
Chapter 6

Fun
tional S
hr�odinger

Equation for Fermions in

External Gauge Fields

In some appli
ations the language of wave fun
tionals and the fun
tional

S
hr�odinger equation has provided valuable insights (See, e. g., [1℄ and

[2℄ for a review). One big advantage of the S
hr�odinger pi
ture is that

the intuitive pi
ture of evolving wave fun
tions, so su

essful in quantum

me
hani
s, 
an be extended to problems in �eld theory. It is of 
ourse

still an open problem whether the existen
e of the S
hr�odinger pi
ture 
an

be proved rigorously. At least in the 
ase of renormalizable s
alar �eld

theories it has been demonstrated that a fun
tional S
hr�odinger equation

with respe
t to a global time parameter exists at ea
h order of perturbation

theory [3℄. For arbitrary lo
al time variations an expli
it 
al
ulation has

veri�ed the validity of the S
hr�odinger equation up to two loops [4℄.

An important �eld of appli
ation is quantum gravity. Sin
e quantum

general relativity is non-renormalizable at the perturbative level, one has

to develop non-perturbative methods, provided the theory is viable at all.

There have been remarkable developments in 
anoni
al quantum gravity in

re
ent years whi
h have so far 
ulminated in the dis
overy, by using the

fun
tional S
hr�odinger pi
ture, of exa
t formal solutions to all 
onstraint

equations [5℄. The use of wave fun
tionals has also been useful in perform-

ing semi 
lassi
al approximations, for example in the derivation of formal


orre
tion terms to the S
hr�odinger equation from quantum gravity [6℄. It

may thus turn out to be very useful for later appli
ations to explore the

potentialities of the fun
tional S
hr�odinger pi
ture in ordinary �eld theory.
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In this 
hapter 
ouple fermioni
 matter to gauge �elds. Apart from the

last paragraph we limit ourselves to the 
ase where the gauge �eld 
an be

treated semi 
lassi
ally, i.e. we dis
uss the fun
tional S
hr�odinger equation

for the fermioni
 wave fun
tional in a pres
ribed external gauge �eld. Most

of our work deals with QED but we also give some results for the non-

Abelian 
ase.

We start by giving a brief review of the fun
tional S
hr�odinger equation

for fermions following, with elaborations, the work of Floreanini and Ja
kiw

[8℄. Gaussian states are used as generalized va
uum states, but 
ontrary

to the bosoni
 
ase one has to �x a �lling pres
ription for the Dira
 sea

to sele
t a parti
ular va
uum. Se
tion 6.1.3 is 
on
erned with the time-

dependent S
hr�odinger equation. We give its formal solution for arbitrary

external �elds in terms of solutions of the (�rst-quantized) Dira
 equation.

We then pro
eed to 
al
ulate the exa
t ground state for arbitrary ex-

ternal �elds in two dimensional QED in both the massless and the massive


ase (se
tion 6.2). We give expli
it expressions for the expe
tation values

of the Hamiltonian, the ele
tri
 
harge, and the axial 
harge with respe
t

to this ground state. Regularization is performed through gauge-invariant

point splitting. All results are given for the 
ase of �nite as well as in�nite

spa
e intervals. The �nite 
ase allows a 
areful dis
ussion of the dependen
e

of the Casimir energy on the 
hosen boundary 
onditions.

The extension to non-Abelian �elds in two dimensions is straightforward

and is worked out in se
tion 6.3. We give the exa
t ground state as well as

the expe
tations values for the Hamiltonian, the ele
tri
 and axial 
harges.

In se
tion 6.4 then pro
eed to dis
uss appli
ations of the time - depen-

dent S
hr�odinger equation. The parti
le 
reation rate for 
onstant external

ele
tri
 �elds is 
al
ulated in this framework and the 
lassi
al result found

by S
hwinger is re
overed (se
tion 6.4.1). In the massless 
ase in two di-

mensions we 
al
ulate the anomalous parti
le produ
tion rate for arbitrary

external �elds. Its interpretation in the fun
tional language is very trans-

parent { the anomalous produ
tion rate is basi
ally due to the dependen
e

of the �lling pres
ription on the external �eld (se
tion 6.4.2).

Finally we go beyond the external �eld approximation and dis
uss brie
y

some subtleties 
onne
ted with the interpretation of Gauss law. We show

that, ex
ept for the 
ase when anomalies violating gauge invarian
e are

present, the interpretation of the Gauss 
onstraint as a generator of gauge

transformation 
an be res
ued even if it does no longer annihilate gauge

invariant states. We also present a brief outlook on possible future work.
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6.1 Fun
tional S
hr�odinger equation for fermions

6.1.1 Commutation relations and inner produ
t

In this se
tion we give a brief review of the 
anoni
al formalism for QED and

the fun
tional S
hr�odinger pi
ture. Unless otherwise stated, the dimension

D of spa
etime is left arbitrary. The Lagrangian density is given by

L = �

1

4

F

��

F

��

+ i

�

 (D

�




�

�m) ; (6.1)

where

D

�

= �

�

+ ieA

�

is the 
ovariant derivative asso
iated with the ele
tromagneti
 potential A

�

.

The 
anoni
al momenta read

�

0

= 0; �

i

= F

i0

� E

i

; �

 

= i 

y

(6.2)

so that the total Hamiltonian is given by

H =

Z

dx

�

1

2

E

2

+

1

4

F

ij

F

ij

�

+

Z

dxdy 

y

(x)h(x; y) (y)

+

Z

dxA

0

(e 

y

 �rE); (6.3)

where

h(x; y) = �i


0




i

�

�x

i

Æ(x� y) + 


0

(m+ e


i

A

i

)Æ(x � y) (6.4)

plays the role of a �rst quantized Dira
 Hamiltonian in an external ele
tro-

magneti
 �eld. We will denote with h

(0)

the �rst quantized Hamiltonian

without external �eld. We note that x and y is a shorthand notation for a

ve
tor in (D�1) dimensional spa
e, and the metri
 
onvention for spa
etime

is diag(1;�1� 1; :::). Variation of (6.3) with respe
t to A

0

yields the Gauss


onstraint

rE = e 

y

 : (6.5)

In the following we use the gauge 
ondition A

0

= 0. The 
ommutation

relations read

[A

i

(x); E

j

(y)℄ = iÆ

j

i

Æ(x� y) (6.6)

for the ele
tromagneti
 �eld, and

f 

�

(x);  

y

�

(y)g = Æ

��

Æ(x � y) (6.7)

for the fermion �elds. All other 
ommutators (anti
ommutators) vanish.
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In the fun
tional S
hr�odinger pi
ture we represent these 
ommutation

relations by a
ting with the �eld operators on physi
al states 	[u; u

y

;A℄

a

ording to

E

j

!

1

i

Æ

ÆA

j

;  

�

!

1

p

2

 

u

�

+

Æ

Æu

y

�

!

;  

y

�

!

1

p

2

�

u

y

�

+

Æ

Æu

�

�

;

(6.8)

and A is represented by multipli
ation. Note that u

�

and u

y

�

are Grassmann

variables, and 	 is not an eigenstate of either  or  

y

. An alternative

representation has been used, for example, in [9℄, where  is represented,

as in the bosoni
 
ase, by multipli
ation with u, and  

y

is represented by

Æ=Æu. Sin
e, however, the Hermitian 
onjugate of u in that representation

is not given by u

y

, but by Æ=Æu, we �nd it easier for our dis
ussion to resort

to the representation (6.8).

The Grassmann 
hara
ter of the fermion �elds requires a 
areful treat-

ment of the inner produ
t [8℄. If one de�nes the inner produ
t by the

fun
tional integration (we do in the following not expli
itly write out the

ele
tromagneti
 �eld and the spinor indi
es)

h	

1

j	

2

i �

Z

Du

y

Du	

�

1

	

2

= h	

2

j	

1

i

�

; (6.9)

the dual 	

�

of a state 	 is not given by ordinary 
omplex 
onjugation, but

by the expression

	

�

[u; u

y

℄ =

Z

D�u

y

D�u exp

�

�uu

y

+ �u

y

u

�

�

	[�u; �u

y

℄: (6.10)

Here,

�

	 is the hermitian 
onjugate of 	. We have used a 
ompa
t nota-

tion, i. e., �uu �

R

dx�u

�

(x)u

�

(x), et
. Note the analogy to the Bargmann

representation for the harmoni
 os
illator in quantum me
hani
s.

A spe
ial role is played by Gaussian states,

	 = exp

�

u

y


u

�

; (6.11)

sin
e this generalizes the notion of a Fo
k va
uum; 
 is sometimes 
alled

the \
ovarian
e." If we apply the above rules to su
h a state we �nd

�

	[�u; �u

y

℄ = exp

�

�u

y




y

�u

�

; (6.12)

and for the dual, applying the familiar rules of Grassmann integration,

	

�

[u; u

y

℄ =

Z

D�u

y

D�u exp

�

�uu

y

+ �u

y

u+ �u

y




y

�u

�

= det(�


y

) exp

�

u

y

(


y

)

�1

u

�

:

(6.13)

One then �nds for h	j	i the expression
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h	j	i = det(�


y

)

Z

Du

y

Du exp

�

u

y

h

(


y

)

�1

+


i

u

�

= det(1 + 


y


):

(6.14)

An important di�eren
e to the bosoni
 
ase is the fa
t that the state 	[u; u

y

℄

is not an overlap with �elds states, 	[u; u

y

℄ 6= hu; u

y

j	i, sin
e the inner

produ
t is an ordinary number, whereas 	 
an be expanded in terms of

Grassmann variables.

6.1.2 Solution of the stationary S
hr�odinger equation

Here we look for the ground state of the Dira
 Hamiltonian in an external

ele
tromagneti
 �eld, i. e., we solve the stationary S
hr�odinger equation

�

Z

dxdy 

y

(x)h(x; y) (y)

�

	 � H

 

	 = E

0

	: (6.15)

If  

n

are the eigenmodes of the �rst quantized Hamiltonian h,

h 

n

= E

n

 

n

; (6.16)

we 
an expand the �eld operators  and  

y

as

 =

X

n

a

n

 

n

,  

y

=

X

n

a

y

n

 

y

n

;

where a

n

(a

y

n

) is the usual annihilation (
reation) operator. Then,

H

 

=

X

n

E

n

a

y

n

a

n

:

We 
an also expand u and u

y

in terms of these eigenmodes

u(x) =

X

n

u

n

 

n

(x); u

y

(x) =

X

n

u

y

n

 

y

n

(x):

Note that

Æ

Æu(x)

=

X

n

 

y

n

(x)

Æ

Æu

n

to guarantee that Æu(x)=Æu(y) = Æ(x � y). Inserting these expansions into

the expression for H

 

, we �nd

H

 

=

1

2

X

n

E

n

�

u

y

n

+

Æ

Æu

n

�

 

u

n

+

Æ

Æu

y

n

!

:

(6.17)

We want to apply this Hamiltonian on the Gaussian state (6.11). To that

purpose we note that

u

y


u =

X

n;m

u

y

n




nm

u

m

(6.18)
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with


(x; y) =

X

n;m




nm

 

n

(x) 

y

m

(y): (6.19)

We then �nd

H

 

	 =

1

2

Trh(1 + 
)	

+

1

2

X

k;l;n

u

y

n

(Æ

nk

�


nk

)E

k

(Æ

kl

+


kl

)u

l

	:

(6.20)

Upon 
omparison with (6.15) we see that the ground state energy is given

by

E

0

=

1

2

Trh(1 + 
) =

1

2

X

n

E

n

(1 + 


nn

); (6.21)

and that, sin
e the se
ond term in (6.20) must vanish, the elements of 


nn

are given by




nm

= �Æ

nm

: (6.22)

There still remains some arbitrariness how one distributes the numbers 1

and �1 among the elements of 
. This arbitrariness 
an be removed by the

use of the annihilation operators introdu
ed above. We have

a

y

n

a

n

	 =

�

u

y

n

+

Æ

Æu

n

�

 

u

n

+

Æ

Æu

y

n

!

	

=

1

2

(1 + 


nn

)	:

(6.23)

We demand that the ground state 	 be annihilated by a

n

for positive energies

E

n

, i. e.,

a

y

n

a

n

	 =

(

0 if 


nn

= �1$ E

n

> 0

	 if 


nn

= +1$ E

n

< 0

(6.24)

This sele
ts a spe
i�
 ground state and is equivalent to say, in a more heuris-

ti
 language, that a spe
i�
 pres
ription for the �lling of the Dira
 sea has

been 
hosen. From (6.19) we thus �nd for the 
ovarian
e


(x; y) =

X

E

n

<0

 

n

(x) 

y

n

(y)�

X

E

n

>0

 

n

(x) 

y

n

(y): (6.25)

It is very 
onvenient, and we will make extensive use of it later on, to express

this relation in terms of proje
tors,


 � P

�

� P

+

; where P

�

�

1� 


2

(6.26)

proje
t on positive and negative energies, respe
tively:

P

+

P

�

= P

�

P

+

= 0; P

2

+

= P

+

; P

2

�

= P

�

; P

+

+ P

�

= 1: (6.27)
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We also note the operator expression for 
, whi
h follows from the vanishing

of the se
ond term in (6.20), reads:

1

4

(1�
)h(1 + 
) = 0 = P

+

hP

�

: (6.28)

In 
ase that the external ele
tromagneti
 �eld vanishes we 
an give easily an

expli
it expression for 
. In momentum spa
e, the solution 
orresponding

to the �lling pres
ription (6.24) reads




(0)

(p; p

0

) = �

h

(0)

p

p

2

+m

2

Æ(p � p

0

); (6.29)

where h

(0)

is the A-independent part of (6.4). This 
an most easily be seen

by 
al
ulating the va
uum energy E

0

. From (6.21) we have, sin
e h

(0)

has

vanishing tra
e,

E

0

=

1

2

Trh

(0)




(0)

=

1

2

X

n

E

n




nn

= �

1

2

X

n

jE

n

j

= �

1

2

Tr

q

p

2

+m

2

= �

1

2

V

(2�)

3

Z

d

3

p

q

p

2

+m

2

:

(6.30)

Use has been made here of the fa
t that the square of h is given by h

2

(0)

=

p

2

+m

2

. For later use we give the expli
it result for two and four spa
etime

dimensions. In two dimensions we have,




(0)

= �

1

p

p

2

+m

2

 

�p m

m p

!

; 


(0)

=

1

p

p

2

+m

2

 

�m p

p m

!

:

(6.31)

in the 
hiral and Dira
 representations, respe
tively. In the four dimensional


ase we have, in the Dira
 representation,




(0)

= �

1

p

p

2

+m

2

 

m � � p

� � p �m

!

; (6.32)

where � are the Pauli matri
es.

We 
on
lude this part with a dis
ussion of the two-point fun
tion

h 

�

(x) 

y

�

(y)i, where the expe
tation value is 
omputed with respe
t to the

above ground state. For this we need the two-point fun
tion of uu

y

whi
h

we now 
al
ulate, using (6.11) and (6.13),

hu

�

(x)u

y

�

(y)i

h	j	i

=

det(�


y

)

h	j	i

Z

Du

y

Duu

�

(x)u

y

�

(y)

� exp

�

u

y

[(


y

)

�1

+
℄u

�
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=

det(�


y

)

h	j	i

Æ

2

Æ�

�

(x)Æ�

y

�

(y)

Z

Du

y

Du

� exp

�

u

y

[(


y

)

�1

+
℄u+ �u+ �

y

u

y

�

j

�=�

y

=0

=

det(1 + 


y


)

h	j	i

Æ

2

Æ�

�

(x)Æ�

y

�

(y)

exp

�

�[(


y

)

�1

+
℄

�1

�

y

�

j

�=�

y

=0

= �[(


y

)

�1

+
℄

�1

��

(x; y);

where (6.14) has been used. In the present 
ase, where 
 = 


y

and 


2

= 1,

this reads

hu

�

(x)u

y

�

(y)i

h	j	i

= �

1

2




��

(x; y): (6.33)

If we apply  

�

(x) 

y

�

(y) on the ground state, we �nd

 

�

(x) 

y

�

(y)	 =

1

2

(Æ

��

Æ(x� y)� 


��

(x; y))	

+

1

2

(u

�

(x) + 


�Æ

(x;w)u

Æ

(w))(u

y

�

(y)� u

y




(z)



�

(z; y))	;

where a summation (integration) over repeated indi
es (variables) is under-

stood.

Using the result (6.33) we �nd eventually for the desired two-point fun
-

tion the expression

h 

�

(x) 

y

�

(y)i

h	j	i

=

1

2

(Æ

��

Æ(x � y)� 


��

(x; y));

or, in operator notation and with respe
t to a normalized state,

h (x) 

y

(y)i =

1

2

(1� 
(x; y)) = P

+

(x; y): (6.34)

Thus, if one knows the 
ovarian
e, one 
an 
al
ulate all two-point fun
tions,

and vi
e versa. We �nally note that ex
ited states 
an be easily generated

by applying the above 
reation operator a

y

n

on the ground state, leading to

a Gaussian times some polynomial.

6.1.3 Solution of the time-dependent S
hr�odinger equation

In this subse
tion we dis
uss the solution of the fun
tional S
hr�odinger equa-

tion for fermions in an external ele
tromagneti
 �eld,

�

Z

dxdy 

y

(x)h(x; y) (y)

�

	 � H

 

	 = i

_

	; (6.35)
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where, again, h is given expli
itly by (6.4). Equation (6.35) follows from a

semi
lassi
al expansion of the full fun
tional S
hr�odinger equation [7℄. We

make again a Gaussian ansatz,

	 = N(t) exp

�

u

y


(t)u

�

; (6.36)

where 
 and N now depend on time. The state (6.36) may be thought

as an evolving va
uum state. Inserting this ansatz into (6.35) we �nd two

equations for N and 
 whi
h read, in operator notation,

i

d lnN

dt

=

1

2

Trh
 (6.37)

i

_


 =

1

2

(1� 
)h(1 + 
): (6.38)

An important spe
ial 
ase is given if 
 
an be written in terms of the pro-

je
tors (6.26). As in the 
ase of the stationary equation this is equivalent to




2

= 1.

One physi
al appli
ation we have in mind is to 
hoose the free solution

in, say, the asymptoti
 past and study its evolution under the in
uen
e of

an external ele
tromagneti
 �eld a

ording to (6.35). It is important to

note that (6.38) preserves the property 


2

= 1. Thus, 
(t) 
an always be

written as in (6.26) provided 


2

(t

0

) = 1 for some \initial time" t

0

. This 
an

easily be seen: One �rst veri�es that the inverse of 
, 


�1

, obeys the same

di�erential equation as (6.38). From the uniqueness of the solution we thus

have 
(t

0

) = 


�1

(t

0

)) 
(t) = 


�1

(t), 


2

(t) = 1.

Eq. (6.38) is solved by


(t) = (Q(t)� C) (Q(t) +C)

�1

; (6.39)

where C is a time-independent operator, and the operator Q(t) satis�es

i

_

Q = hQ: (6.40)

One may wish, for example, to 
hoose for 
 the \free solution" (6.25) in the

asymptoti
 past, i.e., one demands that 
 approa
hes 


0

= P

�

� P

+

for

t! �1. This would 
orrespond to the 
hoi
e

C = P

+

; and Q(t)

t!�1

�! P

�

:

The time evolution a

ording to (6.35) will then in general indu
e a time

dependen
e of 
 whi
h may deviate, at late times, from the asymptoti


\free" solution. This 
an then be interpreted as parti
le 
reation and will

be expli
itly dis
ussed below.

The signi�
an
e of the result (6.39,6.40) 
onsists in the redu
tion of

the solution of the full fun
tional equation (6.35) to the solution of a \�rst
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quantized" problem { Eq. (6.40) is nothing but the Dira
 equation with an

external ele
tromagneti
 �eld.

After the solution for 
 has been found, the prefa
tor N 
an be imme-

diately determined from (6.37) to read

N(t) = N

0

exp

�

�

i

2

Z

t

Tr(h
)ds

�

:

The time-independent fa
tor N

0


an be �xed if 	 is normalized, i. e.

h	j	i = 1, and one �nds, using (6.14),

N(t) = det

�1=2

(1 + 


y


) exp

�

�

i

2

Z

t

Re Tr(h
)ds

�

: (6.41)

We now address the question of parti
le 
reation. We �rst note that the

absolute square of the matrix element of two Gaussians, 	

1

and 	

2

, with


orresponding 
ovarian
es 


1

and 


2

, is given by the expression

jh	

1

j	

2

ij

2

= det

(1 + 


y

1




2

)(1 + 


y

2




1

)

(1 + 


y

1




1

)(1 + 


y

2




2

)

: (6.42)

In the following we will take for 	

1

the time-evolved in-va
uum and for 	

2

the va
uum state at late times. The 
orresponding 
ovarian
es will be 
alled


(t) and 


0

, respe
tively. As dis
ussed above, we demand 
(t) to approa
h

the \free 
ovarian
e" 


0

at t! �1. Sin
e 


0

= 


y

and 


2

0

= 1, the desired

transition element (6.42) reads

jh	

1

j	

2

ij

2

= det

(1 + 


0


(t))(1 + 


y

(t)


0

)

2(1 + 


y

(t)
(t))

: (6.43)

To get the desired expression (6.39) for 
, whi
h for the present 
ase reads


(t) = (Q(t)� P

+

) (Q(t) + P

+

)

�1

; (6.44)

it is �rst ne
essary to solve (6.40) for Q(t). This is most 
onveniently done

by the ansatz

Q(t) =

X

n

�

n

(t)�

y

n

;

where �

n

(without argument) denotes a negative frequen
y eigenfun
tion

of the Dira
 Hamiltonian h, and �

n

(t) denotes the solution of (6.40) whi
h

approa
hes �

n

in the asymptoti
 limit t! �1. Therefore,

Q(t)

t!�1

�!

X

n

�

n

�

y

n

� P

�

;

as required. It will prove to be 
onvenient if one expands �

n

(t) as follows,
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�

n

(t) = �

nm

(t)�

m

+ �

nm

(t) 

m

; (6.45)

where  

m

is a positive frequen
y eigenfun
tion of h, and �, � are the time-

dependent Bogolubov 
oeÆ
ients asso
iated with this expansion. Sin
e h

is hermitian, the norm (�

n

(t); �

m

(t)) is 
onserved, and we 
hoose it to be

equal to one. The Bogolubov 
oeÆ
ients are then normalized a

ording to

j�j

2

+ j�j

2

= 1: (6.46)

Note that this is di�erent from the bosoni
 
ase where the analogous ex-

pression 
ontains a minus sign.

The operator Q(t) + P

+

in (6.44) is then given by the expression

Q(t) + P

+

=

X

n;m

�

�

nm

�

m

�

y

n

+ �

nm

 

m

�

y

n

�

+

X

n

 

n

 

y

n

;

from where its inverse is found to read

(Q(t) + P

+

)

�1

=

X

n

 

n

 

y

n

�

X

n;s;t

 

n

�

�1

st

�

tn

�

y

n

+

X

n;s

�

n

�

�1

sn

�

y

s

:

One 
an then write down the desired expression for 
(t),


(t) =

X

n

(�

n

�

y

n

�  

n

 

y

n

) + 2

X

n;s;t

 

n

�

�1

st

�

tn

�

y

s

= 


0

+ 2

X

n;s;t

 

n

�

�1

st

�

tn

�

y

s

� 


0

+ 2B;

(6.47)

where we have introdu
ed an operator B, whi
h in the position representa-

tion is given by

B(x; y) =

X

n;s;t

 

n

(x)�

�1

st

�

tn

�

y

s

(y):

It maps negative energy eigenfun
tions into positive ones, and it annihilates

positive energy eigenfun
tions. Conversely, its adjoint

B

y

(x; y) =

X

n;s;t

�

s

(x)��

�1

st

�

�

tn

 

y

n

(y)

maps positive energy eigenfun
tions into negative ones and annihilates neg-

ative energy eigenfun
tions. Note that B and B

y

are nilpotent operators.

One then �nds for the various terms in the transition element (6.43) the

expressions
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y

(t)


0

= 1� 2B

y

; , 


0


(t) = 1� 2B;




y

(t)
(t) = 1� 2B � 2B

y

+ 4B

y

B;

(6.48)

and one has

jh	

1

j	

2

ij

2

= det

(1�B)(1�B

y

)

(1�B �B

y

+ 2B

y

B)

: (6.49)

Written in the basis ( ; �)

T

, the various operators in (6.48) are given by the

matrix expressions

B =

 

0 �

�1

�

0 0

!

, B

y

=

 

0 0

(�

�1

�)

y

0

!

;

(6.50)

One immediately veri�es that det(1 � B) = det(1 � B

y

) = 1. Therefore,

using (2.63),

jh	

1

j	

2

ij

2

= det

�1

(1�B �B

y

� 2B

y

B)

= det

�1

(1 + �

�1

��

y

�

�1y

) = det

�1

(1 + �

y

(1� ��

y

)

�1

�)

= det

�1

�

�1

(1� ��

y

)

�1

� = det(1� ��

y

):

(6.51)

The interpretation of this result is obvious. The determinant is less than one

for non-vanishing Bogolubov 
oeÆ
ient �, whi
h signals parti
le 
reation.

Note that the analogous expression in the bosoni
 
ase reads [7℄ det

�1

(1 +

��

y

), whi
h is only equal to (6.51) for small �. We will apply the above

result to the 
al
ulation of parti
le 
reation in an external ele
tri
 �eld in

se
tion 6.4.

6.2 Ground state for QED

2

6.2.1 The massless 
ase

Cal
ulation of the 
ovarian
e: In the following we shall give expli
it

results for the ground state of QED

2

in arbitrary external ele
tromag-

neti
 �elds by applying the method developed in the last se
tion. Two-

dimensional massless QED is also known as the S
hwinger model [10℄. It

has been expli
itly solved and found to be equivalent to the theory of a free

massive s
alar �eld (see [11℄ for some literature on the S
hwinger model). In

this paper we also address some issues for the S
hwinger model on a �nite

spa
e [12, 42℄. The Hamiltonian formalism for the S
hwinger model has

been dis
ussed in [13℄ and [14℄.

It is 
onvenient to dis
uss the massless and the massive 
ase separately

sin
e it is adequate to use the 
hiral representation for the Gamma matri
es
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in the massless 
ase and the Dira
 representation in the massive 
ase. For

m = 0 we thus use




0

=

 

0 1

1 0

!

; 


1

=

 

0 1

�1 0

!

; 


0




1

=

 

�1 0

0 1

!

: (6.52)

The �rst-quantized Hamiltonian h (6.4) is then given expli
itly by (with

A

1

� A)

h(x; y) =

 

i

�

�x

� eA(x) 0

0 �i

�

�x

+ eA(x)

!

Æ(x� y): (6.53)

To �nd the ground state of the stationary S
hr�odinger equation we have

to solve the "�rst-quantized" problem (6.16), i. e., to �nd the spe
trum of

(6.53),

h 

n

= E

n

 

n

: (6.54)

We quantize the �elds in a �nite interval, x 2 [0; L℄, and impose the bound-

ary 
ondition

 

n

(x+ L) = e

2�i(�+�


5

)

 

n

(x); (6.55)

where � and � are the ve
torial and 
hiral twists, respe
tively. Writing

 

n

=

 

'

n

�

n

!

; (6.56)

the diagonality of h yields two de
oupled equations for '

n

and �

n

, 
orre-

sponding to a de
omposition into right- and left handed fermions. One �nds

from (6.54) and (6.55) for the right handed part

'

n

(x) =

1

p

L

exp

�

�i

�

E

R

n

x+ e

Z

x

0

A

��

;

E

R

n

=

2�

L

(n� �� �)�

e

L

Z

L

0

A �

2�

L

(n� �);

(6.57)

and for the left handed part

�

n

(x) =

1

p

L

exp

�

i

�

E

L

n

x� e

Z

x

0

A

��

;

E

L

n

= �

2�

L

(n� �+ �) +

e

L

Z

L

0

A � �

2�

L

(n�

~

�):

(6.58)

Here we have introdu
ed

� = �+ � +

e

2�

Z

L

0

A and

~

� = �� � +

e

2�

Z

L

0

A:

(6.59)
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The 
ovarian
e (6.25) also splits into a right- and left handed part


(x; y) =

 




+

(x; y) 0

0 


�

(x; y)

!

; (6.60)

where




+

(x; y) =

X

E

R

n

<0

'

n

(x)'

y

n

(y)�

X

E

R

n

>0

'

n

(x)'

y

n

(y);




�

(x; y) =

X

E

L

n

<0

�

n

(x)�

y

n

(y)�

X

E

L

n

>0

�

n

(x)�

y

n

(y):

(6.61)

From (6.57) and (6.58) one re
ognizes that E

R

n

> 0 for n > � and E

L

n

> 0

for n <

~

�. Inserting all this into (6.61) one �nds




+

(x; y) =

1

L

X

E

R

n

<0

exp

�

iE

R

n

(y � x) + ie

Z

y

x

A

�

�

1

L

X

E

R

n

>0

exp

�

iE

R

n

(y � x) + ie

Z

y

x

A

�

=

1

L

exp

�

ie

Z

y

x

A+ i

2��

L

(x� y)

�

�

0

�

X

n<�

exp

�

�

2�in

L

(x� y)

�

�

X

n>�

exp

�

�

2�in

L

(x� y)

�

1

A

=

i

L

exp

�

ie

Z

y

x

A+

2�i

L

(�� [�℄�

1

2

)(x� y)

�

�

1

sin

�

L

(x� y)

; (6.62)

where [�℄ denotes the biggest integer smaller or equal than �.

The left handed part, 


�

(x; y), is 
al
ulated in the same way, and found

to read




�

(x; y) = �

i

L

exp

�

ie

Z

y

x

A+

2�i

L

(

~

�� [

~

�℄�

1

2

)(x� y)

�

1

sin

�

L

(x� y)

:

(6.63)

In the limit L!1 the 
ovarian
e is given by the expression


(x; y) =

i

�

exp

�

ie

Z

y

x

A

�

P

�

1

x� y

�

 

1 0

0 �1

!

; (6.64)

where P denotes the prin
ipal value. This result is in a

ordan
e with [8℄.

We make a �nal remark on the existen
e of large gauge transformations, i.

e. gauge transformations whi
h 
annot be obtained from the identity in a
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ontinuous way. As 
an be seen from the expressions for the energy, (6.57)

and (6.58), su
h gauge transformations 
hange the 
uxes � and

~

� by an

integer. Sin
e the eigenfun
tions in (6.57) and (6.58) remain un
hanged,

and the 
ovarian
e 
ontains only the fra
tional part of the 
ux (see (6.62)

and (6.63)), the wave fun
tional (6.11) remains invariant.

Charges and energy: Now we shall 
al
ulate the expe
tation values of

the 
harge, 
hiral 
harge, and energy with respe
t to the ground state derived

above.

The 
omponents of the ele
tri
 
urrent are given by

j

0

=  

y

 = '

y

'+ �

y

� � j

+

+ j

�

;

j

1

=  

y




0




1

 = �'

y

'+ �

y

� � �j

+

+ j

�

:

(6.65)

The total 
harge and 
hiral 
harge are

Q =

Z

dxj

+

+

Z

dxj

�

� Q

+

+Q

�

; and Q

5

= Q

+

�Q

�

;

(6.66)

respe
tively. These expressions 
ontain produ
ts of the �eld operators and

thus require a regularization pres
ription. The pro
edure employed here is

to �rst perform a point splitting and then to subtra
t the expe
tation value

for vanishing external �eld. After the point splitting is removed, one is left

with a �nite result. The 
ru
ial point to note is that the point splitting has

to be done in a gauge invariant way. We thus de�ne the following \point

splitted" quantities

�

+

(x; y) = '

y

(x)e

ie

R

y

x

A

'(y) and �

�

(x; y) = �

y

(x)e

ie

R

y

x

A

�(y)

and they are expli
itly gauge invariant. Applying �

+

on the va
uum state

(6.11) we �nd

�

+

	 =

1

2

exp

�

ie

Z

y

x

A

��

u

y

1

(x) +

Æ

Æu

1

(x)

�

 

u

1

(y) +

Æ

Æu

y

1

(y)

!

	

=

1

2

exp

�

ie

Z

y

x

A

�

(Æ(x� y) + 


+

(y; x))	 (6.67)

+

1

2

exp

�

ie

Z

y

x

A

�

(u

y

1

(x)� 


+

(z; x)u

y

1

(z))�

(u

1

(y) + 


+

(y; z)u(z))	;

where, again, an integration over repeated variables is understood. If we set

x = y and integrate over x, the last term on the right-hand side of (6.67)

vanishes sin
e (1 � 


+

)(1 + 


+

) = 0 a

ording to (6.28). Subtra
ting the
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expression for vanishing A �eld, the �rst term after the se
ond equation sign

on the right-hand side of (6.67) reads

1

2

exp

�

ie

Z

y

x

A

�




+

(y; x)�

1

2




(0)

(y; x) (6.68)

=

i

2�

exp

�

2�i

L

(�� [�℄�

1

2

)(y � x)

�

1

y � x

� �$ �

0

+O(x� y);

where we have expanded the sine in the expression (6.62) for the 
ovarian
e

and kept only the term proportional to (x� y)

�1

. We have also introdu
ed

�

0

= �+ � so that � = �

0

+

e

2�

Z

L

0

A � �

0

+ '

(
ompare (6.59)). Expanding also the exponential in (6.68) we note that

the terms whi
h be
ome singular in the limit x! y drop out. We 
an thus

remove the point splitting and perform the x integration to �nd

hQ

+

i = [�℄� �� ([�

0

℄� �

0

): (6.69)

The left handed se
tor is 
al
ulated analogously, with the result

hQ

�

i = [

~

�℄�

~

�� ([

~

�

0

℄�

~

�

0

); (6.70)

where

~

�

0

= �� � (6.71)

so that

~

� =

~

�

0

+

e

2�

Z

L

0

A �

~

�

0

+ ' (6.72)

(
ompare (6.59)).

The results for the expe
tation values of the total 
harge and 
hiral


harge are then given by

hQi = hQ

+

i+ hQ

�

i

= [�+ � + '℄� [�+ �℄� [�� � + '℄ + [�� �℄ (6.73)

and

hQ

5

i = hQ

+

i � hQ

�

i

= [�+ � + '℄� [�+ �℄ + [�� � + '℄� [�� �℄� 2': (6.74)

Note that < Q >= 0 for vanishing 
hiral twist, � = 0 (see (6.55)), and that

< Q

5

>= 2(['℄�') for � = � = 0. The above expe
tation values have been


al
ulated, using zeta regularization, by [14℄ for the spe
ial 
ase � = 1=2

and � = 0. Their result is in agreement with ours.
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We now pro
eed to 
al
ulate the expe
tation value of the Hamiltonian

H

 

(6.17). We �rst operate with H

 

on the ground state wave fun
tional to

�nd the expression (6.20). We then use the expli
it solution (6.22) for the


ovarian
e to re
ognize that only the �rst term in (6.20) 
ontributes to the

expe
tation value < H

 

>:

hH

 

i =

1

2

X

n

E

n

(1 + 


nn

): (6.75)

We regularize again by point splitting. We thus introdu
e a "point splitted"

expe
tation value whi
h for the 
ontribution from the right handed se
tor

reads

h	jH

y

 

(x; y)j	i =

1

2

exp

�

�ie

Z

y

x

A

�

h

x

X

n

(1 + 


nn

)'

n

(x)'

y

n

(y): (6.76)

Note that this expression is expli
itly gauge-invariant and redu
es to (6.75)

after setting x = y and integrating over x (the a
tion of the �rst-quantized

Hamiltonian h

x

� i�=�x � eA(x) just produ
es the energy E

n

when a
ting

on the  

n

). The 
ompleteness of the '

n

, as well as (6.19), enables one to

write (6.76) as

h	jH

y

 

(x; y)j	i =

1

2

exp

�

�ie

Z

y

x

A

�

h

x

(Æ(x � y) + 


+

(x; y)): (6.77)

Using the expli
it expression (6.62) for 


+

(x; y) one �nds, up to order x�y,

exp

�

�ie

Z

y

x

A

�

h

x




+

(x; y) =

�

�

2i

L(x� y)

(�� [�℄�

1

2

) +

1

�(x� y)

2

�

�

6L

2

�

�

exp

�

2�i

L

(�� [�℄�

1

2

)(x� y)

�

+O(x� y):

Expanding also the exponential, this reads

exp

�

�ie

Z

y

x

A

�

h

x




+

(x; y) =

1

�(x� y)

2

�

�

6L

2

+

2�

L

2

(��[�℄�

1

2

)

2

+O(x�y);

so that we �nd

h	jH

y

 

(x; y)j	i =

1

2

exp

�

�ie

Z

y

x

A

�

(i

�

�x

� eA)Æ(x � y)

+

1

2�(x� y)

2

�

�

12L

2

+

�

L

2

(�� [�℄�

1

2

)

2

+O(x� y):

Sin
e

exp

�

�ie

Z

y

x

A

�

i

�

�x

Æ(x� y) = iÆ

0

(x� y) + eA(x)Æ(x � y);
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we have

h	jH

y

 

(x; y)j	i =

i

2

Æ

0

(x�y)+

1

2�(x� y)

2

�

�

12L

2

+

�

L

2

(��[�℄�

1

2

)

2

+O(x�y):

(6.78)

From this expression one has to subtra
t the expe
tation value for vanishing

external �eld. To retain �nite-size e�e
ts we subtra
t the "free" value for

L ! 1. This removes the divergent terms in (6.78). Setting x = y and

integrating over x, one �nds the result

hH

y

 

i =

�

L

�

�� [�℄�

1

2

�

2

�

�

12L

: (6.79)

This vanishes in the limit L ! 1. The expression for �nite L is nothing

but the Casimir energy whi
h is also present for vanishing external �eld:

hH

y

 

i =

�

L

�

�

0

� [�

0

℄�

1

2

�

2

�

�

12L

:

Note that the resulting for
e between the boundaries at x = 0 and x = L


an be attra
tive or repulsive, depending on the 
hosen boundary 
onditions.

For the 
onditions 
hosen in [14℄ the expe
tation value is given by ��=12L

and thus leads to an attra
tive for
e.

The expe
tation value of the Hamiltonian in the left handed se
tor is


al
ulated in the same way by making use of (6.63) and using �h

x

=

�i�=�x+ eA(x). Instead of (6.79) one �nds

hH

�

 

i =

�

L

�

~

�� [

~

�℄�

1

2

�

2

�

�

12L

: (6.80)

The total Casimir energy is the sum of the expressions (6.79) and (6.80).

6.2.2 The massive 
ase

Cal
ulation of the 
ovarian
e: In the massive 
ase we use the Dira


representation for the Gamma matri
es, i. e.,




0

= �

3

, 


1

= �i�

2

, 


0




1

= ��

1

(6.81)

The �rst-quantized Hamiltonian is then given by the expression

h(x; y) =

 

m i

�

�x

� eA(x)

i

�

�x

� eA(x) �m

!

Æ(x� y): (6.82)

We are again looking for the eigenfun
tions of h,

h 

n

= E

n

 

n

: (6.83)
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If we make the ansatz

 

n

=

1

p

L

exp

�

�ie

Z

x

0

A� i�

n

x

�




n

; (6.84)

Eq. (6.83) yields an algebrai
 equation for 


n

,

 

m�E

n

�

n

�

n

�m�E

n

! 




n;1




n;2

!

= 0: (6.85)

The boundary 
ondition

 

n

(x+ L) = e

2�i�

 

n

(x) (6.86)

yields a quantization 
ondition for the �

n

,

�

n

=

2�

L

 

n� ��

e

2�

Z

L

0

A

!

�

2�

L

(n� �); (6.87)

where n 2 Z. From (6.85) one then �nds the values for the energy,

E

n

= �

q

m

2

+ �

2

n

= �

s

m

2

+

4�

2

L

2

(n� �)

2

� �!

n

: (6.88)

We already note at this point that the massless limit of (6.88) yields E

n

=

�

2�

L

jn� �j instead of E

n

= �

2�

L

(n� �) whi
h was found by starting from

m = 0 ab initio. This will be relevant for the dis
ussion of anomalies in


hapter 5.

The normalized eigenfun
tions  

n

read

 

n;+

=

1

p

2!

n

(!

n

+m)L

 

!

n

+m

�

n

!

exp

�

�i�

n

x� ie

Z

x

0

A

�

(6.89)

for E

n

= !

n

, and

 

n;�

=

1

p

2!

n

(!

n

+m)L

 

��

n

!

n

+m

!

exp

�

�i�

n

x� ie

Z

x

0

A

�

(6.90)

for E

n

= �!

n

.

We now use again (6.25) and the �lling pres
ription (6.24) to 
al
ulate

the 
ovarian
e,


(x; y) =

X

n

 

n;�

(x) 

y

n;�

(y)�

X

n

 

n;+

(x) 

y

n;+

(y) � P

�

� P

+

:

(6.91)

Noting that �

n

= (!

n

+m)(!

n

�m), we �nd

P

+

(x; y) =

1

2L

e

�ie

R

x

y

A

X

n

e

�i�

n

(x�y)

!

n

 

!

n

+m �

n

�

n

!

n

�m

!

(6.92)
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and

P

�

(x; y) =

1

2L

e

�ie

R

x

y

A

X

n

e

�i�

n

(x�y)

!

n

 

!

n

�m ��

n

��

n

!

n

+m

!

: (6.93)

To evaluate the various sums in these expressions we make use of Poisson's

summation formula:

2�

1

X

n=�1

f(2�n) =

1

X

n=�1

F (n) where F (u) =

Z

1

�1

dzf(z)e

izu

:

(6.94)

We then have

X

n

�

n

!

n

e

�2�in(x�y)=L

�

X

n

f(2�n) and

X

n

1

!

n

e

�2�in(x�y)=L

�

X

n

~

f(2�n);

where

f(z) =

z � 2��

p

(z � 2��)

2

+m

2

L

2

e

�i(x�y)z=L

and

~

f(z) =

L

p

(z � 2��)

2

+m

2

L

2

e

�i(x�y)z=L

:

From (6.94) we then �nd

F (u) = e

2�i�(u�(x�y)=L)

Z

1

�1

dp

pe

ip(u�(x�y)=L)

p

p

2

+m

2

L

2

= 2ie

2�i�(u�(x�y)=L

mLK

1

(mLu�m(x� y))

(6.95)

and

~

F (u) = Le

2�i�(u�(x�y)=L)

Z

1

�1

dp

e

ip(u�(x�y)=L)

p

p

2

+m

2

L

2

= 2Le

2�i�(u�(x�y)=L

K

0

(mLu�m(x� y)):

(6.96)

Here K

0

and K

1

denote Bessel fun
tions and use has been made of [15℄ to

evaluate the integrals. From (6.94) we then �nd for the sums

X

n

�

n

!

n

e

�2�in(x�y)=L

= �

imL

�

e

�2�i�(x�y)=L

X

n

e

�2�in�

K

1

(mLn+m(x� y))

and

X

n

1

!

n

e

�2�in(x�y)=L

=

L

�

e

�2�i�(x�y)=L

X

n

e

�2�in�

K

0

(mLn+m(x� y)):
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In the expressions below we will for simpli
ity not expli
itly write out the

argument mLn + m(x � y) of the Bessel fun
tions K

0

and K

1

. For the

remaining sum we have

X

n

e

�

2�in

L

(x�y)

= L

X

n

Æ(x� y � nL) = LÆ(x � y)

sin
e jx� yj < L. Inserting all these results into the expressions (6.92) and

(6.93) we �nd

P

+

=

1

2

Æ(x� y)I+

m

2�

e

�ie

R

x

y

A

X

n

�

K

0

�iK

1

�iK

1

�K

0

�

e

�2�in�

(6.97)

and

P

�

=

1

2

Æ(x� y)I�

m

2�

e

�ie

R

x

y

A

X

n

 

K

0

�iK

1

�iK

1

�K

0

!

e

�2�in�

:

(6.98)

We verify that P

+

+ P

�

= I. Our �nal result for the 
ovarian
e (6.26) is

then given by the expression


(x; y) = P

�

� P

+

=

m

�

e

�ie

R

x

y

A

X

n

 

�K

0

iK

1

iK

1

K

0

!

e

�2�in�

:

(6.99)

In the limit L!1 we �nd


(x; y) =

m

�

e

�ie

R

x

y

A

 

�K

0

(m(x� y)) iK

1

(m(x� y))

iK

1

(m(x� y)) K

0

(m(x� y))

!

: (6.100)

Using the asymptoti
 expressions for the Bessel fun
tions one veri�es that


 approa
hes the result (6.64) in the limit of vanishing mass. Furthermore,

in the opposite limit of large mass (or large jx� yj) the 
ovarian
e reads


(x; y) =

s

m

2�jx� yj

e

�ie

R

x

y

A

exp (�mjx� yj)

 

�1 i

i 1

!

: (6.101)

In summary, we have found the exa
t ground state for arbitrary external

�elds in the massive S
hwinger model. The ex
ited states, 	

n

, 
an then

be 
onstru
ted in the usual way through the appli
ation of the 
reation

operator. A general state, 	, of the fully quantized theory 
an then be

expanded into these energy eigenstates a

ording to

	[A; u; u

y

℄ =

X

n

'

n

[A℄	

n

[A; u; u

y

℄;

where the fun
tionals '

n

[A℄ 
an be determined from the full fun
tional

S
hr�odinger equation whi
h 
ontains the kineti
 term�Æ

2

=2ÆA

2

in the Hamil-

tonian.
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Charges and energy: We de�ne again a "point splitted" 
harge operator

�(x; y) =  

y

(x) exp

�

ie

Z

y

x

A

�

 (y)

and �nd for its a
tion on the va
uum state an expression analogous to (6.67)

(there is now no distin
tion between a left and a right handed se
tor):

�(x; y)	 =

1

2

exp

�

ie

Z

y

x

A

�

(2Æ(x � y) +

2

X

�=1




��

(y; x))	

+

1

2

exp

�

ie

Z

y

x

A

�

(u

y

�

(x)� 


��

(z; x)u

y

�

(z))�

(u

�

(y) + 


�


(y; z)u




(z))	;

(6.102)

where a summation (integration) over repeated indi
es (variables) is under-

stood. Like in the massless 
ase, the se
ond term on the right-hand side

vanishes after setting x = y and integrating over x. The �rst term is again

regularized by subtra
ting its value for vanishing external �eld. This yields

for the va
uum expe
tation value of the total 
harge

hQi =

1

2

2

X

�=1

Z

L

0

dx lim

x!y

�




��

(y; x) �


(0)

��

(y; x)

�

= 0; (6.103)

sin
e the 
ovarian
e (6.99) is tra
eless with respe
t to the spinor indi
es.

The result (6.103) has of 
ourse been expe
ted sin
e the total 
harge should

annihilate the va
uum state (see also the dis
ussion at the end of this 
hap-

ter). This is true in any number of dimensions.

For the 
hiral 
harge we give �rst a general expression whi
h is valid in

any even dimension. We de�ne the \point splitted" 
hiral 
harge

�

5

(x; y) =

�

 (x)


5




0

exp

�

ie

Z

y

x

A

�

 (y)

= � 

y

(x)


5

exp

�

ie

Z

y

x

A

�

 (y):

(6.104)

Operating with this on the va
uum state yields (
ompare (6.67))

�

5

(x; y)	 = �

1

2

exp

�

ie

Z

y

x

A

�

Tr


5

(Æ(x� y) + 
(y; x))	

�

1

2

exp

�

ie

Z

y

x

A

�

Z

dvdwu

y

(v) (Æ(v � x)� 
(v; x)) 


5

� (Æ(y � w) + 
(y;w)) u(z)	:

(6.105)

The se
ond term 
an be written, after setting x = y, integrating over x, and

performing the expe
tation value, as

�2TrP

+




5

P

�

= 0

202



sin
e P

+

P

�

= 0 (
ompare (6.79)), and use has been made of (6.33). We are

thus left with

h	jQ

5

j	i = �

1

2

Tr

Z

L

0

dx lim

x!y




5


(y; x) exp

�

ie

Z

y

x

A

�

; (6.106)

from where the result for A = 0 has to be subtra
ted. Using the expli
it

results in two dimensions we �nd

�

1

2

Tr 


5


(y; x) exp

�

ie

Z

y

x

A

�

=

im

�

X

n

K

1

(mLn+m(y � x))e

�2�in�

:

Subtra
ting from this the expression with A = 0 we get

im

�

X

n

�

K

1

(m(y � x) + nmL)e

�2�in�

�K

1

(m(y � x) + nmL)e

�2�in�

�

so that we have

hQ

5

i =

im

�

Z

L

0

dx

X

n 6=0

K

1

(nmL)

�

e

�2�in�

� e

�2�in�

�

=

2mL

�

X

n>0

K

1

(nmL)(sin(2�n�)� sin(2�n�)):

(6.107)

In the limit m! 0 we obtain

lim

m!0

hQ

5

i =

2

�

X

n>0

1

n

(sin(2�n�) � sin(2�n�))

= 2([�℄� �+

1

2

)� 2([�℄ � �+

1

2

)

= 2([�+ '℄ + [�℄� '):

(6.108)

This is equal to our earlier result (6.74) when evaluated for � = 0 (' was

de�ned in (6.72)). Re
alling the asymptoti
 formula for K

1

in the limit of

large arguments one �nds that

hQ

5

i

L!1

�

s

2mL

�

(sin(2�n�) � sin(2�n�))e

�mL

L!1

! 0: (6.109)

We �nally 
al
ulate the va
uum expe
tation value of the Hamiltonian H

 

(6.17) in the massive 
ase. We start from the expe
tation value (6.77) for

the point splitted Hamiltonian but insert in that expression

h

x

= �i


0




1

(�

x

� iA) +m


0

(6.110)
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as well as the full 
ovarian
e 
 instead of 


+

. With our result (6.99) for the


ovarian
e we then �nd

exp

�

ie

Z

x

y

A

�

h

x


(x; y) = �

im

2

�




0




1

X

n

 

�K

0

0

iK

0

1

iK

0

1

K

0

0

!

e

�2�in�

+

m

2

�




0

exp

�

�ie

Z

x

y

A

�

X

n

 

�K

0

iK

1

iK

1

K

0

!

e

�2�in�

:

Thus,

h	jH

 

(x; y)j	i =

1

2

Tr exp

�

�ie

Z

x

y

A

�

(h

x


(x; y) + h

x

Æ(x � y))

= Tr

(

m

2

2�

X

n

 

�K

0

�K

0

1

iK

1

+ iK

0

0

�iK

1

� iK

0

0

�K

0

1

�K

0

!

e

�2�in�

+

1

2

 

0 1

1 0

!

iÆ

0

(x� y) +

m

2

 

1 0

0 �1

!

Æ(x� y)

)

:

(6.111)

From this we subtra
t the expe
tation value for L ! 1 and vanishing A.

Using the relations

K

0

1

(�) +K

0

(�) = �

K

1

(�)

�

; K

1

= �K

0

0

;

this yields

hH

 

i =

Z

L

0

dx lim

x!y

(h	jH

 

(x; y)j	i � h	

0

jH

 

(x; y)j	

0

i)

=

m

2

�

Z

L

0

dx lim

x!y

 

X

n

e

�2�in�

m(x� y)

K

1

(m(x� y))

�

1

m(x� y) + nmL

K

1

(m(x� y) + nmL)

�

=

m

�

X

n 6=0

1

n

K

1

(nmL)e

�2�in�

=

2m

�

X

n>0

1

n

K

1

(nmL) 
os(2�n�): (6.112)

This vanishes in the limit L ! 1 but remains �nite for �nite L even for

vanishing ele
tromagneti
 �eld where we have

hH

 

i

A=0

=

2m

�

X

n>0

1

n

K

1

(nmL) 
os(2�n�): (6.113)

In the limit of vanishing mass we obtain from (6.112) the result of se
-

tion 6.2.1. The expe
tation value of the Hamiltonian vanishes for L ! 1

as 
an be easily seen from (6.112).
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6.3 Non-Abelian gauge �elds

Cal
ulation of the 
ovarian
e: We 
onsider the Lagrangian

L = �

1

4

F

��

F

��

+

�

 (iD

�




�

�m) ; (6.114)

where

F

��

= �

�

A

�

� �

�

A

�

+ i[A

�

; A

�

℄ , D

�

= �

�

+ iA

�

:

(6.115)

We have introdu
ed here the (hermitian) matrix-valued ve
tor �eld, A

�

(x),

whi
h is de�ned by

A

�

= A

i

�

T

i

, (T

i

; T

j

) = Æ

ij

:

The gauge 
oupling 
onstant has been set equal to one. In two dimensions

the dis
ussion is greatly simpli�ed sin
e the gauge A

0

= 0 removes the 
om-

mutator in (6.115). This enables us to pro
eed analogously to the Abelian


ase. Denoting A

1

� A, the total Hamiltonian density reads expli
itly

H =

1

2

�

2

A

� i 

y




0




1

(�

x

+ iA) +m 

y




0

 �

1

2

�

2

A

+  

y

h :

(6.116)

The �rst-quantized Hamiltonian reads

h = gh

(0)

g

�1

; where h

(0)

= �i


0




1

�

x

+m


0

(6.117)

and

g(x) = P exp

�

�i

Z

x

0

A

�

; (6.118)

where P denotes path-ordering (we will suppress this letter in the following).

It follows immediately that if  

(0)

is an eigenfun
tion of h

(0)

with eigenvalue

E then  = g 

(0)

is an eigenfun
tion of h with the same eigenvalue E. From

(6.89) and (6.90) we see that the free eigenfun
tions are given by

 

(0)

n;+

= 
f

n

;  

(0)

n;�

= 
g

n

; (6.119)

where 
 is a 
onstant ve
tor in the representation spa
e of the above gener-

ators, and

f

n

(x) =

1

p

2!

n

(!

n

+m)L

 

!

n

+m

�

n

!

exp (�i�

n

x)

and

g

n

(x) =

1

p

2!

n

(!

n

+m)L

 

��

n

!

n

+m

!

exp (�i�

n

x) :
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We also have to implement the boundary 
onditions

 (L) = e

2�i�

 (0) = g(L) 

(0)

(L) = g(0)e

2�i�

 

(0)

(0): (6.120)

We note that

g

�1

(L)g(0) = exp

 

i

Z

L

0

A

!

� exp (iB) : (6.121)

Sin
e B is a hermitian matrix it 
an be diagonalized:

Be

a

= �

a

e

a

, (e

a

; e

b

) = Æ

ab

;

where a and b run form 1 to the dimension of the representation. We thus

have

g

�1

(L)g(0)e

a

= exp (i�

a

) e

a

: (6.122)

Choosing 
 = e

a

we �nd from (6.120) the quantization 
ondition

�

n;a

=

2�

L

(n� �)�

�

a

L

; (6.123)

and the energies are given by

E

n;a

= �

q

m

2

+ �

2

n;a

� �!

n;a

(6.124)

in analogy to the Abelian result (6.88). From (6.119) and  = g 

(0)

the

positive energy and negative energy solutions are given by

 

a

n;+

= g(x)e

a


 f

a

n

,  

a

n;�

= g(x)e

a


 g

a

n

;

(6.125)

(no summation over a). These solutions are orthonormal sin
e

( 

a

n;+

;  

b

m;+

) = (g(x)e

a


 f

a

n

; g(x)e

b


 f

b

m

) = Æ

ab

Æ

nm

; et
.

Under a gauge transformation mediated by U(x) the following transforma-

tion laws hold:

 !

~

 = U(x) ; A!

~

A = UAU

�1

+ i(�

x

U)U

�1

;

g ! ~g = U(x)g(x)U

�1

(0) ;  

(0)

!

~

 

(0)

= U(0) 

(0)

:

(6.126)

Sin
e gauge transformations should respe
t the boundary 
onditions, we

must have U(0) = U(L). Sin
e the "boundary operator" g

�1

(L)g(0) trans-

forms as

g

�1

(L)g(0) ! U(0)g

�1

(L)g(0)U

�1

(0)

the quantities �

a

appearing in (6.122) are gauge invariant.
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We now pro
eed to 
al
ulate the 
ovarian
e of the ground state. For the

proje
tor on positive energies one �nds, making use of the result (6.92) for

the Abelian 
ase,

P

+

(x; y) =

X

a;n

 

a

n;+

(x) 

a+

n;+

(y)

=

1

2L

g(x)

"

X

a

e

a

e

y

a

exp (

i

L

(2��+ �

a

)(x� y))

�

X

n

e

e

�2�in(x�y)=L

!

n

�

!

n

+m �

n

�

n

!

n

�m

�

#

g

y

(y):

(6.127)

Applying Poisson's summation formula (6.94) one �nds, in analogy to (6.97),

P

+

(x; y) =

1

2

Æ(x� y)I�

m

2�

g(x)

"

X

a;n

e

a

exp (� in

Z

L

0

�

a

)e

y

a

�

�

�K

0

iK

1

iK

1

K

0

�

e

�2�in�

#

g

y

(y):

(6.128)

and P

�

= I� P

+

: It is 
onvenient to de�ne the "diagonal matrix"

D =

X

a

exp (i�

a

) e

a

e

y

a

) D

n

=

X

a

exp (in�

a

) e

a

e

y

a

:

(6.129)

The 
ovarian
e 
 = P

�

� P

+


an thus be written as


(x; y) =

m

�

g(x)

"

X

n

D

�n

e

�2�in�

 

�K

0

iK

1

iK

1

K

0

!#

g

y

(y): (6.130)

In the Abelian 
ase we have

� =

Z

L

0

A (6.131)

so that the result (6.130) equals our earlier result (6.99).

Charges and energy: The point splitted version of the non-Abelian 
ur-

rent operator reads, in any number of dimensions,

j

�

i

(x; y) =  

y

(x) exp

�

i

Z

y

x

A

�

T

i




0




�

 (y): (6.132)

Its a
tion on the va
uum state 	 
an be found in the same way as for the

Abelian 
ase (6.102). The result is
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j

�

i

(x; y)	 =

1

2

Tr exp

�

i

Z

y

x

A

�

T

i




0




�

(Æ(x � y) + 
(y; x))	

+

1

2

Z

dvdwu

y

(v)(Æ(v � x)� 
(v; x)) exp

�

i

Z

y

x

A

�

�

T

i




0




�

(Æ(y � w) + 
(y;w))u(w)	:

(6.133)

Taking the expe
tation value of the se
ond term in (6.133) with respe
t to

	, one gets, making use of (6.33) and (6.27)

1

4

Tr

Z

dvdw (Æ(v � x)� 
(v; x)) exp

�

i

Z

y

x

A

�

�

T

i




0




�

(Æ(y � w) + 
(y;w))
(w; v)

=

1

4

Tr

Z

dv(Æ(y � v) + 
(y; v))(Æ(v � x)� 
(v; x)) �

exp

�

i

Z

y

x

A

�

T

i




0




�

= 0:

The expe
tation value of the point splitted 
urrent with respe
t to 	 is thus

given by

h	jj

�

i

(x; y)j	i =

1

2

Tr exp

�

i

Z

y

x

A

�

T

i




0




�

(Æ(x � y) + 
(y; x)): (6.134)

For the axial 
urrent

j

�

5i

(x; y) =  

y

(x) exp

�

i

Z

y

x

A

�

T

i




0




5




�

 (y) (6.135)

the analogous result is (
ompare also (6.105))

h	jj

�

5i

(x; y)j	i = �

1

2

Tr exp

�

i

Z

y

x

A

�

T

i




5




0




�

(Æ(x�y)+
(y; x)): (6.136)

Like in the Abelian 
ase (see (6.103)) one �nds from (6.134) that < Q >= 0,

where Q is the total 
harge (the �rst term in (6.134) vanishes after the

subtra
tion of the "free" expe
tation value, the se
ond term vanishes sin
e


 is tra
eless in spinor spa
e - see (6.130)).

In the following we expli
itly evaluate the va
uum expe
tation value of

the 
hiral 
harge in two spa
etime dimensions. From (6.136) we have

h�

5

i

(x; y)i = �

1

2

Tr exp

�

i

Z

y

x

A

�

T

i




0




1

(
(y; x)� 


(0)

(y; x)): (6.137)

The tra
e in (6.137) 
onsists a
tually of two tra
es: a tra
e Tr

S

in spinor

spa
e and a tra
e Tr

C

in the representation spa
e of the Lie group. We

evaluate the spinor tra
e by making use of (6.81) and (6.130):

�

1

2

Tr

S




0




1


(y; x) =

im

�

g(y)

X

n

e

�2�i�n

D

�n

K

1

(m(x� y) +mnL)g

y

(x):
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Eq. (6.137) then be
omes

h�

5

i

(x; y)i =

im

�

X

n

e

�2�i�n

�

Tr

C

e

i

R

y

x

A

T

i

g(y)D

�n

g

y

(x)

�Tr

C

T

i

)K

1

(m(x� y) +mnL):

(6.138)

The singular terms whi
h arise for n = 0 
an
el. The remaining terms are

non singular in the 
oin
iden
e limit x! y, and one �nds for the expe
tation

value of the total 
hiral 
harge

hQ

5

i

i =

im

�

Z

L

0

X

n 6=0

e

�2�i�n

�

Tr

C

g

y

(x)T

i

g(x)D

�n

�Tr

C

T

i

)K

1

(mnL):

(6.139)

This is the non-Abelian version of our earlier result (6.107). In the limit of

vanishing mass one �nds, using (6.129) and K

1

(x) � 1=x,

hQ

5

i

i �

2m

L

Z

L

0

dxTr

C

g

y

(x)T

i

g(x)

X

a

e

a

e

y

a

([�

a

℄ +

1

2

� �

a

)

�Tr

C

T

i

([�℄ +

1

2

� �):

(6.140)

Note that for semisimple groups the tra
e of the T

i

vanishes. We emphasize

that the 
urrents in the non-Abelian theory are not gauge invariant quan-

tities but instead transform under the adjoint representation of the gauge

group.

We �nally 
ome to the 
al
ulation of the va
uum expe
tation value for

the energy. This 
losely parallels the dis
ussion of the Abelian 
ase whi
h

was dis
ussed in se
tion 6.2 so that we 
an be brief in the present 
ase.

The point splitted version of the expe
tation value now reads, in analogy to

(6.77),

h	jH

 

(x; y)j	i =

1

2

Tr

Z

dx exp

�

�i

Z

y

x

A

�

h

x

(Æ(x� y) + 
(x; y): (6.141)

We re
all that the exponential stands for a path ordered produ
t. Inspe
tion

of the expli
it form of the 
ovarian
e, Eq. (6.130), exhibits that, as in the

Abelian 
ase, the fa
tors g(x) and g

y

(y) are exa
tly 
an
eled by the expo-

nential in (6.141). In analogy to (6.112) we then �nd, after the subtra
tion

of the expe
tation value for vanishing external �eld,

hH

 

i =

2m

�

X

a

X

n>0

1

n

K

1

(nmL) 
os(2�n�+ n�

a

): (6.142)
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In the limit of vanishing mass this be
omes

hH

 

i

m=0

=

2�

L

X

a

�

�+

�

a

2�

� [�+

�

a

2�

℄�

1

2

�

2

�

�

6L

N; (6.143)

where N is the number of 
avors.

6.4 Parti
le Creation

6.4.1 Constant ele
tri
 �eld in four dimensions

In this subse
tion we demonstrate how the well known expression for the


reation of fermions in a 
onstant external ele
tri
 �eld [16℄ 
an be re
overed

in the fun
tional S
hr�odinger pi
ture. The physi
al pi
ture is the following:

We start with a fermioni
 va
uum state in the far past (\in - region") and

let it evolve under the in
uen
e of the external �eld, using the S
hr�odinger

equation, into the far future (\out - region"). There we 
al
ulate the overlap

with the va
uum in the out - region and interpret the deviation from one as

the probability for parti
le 
reation. The state remains, of 
ourse, Gaussian

but its exa
t form (and thus the notion of the va
uum) 
hanges under the

evolution of the external �eld. It would be physi
ally reasonable to swit
h

on the �eld somewhere in the past and swit
h it o� again in the future sin
e

no �elds last in�nitely long. In the present 
ase of a 
onstant ele
tri
 �eld it

will prove advantageous to treat an idealized situation by making use of the

notion of an adiabati
 va
uum state whi
h is approa
hed in the asymptoti


regions. This is possible sin
e

_

h=h, where

_

h is the time-derivative of the

�rst-quantized Hamiltonian h (6.4), approa
hes zero in both the asymptoti


past and future. The 
on
ept of adiabati
 states is also su

essfully applied

in traditional dis
ussions of parti
le 
reation [17℄ and �nds in parti
ular a

fruitful appli
ation in quantum theory on 
urved spa
etimes [18℄.

We thus have for the in - va
uum state

	

in

= N exp

�

u

y




in

(ad)

u

�

; (6.144)

and for the out - va
uum state

	

out

= N exp

�

u

y




out

(ad)

u

�

: (6.145)

The \adiabati
" 
ovarian
e 


(ad)


an be obtained from the \free" 
ovari-

an
e 


(0)

(see 6.32) by repla
ing the momentum p with p + eA. It turns

out to be 
onvenient, in spite of the non-vanishing mass, to use the 
hiral

representation for the Dira
 matri
es. The reason is that the mass terms in

the expressions for the 
ovarian
e be
ome unimportant in the asymptoti


regions. We thus have, instead of (6.32),
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(ad)

=

1

p

~p

2

+m

2

 

�� � ~p m

m � � ~p

!

; ~p � (p

x

; p

y

; p

z

+ eA

z

);

(6.146)

and the ele
tri
 �eld points in z - dire
tion, E = Ee

z

, so that A

z

= Et. For

simpli
ity we denote the transversal momentum by p

?

so that p

2

?

= p

2

x

+p

2

y

.

It will also be 
onvenient to introdu
e the dimensionless quantity

� �

p

eE

�

t+

p

z

eE

�

: (6.147)

We now give the expli
it expression for 


(ad)

in both the asymptoti
 past

and future. In the limit � ! �1, (6.146) reads (�

i

are the Pauli matri
es)




(ad)

=

1

p

A

 

��

?

� p

?

� �

z

�

p

eE� m

m �

?

� p

?

+ �

z

�

p

eE�

!

�!�1

�!

 

�

z

0

0 ��

z

!

� 


in

(ad)

; A = p

2

?

+ eE�

2

+m

2

:(6.148)

Analogously,




out

(ad)

=

 

��

z

0

0 �

z

!

= �


in

(ad)

: (6.149)

Before we pro
eed to 
al
ulate the pair 
reation rate a

ording to the gen-

eral formula (6.51), we have to dis
uss one subtlety whi
h arises through the

use of asymptoti
 va
uum states. As 
an be immediately seen by 
omparing

(6.148) and (6.149), the adiabati
 
ovarian
es 


out

(ad)

and 


in

(ad)

di�er in their

sign. Consequently, from the general expression (6.25), the positive (nega-

tive) frequen
y eigenfun
tions in the far future are the negative (positive)

frequen
y eigenfun
tions of the far past. An observer in the far future would

repla
e the expansion (6.45) by

�

n

(t) = �

f

nm

�

f

m

+ �

f

nm

 

f

m

= �

f

nm

 

m

+ �

f

nm

�

m

; (6.150)

where the supers
ript f refers to \far future." Comparing (6.150) with (6.45)

we see that �

f

nm

= �

nm

and �

f

nm

= �

nm

. Nevertheless, one 
an still use the

expression (6.51) to 
al
ulate the transition element. The reason is that one

now has to use 


out

(ad)

= �


in

(ad)

instead of 


0

= 


in

(ad)

in (6.43). This would

amount to repla
e �

nm

in (6.51) by �

nm

= �

f

nm

. Thus, the parti
le 
reation

rate is still given by (6.51) with �

nm

repla
ed by �

f

nm

as it was introdu
ed

in (6.150) (in the following we will for simpli
ity omit the supers
ript f).

The general expression (6.44) for the 
ovarian
e 
(t) 
ontains, via (2.61),

the fun
tions �

n

(t) whi
h obey

i _�

n

(t) = h�

n

(t); (6.151)
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where the �rst-quantized Hamiltonian h is given expli
itly by

h =

 

� � ~p �m

�m �� � ~p

!

: (6.152)

Note that h

2

= (p

2

?

+m

2

+ E�

2

)I, and n has to be repla
ed by p. Di�er-

entiating (6.151) by t and using (6.151) again, one arrives at a se
ond order

equation for the �

n

. The �rst and fourth 
omponent of the �

p

obeys (we

omit the index p in the following)

 

d

2

d�

2

+ �

2

+�+ i

!

�

1;4

= 0; (6.153)

while the se
ond and third 
omponent obeys

 

d

2

d�

2

+ �

2

+�� i

!

�

2;3

= 0: (6.154)

We have introdu
ed in these expressions the quantity

� =

p

2

?

+m

2

jeEj

: (6.155)

The dis
ussion is greatly simpli�ed if we treat the 
ase of two spa
etime

dimensions �rst and re
over the four-dimensional 
ase by some simple ma-

nipulations from the �nal result. Instead of (6.153) and (6.154) we have

then to deal with the equations

 

d

2

d�

2

+ �

2

+ � + i

!

�

1

= 0 ,

 

d

2

d�

2

+ �

2

+ � � i

!

�

2

= 0;

(6.156)

where, obviously,

� =

m

2

jeEj

: (6.157)

Sin
e � obeys the �rst-order equation (6.151), the equations (6.156) and

(6.156) 
annot be solved independently. If we 
hoose, say, for �

1

the general

solution of (6.156), we �nd from (6.151) that

�

2

=

1

p

�

�

i

d�

1

d�

� ��

1

�

: (6.158)

The general solution of (6.156) is then given by a sum of paraboli
 
ylinder

fun
tions [19℄

�

1

= A

1

D

�i�=2

[(1 + i)� ℄ +B

1

D

�i�=2

[�(1 + i)� ℄: (6.159)
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We now have to impose the boundary 
ondition that � approa
hes a negative

frequen
y eigenfun
tion for � ! �1. For this we need the asymptoti


expansion of (6.159) whi
h reads [19℄

�

1

�!�1

� A

1

�

e

�

i�

2

2

[(1 + i)� ℄

�

i�

2

�

p

2�

�(

i�

2

)

e

�

��

2

+

i�

2

2

[(1 + i)� ℄

i�

2

�1

!

+B

1

e

�

i�

2

2

[�(1 + i)� ℄

�

i�

2

:

(6.160)

The usual de�nition of positive and negative frequen
ies involves the phase

of the �rst-quantized eigenfun
tions: For a positive frequen
y fun
tion the

phase de
reases with in
reasing time, while for a positive frequen
y fun
tion

it in
reases [17℄. The expression (6.160) thus should only 
ontain terms

proportional to exp(�i�

2

=2). We thus have A

1

= 0 and one is left with

�

1

= B

1

D

�i�=2

[�(1 + i)℄ : (6.161)

From (6.158) one then gets

�

2

= �

B

1

p

�

2

(1 + i)D

�i�=2�1

[�(1 + i)℄ : (6.162)

We want to normalize the solution � = (�

1

; �

2

)

T

. Sin
e the norm is 
on-

served (h in (6.151) is hermitian), it is suÆ
ient to perform the normalization

in the asymptoti
 past where

�

1

�!�1

�! B

1

e

�

i�

2

2

j� j

�

i�

2

2

�

i�

4

e

��

8

, �

2

�!�1

�! 0:

Thus, the 
hoi
e

B

1

= exp(���=8) (6.163)

yields �

y

� � j�

1

j

2

+ j�

2

j

2

= 1.

To make use of (6.150) we have to �nd the positive and negative fre-

quen
y fun
tions in the asymptoti
 future, i.e. for � ! 1. The 
orre
tly

normalized negative frequen
y solution �

f

to (6.156) and (6.158) reads

�

f

1

=

s

�

2

e

�

��

8

D

i�=2�1

[(1� i)� ℄ , �

f

2

= �

i+ 1

p

2

e

�

��

8

D

i�2

[(1� i)℄ :

5.26 This is easily seen from the asymptoti
 expansion of the paraboli



ylinder fun
tions [19℄. Similarly, the positive frequen
y fun
tions are found

to read

 

f

1

= e

�

��

8

D

�i�=2

[(1 + i)� ℄ ,  

f

2

=

p

�

2

(i+ 1)e

�

��

8

D

�i�=2�1

[(1 + i)� ℄ :
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Making now use of the identity [19℄

D

�

(z) = e

��i

D

�

(�z) +

p

2�

�(��)

e

�(�+1)i=2

D

���1

(�iz); (6.164)

we 
an expand the solution (6.161), (6.162), (6.163) a

ording to (6.150)

into the asymptoti
 positive and negative frequen
y solutions, respe
tively:

�(�) =

p

��

�(

i�

2

+ 1)

e

�

��

4

�

f

+ e

�

��

2

 

f

: (6.165)

The Bogolubov 
oeÆ
ients 
an be easily read o� from this equation,

� =

p

��

�(

i�

2

+ 1)

e

�

��

4

; � = e

�

��

2

; (6.166)

and it is easily 
he
ked that j�j

2

+ j�j

2

= 1. Finally, one then �nds for the

matrix element (6.51)

jh	

1

j	

2

ij

2

= det(1� j�j

2

)

= expTr ln(1� e

���

)

= exp

 

�Tr

X

n

1

n

e

��n�

!

: (6.167)

In two dimensions the tra
e reads

Tr �!

L

2�

Z

eEt

out

eEt

in

dp =

eELT

2�

;

where T � t

out

�t

in

is the time di�eren
e between two asymptoti
 times t

out

and t

in

. This, as well as the length L, has been introdu
ed as an infrared

regulator [17℄, [7℄. Thus,

jh	

1

j	

2

ij

2

= exp

 

�

eELT

2�

1

X

n=1

1

n

e

�

n�m

2

eE

!

: (6.168)

(If eE is negative, one has to take its absolute value.) To �nd the 
orre-

sponding expression in four spa
etime dimensions, we have to repla
e � by

�, see (6.155). One thus has

j�j

2

= e

���

= e

�

�(m

2

+p

2

?

)

eE

(6.169)

and

Tr �!

V

(2�)

3

Z

eEt

out

eEt

in

dp

z

Z

2�p

?

dp

?

:
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Moreover, one gets an additional fa
tor of 2 from the dis
rete part of the

determinant in (6.167) over the spinor indi
es sin
e one now deals with four

spinors instead of two spinors. Thus,

jh	

1

j	

2

ij

2

= exp

 

�2Tr

1

X

n=1

1

n

e

��n�

!

= exp

 

�

2(eE)

2

V T

(2�)

3

1

X

n=1

1

n

2

e

�

n�m

2

eE

!

:

(6.170)

This is in agreement with the 
lassi
al result of S
hwinger [16℄.

6.4.2 Arbitrary external �elds for massless QED

2

We now pro
eed to 
al
ulate the va
uum - to - va
uum transition rate (6.42)

in the 
ase of massless fermions for arbitrary external ele
tromagneti
 �elds

in two spa
etime dimensions. In 
ontrast to the previous se
tion we shall

assume that the ele
tri
 �eld is swit
hed o� for some time t < t

1

in the past

and t > t

2

in the future. While one 
an 
onsistently assume that the ve
tor

potential vanishes for t < t

1

, this is not possible for t > t

2

sin
e the 
ux

Z

L

0

dx

Z

t

2

t

1

dtE =

Z

dxdt

_

A =

Z

dx (A(x; t

2

)�A(x; t

1

)) = 2�'(t

2

)

need not vanish. In fa
t, this will give rise to the nontrivial features whi
h

will be dis
ussed in this se
tion. We 
an, however, assume that A does not

depend on x for t > t

2

.

To determine the 
ovarian
es 


1

and 


2

in (6.42) we need to solve the

time-dependent Dira
 equation,

i

_

 = h = �i


5

(�

x

+ iA) : (6.171)

We make the ansatz

 (x; t) = exp(i�(x; t) + iÆ(x; t)


5

) 

0

(x; t) (6.172)

and 
hoose � and Æ su
h that  

0

obeys the free Dira
 equation (without A-

�eld). Inserting (6.172) into (6.171) one re
ognizes that this 
an be a
hieved

if

_

�+ Æ

0

= 0 , �

0

+

_

Æ = �A:

(6.173)

The formal solution reads

� =

1

�

2

A

0

, Æ = �

1

�

2

E:

(6.174)

The solution of the free equation for  

0

,

i

_

 

0

= �i


5

�

x

 

0

; (6.175)
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an of 
ourse be immediately written down by making use of (6.55) - (6.58)

(we 
hoose � = 0 for simpli
ity):

 

0;n

=

 

'

0;n

�

0;n

!

(6.176)

with

'

0;n

=

1

p

L

exp (�ik

n

(x+ t)) , �

0;n

=

1

p

L

exp (�ik

n

(x� t)) ;

where k

n

= 2�(n � �)=L. The positive energy (negative energy) solutions

are obtained for k

n

> 0 (k

n

< 0) in the �`s and and for k

n

< 0 (k

n

> 0) in

the �s (re
all (6.57) and (6.58)). The solutions of (6.171) thus read

 

n

(x; t) = exp(i�+ iÆ


5

) 

0;n

: (6.177)

The 
omponents of the 
ovarian
e are 
al
ulated in full analogy to Eq.

(6.61). One �nds




+

(x; y; t) = e

i�(x;t)�iÆ(x;t)




(0)

+

(x; y) e

�i�(y;t)+iÆ(y;t)

(6.178)

and




�

(x; y; t) = e

i�(x;t)+iÆ(x;t)




(0)

�

(x; y) e

�i�(y;t)�iÆ(y;t)

; (6.179)

where 


(0)

+

and 


(0)

�

are obtained from (6.62) and (6.63) by setting the A-

�eld equal to zero:




(0)

+

(x; y) = �


(0)

�

(x; y) =

i

L

e

2�i

L

(��[�℄�

1

2

)(x�y)

1

sin

�

L

(x� y)

: (6.180)

Sin
e A = 0 for t < t

1

one 
an 
hoose � = Æ = 0 for t < t

1

. This 
orresponds

to the 
hoi
e of the retarded Green fun
tion in (6.174). We thus have 
 =




(0)

for t < t

1

.

We now pro
eed to 
al
ulate the overlap (6.42) between the out - va
uum

and the out - state whi
h results from evolving the in - va
uum (whi
h is

the free state) with the S
hr�odinger equation. In the out - region (t ! 1)

we 
an 
hoose A to be 
onstant. From (6.173) we 
an 
hoose � = 0 and

Æ = �At. The one parti
le wave fun
tions (6.177) then read

 

n

(x; t) = exp(�iAt


5

) 

0;n

(x; t): (6.181)

The out - va
uum is 
al
ulated from the wave fun
tions (6.57) and (6.58)

for A = 
onstant. As 
an be re
ognized from these expressions, A drops out

and one is left with the free wave fun
tions  

0;n

. Does this also mean that

the out - va
uum state is identi
al with the free va
uum state? This is not

the 
ase sin
e in the general expression for the 
ovarian
e, Eq. (6.25), one
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has to distinguish between positive and negative energy solutions. For non-

vanishing (even 
onstant) A- �eld this distin
tion is �eld-dependent sin
e

the energy values are given by

E

n

= �

2�

L

(n� �); (6.182)

where the upper sign is for the right- handed part and the lower sign for the

left- handed part (
ompare (6.57) and (6.58)). Let us fo
us in the following

on the right-hand part. In the expression (6.42) for the overlap we 
hoose

for 


1

the 
ovarian
e whi
h 
orresponds to the out - va
uum, i. e.,




1

(x; y) =

X

n��

 

0;n

(x) 

y

0;n

(y)�

X

n>�

 

0;n

(x) 

y

0;n

(y); (6.183)

where we have in
luded the zero energy eigenfun
tion in the �rst sum. Sin
e

t has dropped out in this expression, we have skipped it in the arguments for

the wave fun
tions. Sin
e the phase fa
tor in (6.172) is spa
e-independent,

the time-evolved in - 
ovarian
e (whi
h plays the role of 


2

) is just given by




2

(x; y) =

X

n��

 

0;n

(x) 

y

0;n

(y)�

X

n>�

 

0;n

(x) 

y

0;n

(y): (6.184)

It is 
lear that this satis�es the time-dependent S
hr�odinger equation (6.38)

trivially with the 
orre
t boundary 
ondition at t < t

1

. We then �nd for the

operator produ
t 


1




2

in (6.42)




1




2

=

Z

dz

 

X

n��

 

0;n

(x) 

y

0;n

(z)

X

l��

 

0;l

(z) 

y

0;l

(y)

+

X

n>�

 

0;n

(x) 

y

0;n

(z)

X

l>�

 

0;l

(z) 

y

0;l

(y)�

X

n>�

 

0;n

(x) 

y

0;n

(z)

X

l��

 

0;l

(z) 

y

0;l

(y)

�

X

n��

 

0;n

(x) 

y

0;n

(z)

X

l>�

 

0;l

(z) 

y

0;l

(y)

!

:

We may assume without loss of generality that � > �. The �rst and se
ond

term in (6.176) give together

0

�

X

n��

+

X

n>�

1

A

 

0;n

(x) 

y

0;n

(y) = Æ(x � y)�

X

�<n��

 

0;n

(x) 

y

0;n

(y):

The third term vanishes for � > �, and the last term gives

�

X

�<n��

 

0;n

(x) 

y

0;n

(y):
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We thus have




1




2

= Æ(x� y)� 2

X

�<n��

 

0;n

(x) 

y

0;n

(y):

The determinant in the overlap (6.42) thus 
ontains the operator

A �

1

2

(1 + 


1




2

) = Æ(x � y)�

X

�<n��

 

0;n

(x) 

y

0;n

(y):

By a
ting with A on  

0;k

one re
ognizes that A has a zero eigenvalue if

� < n � �. In this 
ase, therefore, the overlap in (6.42) vanishes! This

means that the probability for the va
uum to remain a va
uum is zero {

parti
les are always 
reated. Sin
e both states 	

1

and 	

2

are, however,

Gaussians it follows that these states belong to di�erent Hilbert spa
es { in

the 
ase of in�nitely many degrees of freedom the overlap between Gaussians


an vanish [1℄. How 
an one 
ope with this situation? The key to a proper

treatment is provided by the observation that the energy eigenvalues E

n

of the �rst-quantized eigenfun
tions exhibit a spe
tral 
ow { some of them

pass through zero between the in- and out - region. This is pe
uliar to the

massless 
ase sin
e the energy values E

n

do not 
hange sign for m 6= 0, see

(6.88). As a 
onsequen
e of the spe
tral 
ow the time - evolved in - state


ontains, in the out - region, either o

upied positive energy states or empty

negative energy states (for de�niteness we assume that there exist o

upied

positive energy states). Our original �lling pres
ription says, however, that

for the va
uum state all positive energy states are empty. To have all states

in the same Hilbert spa
e (Fo
k spa
e), one has thus to de�ne the out

- va
uum state by applying as many annihilation operators on the out -

Gaussian as there are o

upied energy states, i.e.,

j0; outi � N

['℄

Y

k=1

a

k

exp(u

y




1

u): (6.185)

Again, ' = (

R

L

0

A)=(2�) is the 
ux. The time - evolved in - state 
an thus

be written as

	

in

t!1

�! N exp(u

y




1

u) =

['℄

Y

k=1

a

y

k

j0; outi: (6.186)

This state thus 
ontains ['℄ parti
les with respe
t to the out - va
uum, a

result whi
h is of 
ourse well known (see, e. g., [20℄). The parti
le 
reation

rate expressed by (6.186) is dire
tly related to the anomaly in the axial


urrent, and there is a general relationship between the spe
tral 
ow of

the �rst - quantized Dira
 Hamiltonian, the topologi
al 
harge, and the

anomalous parti
le produ
tion. This is very 
learly dis
ussed, for example,
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in [21℄. The important di�eren
e to the previous subse
tion is the fa
t that

in the present 
ase a de�nite number of parti
les has been produ
ed (as

given by the 
ux of the external �eld), whereas in the previous 
ase there is

a non-vanishing probability for the produ
tion of any number of parti
les.

The S
hr�odinger pi
ture thus provides us with an intuitive explanation for

the anomaly: The �lling pres
ription, whi
h is 
ru
ial for the spe
i�
ation of

the ground state, 
hanges in dependen
e on the external �eld. Consequently,

the notions of va
uum and ex
ited states 
hange under the in
uen
e of the

external �eld.

6.5 The Gauss 
onstraint

So far we have restri
ted ourselves to the 
ase where the external ele
tro-

magneti
 �eld 
an be treated semi
lassi
ally. This is formally expressed by

negle
ting terms 
ontaining Æ=ÆA(x) in the full Hamiltonian (6.3). We want

to relax this restri
tion now and 
on
lude our paper with a brief dis
ussion

of some subtleties whi
h arise when the Gauss 
onstraint (6.5) is realized on

wave fun
tionals 	[A; u; u

y

℄ in the full theory. Applying the Gauss operator

G(x) = rE� e 

y

 (6.187)

on states 	 we �nd, using the realization (6.8) - (6.8) for the �eld operators,

G(x)	 =

 

1

i

r

Æ

ÆA

�

e

2

[u

y

u+

Æ

2

ÆuÆu

y

+u

y

Æ

Æu

y

� u

Æ

Æu

℄

�

	[A; u; u

y

℄ = 0:

(6.188)

Classi
ally, the Gauss operator generates lo
al gauge transformations. This

also holds in the quantum theory, in the sense that

�

Z

dx�(x)G(x);  (y)

�

= e�(y) (y); et
: (6.189)

with an appropriate test 
lass fun
tion �(x). The surprise 
omes if one

evaluates the expression (6.188) for the Gaussian state (6.11). This yields

G(x)	 = �

1

2

Z

dydzu

y

�

(y)[Æ(y � x)Æ

��

+


��

(y; x)℄�

[Æ(x � z)Æ

�


� 


�


(x; z)℄u




(z)	 6= 0:

(6.190)

Thus, although 	 is expli
itly gauge - invariant, it is not annihilated by the

Gauss operator. This 
an also be re
ognized from a di�erent perspe
tive.

Under an in�nitesimal gauge transformation a state 	 
hanges as follows:
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	[A; u; u

y

℄! 	[A; u; u

y

℄�

Z

dx�(x)

�

r

Æ

ÆA

+ ieu

Æ

Æu

�ieu

y

Æ

Æu

y

�

	:

(6.191)

The state therefore remains invariant if

�

1

i

r

Æ

ÆA

+ eu

Æ

Æu

� eu

y

Æ

Æu

y

�

	 �

~

G(x)	 = 0: (6.192)

Obviously,

~

G di�ers from G. The formal reason is the fermioni
 
hara
ter

of the matter �elds whi
h allows the realization of the �eld operators as in

(6.8) and (6.8). In fa
t, in the bosoni
 
ase one has

~

G � G [7℄. Note that

the integrated Gauss operator annihilates 	, i. e.,

Z

dxG(x)	 =

Z

dx

~

G(x)	 = 0: (6.193)

The interpretation of (6.190) was given by Floreanini and Ja
kiw [8℄. The

Gauss operator G may produ
e states whi
h lie outside the original Fo
k

spa
e from whi
h one started, sin
e the spa
e spanned by u and u

y

is mu
h

bigger than the spa
e obtained from the ground state through appli
ation

of the �eld operators  and  

y

. They 
an only produ
e polynoms in

(1 + 
)u � u

+

; u

y

(1� 
) � u

y

�

; (6.194)

whereas in (6.190) one re
ognizes their adjoints u

�

and u

y

+

:

G(x)	 = �

1

2

u

y

+

(x)u

�

(x)	: (6.195)

The pres
ription we impose here is to proje
t the a
tion of the Gauss operator

ba
k onto the original Fo
k spa
e,

G ! P

F

G �

1

4

u

+

u

y

�

G:

Sin
e the state (6.195) is orthogonal to ea
h state in this spa
e, one has of


ourse

P

F

G(x)	 = 0: (6.196)

In parti
ular, one �nds that the expe
tation value of the Gauss operator

vanishes, h	jG(x)	i = 0.

There is only one possible obstru
tion to this pres
ription: it may hap-

pen that the presen
e of an anomaly spoils the 
ommutativity of two Gauss

operator (this anomaly should not be 
onfused with the anomaly of the

axial 
urrent). In this 
ase our pres
ription would lead to a 
ontradi
tion
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sin
e the proje
ted Gauss operators always 
ommute with ea
h other. An

example where su
h anomalies o

ur are 
hiral fermions in an external ele
-

tromagneti
 �eld [8℄. In su
h a 
ase one 
annot identify a state 	 with

its proje
ted state, u

+

u

y

�

	=4. Here, however, we deal with Dira
 fermions

where the anomaly 
onne
ted with the left - handed part 
an
els the 
orre-

sponding anomaly of the right - handed part. It is thus perfe
tly 
onsistent

to identify states with their proje
ted version.

In this respe
t the situation is analogous to the Gupta - Bleuler quanti-

zation of ele
trodynami
s where one 
an get rid of negative norm states by

identifying states with zero norm.

We have thus shown that the Gauss operator for fermions 
an be 
onsis-

tently interpreted in the fun
tional S
hr�odinger pi
ture if no gauge violating

anomalies are present.

Outlook: The use of wave fun
tionals gives an intuitive pi
ture of the

physi
s involved, in parti
ular with regard to 
on
eptual questions. This

be
ame espe
ially 
lear in our dis
ussion of parti
le 
reation and anomalies.

Se
ond, this pi
ture may possess te
hni
al advantages in some appli
ations,

su
h as the 
al
ulation of expe
tation values or anomalous parti
le produ
-

tion rates. One might therefore expe
t this pi
ture to be of some use in

other bran
hes of quantum �eld theory where less results are known than

in QED, e.g. fermions in a gravitational ba
kground as well as 
oupled to

a quantized gravitational �eld, espe
ially in the framework of the new vari-

ables in 
anoni
al general relativity [5℄. This 
ould shed some light on the

�nal stages of bla
k hole evaporation. Further possible appli
ations in
lude

non-Abelian �elds in four dimensions [22℄, de
oheren
e, the semi
lassi
al

approximation, bosonization, as well as the extension to problems where

non-Gaussian states play a role.
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