine in the expression (6.62) for the covariance
and kept only the term proportional to (z — %) '. We have also introduced

L
do=a+f sothat d=do+o- [ A=goty
0

(compare (6.59)). Expanding also the exponential in (6.68) we note that
the terms which become singular in the limit z — y drop out. We can thus
remove the point splitting and perform the x integration to find

(Q+) = [8] — ¢ — ([¢o] — ¢o)- (6.69)
The left handed sector is calculated analogously, with the result
(Q-) = (9] = & — ([do] — o), (6.70)
where 5
po=a—-p (6.71)
so that .
&zéﬁi/o A=do+o (6.72)

(compare (6.59)).
The results for the expectation values of the total charge and chiral
charge are then given by

QY = (Qy)+(Q-)
= [a+B+¢]l-la+p]—[a—B+¢]+[a—F (6.73)
and
(Qs) = (Qy)—(Q-)
= [a+pB+o] —[a+p]+[a—B+¢] —[a—B]—2p. (6.74)

Note that < @) >= 0 for vanishing chiral twist, 5 = 0 (see (6.55)), and that
< Q5 >=2([p] —¢) for @« = B = 0. The above expectation values have been
calculated, using zeta regularization, by [14] for the special case a = 1/2
and § = 0. Their result is in agreement with ours.
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We now proceed to calculate the expectation value of the Hamiltonian
Hy (6.17). We first operate with Hy, on the ground state wave functional to
find the expression (6.20). We then use the explicit solution (6.22) for the
covariance to recognize that only the first term in (6.20) contributes to the
expectation value < Hy >:

(Hy) = Z En(1+ Q). (6.75)

We regularize again by point splitting. We thus introduce a ”point splitted”
expectation value which for the contribution from the right handed sector
reads

(U1} )W) = g exp (—ie [ 4) b S0+ Qun)en()eh ). (676)

Note that this expression is explicitly gauge-invariant and reduces to (6.75)
after setting = y and integrating over z (the action of the first-quantized
Hamiltonian hy = i0/0z — eA(x) just produces the energy F, when acting
on the 1,). The completeness of the ¢,, as well as (6.19), enables one to
write (6.76) as

(U )W) = g exp (<ie [ 4) ha(3@ — ) + Quloy)). (077

Using the explicit expression (6.62) for Q. (z,y) one finds, up to order z —y,

exp <—ie /Iy A) hyQ4 (z,y) =
(~Fom @ -9+ e~ )
exp (70~ 9] - )@ —1) ) + Ol - )

Expanding also the exponential, this reads

exp (—ie [ 4) Q4 (0,1) =~ ~ T+ T (9= 10] - ) +Ola—1),
so that we find
(@) = gexp (i ['4) (z%—eA)(s( ~)

n 1 us (
2n(z —y)?2 1212 T

—[¢] - —) +0(z —y).
Since

exp (—ie /xy A) 1%5(:1: —y) =id'(z —y) + eA(z)d(z — y),
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we have

27T(x1— y)2 o 1271-[/2 +%(¢_[¢]_%)2+O($—y),
(6.78)

From this expression one has to subtract the expectation value for vanishing
external field. To retain finite-size effects we subtract the ”free” value for
L — oo. This removes the divergent terms in (6.78). Setting z = y and
integrating over z, one finds the result

(UIH (2, )|9) = 30/ (o) +

™ ™

2
(H[) = T (¢ —[¢] - %) TR (6.79)

This vanishes in the limit . — co. The expression for finite L is nothing
but the Casimir energy which is also present for vanishing external field:

™

T 2
@) =7 (b=l -3) ~ a1

Note that the resulting force between the boundaries at = 0 and z = L
can be attractive or repulsive, depending on the chosen boundary conditions.
For the conditions chosen in [14] the expectation value is given by —m/12L
and thus leads to an attractive force.

The expectation value of the Hamiltonian in the left handed sector is
calculated in the same way by making use of (6.63) and using —h, =
—10/0z + eA(z). Instead of (6.79) one finds

T~ - 2 T
m) =T (3-0-5) - o (6.80)

The total Casimir energy is the sum of the expressions (6.79) and (6.80).

6.2.2 The massive case

Calculation of the covariance: In the massive case we use the Dirac
representation for the Gamma matrices, i. e.,

V=03 , ¥ =—icy , ¥ =-0 (6.81)
The first-quantized Hamiltonian is then given by the expression

m 7:(9% — eA(x)
ia% — eA(x) —-m

h(z,y) = ( ) r —y). (6.82)

We are again looking for the eigenfunctions of h,
hipn, = Enthp. (6-83)

198



If we make the ansatz

Uy = % exp <—ie/0 A—- i)\nI> Cn,s (6.84)

Eq. (6.83) yields an algebraic equation for ¢,

m — E, An Cn1 \ _
(5 ) (m)ee
The boundary condition

Yn(x + L) = ™%, (z) (6.86)

yields a quantization condition for the A,

2w e (L 2w
An=f<n—a——/0 A>Ef(n—¢), (6.87)

where n € Z. From (6.85) one then finds the values for the energy,

4 2
Ep=+/m2+ X2 = j:\/mQ + %(n — $)? = tw,. (6.88)

We already note at this point that the massless limit of (6.88) yields E,, =
+2%|n — ¢| instead of B, = £2(n — ¢) which was found by starting from
m = 0 ab initio. This will be relevant for the discussion of anomalies in
chapter 5.

The normalized eigenfunctions 1, read

1 wn +m ( ) . /I )
= —iA\p T — A 6.89
Y+ Yem(om £ )L ( An ) eXp | —tApT — 1€ 0 ( )

for K, = w,, and

B 1 A . e
Y= 2wy (wy, +m)L ( wp +m ) P (—Mnx - Z6/0 A) (6.90)

for B, = —w,,.
We now use again (6.25) and the filling prescription (6.24) to calculate
the covariance,

leﬁnf llﬁnf Z¢n+ ¢n+ ) P _P+' (6.91)
Noting that A\, = (wy, + m)(wy, — m), we find

728]‘ A ~iAn(@-y) Wy +m An
Py(z,y) = 2L ;7% N wn (6.92)
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and

n

. pm —iAn(z—y) - -
P(z,y) = —¢ i) P ( wn—m  —An > . (6.93)

To evaluate the various sums in these expressions we make use of Poisson’s
summagtion formula:

2w S fer)= > Pl whee F(w= [ df()e™ (5.

n=-—oo n=-—oo

We then have

Z An o—2min(z—y) /L — Zf (27n) and Zwl —2min(z—y)/L — Z f@2mn),

Wn, n

where

B z —2m¢ —i(z—y)z/L
16 = =

and

N L —i(z—y)z/L
/(z) V(z —21$)2 + 22 s

From (6.94) we then find

d pe (u (Ify)/L)

Flu) = e2midlu—(@=y)/L) / pe”” 77
—oo  /p?+m?L? (6.95)
= 2™/ LK (mLu — m(z — y))
and
eir(u—(z—y)/L)

dp——
—o0  /p*+m?L? (6.96)

= 2L =E=W/L K (mLu — m(z — v)).

Fu) = Le2mid(u—(z—y)/L)

Here K and K; denote Bessel functions and use has been made of [15] to
evaluate the integrals. From (6.94) we then find for the sums

5 A arine)/n _ ML amige )/ S o 2mind Ky L+ m(a — )
n

— Wy s
and
ie—Qm'n(ac—y)/L — Ee—kab(x—y)/L Z e—27rin¢K0(an + m(x _ y))
n Wn ™ n
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In the expressions below we will for simplicity not explicitly write out the
argument mLn + m(z — y) of the Bessel functions Ky and K;. For the
remaining sum we have

Ze—%(@‘—y) — Lzé(ﬂ? —y—nL)=Li(z —y)

since |z — y| < L. Inserting all these results into the expressions (6.92) and
(6.93) we find

1 m e [T A Ko —iK1\ _oring

and
_ 1 m —ie fm A K() —’LK1 —2ring
P-=30@—yl—gre = §;<—uq K, )°© - (6.98)

We verify that P + P_ = I. Our final result for the covariance (6.26) is
then given by the expression

Q) =P — Py = %e—iefy AZ ( :II((;U Z[I(i)l ) o—2ming. (6.99)
n

In the limit L — oo we find

o) — @efief: Al —Ko(m(z —y)) iKi(m(z—y))
AUz, y) = — (iKﬂm@—y» Kdmw—yn>' (6.100)

Using the asymptotic expressions for the Bessel functions one verifies that
Q2 approaches the result (6.64) in the limit of vanishing mass. Furthermore,
in the opposite limit of large mass (or large |z — y|) the covariance reads

Oz, y) = ,/ﬁe‘iefff‘exp(_mm—m) ( o ) . (6.101)

In summary, we have found the exact ground state for arbitrary external
fields in the massive Schwinger model. The excited states, ¥,, can then
be constructed in the usual way through the application of the creation
operator. A general state, ¥, of the fully quantized theory can then be
expanded into these energy eigenstates according to

V[A,u, uT] = Z onlAl¥,[A, u, uT],

where the functionals ¢,[A] can be determined from the full functional
Schrédinger equation which contains the kinetic term —§2 /20 A2 in the Hamil-
tonian.
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Charges and energy: We define again a "point splitted” charge operator

p(z,y) = ¢’ (z) exp (ie /xy A) P(y)

and find for its action on the vacuum state an expression analogous to (6.67)
(there is now no distinction between a left and a right handed sector):

2

o)y = Sexp(ie [ 4) 20 —y)+ Y Qualysa)V

a=1
+% exp <ie / ! A) (ul,(2) — Qpalz, 2)ul)(2)) X (6.102)

(ta(y) + Qar(y, 2)uy (2)) ¥,

where a summation (integration) over repeated indices (variables) is under-
stood. Like in the massless case, the second term on the right-hand side
vanishes after setting x = y and integrating over z. The first term is again
regularized by subtracting its value for vanishing external field. This yields
for the vacuum expectation value of the total charge

1S
=52 /0 da lim (Qaa(y, 2) = Q0 (y,7)) =0, (6.103)
a=1

since the covariance (6.99) is traceless with respect to the spinor indices.
The result (6.103) has of course been expected since the total charge should
annihilate the vacuum state (see also the discussion at the end of this chap-
ter). This is true in any number of dimensions.

For the chiral charge we give first a general expression which is valid in
any even dimension. We define the “point splitted” chiral charge

ps(z,y) (z)7°y" exp (ie /x ’ A) P(y)
y (6.104)
= v n’ e (i [T 4) (o).

Operating with this on the vacuum state yields (compare (6.67))

pi(e)¥ = —gexp (ie [ 4) T (3o y) + 2y )
—%exp (z / ) /dvdwu (v —1x)— Q(v,av()(j‘%/eg’)

(0(y —w) + Qy, w)) u(2) V.

The second term can be written, after setting = y, integrating over =, and
performing the expectation value, as

—2TrP v P_ =0
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since P P_ = 0 (compare (6.79)), and use has been made of (6.33). We are
thus left with

(W] Qs|7) = —%Tr/OL d lim 7 Q(y, 7) exp (w/j A), (6.106)

rT—Y

from where the result for A = 0 has to be subtracted. Using the explicit
results in two dimensions we find

1 y ; .
—— Ty 75Q(y,x) exp <ie/ A) _m ZKl(an +m(y — x))e—2mn¢_
2 x T 4
Subtracting from this the expression with A = 0 we get

% > (Kl (m(y — z) + nmL)e 2™ — K| (m(y — x) + nmL)e*%im)
n

so that we have

(Qs) = 2 / do 3" Ky(nmL) (e~2minb — ~2rina)

n#0
oml (6.107)
= — Z Ki(nmL)(sin(2rn¢) — sin(2rna)).
T n>0
In the limit m — 0 we obtain
nlleinO<Q5> = — HZ>0 sin(2mng) — sin(2mna))
1 (6.108)

= (gl - b+ ) (o]~ t )
= 2o+l +[o] - ).

This is equal to our earlier result (6.74) when evaluated for 8 = 0 (p was
defined in (6.72)). Recalling the asymptotic formula for Ky in the limit of
large arguments one finds that

(Qs) L0 QTZL (sin(2wng) — sin(2rna))e ™E L2pe. (6.109)

We finally calculate the vacuum expectation value of the Hamiltonian Hy,
(6.17) in the massive case. We start from the expectation value (6.77) for
the point splitted Hamiltonian but insert in that expression

he = =i’y (0 — iA) + mA° (6.110)
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as well as the full covariance € instead of Q. With our result (6.99) for the
covariance we then find

exp <ze/yx A) haQ(m,y) = _ﬂw 12 ( K é’ >e—2m¢
+m7270 exp (—ie /yz A) Z < ;Il(io illé)l ) e 2ming,
Thus,
(V{Hy (2. )W) = 5 Trexp (—ie [ 4) (ha2a.1) + bl ~ )
= {ZL_; Zn: ( —_1?1) :gég gé;r—iﬁ ) e o (6.111)

%((1) é)i(i'(x—y)-l-%([l) _01>5(x—y)}.

From this we subtract the expectation value for L. — oo and vanishing A.
Using the relations

KI(€) + Kolé) = —Klf), K, = —K},

this yields

L
(H) = [ dolim ((¥[Hy(w9)[9) = (¥ol Hy (o, 9)] %0))
2 rL

m e
= 2 dzlim (Y
T IIE}I}J(n

0 m(z —y)
1

" m(z —y) + nmL
1 :
S Z — Ky (nmL)e 2min®
n

i n#0
2
- —m s K1 (nmL) cos(2mn). (6.112)
n>0

—2mwing
Ki(m(z —y))

Ki(m(z —y) + nmL))

This vanishes in the limit L. — oo but remains finite for finite L even for
vanishing electromagnetic field where we have

2 1
(Hy) Ao = 7m S — K\ (nmL) cos(2mna). (6.113)
n>0

In the limit of vanishing mass we obtain from (6.112) the result of sec-
tion 6.2.1. The expectation value of the Hamiltonian vanishes for L. — oo
as can be easily seen from (6.112).
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6.3 Non-Abelian gauge fields

Calculation of the covariance: We consider the Lagrangian
1 -
L= _ZF’WFW + Y (iDyy* —m)ip, (6.114)
where
Fu =0,A, —0,A,+i[A,,A) . D,=0,+iA,. (6.115)

We have introduced here the (hermitian) matrix-valued vector field, A, (z),
which is defined by

The gauge coupling constant has been set equal to one. In two dimensions
the discussion is greatly simplified since the gauge A° = 0 removes the com-
mutator in (6.115). This enables us to proceed analogously to the Abelian
case. Denoting A; = A, the total Hamiltonian density reads explicitly

1 . . 1
H = omi =iy (0 + i) +mylyy = ord +9Thy. (6.116)
The first-quantized Hamiltonian reads

h= gh(o)g_l, where kg = —iy°y' 9, + mAy° (6.117)

e g(x) = Pexp (—i /OI A) , (6.118)

where P denotes path-ordering (we will suppress this letter in the following).
It follows immediately that if 1(%) is an eigenfunction of h(g) with eigenvalue
E then ¢ = g9)(© is an eigenfunction of h with the same eigenvalue £. From
(6.89) and (6.90) we see that the free eigenfunctions are given by

0 0

O = cfn, O = cga, (6.119)
where ¢ is a constant vector in the representation space of the above gener-
ators, and

1 Wp +m

fulz) = 2wn(w”+m)L< N >exp(—unx>

and

gn(z) = ! ( ~h ) exp (—iAnt) .

2wy (wp, +m)L \ wp +m
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We also have to implement the boundary conditions

P(L) = e*™h(0) = g(L)yp V(L) = g(0)e*™ @5 (0). (6.120)

We note that
L
g (L)g(0) = exp z/ A =exp (iB). (6.121)
0
Since B is a hermitian matrix it can be diagonalized:

Be, = peeq (eaaeb) = 5aba

where a and b run form 1 to the dimension of the representation. We thus
have

g (L)g(0)e, = exp (ija) €q- (6.122)

Choosing ¢ = e, we find from (6.120) the quantization condition
Aag=—Mm—0a)—— (6.123)

and the energies are given by

Epo=+\/m2+ X2, = 2wy, (6.124)

in analogy to the Abelian result (6.88). From (6.119) and ¢ = g¢)(©) the
positive energy and negative energy solutions are given by

dpr=9@ea®fy o Y= g(r)ea ® gy, (6.125)

(no summation over a). These solutions are orthonormal since

(¢Z,+a¢$n,+) = (9(z)ea ® f,9(z)er ® fgm) = dabOnm, etc.

Under a gauge transformation mediated by U(z) the following transforma-
tion laws hold:

Yp > =Ux)y , A= A=UAU +i(0,U)U,

g—g= U(fI?)g(fE)Ufl(O) , ¢(0) N QZ(U) — U(O)’(/)(O) (6'126)

Since gauge transformations should respect the boundary conditions, we
must have U(0) = U(L). Since the "boundary operator” g~!(L)g(0) trans-
forms as

g (L)g(0) = U(0)g™" (L)g(0)U"(0)

the quantities u, appearing in (6.122) are gauge invariant.
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We now proceed to calculate the covariance of the ground state. For the
projector on positive energies one finds, making use of the result (6.92) for
the Abelian case,

Py(z,y) = Yt (2)dnt(y)
= %9(95) [Zeael exp (%(27@ + o) (T —y)) (6.127)

e—2min(z—y)/L

o 267 (wn;-nm wnkjm>]gf(y)'

n Wn,

Applying Poisson’s summation formula (6.94) one finds, in analogy to (6.97),
1 m . L T
Pi(oy) = 30— 9I= Fog(o)| S eaexp(—in [ ua)e]
a,n

—Ko iK1\ _orinal t
( 'LKl KO > € g (y)

and P_ =1 — Py. It is convenient to define the ”diagonal matrix”

(6.128)

X

D =" exp (ia) eael, = D" =3 exp (inpia) eqel. (6.129)
a a

The covariance 2 = P_ — Py can thus be written as

Qr,y) = —g(x) lz D e 2rina ( ;fé“ iél )] gy, (6.130)

n

In the Abelian case we have
L
= / A (6.131)
0

so that the result (6.130) equals our earlier result (6.99).

Charges and energy: The point splitted version of the non-Abelian cur-
rent operator reads, in any number of dimensions,

() = ¥ (@) exp ( /[ A) Ty (y). (6.132)

Its action on the vacuum state ¥ can be found in the same way as for the
Abelian case (6.102). The result is
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o = texp (i [14) TPyl - y) + ()T

—i—% /dvdqu(v)(é(v —1z)— Qv,z))exp (z /xy A)leg?’)
Ty (5(y — w) + Q(y, w))u(w) T

Taking the expectation value of the second term in (6.133) with respect to
U, one gets, making use of (6.33) and (6.27)

1 Y
Z'I‘r/dvdw (0(v —x) — Q(v,x)) exp (z/x A) X
Ty (8(y — w) + Q(y, w))Qw, v)
_ iTr/dv(d(y — o) + Q(y,0))(5(v — 7) — Qv, 7)) X

v 0
exp <z/ A) Ty ~v* = 0.
T

The expectation value of the point splitted current with respect to ¥ is thus
given by

(U7l ) = 5 Trexp (i [ 4) TPy (3 —y) + o). (6.130)
For the axial current
gt (z,y) = ¥ (z) exp <l /Iy A) T oy 4 (y) (6.135)
the analogous result is (compare also (6.105))
(W2 (2, y)|0) = —%Trexp <z /: A) Ty (5(z — y) + Q(y, 7). (6.136)

Like in the Abelian case (see (6.103)) one finds from (6.134) that < @ >=0,
where @ is the total charge (the first term in (6.134) vanishes after the
subtraction of the ”free” expectation value, the second term vanishes since
Q is traceless in spinor space - see (6.130)).

In the following we explicitly evaluate the vacuum expectation value of
the chiral charge in two spacetime dimensions. From (6.136) we have

(o w)) = =5 Trexp (i [ 4) Ty @) - Qo)) (6:137)

The trace in (6.137) consists actually of two traces: a trace Trg in spinor
space and a trace Tr¢ in the representation space of the Lie group. We
evaluate the spinor trace by making use of (6.81) and (6.130):

1 m o _
—§Tr57°719(y, z) = —9(y) > e T DTK (m(z — y) + mnL)g'(x).
n

208



Eq. (6.137) then becomes

(o) = e (Troe K A Tigly) D 1)

—TreT;) Ki(m(x — y) + mnL).

(6.138)

The singular terms which arise for n = 0 cancel. The remaining terms are
non singular in the coincidence limit z — y, and one finds for the expectation
value of the total chiral charge

(@) = @/LZe‘W" (Treg! (@) Tig(z) D7
T (6.139)

—TrcT;) Ki(mnL).

This is the non-Abelian version of our earlier result (6.107). In the limit of
vanishing mass one finds, using (6.129) and K;(z) ~ 1/,

m L
@) ~ [ dotreg!@)Tigle) X cack((gal + 5 — d0)

) (6.140)

—TrCTi([oz] + 5 - 0{).
Note that for semisimple groups the trace of the T; vanishes. We emphasize
that the currents in the non-Abelian theory are not gauge invariant quan-
tities but instead transform under the adjoint representation of the gauge
group.

We finally come to the calculation of the vacuum expectation value for
the energy. This closely parallels the discussion of the Abelian case which
was discussed in section 6.2 so that we can be brief in the present case.
The point splitted version of the expectation value now reads, in analogy to
(6.77),

(W[ Hy (2, )| T) = %Tr/d:v exp <—i /zy A) ha(5(z — ) + Q). (6.141)

We recall that the exponential stands for a path ordered product. Inspection
of the explicit form of the covariance, Eq. (6.130), exhibits that, as in the
Abelian case, the factors g(z) and g'(y) are exactly canceled by the expo-
nential in (6.141). In analogy to (6.112) we then find, after the subtraction
of the expectation value for vanishing external field,

(Hy) = 277" > %Kl (nmL) cos(2mna + npg). (6.142)

a n>0
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In the limit of vanishing mass this becomes

_2r Ba oy Bay LY
(Hw)m_o_Lza:<a+2W o+ 5 2) AL (6.143)

where N is the number of flavors.

6.4 Particle Creation

6.4.1 Constant electric field in four dimensions

In this subsection we demonstrate how the well known expression for the
creation of fermions in a constant external electric field [16] can be recovered
in the functional Schrodinger picture. The physical picture is the following:
We start with a fermionic vacuum state in the far past (“in - region”) and
let it evolve under the influence of the external field, using the Schrodinger
equation, into the far future (“out - region”). There we calculate the overlap
with the vacuum in the out - region and interpret the deviation from one as
the probability for particle creation. The state remains, of course, Gaussian
but its exact form (and thus the notion of the vacuum) changes under the
evolution of the external field. It would be physically reasonable to switch
on the field somewhere in the past and switch it off again in the future since
no fields last infinitely long. In the present case of a constant electric field it
will prove advantageous to treat an idealized situation by making use of the
notion of an adiabatic vacuum state which is approached in the asymptotic
regions. This is possible since h/ h, where h is the time-derivative of the
first-quantized Hamiltonian h (6.4), approaches zero in both the asymptotic
past and future. The concept of adiabatic states is also successfully applied
in traditional discussions of particle creation [17] and finds in particular a
fruitful application in quantum theory on curved spacetimes [18].
We thus have for the in - vacuum state

U, = N exp (uTQégd)u) , (6.144)
and for the out - vacuum state
Wou = N exp (uf Q0 u) . (6.145)

The “adiabatic” covariance €(,q) can be obtained from the “free” covari-
ance () (see 6.32) by replacing the momentum p with p + eA. It turns
out to be convenient, in spite of the non-vanishing mass, to use the chiral
representation for the Dirac matrices. The reason is that the mass terms in
the expressions for the covariance become unimportant in the asymptotic
regions. We thus have, instead of (6.32),
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o L (meh m ) )
(ad)_\/m m o-p )’ P = Pz, Py, Pz z)s  (6.146)

and the electric field points in z - direction, E = Fe,, so that A, = Et. For
simplicity we denote the transversal momentum by p; so that p3 = p2 + pz.
It will also be convenient to introduce the dimensionless quantity

r=veE (t n f—é) . (6.147)

We now give the explicit expression for {24y in both the asymptotic past
and future. In the limit 7 — —o0, (6.146) reads (o; are the Pauli matrices)

o B L —0 -pL —0,-VeET m
(ad) — \/Z m o Pl +0y- eET
T2 ( %z —(r)fz ) - Z(Zd)v A=pl +eBr? +m16.148)
Analogously,
Qout —0; 0 — _Qin (6 149)
(ad) — 0 o,/ (ad)” -

Before we proceed to calculate the pair creation rate according to the gen-
eral formula (6.51), we have to discuss one subtlety which arises through the
use of asymptotic vacuum states. As can be immediately seen by comparing
(6.148) and (6.149), the adiabatic covariances Q‘(’gé) and QEZ 4 differ in their
sign. Consequently, from the general expression (6.25), the positive (nega-
tive) frequency eigenfunctions in the far future are the negative (positive)
frequency eigenfunctions of the far past. An observer in the far future would
replace the expansion (6.45) by

Xn (t) = aftmxgz + ,szmi/hj; = aftmwm + /87{me7 (6'150)

where the superscript f refers to “far future.” Comparing (6.150) with (6.45)
we see that af = B.m and 8], = apm,. Nevertheless, one can still use the
expression (6.51) to calculate the transition element. The reason is that one
now has to use Q‘(’%) = —Q%Zd) instead of y = Q%Zd) in (6.43). This would
amount to replace By, in (6.51) by anm = B1,.. Thus, the particle creation
rate is still given by (6.51) with S, replaced by B/, as it was introduced
in (6.150) (in the following we will for simplicity omit the superscript f).

The general expression (6.44) for the covariance (¢) contains, via (2.61),
the functions x,(#) which obey

iXn(t) = hxn(t), (6.151)
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where the first-quantized Hamiltonian A is given explicitly by

h:(“'ﬁ - ) (6.152)

Note that h? = (p? +m? + E7?)I, and n has to be replaced by p. Differ-
entiating (6.151) by ¢ and using (6.151) again, one arrives at a second order
equation for the x,. The first and fourth component of the x, obeys (we
omit the index p in the following)

d2
(W + 2 +A+ 7,) X1,4 = 0, (6153)

while the second and third component obeys

d2
(F + 2 +A - 7,) X2,3 = 0. (6154)

We have introduced in these expressions the quantity

_p%_-l—m2

A= P (6.155)

The discussion is greatly simplified if we treat the case of two spacetime
dimensions first and recover the four-dimensional case by some simple ma-
nipulations from the final result. Instead of (6.153) and (6.154) we have
then to deal with the equations

42 ) d? .
<p+72+§+Z>X1:0, (F+72+§—Z>X2=0a (6.156)

where, obviously,

m2

<= emT

(6.157)

Since x obeys the first-order equation (6.151), the equations (6.156) and
(6.156) cannot be solved independently. If we choose, say, for x; the general
solution of (6.156), we find from (6.151) that

_ 1 (dxa
X2 = VE (ZW - TX1> . (6.158)

The general solution of (6.156) is then given by a sum of parabolic cylinder
functions [19]

X1 = AlD—ig/Z[(l + Z)T] + BlDfig/Q[—(l + Z)T] (6159)
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We now have to impose the boundary condition that x approaches a negative
frequency eigenfunction for 7 — —oo. For this we need the asymptotic
expansion of (6.159) which reads [19]

ir? i
a TR A (e F S

\/27T _7'_5+ﬁ
e e” 2 T 2
I'(3)

[(1+ z‘)ﬂ%—l> (6.160)

ir2

+Bre T [—(1+4)7]" 5.
The usual definition of positive and negative frequencies involves the phase
of the first-quantized eigenfunctions: For a positive frequency function the
phase decreases with increasing time, while for a positive frequency function
it increases [17]. The expression (6.160) thus should only contain terms
proportional to exp(—i72/2). We thus have A; = 0 and one is left with

x1=DB1D_j /[ (1 +1)]. (6.161)
From (6.158) one then gets

Biv¢
2

o=~ P81 gD ey [—(1+9). (6.162)
We want to normalize the solution x = (x1,x2)”. Since the norm is con-
served (h in (6.151) is hermitian), it is sufficient to perform the normalization
in the asymptotic past where

x1 =7 Bie % |T|7%27%6% . X2 —°0.
Thus, the choice
By = exp(—7¢/8) (6.163)

yields x"x = [x1|* + [x2f* = L.

To make use of (6.150) we have to find the positive and negative fre-
quency functions in the asymptotic future, i.e. for 7 — oco. The correctly
normalized negative frequency solution x; to (6.156) and (6.158) reads

f_ §_L§D~ L f:—i+1_L§D~ L

X1 \/;6 S Diesp1 [(L=0)T] , X3 75 ¢ "D (1 —4)].

5.26 This is easily seen from the asymptotic expansion of the parabolic
cylinder functions [19]. Similarly, the positive frequency functions are found

to read

Wl = FD gl +ir] . 9] = Yo+ Do F Do (1 4+i)r].
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Making now use of the identity [19]

V2r

Dy(2) = ™Dy (—2) + EY

MDD\ (—iz), (6.164)

we can expand the solution (6.161), (6.162), (6.163) according to (6.150)
into the asymptotic positive and negative frequency solutions, respectively:

_ Ve =g
X(T)_F(%-I-l)e x' +e 2. (6.165)

The Bogolubov coefficients can be easily read off from this equation,

I S R S (6.166)
r(%+1)

and it is easily checked that |a|? + |32 = 1. Finally, one then finds for the
matrix element (6.51)

(T1[T)]* = det(1 —[B])
= expTrin(l — e ™)

1
= exp (—Trz Ee”"€> . (6.167)
n

In two dimensions the trace reads

T — —
2T

L /eEtout eELT
d ;
eEt;, 2m
where T' = £y — t;y, is the time difference between two asymptotic times tg,;

and t;,. This, as well as the length L, has been introduced as an infrared
regulator [17], [7]. Thus,

¢ ——> . (6.168)

\I/ \I/ 2: — — el
(T [T2)] eXP( o Zne

n=1

(If eE is negative, one has to take its absolute value.) To find the corre-
sponding expression in four spacetime dimensions, we have to replace £ by
A, see (6.155). One thus has

m(m%4p?)

B =e ™ =e " E (6.169)

and

V eFtout
Tr — —(27r)3 /Et dpz/QWpLdpL.
€lilin
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Moreover, one gets an additional factor of 2 from the discrete part of the
determinant in (6.167) over the spinor indices since one now deals with four
spinors instead of two spinors. Thus,

X1
(01 |05)2 = exp (—mzﬁe—mﬂ
n=1

2eE)2VT & 1 wem?
= eXxp <—W2ﬁ6 eE > .

n=1

(6.170)

This is in agreement with the classical result of Schwinger [16].

6.4.2 Arbitrary external fields for massless (QF D,

We now proceed to calculate the vacuum - to - vacuum transition rate (6.42)
in the case of massless fermions for arbitrary external electromagnetic fields
in two spacetime dimensions. In contrast to the previous section we shall
assume that the electric field is switched off for some time ¢ < #; in the past
and ¢t > t9 in the future. While one can consistently assume that the vector
potential vanishes for ¢ < ¢1, this is not possible for ¢ > ¢5 since the flux

/OL dzx /;2 dtE = /dmth = /dg: (A(z,ta) — A(z,t1)) = 2mp(ts)

need not vanish. In fact, this will give rise to the nontrivial features which
will be discussed in this section. We can, however, assume that A does not
depend on z for t > to.

To determine the covariances 2y and Qs in (6.42) we need to solve the
time-dependent Dirac equation,

i) = hp = —irys(0y + 1 A)P. (6.171)

We make the ansatz
P(z,t) = exp(iX(z,t) +id(z, t)ys)o(z, 1) (6.172)
and choose A\ and § such that 1y obeys the free Dirac equation (without A-

field). Inserting (6.172) into (6.171) one recognizes that this can be achieved
if

A6 =0, N4+d=-A. (6.173)
The formal solution reads
1 o 1

d=—-F. (6.174)

rA=pEt o2

The solution of the free equation for g,

itho = —ivs9etbo, (6.175)
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can of course be immediately written down by making use of (6.55) - (6.58)
(we choose 8 = 0 for simplicity):

Pon = ( Q’Z ) (6.176)

with
1 . 1 .
PYo,n = ﬁ €xp (_an(x + t)) sy X0 = ﬁ €xp (_an(x - t)) >

where k, = 2m(n — a)/L. The positive energy (negative energy) solutions
are obtained for k, > 0 (k, < 0) in the ¢‘s and and for k, < 0 (k, > 0) in
the xs (recall (6.57) and (6.58)). The solutions of (6.171) thus read

d)n (:l?, t) = eXp(i)‘ + 7:575)’(/}0,71- (6177)

The components of the covariance are calculated in full analogy to Eq.
(6.61). One finds

Q+(I, Y, t) _ ei)\(x,t)fiJ(z,t) QS(»)) (I, y) ef'i/\(y,t)Jr’it;(y,t) (6178)
and
Q_(z,y,t) = e @O+id@t) O (5 1y o=iAD=id(w,1) (6.179)

where QEB) and Q) are obtained from (6.62) and (6.63) by setting the A-
field equal to zero:

2w 1
O (z,y) = (2, y) = %eT(a[aHNW)m. (6.180)
Since A = 0 for ¢ < t; one can choose A = § = 0 for ¢ < ¢;. This corresponds
to the choice of the retarded Green function in (6.174). We thus have Q =
QO for ¢ < #;.

We now proceed to calculate the overlap (6.42) between the out - vacuum
and the out - state which results from evolving the in - vacuum (which is
the free state) with the Schrodinger equation. In the out - region (t — 00)
we can choose A to be constant. From (6.173) we can choose A = 0 and
d = —At. The one particle wave functions (6.177) then read

P (z,t) = exp(—iAtys) o (z,t). (6.181)

The out - vacuum is calculated from the wave functions (6.57) and (6.58)
for A = constant. As can be recognized from these expressions, A drops out
and one is left with the free wave functions 1) ,. Does this also mean that
the out - vacuum state is identical with the free vacuum state? This is not
the case since in the general expression for the covariance, Eq. (6.25), one
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has to distinguish between positive and negative energy solutions. For non-
vanishing (even constant) A- field this distinction is field-dependent since
the energy values are given by

En,=+"(n—-¢), (6.182)

where the upper sign is for the right- handed part and the lower sign for the
left- handed part (compare (6.57) and (6.58)). Let us focus in the following
on the right-hand part. In the expression (6.42) for the overlap we choose
for €2 the covariance which corresponds to the out - vacuum, i. e.,

Z 1/)071 7ﬂbOH Z T/JOn won ) (6.183)

n<o n>g¢

where we have included the zero energy eigenfunction in the first sum. Since
t has dropped out in this expression, we have skipped it in the arguments for
the wave functions. Since the phase factor in (6.172) is space-independent,
the time-evolved in - covariance (which plays the role of Qs) is just given by

=Y Yon() %n = onlz) %n) (6.184)

n<a n>«o

It is clear that this satisfies the time-dependent Schrodinger equation (6.38)
trivially with the correct boundary condition at ¢ < ¢;. We then find for the
operator product ;€ in (6.42)

Qlﬂzzfdz(zzpoﬂ 200 (2) 3 0u (=)0, (v

n<¢o I<a
+ Y Yon(z 1/10n 2) > oz %l = thon(z %n 2) D> oz %l
n>¢ I>a n>¢ I<a
_'E:'¢0n ¢0n E:QpOI ¢0[ )
n<g¢ I>a

We may assume without loss of generality that ¢ > «. The first and second
term in (6.176) give together

n<a n>¢ a<n<lg

(Z"—Z)T/}On 7»bon( ): Z T/JOn 7»bOn )

The third term vanishes for ¢ > «, and the last term gives

Z ¢0n "/)On )

a<n<go
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We thus have

QIQQ—(SIII— —2 Z '(/)071 ¢0n()

a<n<¢

The determinant in the overlap (6.42) thus contains the operator

A= (1+Q0) = = 3 Yon(@)d) 1),

1
2 a<n<lgp

By acting with A on g one recognizes that A has a zero eigenvalue if
a < n < ¢. In this case, therefore, the overlap in (6.42) vanishes! This
means that the probability for the vacuum to remain a vacuum is zero —
particles are always created. Since both states ¥; and ¥, are, however,
Gaussians it follows that these states belong to different Hilbert spaces — in
the case of infinitely many degrees of freedom the overlap between Gaussians
can vanish [1]. How can one cope with this situation? The key to a proper
treatment is provided by the observation that the energy eigenvalues F,
of the first-quantized eigenfunctions exhibit a spectral flow — some of them
pass through zero between the in- and out - region. This is peculiar to the
massless case since the energy values E, do not change sign for m # 0, see
(6.88). As a consequence of the spectral flow the time - evolved in - state
contains, in the out - region, either occupied positive energy states or empty
negative energy states (for definiteness we assume that there exist occupied
positive energy states). Our original filling prescription says, however, that
for the vacuum state all positive energy states are empty. To have all states
in the same Hilbert space (Fock space), one has thus to define the out
- vacuum state by applying as many annihilation operators on the out -
Gaussian as there are occupied energy states, i.e.,

[¥]
|0, 0ut) = N H ar exp(ufQu). (6.185)
k=1

Again, ¢ = (fOL A)/(2m) is the flux. The time - evolved in - state can thus
be written as

t—o00

U, — N exp( TQIU H ak|0 out). (6.186)

This state thus contains [p] particles with respect to the out - vacuum, a
result which is of course well known (see, e. g., [20]). The particle creation
rate expressed by (6.186) is directly related to the anomaly in the axial
current, and there is a general relationship between the spectral flow of
the first - quantized Dirac Hamiltonian, the topological charge, and the
anomalous particle production. This is very clearly discussed, for example,
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in [21]. The important difference to the previous subsection is the fact that
in the present case a definite number of particles has been produced (as
given by the flux of the external field), whereas in the previous case there is
a non-vanishing probability for the production of any number of particles.
The Schrodinger picture thus provides us with an intuitive explanation for
the anomaly: The filling prescription, which is crucial for the specification of
the ground state, changes in dependence on the external field. Consequently,
the notions of vacuum and excited states change under the influence of the
external field.

6.5 The Gauss constraint

So far we have restricted ourselves to the case where the external electro-
magnetic field can be treated semiclassically. This is formally expressed by
neglecting terms containing 6/0A (z) in the full Hamiltonian (6.3). We want
to relax this restriction now and conclude our paper with a brief discussion
of some subtleties which arise when the Gauss constraint (6.5) is realized on
wave functionals U[A, u, u!] in the full theory. Applying the Gauss operator

G(z) = VE — egplep (6.187)

on states U we find, using the realization (6.8) - (6.8) for the field operators,

(6.188)

Classically, the Gauss operator generates local gauge transformations. This
also holds in the quantum theory, in the sense that

[ an@)6@) 5| = A, ete (6.159)

with an appropriate test class function A(x). The surprise comes if one
evaluates the expression (6.188) for the Gaussian state (6.11). This yields

Ge)0 = — [ dydzul )3y — 7)ias + Qasly,2)] X
[0(x — 2)08y — Qay(z, 2)]uqy (2)T # 0.

Thus, although ¥ is explicitly gauge - invariant, it is not annihilated by the
Gauss operator. This can also be recognized from a different perspective.
Under an infinitesimal gauge transformation a state ¥ changes as follows:

(6.190)
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) 1)
U[A, u,ul] = U[A, u,ul] - /dx)\(x) (V— +ieu—
0A ou
. 5 (6.191)
—1eu W)\Ij
The state therefore remains invariant if
1_ 9 ) 1) ~
-V— — —euf— ) T = U = 0. 192
(iv6A+eu6u eu 6u*> G(x) 0 (6.192)

Obviously, C; differs from G. The formal reason is the fermionic character
of the matter fields which allows the realization of the field operators as in
(6.8) and (6.8). In fact, in the bosonic case one has G = G [7]. Note that
the integrated Gauss operator annihilates ¥, i. e.,

/ d2G ()T — / dzG ()T = 0. (6.193)

The interpretation of (6.190) was given by Floreanini and Jackiw [8]. The
Gauss operator G may produce states which lie outside the original Fock
space from which one started, since the space spanned by v and u! is much
bigger than the space obtained from the ground state through application
of the field operators ¥ and ¢!. They can only produce polynoms in

1+Qu=u,, uf(1-0) =ul, (6.194)

whereas in (6.190) one recognizes their adjoints u_ and ul:

G(2) T = —%ui(x)u_(x)qf. (6.195)

The prescription we impose here is to project the action of the Gauss operator
back onto the original Fock space,

1
G — PrpG = ZquuT,g.
Since the state (6.195) is orthogonal to each state in this space, one has of
course

PpG(z)¥ = 0. (6.196)

In particular, one finds that the expectation value of the Gauss operator
vanishes, (V|G (z)¥) = 0.

There is only one possible obstruction to this prescription: it may hap-
pen that the presence of an anomaly spoils the commutativity of two Gauss
operator (this anomaly should not be confused with the anomaly of the
axial current). In this case our prescription would lead to a contradiction
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since the projected Gauss operators always commute with each other. An
example where such anomalies occur are chiral fermions in an external elec-
tromagnetic field [8]. In such a case one cannot identify a state ¥ with
its projected state, u+uT_\I//4. Here, however, we deal with Dirac fermions
where the anomaly connected with the left - handed part cancels the corre-
sponding anomaly of the right - handed part. It is thus perfectly consistent
to identify states with their projected version.

In this respect the situation is analogous to the Gupta - Bleuler quanti-
zation of electrodynamics where one can get rid of negative norm states by
identifying states with zero norm.

We have thus shown that the Gauss operator for fermions can be consis-
tently interpreted in the functional Schrodinger picture if no gauge violating
anomalies are present.

Outlook: The use of wave functionals gives an intuitive picture of the
physics involved, in particular with regard to conceptual questions. This
became especially clear in our discussion of particle creation and anomalies.
Second, this picture may possess technical advantages in some applications,
such as the calculation of expectation values or anomalous particle produc-
tion rates. One might therefore expect this picture to be of some use in
other branches of quantum field theory where less results are known than
in QED, e.g. fermions in a gravitational background as well as coupled to
a quantized gravitational field, especially in the framework of the new vari-
ables in canonical general relativity [5]. This could shed some light on the
final stages of black hole evaporation. Further possible applications include
non-Abelian fields in four dimensions [22], decoherence, the semiclassical
approximation, bosonization, as well as the extension to problems where
non-Gaussian states play a role.

221



Bibliography

[1]

[12]

[13]
[14]
[15]

R. Jackiw, in Field Theory and Particle Physics, edited by O. Eboli,
M. Gomes and A. Santano (World Scientific, Singapore, 1990).

J. H. Yee, in Proceedings of the 10th Symposium on Theoretical
Physics, Min Eum Sa, Korea 1992.

K. Symanzik, Nucl. Phys. B 190, 1 (1981).
D. M. McAvity and H. Osborn, Nucl. Phys. B 394, 728 (1993).

A. Ashtekar, Lectures on non-perturbative canonical gravity (World
Scientific, Singapore, 1991).

C. Kiefer and T. P. Singh, Phys. Rev. D 44, 1067 (1991).
C. Kiefer, Phys. Rev. D 45, 2044 (1992).
R. Floreanini and R. Jackiw, Phys. Rev. D 37, 2206 (1988).

A. Duncan, H. Meyer-Ortmanns, and R. Roskies, Phys. Rev. D 36,
3788 (1987).

J. Schwinger, Phys. Rev. 128, 2425 (1962).

J. H. Loewenstein and J. A. Swieca, Ann. Phys. (N.Y.) 68, 172 (1971);
N. K. Nielsen and B. Schroer, Nucl. Phys. B 120, 62 (1977); K. D.
Rothe and J. A. Swieca, Ann. Phys. (N. Y.) 117, 382 (1979).

J. E. Hetrick and Y. Hosotani, Phys. Rev. D 38, 2621 (1988); I. Sachs
and A. Wipf, Helv. Phys. Acta 65, 652 (1992); M. B. Paranjape and
R. Ross, preprint UdeM-LPN-TH-93-136 (1993).

N. S. Manton, Ann. Phys. (N. Y.) 159, 220 (1985).
S. Tso and H. Murayama, Progr. Theor. Phys. 84, 142 (1990).

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products (Academic, London, 1980), p. 419.

222



[16] J. Schwinger, Phys. Rev. 82, 664 (1951); see also, e.g., W. Dittrich
and M. Reuter, Effective Lagrangians in Quantum FElectrodynamics
(Springer, Berlin, 1985).

[17] T. Padmanabhan, Pramana 37, 179 (1991).

[18] N. D. Birrell and P. C. W. Davies, Quantum fields in curved space,
Cambridge University Press (1982).

[19] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products (Academic, London, 1980), pp. 1065-1067.

[20] N. H. Christ, Phys. Rev. D 21, 1591 (1980).

[21] R. Jackiw, in High Energy Physics 1985, edited by M. J. Bowick and
F. Giirsey (World Scientific, Singapore, 1986).

[22] M. Liischer, R. Narayanan, P. Weisz, and U. Wolff, Nucl. Phys. B 384,
168 (1992).

[23] C. Kiefer, Phys. Rev. D 46, 1658 (1992).

223



