
Chapter 4

Hamiltonian Redu
tion of

WZNW Theories

Two dimensional 
onformally invariant �eld theories are based on various

extensions of the 
hiral Virasoro algebras. The best-known extensions is

the Ka
-Moody (KM) algebra [23℄, whose most prominent Lagrangian real-

ization is the Wess-Zumino-Witten-Novikov (WZNW) model [50℄. Another

extension is the so-
alled W-extension [52℄, whi
h is a polynomial extension

of the Virasoro algebra by higher spin �elds. These W-algebras proved very

fruitful in analyzing 
onformal �eld theories and they have be
ome the sub-

je
t of intense study (see [13℄ for a review on these algebras). It has been

realized by Gervais and Bilal that Toda theories provide a Lagrangian real-

ization of W-algebras [9℄. In [20℄ we have shown that the exa
t relationship

is that Toda theories may be regarded as WZNW models redu
ed by 
onfor-

mally invariant 
onstraints. More pre
isely, Toda theories 
an be identi�ed

as the 
onstrained WZNW models, modulo the left-moving upper triangular

and right-moving lower triangular KM transformations, whi
h are the gauge

transformations generated by the �rst 
lass 
onstraints.

The 
onstrained WZNW (KM) setting of the Toda theories (W-algebras)


alls for generalizations, some of whi
h have been investigated. For exam-

ple, in [39℄ the redu
tion was generalized to produ
e a series of 
onformally

invariant integrable theories whi
h interpolate between the WZNW and

Toda theories. These theories 
ontain WZNW �elds belonging to redu
ible

WZNW groups, with the irredu
ible pie
es in nearest neighbor intera
tion,

thus providing a natural generalization of Toda theories. A remarkable fea-

ture of the theories is the emergen
e of a �eld whi
h plays the role of the

two-dimensional gravitational density

p

�g. Further features are the ease
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with whi
h the general solutions of the �eld equations in these theories 
an

be obtained from the well-known WZNW solutions, and the formula for the


enters of the Virasoro algebra in terms of the WZNW 
enter.

Also, it has been realized in [5, 18℄ that it is possible to asso
iate a general-

ized W-algebra to every embedding of the Lie algebra sl(2) into the simple

Lie algebras. The standardW-algebra o

urring in Toda theory, 
orresponds

to the so 
alled prin
ipal sl(2). Another interesting development is the W

l

n

algebras introdu
ed by Bershadsky [8℄. It is known that the simplest non-

trivial 
ase W

2

3

, whi
h was originally proposed by Polyakov [44℄, is a spe
ial

sl(2)-based W-algebra. the 
lassi�
ation based on sl(2) embeddings

In addition, the whole 
onstru
tion has been supersymmetrized by 
on-

straining super-WZNW theories [14℄. As in the bosoni
 
ase one �nds that

the redu
ed supersymmetri
 theories 
ontain superW-algebras as non-linear

symmetry algebras. Here the 
lassi�
ation of the W-algebras is based on

OSp(1j2) embeddings in a simple superalgebra G. A spe
ially simple exam-

ple where the algebra 
loses linearly is the N = 1 super
onformal algebra

made from the stress energy tensor and a 
onformal spin 3=2 fermioni
 �eld.

Here we undertake a systemati
 study of the Hamiltonian redu
tions of

WZNW theory, aiming at un
overing the general stru
ture of the redu
tion.

We shall derive the e�e
tive �eld theories (some of them will 
ontain �elds

with half-integer spins) whi
h 
ontain generalized W-algebras as symme-

try algebras and investigate the relation between the di�erent W-algebras.

We give purely Lie-algebrai
 
onditions for the 
onstraints to be �rst 
lass,


onformally invariant and that they lead to a polynomial extension of the

Virasoro algebra. Finally we investigate the quantum redu
tion of WZNW

theories and derive the 
entral 
harge for the e�e
tive redu
ed theories for

arbitrary redu
tions.

We start with re
alling, that WZNW-theories are �eld theories for group

valued �elds g(x) 2 G with a
tion

1

S

WZ

(g) =

�

2

Z

d

2

xTr (g

�1

�

�

g)(g

�1

�

�

g)�

�

3

Z

B

3

Tr (g

�1

dg)

3

:

(4.1)

We assume that G is a a simple, maximally non-
ompa
t, 
onne
ted real Lie

group or in other words that the simple Lie algebra, G, 
orresponding to G

allows for a Cartan de
omposition over the �eld of real numbers. Thus G is

de�ned as the real span of a Chevalley basis H

i

, E

��

of the 
orresponding


omplex Lie algebra G




, and in the 
ase of the 
lassi
al series A

n

, B

n

, C

n

and D

n

is given by sl(n+ 1; R), so(n; n+ 1; R), sp(2n;R) and so(n; n;R),

respe
tively. The Cartan-Killing form of G is denoted by h:; :i � Tr (::).

The �eld equation of the WZNW theory 
an be written in the equivalent

1

The KM level k is �4��. The spa
e-time 
onventions are: �

00

= ��

11

= 1 and

x

�

=

1

2

(x

0

� x

1

). The WZNW �eld g is periodi
 in x

1

with period 2�r.
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forms

�

�

J = 0 or �

+

~

J = 0;
(4.2)

where

J = ��

+

g � g

�1

and

~

J = ��g

�1

�

�

g:
(4.3)

These equations express the 
onservation of the left- and right KM 
urrents,

J and

~

J , respe
tively. The general solution of the �eld equation have the

simple form

g(x

+

; x

�

) = g

L

(x

+

) � g

R

(x

�

); (4.4)

where g

L

and g

R

are arbitrary G-valued fun
tions, 
onstrained only by the

boundary 
onditions imposed on g.

In what follows we shall need the remarkable Polyakov-Wiegmann iden-

tity [43℄,

S

WZ

(ab


�1
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:

(4.5)

4.1 Gauging the WZNW theories

For gauging the WZNW theories we 
ouple the �elds a and 
 in (4.5) mini-

mally to gauge potentials, that is repla
e the ordinary derivatives by 
ovari-

ant ones

D

�

a = �

�

a+Aa and D

+


 = �

+


�

~

A
;

whi
h transform 
ovariant under the gauge transformations

a! e

�

a; 
! e

~�


 () g ! e

�

ge

�~�

A! e

�

Ae

��

+ e

�

�

�

e

��

;

~

A! e

~�

~

Ae

�~�

+ (�

+

e

~�

)e

�~�

:

(4.6)

The b �eld in the de
omposition of g is gauge invariant. Clearly, if we

repla
e the derivatives of a; 
 in (4.5) by 
ovariant ones and if we drop the

WZ-a
tion of a and 


�1

, then the resulting a
tion
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would be gauge invariant. However, in general this a
tion 
annot be re-

expressed in terms of the original �eld g. For example, for vanishing gauge

potential this is only possible if we would add the WZ-a
tions of a and 


�1

.

However, su
h terms are are not gauge invariant. The way out is to assume

that S

WZ

vanish on these �elds. This is equivalent to assuming that a and 


vary in subgroups of G with Lie-algebras � and

~

�, respe
tively, whi
h have

the property � � �

?

and

~

� �

~

�

?

. Of 
ourse, the gauge potentials lie then

also in these subalgebras, A 2 � and

~

A 2

~

�.

With these assumptions the gauge-invariant a
tion (4.7) 
an be written

in terms of the original �eld, up to a term

�

Z

Tr

n

A(�

+

a)a

�1

�

~

A(�

�


)


�1

o

:

But be
ause A and (�

+

a)a

�1

are both in � and we assumed that � � �

?

(and similarly for

~

�) this di�eren
e vanishes. However, the resulting gauge-

theories are still rather uninteresting, they are essentially WZNW-theories

for the gauge-invariant �eld b. To get interesting new theories we 
ouple the

gauge �eld to 
onstant elements M and

~

M and de�ne

I = I

0

� �

Z

Tr

�

AM +

~

A

~

M

�

:

whi
h, with our assumption on �;

~

� 
an be rewritten as

I(g;A;

~

A) � S

WZ

(g) + �

Z

d

2

x

�

Tr (A(�

+

gg

�1

�M)

+

~

A(g

�1

�

�

g �

~

M) +Ag

~

Ag

�1

�

:

(4.8)

Later we shall see that for parti
ular 
hoi
es of M;

~

M the redu
ed theories

are interesting intera
ting Toda-type theories. Note that the terms 
ontain-

ing M and

~

M are not invariant under the general transformations (4.6).

However, they be
ome invariant if we assume that M is orthogonal to the

derived algebra [�;�℄. For example, under an in�nitesimal gauge transfor-

mation belonging to e

�

' 1 + �, the term hA;Mi 
hanges by

Æ hA;Mi = �h�

�

�;Mi + hM; [�;A℄i ;

whi
h is a total divergen
e sin
e with our assumption on � the se
ond term

vanishes, as both A and � are from �. This then proves that the a
tion
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(4.8) is gauge invariant, provided we impose the following 
onditions on M

and �: for �; � 2 �

[�; �℄ 2 �; h�; �i = 0 and !

M

(� ; �) = 0; (4.9)

where I introdu
ed the anti-symmetri
 Kostant-Kirillov 2-form on G:

!

M

(u; v) � hM; [u; v℄i for a �xed M 2 G and 8u; v 2 G: (4.10)

This means that � is a subalgebra on whi
h the Cartan-Killing form and !

M

vanish. Of 
ourse, we must impose exa
tly the same 
onditions on

~

M;

~

�. It

is easy to see that the 3 
onditions in (4.9) 
an be equivalently written as

[�;�

?

℄ � �

?

; � � �

?

and [M;�℄ � �

?

; (4.11)

respe
tively. Subalgebras � satisfying � � �

?

exist in every real form of the


omplex simple Lie algebras ex
ept the 
ompa
t one, sin
e for the 
ompa
t

real form the Cartan-Killing inner produ
t is (negative) de�nite. Now we

have the following

Lemma 3 � � �

?

=) � is a solvable subalgebra of G.

We re
all that � is solvable, if �

(n)

= 0 for some n, where the �

(k)

; k � 0

are de�ned iteratively by:

�

(0)

= � and �

(k)

= [�

(k�1)

;�

k�1

℄:

The se
ond 
ondition in (4.11) 
an be satis�ed for example by assuming

that every 
 2 � is a nilpotent element of G in whi
h 
ase � is a
tually

a nilpotent Lie algebra, by Engel's theorem [28℄. We also re
all that � is


alled nilpotent, if �

(n)

= 0 for some n, where the �

(k)

; k � 0 are de�ned

iteratively by:

�

(0)

= � and �

(k)

= [�

(k�1)

;�℄:

Clearly, any nilpotent � is solvable. However, the nilpoten
y of � is not

ne
essary for � � �

?

to hold. In fa
t, solvable but not nilpotent �'s whi
h

satisfy (4.11) 
an be found.

The Euler-Lagrange equation derived from (4.8) by varying g 
an be

written equivalently as

�

�

(�

+

gg

�1

+ g

~

Ag

�1

) + [A; �

+

gg

�1

+ g

~

Ag

�1

℄ + �

+

A = 0

�

+

(g

�1

�

�

g + g

�1

Ag) � [

~

A; g

�1

�

�

g + g

�1

Ag℄ + �

�

~

A = 0

(4.12)

and they determine the evolution of the �eld g. Sin
e the a
tion 
ontains
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no time-derivative of the gauge �elds the A;

~

A-equations are Lagrangian


onstraints

h
; �

+

gg

�1

+ g

~

Ag

�1

�Mi = 0; 8 
 2 � ;

h~
 ; g

�1

�

�

g + g

�1

Ag �

~

Mi = 0; 8 ~
 2

~

�:

(4.13)

We now note that by making use of the gauge invarian
e,

~

A and A 
an be set

equal to zero simultaneously. The important point for us is that, as is easy

to see, in the A =

~

A = 0 gauge one re
overs from (4.12) the �eld equations

(4.2) of the WZNW theory and from (4.13) the 
onstraints

�




= h
; J � �Mi = 0; and

~

�

~


= h~
;

~

J + �

~

Mi = 0; (4.14)

where the 
 and the ~
 form bases of � and

~

�, respe
tively.

Note that setting A;

~

A to zero is not a 
omplete gauge �xing, the residual

gauge transformations are exa
tly the 
hiral gauge transformations

g(x

+

; x

�

) �! e

�(x

+

)

� g(x

+

; x

�

) � e

�~�(x

�

)

; (4.15)

where � and ~� are arbitrary � and

~

� valued 
hiral fun
tions, respe
tively.

4.1.1 Hamiltonian formalism of the gauged theory

To dis
uss the Hamiltonian formalism for these theories we need to spe
ify

the 
anoni
al variables. For that purpose we parametrize the group elements

in some arbitrary way [11℄, g = g(�). We shall regard the parameters �

a

,

a = 1; :::;dimG, as the 
anoni
al 
oordinates in the theory. To �nd the


anoni
al momenta, we introdu
e the 2-form A =

1

2

A

ab

(�) d�

a

d�

b

to rewrite

the Wess-Zumino term as

1

3

Tr (dg g

�1

)

3

= dA:

(4.16)

The 2-form A is well-de�ned only lo
ally on G, sin
e the Wess-Zumino 3-

form is 
losed but not exa
t. Fortunately we do not need to spe
ify A

expli
itly below. Next we express the Maurer-Cartan forms as

dgg

�1

= N

ab

(�)d�

a

T

b

and g

�1

dg =

~

N

ab

(�)d�

a

T

b

; (4.17)

where T

b

are some orthonormal generators of G

2

. These non-singular ma-

tri
es are related with ea
h other and A by

N

~

N

�1

=

~

N

�1

N = B ; B
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= h gT

a
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�1

; T
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+A
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+A

b
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= f
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~

N
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~

N

bq

~

N


r

= f

pqr

N
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N
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N


r

:

(4.18)

2

In real forms of the 
omplex Lie algebra some T

a

have norm �1
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Furthermore, the Maurer-Cartan relations (or integrability 
ondition on g)

take the form

N

b


;

a

�N

a


;

b

�f

pq




N
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=

~

N

b


;
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~

N
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~

N
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= 0:

In these variables the a
tion reads
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� �
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�
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(4.19)

Sin
e it does not depend on

_

A, one has the primary 
onstraints

�

a

=

~

�

a

= 0:

The momenta 
onjugated to the

_

�

a

are easily found to be

�
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+ �
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(4.20)

The 
anoni
al Hamiltonian 
an be written as

H =

1

4�

hJ; Ji + hA; �M +

1

2

�A� Ji

+

1

4�

h

~

J;

~

Ji+ h

~

A; �

~
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~
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(4.21)

where we have de�ned the KM-
urrents

J = J
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(4.22)

The 
onsisten
y of the primary 
onstraints lead to the following se
ondary


onstraints

h
; J � �M � �Ai = 0 and h~
;

~

J + �

~

M + �

~

Ai = 0: (4.23)

For arbitrary subalgebras these 
onstraints do not weakly 
ommute with

the primary 
onstraints due to terms linear in the gauge �elds. Thus to get

FCC we are again lead to impose the se
ond 
ondition in (4.9) or in (4.11).

Then the quadrati
 in A;

~

A terms in (4.21) and the linear in A;

~

A terms in

(4.23) vanish and we remain with the se
ondary 
onstraints

�




= h
; J � �Mi = 0 and

~

�

~


= h~
;

~

J + �

~

Mi = 0:

(4.24)

After a lengthy but straightforward 
al
ulation, where one uses (4.18,4.19)

and identities like

g
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�
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b
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= �
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d

72



or

f

pq




~

N

ap

B

t

bq

+ f

pq

b

N

ap

B


q

= 0;

one �nds the following equal time Poisson bra
kets for the KM-
urrents

fhu; J(x)i; hv; J(y)ig = h[u; v℄; J(x)iÆ(�) + 2�hu; viÆ

0

(�)

fhu;

~
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~
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~

J (x)iÆ(�) � 2�hu; viÆ

0

(�)
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~

J (y)ig = 0

(4.25)

for arbitrary u; v 2 G. Here I abbreviated x� y = �. Thus we have
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Æ
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(4.26)

with the same arguments as in (4.25). Again it is evident that the 
onstraints

are �rst 
lass if, and only if, the 
onditions (4.9) are ful�lled, that is if �;

~

�

are solvable subalgebras on whi
h the Kostant-Kirillov forms vanish.

Finally we need to 
he
k the 
onsisten
y of the se
ondary 
onstraints.

Using the se
ond assumption in (4.9) we �nd for the Poisson bra
kets of the

se
ondary 
onstraints with the Hamiltonian density (4.21)

f�




(x);H(y)g = (�




(x)Æ(�))

0

� h[
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0
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(4.27)

Using the last property in (4.9) and integrating over y we obtain for the

smeared 
onstraints
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(4.28)

We see, that the primary and se
ondary 
onstraints form a FC system.

Finally, let us 
he
k whi
h o�-shell symmetries are generated by these

FCC. For that we de�ne a general FCC
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= �




i

;


al
ulate its time-derivative

d

dt

G =

Z

�

�

i

;

t

�

i

+ �

i

;

t

�

i

+ ~�

i

;

t

~

�

i

+

~

�

i

;

t

~

�

i

�

+ fG;Hg

and demand that this must be proportional to the primary 
onstraints.

One easily �nds that this 
an only be the 
ase if the 
oeÆ
ient fun
tions are
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related as

� = ��

�

�+ [�;A℄ ;

~

� = �

+

~�+ [~�;

~

A℄; where � = �

i




i

; : : :

With these relations between the parameters one obtains the following o�

mass-shell symmetry transformations

Æg = fg;Gg = �g � g~�;

ÆA = 


i

fA

i

; Gg = [�;A℄ � �

�

�;

Æ

~

A = ~


i

f

~

A

i

; Gg = [~�;

~

A℄ + �

+

~�;

(4.29)

whi
h are the in�nitesimal gauge transformations (4.6). Finally note, that

if we set the gauge �elds to zero, then we �nd

3

d

dt

Z

(�

i

�

i

+ ~�

i

~

�

i

) =

Z

�

h�

�

�; J � �Mi+ h�

+

~�;

~

J + �

~

Mi

�

:

The right hand side vanishes if the � and ~� depend only on x

+

and x

�

,

respe
tively. The 
orresponding smeared 
onstraints generate transforma-

tions whi
h leave the surfa
e de�ned by the 
onstraints and the 
onditions

A =

~

A = 0 invariant. In other words, the 
onditions A=

~

A= 0 is only a

partial gauge �xing and the 
onstraints

G


h

�

Z

dx

1

�

�

i

(x

+

)�

i

+ ~�

i

(x

�

)

~

�

i

�

(4.30)

generate 
hiral o� mass-shell symmetries on the surfa
e de�ned by the par-

tial gauge �xing. From (4.29) we see that these symmetries are just the 
hiral

gauge transformations (4.15), as expe
ted. The 
urrents are transformed as

ÆJ = T

a

fJ

a

(x); G


h

g = [�(x); J(x)℄ + 2��

0

Æ

~

J = T

a

f

~

J

a

(x); G


h

g = [~�(x);

~

J(x)℄� 2�~�

0

(4.31)

whi
h, sin
e 2�

0

= �

+

� and 2~�

0

= ��

�

~� for 
hiral fun
tions, are just the

in�nitesimal forms of the global gauge transformations

J ! e

�

Je

��

+ (�

+

e

�

) e

��

; � = �(x

+

)

~

J ! e

~�

~

Je

�~�

� e

~�

�

�

e

�~�

; ~� = ~�(x

�

):

(4.32)

These are just the transformation of the 
urrents (4.2) whi
h follow from

(4.15).

� From now on I shall always assume that the 
anoni
al pairs A

i

;�

i

and

~

A

i

;

~

�

i

have been eliminated.

3

up to surfa
e terms whi
h vanish if we impose periodi
 boundary 
onditions
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The Dira
 bra
ket on the so partially redu
ed phase spa
e, are just the

ordinary Poisson bra
ket for the remaining degrees of freedom. The situation

is very mu
h like in Yang-Mills theories, where one remains with the time-

independent gauge transformations after elimination of the primary pair

A

0

;�

0

and where these transformations are generated by the se
ondary

Gauss-
onstraints smeared with time-independent test fun
tions. Also, in

the rest of this 
hapter, the notation f

0

= 2�

1

f is used for every fun
tion,

in
luding the spatial Æ-fun
tions. This has the advantage that for a 
hiral

fun
tion f(x

+

) one has then f

0

= �

+

f .

4.1.2 E�e
tive �eld theories from left-right dual redu
tions

The aim of this se
tion is to des
ribe the e�e
tive �eld equations and a
tion

fun
tionals for an important 
lass of redu
ed WZNW theories. This 
lass of

theories is obtained by making the assumption that the left and right gauge

algebras � and

~

� are dual to ea
h other with respe
t to the Cartan-Killing

form, whi
h means that one 
an 
hoose bases 


i

2 � and ~


j

2

~

� so that

h


i

; ~


j

i = Æ

ij

:

(4.33)

This te
hni
al assumption allows for having a simple general algorithm for

disentangling the 
onstraints (4.24) whi
h de�ne the redu
tion. It holds if

one 
hooses � and

~

� to be the images of ea
h other under a Cartan invo-

lution

4

of the underlying simple Lie algebra. For maximally non-
ompa
t,


onne
ted real Lie groups the Cartan involution is (�1)� transpose, oper-

ating on the Chevalley basis a

ording to

H

i

�! �H

i

E

��

�! �E

��

:

It is obvious that hv ; v

t

i > 0 for any non-zero v 2 G and from this one sees

that �

t

is dual to � with respe
t to the Cartan-Killing form, i.e., (4.33) holds

for

~

� = �

t

. It should also be mentioned that there is a Cartan involution for

every non-
ompa
t real form of the 
omplex simple Lie algebras, as explained

in detail in [26℄.

Equation (4.33) implies that the left and right gauge algebras do not

interse
t, and thus we 
an 
onsider a dire
t sum de
omposition of G of the

form

G = � + B +

~

� ;

(4.34)

where B is some linear subspa
e of G. Here B is in prin
iple an arbitrary


omplementary spa
e to (� +

~

�) in G, but one 
an always make the 
hoi
e

4

A Cartan involution � of the simple Lie algebra is an automorphism for whi
h �

2

= 1

and hv; �(v)i < 0.
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B = (� +

~

�)

?

; (4.35)

whi
h is natural in the sense that the Cartan-Killing form is non-degenerate

on this B. We note that matters simplify if the spa
e B is a subalgebra of

G, but this is not ne
essary for our arguments and is not always possible

either.

We 
an asso
iate a `generalized Gauss de
omposition' of the group G to

the dire
t sum de
omposition (4.34). By `Gauss de
omposing' an element

g 2 G, we mean writing it in the form

g = a � b � 
 ; with a = e




; b = e

�

and 
 = e

~


;

(4.36)

where 
, � and ~
 are from the respe
tive subspa
es in (4.34).

There is a neighborhood of the identity in G 
onsisting of elements whi
h

allow a unique de
omposition of this sort, and in this neighborhood the

pie
es a, b and 
 
an be extra
ted from g by algebrai
 operations. We make

the assumption that every G-valued �eld we en
ounter is de
omposable as

g in (4.36). It is easily seen that in this `Gauss de
omposable se
tor' the


omponents of b(x

+

; x

�

) provide a 
omplete set of gauge invariant lo
al

�elds.

Below I explain how to solve the 
onstraints (4.24) in the Gauss de
om-

posable se
tor of the WZNW theory. For our method to work, we restri
t

ourselves to �elds whi
h vary in su
h a Gauss de
omposable neighborhood

of the identity where the matrix

V

ij

(b) = h


i

; b ~


j

b

�1

i

(4.37)

is invertible. Due to the assumptions, the analysis given in the following

yields a lo
al des
ription of the redu
ed theories. It is 
lear that for a global

des
ription one should use pat
hes on G obtained by multiplying out the

Gauss de
omposable neighborhood of the identity, but we do not deal with

this issue here.

Field equations of the redu
ed theories: First I derive the �eld

equations of the redu
ed theory by implementing the 
onstraints dire
tly

in the WZNW �eld equation �

�

(�

+

gg

�1

) = 0. (This is allowed sin
e the

WZNW dynami
s leaves the 
onstraint surfa
e invariant.) By inserting the

Gauss de
omposition of g into (4.14) and making use of the 
onstraints being

�rst 
lass, the 
onstraint equations 
an be rewritten as

h


i

; �

+

bb

�1

+ b(�

+





�1

)b

�1

�Mi = 0 ;

h~


i

; b

�1

�

�

b+ b

�1

(a

�1

�

�

a)b�

~

Mi = 0:

(4.38)

76



With the help of the inverse of V

ij

in (4.37), one 
an solve these equations

for �

+





�1

and a

�1

�

�

a in terms of b,

�

+





�1

= b

�1

T (b)b; and a

�1

�

�

a = b

~

T (b)b

�1

; (4.39)

where

T (b) =

X

ij

V

�1

ij

(b) h


j

; M � �

+

bb

�1

i b~


i

b

�1

;

~

T (b) =

X

ij

V

�1

ij

(b) h~


i

;

~

M � b

�1

�

�

bi b

�1




j

b:

(4.40)

The e�e
tive �eld equation for the �eld b(x

+

; x

�

) 
an be obtained, for in-

stan
e, by noting that the WZNW �eld equation 
an be written in the

zero-
urvature form [�

+

�J; �

�

� 0℄ = 0 or equivalently after a gauge trans-

formation with a as

[�

+

�A

+

; �

�

�A

�

℄ = 0; (4.41)

where

A

+

= �

+

b b

�1

+ b(�

+





�1

)b

�1

and A

�

= �a

�1

�

�

a : (4.42)

Inserting the relations (4.39) we see that the �eld equation of the redu
ed

theory is the zero 
urvature 
ondition of the following Lax potential:

A

+

(b) = �

+

b b

�1

+ T (b) and A

�

(b) = �b

~

T (b)b

�1

: (4.43)

More expli
itly, the e�e
tive �eld equation reads

�

�

(�

+

bb

�1

) + [b

~

T (b)b

�1

; T (b)℄ + �

�

T (b) + b(�

+

~

T (b))b

�1

= 0: (4.44)

The expression on the left-hand-side of (4.44) in general varies in the full

spa
e G, but not all the 
omponents represent independent equations. The

number of the independent equations is the number of the independent 
om-

ponents of the WZNW �eld equation minus the number of the 
onstraints in

(4.24), sin
e the 
onstraints automati
ally imply the 
orresponding 
ompo-

nents of the WZNW equation. Thus there are exa
tly as many independent

equations in (4.44) as the number of the redu
ed degrees of freedom. In fa
t,

the independent �eld equations 
an be obtained by taking the Cartan-Killing

inner produ
t of (4.44) with a basis of the linear spa
e B. The inner prod-

u
t of with the 


i

and the ~


i

vanishes as a 
onsequen
e of the 
onstraints

together with the independent �eld equations.
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General solution of �eld equation: The e�e
tive �eld equation

(4.44) is in general a non-linear equation for the �eld b(x

+

; x

�

), and we 
an

give a pro
edure whi
h 
an in prin
iple be used for produ
ing its general

solution. We are going to do this by making use of the fa
t that the spa
e

of solutions of the redu
ed theory is the spa
e of the 
onstrained WZNW

solutions fa
torized by the 
hiral gauge transformations (4.15). Thus the

idea is to �nd the general solution of the e�e
tive �eld equation by �rst

parameterizing, in terms of arbitrary 
hiral fun
tions, those WZNW solu-

tions whi
h satisfy the 
onstraints (4.24), and then extra
ting their b-part

by algebrai
 operations.

To be more 
on
rete, one 
an start the 
onstru
tion of the general so-

lution by �rst Gauss-de
omposing the 
hiral fa
tors of the general WZNW

solution g(x

+

; x

�

) = g

L

(x

+

) � g

R

(x

�

) as

g

L

(x

+

) = a

L

(x

+

) � b

L

(x

+

) � 


L

(x

+

)

g

R

(x

�

) = a

R

(x

�

) � b

R

(x

�

) � 


R

(x

�

):

(4.45)

Then the 
onstraint equations (4.24) be
ome

�

+




L




�1

L

= b

�1

L

T (b

L

)b

L

and a

�1

R

�

�

a

R

= b

R

~

T (b

R

)b

�1

R

:

(4.46)

In addition to the the purely algebrai
 problems of 
omputing the quantities

T and

~

T and extra
ting b from g = g

L

�g

R

= a�b�
, these �rst order systems of

ordinary di�erential equations are all one has to solve to produ
e the general

solution of the e�e
tive �eld equation. If this 
an be done by quadrature then

the e�e
tive �eld equation is also integrable by quadrature. In general, one


an pro
eed by trying to solve (4.46) for the fun
tions 


L

(x

+

) and a

R

(x

�

)

in terms of the arbitrary `input fun
tions' b

L

(x

+

) and b

R

(x

�

). Clearly, this

involves only a �nite number of integrations whenever the gauge algebras �

and

~

� are nilpotent.

We note that in 
on
rete 
ases some other 
hoi
e of input fun
tions,

instead of the 
hiral b's, might prove more 
onvenient for �nding the gen-

eral solutions of the systems of �rst order equations on g

L

and g

R

given in

(4.46) (see for instan
e the derivation of the general solution of the Liouville

equation given in [20℄).

E�e
tive a
tion for gauge invariant �elds: It is natural to ask

for the a
tion fun
tional underlying the e�e
tive �eld theory obtained by

imposing the 
onstraints (4.24) on the WZNW theory. In fa
t, the e�e
tive

a
tion is given by the following formula:

I

e�

(b) = S

WZ

(b)�

Z

d

2

x hb

~

T (b)b

�1

; T (b)i: (4.47)
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One 
an derive the following 
ondition for the extremum of this a
tion:

hÆbb

�1

; �

�

(�

+

bb

�1

) + [b

~

Tb

�1

; T ℄ + �

�

T + b(�

+

~

T )b

�1

i = 0: (4.48)

It is straightforward to 
ompute this, the only thing to remember is that

the obje
ts b

~

Tb

�1

and b

�1

Tb introdu
ed in (4.40) vary in the gauge algebras

� and

~

�. The arbitrary variation of b(x) is determined by the arbitrary

variation of �(x) 2 B, a

ording to b(x) = e

�(x)

, and thus we see from

(4.48) that the Euler-Lagrange equation of the a
tion (4.47) yields exa
tly

the independent 
omponents of the e�e
tive �eld equation (4.44).

The e�e
tive a
tion given above 
an be derived from the gauged WZNW

a
tion (4.8), by eliminating the gauge �elds A;

~

A by means of their Euler-

Lagrange equations (4.13). By using the Gauss de
omposition, these Euler-

Lagrange equations be
ome equivalent to the relations

a

�1

D

�

a = b

~

T (b)b

�1

; and 
D

+




�1

= �b

�1

T (b)b; (4.49)

where T and

~

T are given by the expressions in (4.40) and D

�

denotes the

gauge 
ovariant derivatives introdu
ed earlier. Now I show that I

e�

(b) 
an

indeed be obtained by substituting the solution of (4.49) for A;

~

A ba
k into

(4.8) with g = ab
. To this �rst we rewrite I(ab
;A;

~

A) in the form (4.5)

(plus the terms 
ontainingM and

~

M) and use (4.49) by noting, for example,

that h�

�

aa

�1

; Mi is a total derivative.

Parity operations: Here I point out that the parti
ular left-right re-

lated 
hoi
e (4.33) of the gauge algebras 
an also be used to ensure the parity

invarian
e of the e�e
tive �eld theory. Indeed, for maximally non-
ompa
t


onne
ted Lie group G S

WZ

(g) is invariant under any of the following two

`parity transformations' g �! Pg:

(P

1

g)(x

0

; x

1

) � g

t

(x

0

;�x

1

) , (P

2

g)(x

0

; x

1

) � g

�1

(x

0

;�x

1

): (4.50)

If one 
hooses

~

� = �

t

and

~

M =M

t

then the parity transformation P

1

simply

inter
hanges the left and right 
onstraints, � and

~

� in (4.24), and thus the


orresponding e�e
tive �eld theory is invariant under the parity P

1

. The

spa
e B in (4.35) is invariant under the transpose in this 
ase, and thus

the gauge invariant �eld b transforms in the same way under P

1

as g does

in (4.50). Of 
ourse, the parity invarian
e 
an also be seen on the level of

the gauged a
tion. Namely, I(g;A;

~

A) is invariant under P

1

if one extends

the de�nition in (4.50) to in
lude the following parity transformation of the

gauge �elds:
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(P

1

A)(x

0

; x

1

) � A

t

(x

0

;�x

1

) ; (4.51)

and similarly for

~

A. The P

1

-invariant redu
tion pro
edure does not preserve

the parity symmetry P

2

, but it is possible to 
onsider redu
tions preserving

just P

2

instead of P

1

. In fa
t, su
h axial redu
tions 
an be obtained by

taking

~

� = � and

~

M =M .

It is obvious that to 
onstru
t parity invariant WZNW redu
tions in

general, for some arbitrary but non-
ompa
t real form G of the 
omplex

simple Lie algebras, one 
an use �� instead of the transpose, where � is a

Cartan involution of G.

Spe
ial 
ases: Finally I would like to mention 
ertain spe
ial 
ases

when the above equations simplify. First we note that if one has

[B ; �℄ � � and [B ;

~

�℄ �

~

� ; (4.52)

then

T (b) =M � ~�(�

+

bb

�1

) and

~

T (b) =

~

M � �(b

�1

�

�

b) ; (4.53)

where we introdu
ed the proje
tors onto the spa
es � and

~

�,

� =

X

i

j


i

ih~


i

j and ~� =

X

i

j~


i

ih


i

j ;

(4.54)

and, without loss of generality, (see 4.33) assumed that M 2

~

� and

~

M 2 �.

One obtains (4.53) from (4.39,4.40) by taking into a

ount that in this 
ase

V

ij

(b) in (4.37) is the matrix of the operator Ad

b

a
ting on

~

�, and thus the

inverse is given by Ad

b

�1
.

The ni
est possible situation o

urs when B = (�+

~

�)

?

is a subalgebra of

G and also satis�es (4.52). In this 
ase one simply has T = M and

~

T =

~

M

and thus (4.44) simpli�es to

�

�

(�

+

bb

�1

) + [b

~

Mb

�1

; M ℄ = 0 : (4.55)

The derivative term is now an element of B and by 
ombining the above

assumptions with the �rst 
lass 
onditions [M;�℄ � �

?

and [

~

M;

~

�℄ �

~

�

?

one sees that the 
ommutator term in (4.55) also varies in B, whi
h ensures

the 
onsisten
y of this equation. Generalized, or non-Abelian, Toda theories

of this type have been �rst investigated by Leznov and Saveliev [32, 33℄ ,

who de�ned these theories by postulating their Lax potential

A

H

+

= �

+

b � b

�1

+M , A

H

�

= �b

~

Mb

�1

;

(4.56)
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whi
h they obtained by 
onsidering the problem that if one requires a G-

valued pure-gauge Lax potential to take some spe
ial form, then the 
onsis-

ten
y of the system of equations 
oming from the zero 
urvature 
ondition

be
omes a non-trivial problem. Also, in this parti
ular situation the e�e
tive

a
tion simpli�es to

I

H

e�

(b) = S

WZ

(b)�

Z

d

2

x hb

~

Mb

�1

;Mi;

(4.57)

where the �eld b varies in the subgroup with Lie-algebra B.

4.2 Conformally invariant redu
tions

The purpose of this se
tion is to �nd suÆ
ient 
onditions for the 
onformal

invarian
e of the 
onstraints. The residual gauge symmetries on the partially

gauge �xed 
on�gurations 
onsisting of 
urrents of the form

J(x) = �M + j(x) ; with j(x) 2 �

?

(4.58)

are the 
hiral transformations (4.15) and (4.32) whi
h are generated by the

FCC (4.24) smeared with 
hiral test fun
tions. The analysis applies to ea
h


urrent J and

~

J separately so we 
hoose one of them, J say, for de�niteness.

It is 
lear from (4.24) thatM 
an be shifted by an arbitrary element from

�

?

without 
hanging the a
tual 
ontent of the 
onstraints. This ambiguity

is unessential, sin
e one 
an �x M , for example, by requiring that it is

from some given linear 
omplement of �

?

in G, whi
h 
an be 
hosen by


onvention. We shall assume that M =2 �

?

from now on.

Now let us dis
uss suÆ
ient 
onditions whi
h ensure 
onformal invari-

an
e. The standard 
onformal symmetry generated by the Virasoro densityL

KM

(x)

is broken by the 
onstraints (4.24), sin
e they set some 
omponent of the


urrent, whi
h has spin 1, to a non-zero 
onstant. The idea is to 
ir
umvent

this apparent violation of 
onformal invarian
e by 
hanging the standard a
-

tion of the 
onformal group on the KM phase spa
e to one whi
h does leave

the 
onstraint surfa
e invariant. One 
an try to generate the new 
onfor-

mal a
tion by 
hanging the usual KM Virasoro density to the new Virasoro

density

L

H

(x) = L

KM

(x)� hH;J

0

(x)i; where L

KM

=

1

2�

hJ; Ji

(4.59)

is twi
e the energy-density (4.21) on the partially gauge �xed �elds and H

is some 
onstant element of G. The 
onformal a
tion generated by L

H

(x)

operates on the KM phase spa
e as
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Æ

f;H

J(x) �

Z

dy

1

fJ(x); L

H

(y)g f(y

+

)

= f(x

+

)J

0

(x) + f

0

(x

+

)(J(x) + [H;J(x)℄) + �f

00

(x

+

)H

(4.60)

for any parameter fun
tion f(x

+

), 
orresponding to the 
onformal 
oordi-

nate transformation Æ

f

x

+

= �f(x

+

). In parti
ular, j(x) in (4.58) trans-

forms under this new 
onformal a
tion a

ording to

5

Æ

f;H

j(x) = f(x

+

)j

0

(x) + f

00

(x

+

)H

+ f

0

(x

+

)

�

j(x) + [H; j(x)℄ + [H;M ℄ +M

�

;

(4.61)

and our 
ondition is that this variation should be in �

?

, whi
h means that

this 
onformal a
tion preserves the 
onstraint surfa
e. From (4.61), one sees

that this is equivalent to having the following relations:

H 2 �

?

; [H;�

?

℄ � �

?

and ([H;M ℄ +M) 2 �

?

: (4.62)

In 
on
lusion, the existen
e of an operator H satisfying these relations is

a suÆ
ient 
ondition for the 
onformal invarian
e of the KM redu
tion ob-

tained by imposing (4.24). The 
onditions in (4.62) are equivalent to L

H

(x)

being a gauge invariant quantity, indu
ing a 
orresponding 
onformal a
-

tion on the redu
ed phase spa
e. Obviously, the se
ond relation in (4.62) is

equivalent to

[H;�℄ � � : (4.63)

An element H 2 G is 
alled diagonalizable if the linear operator ad

H

pos-

sesses a 
omplete set of eigenve
tors in G. By the eigenspa
es of ad

H

, su
h an

element de�nes a grading of G, and below we shall refer to a diagonalizable

element as a grading operator of G.

If H is a grading operator satisfying (4.62) then it is always possible to

shift M by some element of �

?

so that the new M satis�es

[H;M ℄ = �M ; (4.64)

instead of the last 
ondition in (4.62). It is also 
lear that if H is a grading

operator then one 
an take graded bases in � and �

?

. On re-inserting (4.64)

into (4.61) it then follows that all 
omponents of j(x) are primary �elds with

respe
t to the 
onformal a
tion generated by L

H

(x), with the ex
eption of

the H-
omponent, whi
h also survives the 
onstraints a

ording to the �rst


ondition in (4.62).

5

From now on we set � = 1. Only when we 
ompute the 
entral extension in the

Virasoro algebra do we reinstall �.
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4.2.1 Gauge invariant polynomials

In the previous se
tions I derived the 
onditions for the 
onstraints to be �rst


lass and for L

H

(J) in (4.59) being a gauge invariant polynomial. It is 
lear

that the KM Poisson bra
kets of all gauge invariant di�erential polynomials

of the 
urrent always 
lose on su
h polynomials and Æ-distributions. The


orresponding algebra is of spe
ial interest in the 
onformally invariant 
ase

when it is a polynomial extension of the Virasoro algebra, the so-
alled W-

algebra. Here I shall give suÆ
ient 
onditions on the triple (�;M;H) whi
h

allows one to 
onstru
t out of the 
onstrained 
urrent a 
omplete set of

gauge invariant di�erential polynomials. Their KM Poisson bra
ket algebra

be
omes the Dira
 bra
ket algebra of the 
urrent 
omponents in the so-
alled

Drinfeld-Sokolov (DS) gauges [15℄. Thus we 
an representW-algebras as KM

Poisson bra
ket algebras of gauge invariant di�erential polynomials, whi
h in

prin
iple allows for its quantization through the KM representation theory.

Also we shall exhibit the primary �elds for the W-algebras and des
ribe

their stru
ture in detail.

Let us suppose that

� (�;M;H) satisfy the previously given 
onditions, (4.9) and (4.62).

� H is a grading operator and M is 
hosen so that [H;M ℄ = �M , 
f.

(4.64).

The grade-h subspa
es of G are denoted by G

h

and the dire
t sum of the G

h

0

with h

0

> h by G

>h

. Also note that in the present situation � and �

?

are

graded by the eigenvalues of ad

H

. Now we 
an prove the following

Theorem 6 If �\K

M

= f0g and �

?

� G

>�1

, where K

M

= Ker(ad

M

), then

one 
an 
onstru
t out of J(x) in (4.58) a 
omplete set of gauge invariant

di�erential polynomials.

The 
ondition on �

?

plays a te
hni
al role in our 
onsiderations, but perhaps

it 
an be argued for also physi
ally, on the basis that it ensures that the


onformal weights of the primary �eld 
omponents of j(x) in (4.58) are non-

negative with respe
t to L

H

. Se
ond, let us observe that in our situation

M satisfying (4.64) is uniquely determined, that is, there is no possibility

of shifting it by elements from �

?

, simply be
ause there are no grade �1

elements in �

?

. The �rst 
ondition means that the operator ad

M

maps �

into �

?

in an inje
tive manner, and for this reason we 
all it non-degenera
y


ondition. Before proving this result, we dis
uss some 
onsequen
es of the


onditions, whi
h we shall need later.

Lemma 4 The 
onditions in the theorem imply the following 
onditions on

the gauge algebra and the kernel of M : G

�1

� � � G

>0

; G

�0

� �

?

� G

>�1

and K

M

� G

<1

.
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Hen
e every 
 2 � is represented by a nilpotent operator in any �nite

dimensional representation of G.

To prove the lemma we note that the spa
es G

h

and G

�h

are dual to ea
h

other with respe
t to the Cartan-Killing form whi
h is a 
onsequen
e of its

non-degenera
y and invarian
e under ad

H

. This implies G

�1

� �. On the

other hand, if � would 
ontain an element 
 of grade � 0, then ad

M


, whi
h

is non-zero a

ording to our non-degenera
y 
ondition and lies in �

?

, would

have grade � �1. This would be in 
on
i
t with our assumption on �

?

.

So we 
on
lude that � � G

>0

. Using the duality property we also 
on
lude

then G

�0

� �

?

. Finally, sin
e � 
ontains all elements with grade � 1, the

Kernel of ad

M

must be a subset of G

<1

. This then proves the lemma.

Finally, I wish to establish a 
ertain relationship between the dimensions

of G and K

M

. For this purpose we 
onsider an arbitrary 
omplementary

spa
e T

M

to K

M

, de�ning a linear dire
t sum de
omposition

G = K

M

+ T

M

:

(4.65)

Clearly, !

M

(K

M

;G) = 0, and the restri
tion of !

M

to T

M

is a symple
ti


form, in other words:

!

M

(T

M

;T

M

) is non�degenerate : (4.66)

We note in passing that T

M


an be identi�ed with the tangent spa
e at M

to the 
o-adjoint orbit of G through M , and in this pi
ture !

M

be
omes

the Kirillov-Kostant symple
ti
 form of the orbit [2℄. The non-degenera
y


ondition says that one 
an 
hoose the spa
e T

M

in (4.65) in su
h a way

that � � T

M

. One then obtains the inequality

dim(�) �

1

2

dim(T

M

) =

1

2

(dim(G)� dim(K

M

)) ;

(4.67)

where the fa
tor

1

2

arises sin
e !

M

is a symple
ti
 form on T

M

, whi
h van-

ishes on the subspa
e � � T

M

.

After the above 
lari�
ation of the meaning of 
onditions in the theo-

rem, I now wish to show that they indeed allow for exhibiting a 
omplete

set of gauge invariant di�erential polynomials among the gauge invariant

fun
tions. Generalizing the arguments of [15, 4, 40℄, this will be a
hieved

by demonstrating that an arbitrary 
urrent J(x) subje
t to (4.58) 
an be

brought to a 
ertain normal form by a unique gauge transformation whi
h

depends on J(x) in a di�erential polynomial way.

A normal form suitable for this purpose 
an be asso
iated to any graded

subspa
e � � G whi
h is dual to � with respe
t to the 2-form !

M

. Be
ause
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of the non-degenera
y 
ondition and the lemma su
h a spa
e must obey

� � G

<1

and dim(� \ G

1�h

) = dimG

h

; h � 1:

It is possible to 
hoose bases 


i

h

and �

j

k

in � and � respe
tively su
h that

!

M

(


l

h

; �

i

k

) = Æ

il

Æ

hk

; (4.68)

where the subs
ript h on 


l

h

denotes the grade, and the indi
es i and l denote

the additional labels whi
h are ne
essary to spe
ify the base ve
tors at �xed

grade. The subs
ript k on elements �

j

k

2 � does not denote the grade,

whi
h is (1 � k). The redu
ed phase spa
e 
orresponding to � is given by

the following equation:

J

red

(x) =M + j

red

(x) where j

red

(x) 2 �

?

\�

?

� V : (4.69)

In other words, the set of redu
ed 
urrents is obtained by supplementing the

FCC (4.24) by the gauge �xing 
ondition

�

�

(x) = hJ(x); �i � hM; �i = 0 ; 8� 2 �: (4.70)

We 
all a gauge whi
h 
an be obtained in the above manner a Drinfeld-

Sokolov (DS) gauge. It is not hard to see that the spa
e V is a graded

subspa
e of �

?

whi
h is disjoint from the image of � under the operator

ad

M

and is in fa
t 
omplementary to the image, i.e., one has

�

?

= [M;�℄ + V : (4.71)

It also follows from the non-degenera
y 
ondition that any graded 
omple-

ment V in (4.71) 
an be obtained in the above manner, by means of using

some �. Thus it is possible to de�ne the DS normal form of the 
urrent

dire
tly in terms of a 
omplementary spa
e V as well, as has been done in

spe
ial 
ases in [15, 4, 18℄.

As the �rst step in proving that any 
urrent in (4.58) is gauge equivalent

to one in the DS gauge, let us 
onsider the gauge transformation by g

h

(x

+

) =

exp[

P

l

a

l

h

(x

+

)


l

h

℄ for some �xed grade h. Suppressing the summation over

l, it 
an be written as

6

j(x)! j

g

h

(x) = e

a

h

�


h

(j(x) +M)e

�a

h

�


h

+ (e

a

h

�


h

)

0

e

�a

h

�


h

�M :

6

Throughout the 
hapter, all equations involving gauge transformations, Poisson bra
k-

ets, et
., are to be evaluated by using a �xed time. They are valid both on the 
anoni
al

phase spa
e and on the 
hiral KM phase spa
e belonging to spa
e of solutions of the

theory.
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Taking the inner produ
t of this equation with the basis ve
tors �

i

k

in (4.68)

for all k � h, we see that there is no 
ontribution from the derivative term.

We also see that the only 
ontribution from

e

a

h

�


h

j(x)e

�a

h

�


h

= j(x) + [a

h

� 


h

; j(x)℄ + : : :

is the one 
oming from the �rst term, sin
e all 
ommutators 
ontaining the

elements 


l

h

drop out from the inner produ
t in question as a 
onsequen
e

of the following 
ru
ial relation:

[


l

h

; �

i

k

℄ 2 �; for k � h; (4.72)

whi
h follows from the lemma by noting that the grade of this 
ommutator

is at least 1 for k � h. Taking these into a

ount, and 
omputing the


ontribution from those two terms in j

g

h

(x) whi
h 
ontainM by using (4.68)

and h�

i

k

;Mi = 0, we obtain

h�

i

k

; j

g

h

(x)i = h�

i

k

; j(x)i � a

i

h

(x

+

)Æ

hk

; for all k � h:

We see from this equation that

h�

i

k

; j(x)i = 0 () h�

i

k

; j

g

h

(x)i = 0 ; for k < h ;

and

a

i

h

(x

+

) = h�

i

h

; j(x)i ) h�

i

h

; j

g

h

(x)i = 0 ; for k = h:

The last two equations tell us that if the gauge-�xing 
ondition h�

i

k

; j(x)i = 0

is satis�ed for all k < h then we 
an ensure that the same 
ondition holds

for j

g

h

(x) for the extended range of indi
es k � h, by 
hoosing a

i

h

(x

+

) to be

h�

i

h

; j(x)i. From this it is easy to see that the DS gauge (4.70) 
an be rea
hed

by an iterative pro
ess of gauge transformations, and the gauge-parameters

a

i

h

(x

+

) are unique polynomials in the 
urrent at ea
h stage of the iteration.

In more detail, let us write the general element g(a(x

+

)) 2 e

�

of the

gauge group as a produ
t in order of des
ending grades, i.e.,as

g(a(x

+

)) = g

h

n

� g

h

n�1

� � � g

h

1

; with g

h

i

(x

+

) = e

a

h

i

(x

+

)�


h

i

;

where h

n

> h

n�1

> : : : > h

1

is the list of grades o

urring in �. Let us then

insert this expression into

j ! j

g

= g(j +M)g

�1

+ g

0

g

�1

�M ; (4.73)

and 
onsider the 
ondition

j

g

(x) = j

red

(x) ; (4.74)

with j

red

(x) in (4.69), as an equation for the gauge-parameters a

h

(x

+

). One
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sees from the above 
onsiderations that this equation is uniquely soluble for

the 
omponents of the a

h

(x

+

) and the solution is a di�erential polynomial

in j(x). This implies that the 
omponents of j

red

(x) 
an also be uniquely


omputed from (4.73,4.74) and the solution yields a 
omplete set of gauge

invariant di�erential polynomials of j(x), whi
h establishes the required re-

sult. The above iterative pro
edure is in fa
t a 
onvenient tool for 
omputing

the gauge invariant di�erential polynomials in pra
ti
e [40℄. Of 
ourse, any

unique gauge �xing 
an be used to de�ne gauge invariant quantities, but

they are in general not polynomial, not even lo
al in j(x).

4.2.2 The polynomiality of the Dira
 bra
ket

It follows from the polynomiality of the gauge �xing that the 
omponents

of the gauge �xed 
urrent j

red

in (4.69) generate a di�erential polynomial

algebra under Dira
 bra
ket.

Now I wish to give a dire
t proof for the polynomiality of the Dira


bra
ket algebra of the SCC, that is the FCC (4.24) and gauge �xings (4.70)




�

(x) = h� ; J(x)�Mi = 0 where � 2 f


l

h

g [ f�

i

k

g: (4.75)

We note that for 
ertain purposes SCC might be more natural to use than

FCC sin
e in the se
ond 
lass formalism one dire
tly deals with the physi
al

�elds. For example, theW

G

S

-algebra dis
ussed below is very natural from the

se
ond 
lass point of view and 
an be realized by starting with a number of

di�erent �rst 
lass systems of 
onstraints, as we shall see in the next se
tion.

The Dira
 bra
kets (2.61) of the redu
ed 
urrents is

fj

u

red

(x); j

v

red

(y)g

�

= fj

u

red

(x); j

v

red

(y)g

�

X

��

Z

dz

1

dw

1

fj

u

red

(x); 


�

(z)g�

��

(z; w)f


�

(w); j

v

red

(y)g;

(4.76)

where j

u

red

(x) = hu; j

red

(x)i for any u 2 G and �

��

(z; w) is the inverse of

the kernel

�

��

(z; w) = f


�

(z); 


�

(w)g ;

in the sense that (on the 
onstraint surfa
e)

X

�

Z

dx

1

�

��

(z; x)�

��

(x;w) = Æ

��

Æ(z

1

� w

1

):

From the stru
ture of the 
onstraints in (4.75), 


�

= (�




; �

�

), one sees

that �

��

(z) is a �rst order di�erential operator possessing the following

blo
k stru
ture

87



�

��

=

�

f�; �g f�; �g

f�; �g f�; �g

�

=

�

0 E

�E

y

F

�

;

(4.77)

where E

y

is the formal Hermitian 
onjugate of the matrix E. We see that

�

��

is invertible if and only if its blo
k E is invertible, and in that 
ase the

inverse takes the form

(�)

��

=

�

(E

y

)

�1

FE

�1

�(E

y

)

�1

E

�1

0

�

(4.78)

Sin
e E(z) and F (z) are polynomial (even linear) in the 
urrent and �

z

it

follows that �

��

is a polynomial di�erential operator if and only if E

�1

(z)

is a polynomial di�erential operator.

To show that E

�1

exists and is a polynomial di�erential operator we

note that in terms of the basis of (� + �) in (4.75) the matrix E is given

expli
itly by the following formula:

E




m

h

;�

n

k

(z) = Æ

hk

Æ

mn

+ h[


m

h

; �

n

k

℄; j

red

(z)i+ h


m

h

; �

n

k

i�

z

:

The 
ru
ial point is that, by the grading and the property in (4.72), we have

E




m

h

;�

n

k

(z) = Æ

hk

Æ

nm

; for k � h :

(4.79)

The matrix E has a blo
k stru
ture labeled by the (blo
k) row and (blo
k)


olumn indi
es h and k, respe
tively, and (4.79) means that the blo
ks in the

diagonal of E are unit matri
es and the blo
ks below the diagonal vanish. In

other words, E is of the form E = 1+", where " is a stri
tly upper triangular

matrix. It is 
lear that su
h a matrix di�erential operator is polynomially

invertible, namely by a �nite series of the form

E

�1

= 1� "+ "

2

+ : : :+ (�1)

N

"

N

; ("

N+1

= 0);

whi
h �nishes our proof of the polynomiality of the Dira
 bra
ket in (4.76).

One 
an use the arguments in the above proof to set up an algorithm for

a
tually 
omputing the Dira
 bra
ket. The proof also shows that the poly-

nomiality of the Dira
 bra
ket is guaranteed whenever E is of the form

(1+ ") with " being nilpotent as a matrix. In our 
ase this was ensured by a

spe
ial grading assumption, and it appears an interesting question whether

polynomial redu
tions 
an be obtained at all without using some grading

stru
ture.

The zero blo
k o

urs in �

��

in (4.78) be
ause the SCC originate from

the gauge �xing of FCC. We note that the presen
e of this zero blo
k im-

plies that the Dira
 bra
kets of the gauge invariant quantities 
oin
ide with

their original Poisson bra
kets, namely one sees this from the formula of the
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Dira
 bra
ket by keeping in mind that the gauge invariant quantities weakly


ommute with the FCC.

In our proof of the polynomiality of the gauge �xing and of the algebra

we a
tually only used that the graded subspa
e � of G whi
h de�nes the

gauge �xing in (4.70) is dual to the graded gauge algebra � with respe
t to

!

M

and satis�es the 
ondition

([� ; �℄)

�1

� � ;
(4.80)

whi
h is equivalent to the existen
e of the bases 


l

h

and �

i

k

satisfying (4.68)

and (4.72). We have seen that this 
ondition follows from the assumption in

the theorem, but it should be noted that it is a more general 
ondition, sin
e

the 
onverse is not true. This is best seen by 
onsidering an example. To

this let now G be the maximally non-
ompa
t real form of a 
omplex simple

Lie algebra. Consider the prin
ipal sl(2) embedding in G, with 
ommutation

rules as in (4.81) below, and 
hoose the one-dimensional gauge algebra � �

fM

+

g and take M �M

�

. The !

M

-dual to M

+


an be taken to be � =M

0

,

and then (4.80) holds. To show that 
onditions in the theorem 
annot be

satis�ed, we prove that a grading operator H for whi
h [H;M

�

℄ = �M

�

and

G

H

�1

� �, does not exist. First of all, [H;M

�

℄ = �M

�

and hM

�

;M

+

i 6= 0

imply [H;M

+

℄ = M

+

, and thus �

H

�1

= fM

+

g. Furthermore, writing H =

(M

0

+ �), we �nd from [H;M

�

℄ = �M

�

that � must be an sl(2) singlet

in the adjoint of G. However, in the 
ase of the prin
ipal sl(2) embedding,

there is no su
h singlet in the adjoint, and hen
e H = M

0

. But then the


ondition G

M

0

�1

� � is not ful�lled.

4.3 W-algebras

4.3.1 First 
lass 
onstraints for the W

G

S

-algebras

Let S = fM

�

;M

0

g be an sl(2) subalgebra of the simple Lie algebra G:

[M

0

;M

�

℄ = �M

�

; [M

+

;M

�

℄ = 2M

0

: (4.81)

One 
an asso
iate an extended 
onformal algebra, denoted as W

G

S

, to any

su
h sl(2) embedding [5, 18℄. Namely, we de�ned the W

G

S

-algebra to be the

Dira
 bra
ket algebra generated by the 
omponents of the 
onstrained KM


urrent of the the following spe
ial form:

J

red

(x) =M

�

+ j

red

(x) ; with j

red

(x) 2 Ker(ad

M

+

) ;

(4.82)

whi
h means that j

red

(x) is a linear 
ombination of the sl(2) highest weight

states in the adjoint of G. This de�nition is indeed natural in the sense that
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the 
onformal properties are manifest, sin
e, as we shall see below, with

the ex
eption of the M

+

-
omponent the spin s 
omponent of j

red

(x) turns

out to be a primary �eld of 
onformal weight (s + 1) with respe
t to L

M

0

.

Before showing this, we wish to �nd a gauge algebra � for whi
h the triple

(�;H = M

0

;M = M

�

) satis�es our suÆ
ient 
onditions for polynomiality

and (4.82) represents a DS gauge for the 
orresponding 
onformally invariant

FCC. The 
orresponding �rst 
lass KM 
onstraints will then be used in the

next se
tion to 
onstru
t generalized Toda theories whi
h realize the W

G

S

-

algebras as their 
hiral algebras.

We start by noti
ing that the dimension of su
h a � has to satisfy the

relation

dimKer(ad

M

+

) = dimW

G

S

= dimG � 2dim� :

From this, sin
e the kernels of ad

M

�

are of equal dimension, we obtain that

dim� =

1

2

dimG �

1

2

dimKer(ad

M

�

) ;

(4.83)

whi
h means by (4.67) that we are looking for a � of maximal dimension.

By the representation theory of sl(2), the above equality is equivalent to

dim� = dimG

�1

+

1

2

dimG
1

2

; (4.84)

where the grading is by the, in general half-integral, eigenvalues of ad

M

0

. We

also know from our lemma that we should 
hoose the graded Lie subalgebra

� of G in su
h a way that G

�1

� � � G

>0

. Observe that the non-degenera
y


ondition in the theorem is automati
ally satis�ed for any su
h � sin
e in

the present 
ase Ker(ad

M

�

) � G

�0

, and H = M

0

2 �

?

is also ensured,

whi
h guarantees the 
onformal invarian
e, see (4.62).

It is obvious from the above that in the spe
ial 
ase of an integral sl(2)

subalgebra, for whi
h G
1

2

is empty, one 
an simply take

� = G

�1

:

For grading reasons, !

M

�

vanishes on this � and thus one indeed obtains


onformal FCC and polynomiality this way.

One sees from (4.84) that for �nding the gauge algebra in the non-trivial


ase of a half-integral sl(2) subalgebra, one should somehow add half of

G
1

2

to G

�1

, in order to have the 
orre
t dimension. The key observation for

de�ning the required halving of G
1

2


onsists in noti
ing that the restri
tion of

the 2-form !

M

�

to G
1

2

is non-degenerate. This 
an be seen as a 
onsequen
e

of (4.66), but is also easy to verify dire
tly. By the well known Darboux
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normal form of symple
ti
 forms [2℄, there exists a (non-unique) dire
t sum

de
omposition

G
1

2

= P
1

2

+Q
1

2

(4.85)

su
h that !

M

�

vanishes on the subspa
es P
1

2

and Q
1

2

separately. The spa
es

P
1

2

and Q
1

2

, whi
h are the analogues of the usual momentum and 
oordinate

subspa
es of the phase spa
e in analyti
 me
hani
s, are of equal dimension

and dual to ea
h other with respe
t to !

M

�

. The point is that the �rst-


lassness 
onditions in (4.13) are satis�ed if we de�ne the gauge algebra to

be

� = G

�1

+ P
1

2

;

(4.86)

by using any symple
ti
 halving of the above kind. It is obvious from the


onstru
tion that the FCC (4.58) obtained by using � in (4.86) satisfy the

suÆ
ient 
onditions for polynomiality given earlier. With this � we have

�

?

= G

�0

+Q

�

1

2

; where Q

�

1

2

= [M

�

;P
1

2

℄ � G

�

1

2

:

By 
ombining these relations with (4.86) one also easily veri�es the following

dire
t sum de
omposition:

�

?

= [M

�

;�℄ + Ker(ad

M

+

) ;

whi
h is just (4.71) with V = Ker(ad

M

+

). This means that (4.82) is indeed

nothing but a parti
ular DS gauge for the FCC, and this gauge is 
alled the

highest weight gauge [4℄. There exists therefore a basis of gauge invariant

di�erential polynomials of the 
urrent in (4.58) su
h that the base elements

redu
e to the 
omponents of j

red

(x) in (4.82) by the gauge �xing. The KM

Poisson bra
ket algebra of these polynomials is 
learly identi
al to the Dira


bra
ket algebra of the 
orresponding 
urrent 
omponents, and we 
an thus

realize the W

G

S

-algebra as a KM Poisson bra
ket algebra of gauge invariant

di�erential polynomials.

The SCC de�ning the highest weight gauge (4.82) are natural in the sense

that in this 
ase � in (4.75) runs over the basis of the spa
e T

M

�

= [M

+

; G℄

whi
h is a natural 
omplement of K

M

�

= Ker(ad

M

�

) in G, eq. (4.65).

In the se
ond 
lass formalism, the 
onformal a
tion generated by L

M

0

on the W

G

S

-algebra is given by the following formula:

Æ

�

f;M

0

j

red

(x) � �

Z

dy

1

f(y

+

) fL

M

0

(y) ; j

red

(x)g

�

;

(4.87)

where the parameter fun
tion f(x

+

) refers to the 
onformal 
oordinate
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transformation, 
f. (4.60). To a
tually evaluate (4.87), we �rst repla
e

L

M

0

by the obje
t

L

mod

(x) = L

M

0

(x)�

1

2

hM

+

; J

00

(x)i ;

whi
h is allowed under the Dira
 bra
ket sin
e the di�eren
e (the se
ond

term) vanishes upon imposing the 
onstraints. The 
ru
ial point to noti
e is

that L

mod

weakly 
ommutes with all FCC and gauge �xings the KM Poisson

bra
ket. This implies that with L

mod

the Dira
 bra
ket in (4.87) is in fa
t

identi
al to the original KM Poisson bra
ket and by this observation we

easily obtain

Æ

�

f;M

0

j

red

(x) = f(x

+

) j

0

red

+ f

0

(x

+

)(j

red

+ [M

0

; j

red

℄)�

1

2

f

000

(x

+

)M

+

:

This proves that, with the ex
eption of the M

+

-
omponent, the sl(2) high-

est weight 
omponents of j

red

(x) in (4.82) transform as 
onformal primary

�elds, whereby the 
onformal 
ontent of W

G

S

is determined by the de
om-

position of the adjoint of G under S in the aforementioned manner. We end

this dis
ussion by noting that in the highest weight gauge L

M

0

(x) be
omes a

linear 
ombination of the M

+

-
omponent of j

red

(x) and a quadrati
 expres-

sion in the 
omponents 
orresponding to the singlets of S in G. From this

we see that L

M

0

(x) and the primary �elds 
orresponding to the sl(2) highest

weight states give a basis for the di�erential polynomials 
ontained in W

G

S

,

whi
h is thus indeed a (
lassi
al) W-algebra in the sense of the general idea

in [52℄.

In the above we proposed a `halving pro
edure' for �nding purely FCC

for whi
h W

G

S

appears as the algebra of the 
orresponding gauge invariant

di�erential polynomials. I now wish to 
larify the relationship between our

method and the 
onstru
tion in a re
ent paper by Bais et al [5℄, where the

W

G

S

-algebra has been des
ribed, in the spe
ial 
ase of G = sl(n), by using a

di�erent method. I re
all that the W

G

S

-algebra has been 
onstru
ted in [5℄

by adding to the FCC de�ned by the pair (G

�1

;M

�

) the SCC

hu ; J(x)i = 0 for 8u 2 G
1

2

:

(4.88)

Clearly, we re
over these 
onstraints by �rst imposing our 
omplete set of

FCC belonging to (�;M

�

) with � in (4.86), and then partially �xing the

gauge by imposing the 
ondition

hu ; J(x)i = 0 ; for 8u 2 Q
1

2

:

One of the advantages of our 
onstru
tion is that by using only �rst 
lass KM


onstraints it is easy to 
onstru
t generalized Toda theories whi
h possess
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W

G

S

as their 
hiral algebra, for any sl(2) subalgebra, namely by using our

general method of WZNW redu
tions. This will be elaborated in the next

se
tion. We note that in [5℄ the authors were a
tually also led to repla
ing

the original 
onstraints by a system of FCC, in order to be able to 
onsider

the BRST quantization of the theory. For this purpose they introdu
ed

unphysi
al `auxiliary �elds' and thus 
onstru
ted FCC in an extended phase

spa
e. However, in that 
onstru
tion one has to 
he
k that the auxiliary

�elds �nally disappear from the physi
al quantities.

The FCC leading to W

G

S

are not unique. For example, arbitrary halving

in (4.85) lead to the same W

G

S

. It maybe 
onje
tured that these W-algebras

always o

ur under 
ertain natural assumptions on the 
onstraints. To be

more exa
t, let us suppose that we have 
onformally invariant �rst 
lass


onstraints determined by (�;M

�

;H) where M

�

is a nilpotent matrix and

the non-degenera
y 
ondition in the theorem holds together with equation

(4.83). I expe
t that these assumptions are suÆ
ient for the existen
e of

a 
omplete set of gauge invariant di�erential polynomials and their algebra

is isomorphi
 to W

G

S

, where S = fM

�

;M

0

g is an sl(2)-extension of the

nilpotent M

�

. Su
h an S 
an always be found, sin
e we have the

Lemma 5 Let H be a grading operator and M

�

2 G

H

�1

. Then there exists

an sl(2) algebra S = fM

�

;M

0

g su
h that M

+

2 G

H

1

.

Note that as a 
onsequen
e the di�eren
eH�M

0


ommutes with S. To prove

this theorem one �rst extends the nilpotentM

�

to an sl(2) subalgebra, whi
h

always exists by the Ja
obson-Morozow theorem. Then one de
omposes the

generators of this sl(2) in 
omponents of de�niteH-grades. The 
omponents

with the desired grades form then the sl(2) with the properties in the lemma.

To prove this last fa
t one uses the lemma 7 on page 98 in [28℄.

I am not able to prove the above 
onje
ture in general, but now I sket
h

the proof in an important spe
ial 
ase whi
h illustrates the idea.

Let us assume that we have 
onformally invariant FCC des
ribed by

(�;M

�

;H) subje
t to the suÆ
ient 
onditions for polynomiality. But in

addition we assume now that H is an integral grading operator of G so that

� = G

�1

. Then the non-degenera
y 
ondition says that

dimG

H

+

= dim[M

�

;G

H

+

℄:

(4.89)

Now I show that this 
ondition implies

[M

�

;G

H

0

+ G

�

℄ = G

H

�

(4.90)

Indeed, if it would not, then we would �nd an u 2 G

H

+

su
h that hu; [M

�

;G

H

0

+

G

H

�

℄i would vanish. By the invarian
e and non-degenera
y of the Cartan-

Killing form this in turn is equivalent to [M

�

; u℄ = 0 whi
h means that
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the non-degenera
y 
ondition (4.89) would be violated. Also, sin
e H �M

0


ommutes with S, the di�eren
e ad

H

� ad

M

0

is 
onstant in ea
h multiplet

in the de
omposition of G under S. Then it follows immediately from the

sl(2) stru
ture and (4.89,4.90) that

dimKer(ad

M

�

) = dimG

H

0

, Ker(ad

M

+

) � G

H

�0

, Ker(ad

M

�

) � G

H

�0

;

We introdu
e a de�nition at this point, whi
h will be used in the rest of the


hapter. Namely, we 
all S an H--
ompatible sl(2) if there exists an integral

grading operator H su
h that [H;M

�

℄ = �M

�

is satis�ed together with the

non-degenera
y 
ondition. The non-degenera
y 
ondition 
an be expressed

in various equivalent forms, it 
an be given for example as the relation in

above, and its (equivalent) analogue for M

�

.

Turning ba
k to the problem at hand, we now point out that by using

the H-
ompatible sl(2) we have the following dire
t sum de
omposition of

�

?

= G

H

�0

:

G

H

�0

= [M

�

;G

H

>0

℄ + Ker(ad

M

+

):

This means that the set of 
urrents of the form (4.82) represents a DS gauge

for the present FCC. This implies the required result, that is that the W-

algebra belonging to the 
onstraints de�ned by � = G

H

>0

together with a

non-degenerate M

�

is isomorphi
 to W

G

S

with M

�

2 S. In this example

both L

H

(x) and L

M

0

(x) are gauge invariant di�erential polynomials. Al-

though the spe
trum of ad

H

is integral by assumption, in some 
ases the

H-
ompatible sl(2) is embedded into G in a half-integral manner.

I also would like to mention an interesting general fa
t about the W

G

S

-

algebras, whi
h will be used in the next se
tion. Let us 
onsider the de
om-

position of G under the sl(2) subalgebra S. In general, we shall �nd singlet

states and they span a Lie subalgebra in the Lie subalgebra Ker(ad

M

+

) of

G. Let us denote this zero spin subalgebra as Z. It is easy to see that we

have the semi-dire
t sum de
omposition

Ker(ad

M

+

) = Z +R; [Z;R℄ � R; [Z;Z℄ � Z;

(4.91)

where R is the linear spa
e spanned by the rest of the highest weight states,

whi
h have non-zero spin. It is not hard to prove that the subalgebra of the

original KM algebra whi
h belongs to Z, survives the redu
tion to W

G

S

. In

other words, the Dira
 bra
kets of the Z-
omponents of the highest weight

gauge 
urrent, j

red

in (4.82), 
oin
ide with their original KM Poisson bra
k-

ets, given by (4.25). Furthermore, this Z KM subalgebra a
ts on the W

G

S

-

algebra by the 
orresponding original KM transformations, whi
h preserve

the highest weight gauge:

J

red

(x)! e

a

i

(x

+

)�

i

J

red

(x) e

�a

i

(x

+

)�

i

+ (e

a

i

(x

+

)�

i

)

0

e

�a

i

(x

+

)�

i

;
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where the �

i

form a basis of Z. In parti
ular, one sees that the W

G

S

-algebra

inherits the semi-dire
t sum stru
ture given by (4.91) [5℄. The point is that it

is possible to further redu
e theW

G

S

-algebra by applying the general method

of 
onformally invariant KM redu
tions to the present Z KM symmetry. In

prin
iple, one 
an generate a huge number of new 
onformally invariant

systems out of the W

G

S

-algebras in this way, i.e., by applying 
onformally

invariant 
onstraints to their singlet KM subalgebras. For example, if one


an �nd a subalgebra of Z on whi
h the Cartan-Killing form of G vanishes,

then one 
an 
onsider the obviously 
onformally invariant redu
tion obtained

by 
onstraining the 
orresponding 
omponents of j

red

in (4.82) to zero.

Finally, note that for a half-integral sl(2), one 
an 
onsider (instead of

using � in (4.86)) also those 
onformally invariant FCC whi
h are de�ned

by the triple (�;M

0

;M

�

) with any graded � for whi
h G

�1

� � � (G

�1

+

P
1

2

). The polynomiality 
onditions are 
learly satis�ed with any su
h non-

maximal �, and the 
orresponding extended 
onformal algebras are in a

sense between the KM and W

G

S

-algebras.

4.3.2 The W

G

S

interpretation of the W

l

n

-algebras

TheW

l

n

-algebras are 
ertain 
onformally invariant redu
tions of the sl(n;R)

KM algebra introdu
ed by Bershadsky [8℄ using a mixed set of FCC and

SCC. It is known [5℄ that the simplest non-trivial 
ase W

2

3

, originally pro-

posed by Polyakov [44℄, 
oin
ides with the W

G

S

-algebra belonging to the

highest root sl(2) of sl(3; R). The purpose of this se
tion is to understand

whether or not these redu
ed KM systems �t into our framework and to

un
over their possible 
onne
tion with the W

G

S

-algebras in the general 
ase

7

In fa
t, we shall 
onstru
t here purely �rst 
lass KM 
onstraints leading

to the W

l

n

-algebras. We will prove the

Lemma 6 The W

l

n

-algebras 
an in general be identi�ed as further redu
-

tions of parti
ular W

G

S

-algebras. The se
ondary redu
tion pro
ess is obtained

by means of the singlet KM subalgebras of the relevant W

G

S

-algebras

By de�nition [8℄, the KM redu
tion yielding the W

l

n

-algebra is obtained by


onstraining the 
urrent to take the following form:

J

B

(x) =M

�

+ j

B

(x); j

B

(x) 2 �

?

; (4.92)

where � denotes the set of all stri
tly upper triangular n� n matri
es and

M

�

= e

l+1;1

+ e

l+2;2

+ :::+ e

n;n�l

;

(4.93)

the e's being the standard sl(n;R) generators (l � n�1), i.e.,M

�

has 1's all

7

In this se
tion, G = sl(n;R).
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along the l-th slanted line below the diagonal. Generally, these 
onstraints


omprise �rst and se
ond 
lass parts, where the �rst 
lass part is the one

belonging to the subalgebra D of � de�ned by the relation !

M

�

(D;�) = 0,

(see 4.26). The se
ond 
lass part belongs to the 
omplementary spa
e, C, of

D in �. In fa
t, for l = 1 the 
onstraints are the usual �rst 
lass ones whi
h

yield the standard W-algebras, but the se
ond 
lass part is non-empty for

l > 1. The above KM redu
tion is so 
onstru
ted that it is 
onformally

invariant, sin
e the 
onstraints weakly 
ommute with the Virasoro density

L

H

l

(x), see (4.59), where H

l

=

1

l

H

1

and H

1

is the standard grading operator

of sl(n;R), for whi
h [H

1

; e

ik

℄ = (k � i)e

ik

.

We start our 
onstru
tion by extending the nilpotent generator M

�

in

(4.93) to an sl(2) subalgebra S. In fa
t, parameterizing n = ml + r with

m = [

n

l

℄ and 0 � r < l, we 
an take

M

0

= diag

�

r times

z }| {

m

2

; � � �;

(l�r) times

z }| {

m� 1

2

; � � �; � � � ;

r times

z }| {

�

m

2

; � � �

�

;

(4.94)

where the multipli
ities, r and (l � r), o

ur alternately and end with r.

The meaning of this formula is that the fundamental of sl(n;R) bran
hes

into l irredu
ible representations under S, r of spin m=2 and l � r of spin

(m � 1)=2. The expli
it form of M

+

is a 
ertain linear 
ombination of the

e

ik

's with (k � i) = l, whi
h is straightforward to 
ompute.

Next I des
ribe the �rst and the se
ond 
lass parts of the 
onstraints in

(4.92) in more detail by using the grading de�ned by M

0

. We observe �rst

that in terms of this grading the spa
e � admits the de
omposition

� = �

0

+ G
1

2

+ G

1

+ G

>1

:

(4.95)

From this and the de�nition of !

M

�

, the subalgebra D 
omprising the �rst


lass part 
an also be de
omposed into

D = D

0

+D

1

+ G

>1

; where D

0

= Ker (ad

M

�

) \�

0

(4.96)

is the set of the sl(2) singlets in �, and D

1

is a subspa
e of G

1

whi
h we

do not need to spe
ify. By 
ombining (4.95) and (4.96), we see that the


omplementary spa
e C, to whi
h the se
ond 
lass part belongs, has the

stru
ture

C = Q

0

+ G
1

2

+ P

1

;

where the subspa
e Q

0

is 
omplementary to D

0

in �

0

, and P

1

is 
omplemen-

tary to D

1

in G

1

. The 2-form !

M

�

is non-degenerate on C by 
onstru
tion,

and this implies by the grading that the spa
es Q

0

and P

1

are symple
ti
ally
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onjugate to ea
h other, whi
h is re
e
ted by the notation.

We shall 
onstru
t a gauge algebra, �, so that Bershadsky's 
onstraints

will be re
overed by a partial gauge �xing from the �rst 
lass ones belonging

to �. As a generalization of the halving pro
edure of the previous se
tion,

we take the following ansatz:

� = D + P
1

2

+ P

1

;

(4.97)

where P
1

2

is de�ned by means of some symple
ti
 halving G
1

2

= P
1

2

+ Q
1

2

,

like in (4.85). It is important to noti
e that this equation 
an be re
asted

into

� = D

0

+ P
1

2

+ G

�1

;

(4.98)

whi
h would be just the familiar formula (4.86) if D

0

was not here. By using

(4.93) and (4.94), D

0


an be identi�ed as the set of n � n blo
k-diagonal

matri
es, �, of the following form:

� = blo
k-diagf�

0

; �

0

;�

0

; :::::;�

0

; �

0

;�

0

g;

where the �

0

's and the �

0

's are identi
al 
opies of stri
tly upper triangular

r � r and (l � r)� (l � r) matri
es respe
tively. This implies that

dimD

0

=

1

4

[l(l � 2) + (l � 2r)

2

℄ ;

whi
h shows that D

0

is non-empty ex
ept when l = 2; r = 1, whi
h is the


ase of W

2

n

with n = odd. The fa
t that D

0

is in general non-empty gives us

a trouble at this stage, namely, we have now no guarantee that the above �

is a
tually a subalgebra of G. By using the grading and the fa
t that D

0

is

a subalgebra, we see that � in (4.98) be
omes a subalgebra if and only if

[D

0

; P
1

2

℄ � P
1

2

:

(4.99)

I next show that it is possible to �nd su
h a `good halving' of G
1

2

for whi
h

P
1

2

satis�es (4.99).

For this purpose, we use yet another grading here. This grading is pro-

vided by using the parti
ular diagonal matrix, H 2 G, whi
h we 
onstru
t

out ofM

0

in (4.94) by �rst adding

1

2

to its half-integral eigenvalues, and then

subtra
ting a multiple of the unit matrix so as to make the result tra
eless.

In the adjoint representation, we then have ad

H

= ad

M

0

on the tensors, and

ad

H

= ad

M

0

� 1=2 on the spinors. We noti
e from this that the H-grading

is an integral grading. In fa
t, the relationship between the two gradings

allows us to de�ne a good halving of G
1

2

as follows:
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P
1

2

� G
1

2

\ G

H

1

; and Q
1

2

� G
1

2

\ G

H

0

:

(4.100)

Sin
e M

�

is of grade �1 with respe
t to both gradings, the spa
es given

by (4.100) 
learly yield a symple
ti
 halving of G
1

2

with respe
t to !

M

�

.

That this ensures the 
ondition (4.99), 
an also be seen easily by observing

that D

0

has grade 0 in the H-grading, too. Thus we obtain the required

subalgebra � of G by using this parti
ular P
1

2

in (4.98).

Let us 
onsider now the FCC 
orresponding to the above 
onstru
ted

gauge algebra �, �




(x) = 0 for 
 2 �, whi
h bring the 
urrent into the form

J

�

(x) =M

�

+ j

�

(x) ; j

�

(x) 2 �

?

: (4.101)

It is easy to verify that the original 
onstraint surfa
e (4.92) 
an be re
overed

from (4.101) by a partial gauge �xing in su
h a way that the residual gauge

transformations are exa
tly the ones belonging to the spa
e D. In fa
t,this

is a
hieved by �xing the gauge freedom 
orresponding to the pie
e (P
1

2

+P

1

)

of �, (4.97), by imposing the partial gauge �xing 
ondition

�

q

i

(x) = 0 ; q

i

2 (Q

0

+Q
1

2

);

where the q

i

form a basis of the spa
e (Q

0

+ Q
1

2

) and the �

q

's are de-

�ned like in (4.24). This implies that the redu
ed phase spa
e de�ned by

the 
onstraints in(4.101) is the same as the one determined by the original


onstraints (4.92). In 
on
lusion, our purely FCC, (4.101), have the same

physi
al 
ontent as Bershadsky's original mixed set of 
onstraints, (4.92).

Finally, we give the relationship between Bershadsky's W

l

n

-algebras and

the sl(2) systems. Having seen that the redu
ed KM phase spa
es 
arrying

the W

l

n

-algebras 
an be realized by starting from the FCC in (4.101), it fol-

lows from (4.98) that the W

l

n

-algebras 
oin
ide with parti
ularW

G

S

-algebras

if and only if the spa
e D

0

is empty, i.e., for W

2

n

with n = odd. In order

to establish the W

G

S

interpretation of W

l

n

in the general 
ase, note that the

redu
ed phase spa
e 
an be rea
hed from (4.101) by means of the following

two step pro
ess based on the sl(2) stru
ture. Namely, one 
an pro
eed

by �rst �xing the gauge freedom 
orresponding to the pie
e (P
1

2

+ G

�1

) of

�, and then �xing the rest of the gauge freedom. Clearly, the 
onstraint

surfa
e resulting in the �rst step is the same as the one obtained by putting

to zero those 
omponents of the highest weight gauge 
urrent representing

W

G

S

whi
h 
orrespond to D

0

. The �nal redu
ed phase spa
e is obtained in

the se
ond step by �xing the gauge freedom generated by the 
onstraints

belonging to D

0

, whi
h we have seen to be the spa
e of the upper triangular

singlets of S. Thus we 
an 
on
lude that W

l

n


an be regarded as a further

redu
tion of the 
orresponding W

G

S

, where the `se
ondary redu
tion' is of
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the type mentioned at the end of the previous subse
tion.

4.4 Generalized Toda theories

The standard 
onformal Toda �eld theories

L

Toda

=

�

2

 

l

X

ij=1

1

2j�

i

j

2

K

ij

�

�

'

i

�

�

'

j

�

l

X

i=1

m

2

i

exp

n

1

2

l

X

j=1

K

ij

'

j

o

!

;

(4.102)

where K

ij

is the Cartan matrix and the �

i

the simple roots of G, are the

most simple 
ases of redu
ed WZNW theories, and as a 
onsequen
e these

theories possess the 
hiral algebrasW

G

S

�

~

W

G

S

as their 
anoni
al symmetries,

where S is the prin
ipal sl(2) subalgebra of the maximally non-
ompa
t real

Lie algebra G. It is natural to seek for WZNW redu
tions leading to e�e
tive

�eld theories whi
h would realize W

G

S

�

~

W

G

S

as their 
hiral algebras for any

sl(2) subalgebra S of any simple real Lie algebra. The main purpose of this


hapter is to obtain generalized Toda theories meeting the above requirement

in the non-trivial 
ase of the half-integral sl(2) subalgebras of the simple Lie

algebras. Before turning to des
ribing these new theories, next I brie
y

re
all the main features of those generalized Toda theories, asso
iated to

the integral gradings of the simple Lie algebras, whi
h have been studied

before [33, 46, 39, 40, 5, 49, 18℄. The simpli
ity of the latter theories will

motivate some subsequent developments.

4.4.1 Generalized Toda theories with integral gradings

The WZNW redu
tion leading to the generalized Toda theories in question

is set up by 
onsidering an integral grading operator H of G, and taking the

spe
ial 
ase

� = G

H

�1

; M 2 G

H

�1

and

~

� = G

H

��1

;

~

M 2 G

H

1

:

(4.103)

In the present 
ase B in (4.35) is the subalgebra G

H

0

, and, be
ause of the

grading stru
ture, the properties expressed by equation (4.52) hold. Thus

the e�e
tive �eld equation reads as (4.55) and the 
orresponding a
tion is

given by the simple formula (4.57) where the �eld b varies in the little group

G

H

0

of H in G.

It was shown in [33, 46, 5℄ in the spe
ial 
ase whenH,M and

~

M are taken

to be the standard generators of an integral sl(2) subalgebra of G, that the

non-Abelian Toda equation allows for 
onserved 
hiral 
urrents underlying

its exa
t integrability. These 
urrents then generate 
hiral W-algebras of

the type W

G

S

, for integrally embedded sl(2)'s.
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By means of the argument given in the previous se
tion, we 
an establish

the stru
ture of the 
hiral algebras of a wider 
lass of non-Abelian Toda

systems [18℄. Namely, we see that if M and

~

M in (4.103) satisfy the non-

degenera
y 
onditions

Ker(ad

M

) \ � = f0g and Ker(ad

~

M

) \

~

� = f0g ;

then the left � right 
hiral algebra of the 
orresponding generalized Toda

theory is isomorphi
 to W

G

S

�

~

W

G

~

S

, where S and

~

S are sl(2) subalgebras

of G 
ontaining the nilpotent generator M and

~

M , respe
tively. The H-


ompatible sl(2) algebras S and

~

S o

urring here are not always integrally

embedded ones. Thus for 
ertain half-integral sl(2) algebras W

G

S


an be

realized in a generalized Toda theory of the type (4.57). As we would like to

have generalized Toda theories whi
h possessW

G

S

as their symmetry algebra

for an arbitrary sl(2) subalgebra, we have to ask whether the theories given

above are already enough for this purpose or not. This leads to the te
hni
al

question as to whether for every half-integral sl(2) subalgebra S of G there

exists an integral grading operator H su
h that S is an H-
ompatible sl(2),

in the sense introdu
ed earlier. The answer to this question is negative. Thus

we have to �nd new integrable 
onformal �eld theories for our purpose.

4.4.2 Generalized Toda theories with half-integral sl(2)'s

In the following I exhibit a generalized Toda theory possessing the left �

right 
hiral algebra W

G

S

�

~

W

G

S

for an arbitrarily 
hosen half-integral sl(2)

subalgebra S of the arbitrary but non-
ompa
t simple real Lie algebra G.

Clearly, if one imposes FCC of the type des
ribed in the previous se
tion on

the 
urrents of the WZNW theory then the resulting e�e
tive �eld theory

will have the required 
hiral algebra. We shall 
hoose the left and right

gauge algebras in su
h a way to be dual to ea
h other with respe
t to the

Cartan-Killing form.

Thus we 
hoose a dire
t sum de
omposition of G
1

2

of the type in (4.85),

and then de�ne the indu
ed de
omposition G

�

1

2

= P

�

1

2

+Q

�

1

2

to be given

by the subspa
es

Q

�

1

2

� P

?

1

2

\ G

�

1

2

= [M

�

; P
1

2

℄ and P

�

1

2

� Q

?

1

2

\ G

�

1

2

= [M

�

; Q
1

2

℄ :

It is easy to see that the 2-form !

M

+

vanishes on the above subspa
es of

G

�

1

2

as a 
onsequen
e of the vanishing of !

M

�

on the 
orresponding subspa
es

of G
1

2

. Thus we 
an take the left and right gauge algebras to be

� = (G

�1

+ P
1

2

) and

~

� = (G

��1

+ P

�

1

2

) ;

(4.104)

with the 
onstant matri
es M and

~

M entering the 
onstraints given by M

�
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and M

+

, respe
tively. The duality hypothesis of se
tion 4.1.2 is obviously

satis�ed by this 
onstru
tion.

In prin
iple, the a
tion and the Lax potential of the e�e
tive theory


an be obtained by spe
ializing the general formulas of se
tion 4.1.2 to the

present parti
ular 
ase. In our 
ase

B = Q
1

2

+ G

0

+Q

�

1

2

;

and the physi
al modes, whi
h are given by the entries of b in the generalized

Gauss de
omposition g = ab
 with a 2 e

�

and 
 2 e

~

�

, are now 
onveniently

parametrized as

b(x) = exp[q
1

2

(x)℄ � g

0

(x) � exp[q

�

1

2

(x)℄;

(4.105)

where q

�

1

2

(x) 2 Q

�

1

2

and g

0

(x) 2 G

0

, the little group of M

0

in G. Next

I introdu
e some notation whi
h will be useful for des
ribing the e�e
tive

theory.

The operator Ad

g

0

maps G

�

1

2

to itself and, by writing the general element

of G

�

1

2

as a two-
omponent 
olumn ve
tor whose upper and lower 
ompo-

nents belong to P

�

1

2

and Q

�

1

2

, respe
tively, we 
an write this operator as a

2� 2 matrix:

Ad

g

0

jG

�

1

2

=

�

X

11

(g

0

) X

12

(g

0

)

X

21

(g

0

) X

22

(g

0

)

�

(4.106)

Analogously, I introdu
e the notation

Ad

g

�1

0

jG

1

2

=

�

Y

11

(g

0

) Y

12

(g

0

)

Y

21

(g

0

) Y

22

(g

0

)

�

;

(4.107)

whi
h 
orresponds to writing the general element of G
1

2

as a 
olumn ve
tor,

whose upper and lower 
omponents belong to P
1

2

and Q
1

2

, respe
tively.

The a
tion fun
tional of the e�e
tive �eld theory resulting from the

WZNW redu
tion at hand reads as follows:

I

S

e�

(g

0

; q
1

2

; q

�

1

2

) = S

WZ

(g

0

)�

Z

d

2

x hg

0

M

+

g

�1

0

; M

�

i

+

Z

d

2

x (h�

�

q
1

2

; g

0

�

+

q

�

1

2

g

�1

0

i+ h�
1

2

; X

�1

11

� �

�

1

2

i);

(4.108)

where the obje
ts �

�

1

2

2 P

�

1

2

are given by the formulas

�
1

2

= [M

+

; q

�

1

2

℄ + Y

12

� �

�

q
1

2

and �

�

1

2

= [M

�

; q
1

2

℄�X

12

� �

+

q

�

1

2

:

The Euler-Lagrange equation of this a
tion is the zero 
urvature 
ondition

of the following Lax potential:
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A

S

+

= M

�

+ �

+

g

0

� g

�1

0

+ g

0

(�

+

q

�

1

2

+X

�1

11

� �

�

1

2

)g

�1

0

;

A

S

�

= �g

0

M

+

g

�1

0

� �

�

q
1

2

+ Y

�1

11

� �
1

2

:

(4.109)

The above new (
onformally invariant) e�e
tive a
tion and Lax potential

are among the main results of the present 
hapter. Clearly, for an integrally

embedded sl(2) this a
tion and Lax potential simplify to the ones given by

equation (4.57) and (4.56).

The derivation of the above formulas is not 
ompletely straightforward,

and next I wish to sket
h the main steps. First, let us remember that, by

(4.39), to spe
ialize the general e�e
tive a
tion (4.47) and the Lax potential

(4.43) to our situation, we should express the obje
ts �

+





�1

and a

�1

�

�

a

in terms of b by using the 
onstraints on J and

~

J , respe
tively

8

. For this

purpose it turns out to be 
onvenient to parametrize the WZNW �eld g by

using the grading de�ned by the sl(2), i.e., as

g = g

+

� g

0

� g

�

where g

+

= a � exp[q
1

2

℄; g

�

= exp[q

�

1

2

℄ � 
:

We re
all that the �elds a, 
, g

0

and q have been introdu
ed previously by

means of the parametrization g = ab
, with b in (4.105). Also for later


onvenien
e, we write g

�

as

g

+

= exp[r

�1

+ p
1

2

+ q
1

2

℄ and g

�

= exp[r

��1

+ p

�

1

2

+ q

�

1

2

℄ :

Note that here and below the subs
ript denotes the grade of the variables,

and p

�

1

2

2 P

�

1

2

. In our 
ase this parametrization of g is advantageous,

sin
e, as shown below, the use of the grading stru
ture fa
ilitates solving

the 
onstraints.

For example, the left 
onstraint are restri
tions on J

<0

, for whi
h we

have

J

<0

= (g

+

g

0

Ng

�1

0

g

�1

+

)

<0

with N = �

+

g

�

� g

�1

�

:

By 
onsidering this equation grade by grade, starting from the lowest grade,

it is easy to see that the 
onstraints 
orresponding to G

�1

� � are equivalent

to the relation

N

��1

= g

�1

0

M

�

g

0

:

The remaining left 
onstraints set the P

�

1

2

part of J

�

1

2

to zero, and to unfold

these 
onstraints �rst we note that

J

�

1

2

= [p
1

2

+ q
1

2

;M

�

℄ + g

0

�N

�

1

2

� g

�1

0

; with N

�

1

2

= �

+

p

�

1

2

+ �

+

q

�

1

2

:

8

In the present 
ase it would be tedious to 
ompute the inverse matrix of V

ij

in (4.37),

whi
h would be needed for using dire
tly (4.40).
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By using the notation introdu
ed in (4.106), the vanishing of the proje
tion

of J to P

�

1

2

is written as

[q
1

2

; M

�

℄ +X

11

� �

+

p

�

1

2

+X

12

� �

+

q

�

1

2

= 0;

and from this we obtain

�

+

p

�

1

2

= X

�1

11

� f[M

�

; q
1

2

℄�X

12

� �

+

q

�

1

2

g:

Combining our previous formulas, �nally we obtain that on the 
onstraint

surfa
e of the WZNW theory

N = g

�1

0

M

�

g

0

+ �

+

q

�

1

2

+X

�1

11

(g

0

) � f[M

�

; q
1

2

℄�X

12

(g

0

) � �

+

q

�

1

2

g:

A similar analysis applied to the right 
onstraints yields that they are equiv-

alent to the following equation:

�g

�1

+

�

�

g

+

= �g

0

M

+

g

�1

0

� �

�

q
1

2

+ Y

�1

11

(g

0

)f[M

+

; q

�

1

2

℄ + Y

12

(g

0

)�

�

q
1

2

g :

By using the relations established above, we 
an at this stage easily 
ompute

b

�1

Tb = �

+





�1

and b

~

Tb

�1

= a

�1

�

�

a as well, and substituting these into

(4.47), and using the Polyakov-Wiegmann identity to rewrite S

WZ

(b) for b in

(4.105), results in the a
tion in (4.108) indeed. The Lax potential in (4.109)

is obtained from the general expression in (2.32) by an additional `gauge

transformation' by the �eld exp[�q
1

2

℄, whi
h made the �nal result simpler.

The 
hoi
e of the 
onstraints leading to the e�e
tive theory (4.108) guar-

antees that the 
hiral algebra of this theory is the required one, W

G

S

�

~

W

G

S

,

and thus one should be able to express the W-
urrents in terms of the lo
al

�elds in the a
tion. For that re
all that in se
tion 4.2.1 an algorithm has been

given for 
onstru
ting the gauge invariant di�erential polynomials W (J).

The point I wish to make is that the expression of the gauge invariant ob-

je
t W (J) in terms of the lo
al �elds in (4.108) is simplyW (�

+

b b

�1

+T (b)),

where b is given by (4.105). Applying the reasoning of [18℄ to the present


ase, this follows sin
e the fun
tion W is form-invariant under any gauge

transformation of its argument, and the quantity (�

+

b b

�1

+ T (b)) is ob-

tained by a (non-
hiral) gauge transformation from J , namely by the gauge

transformation de�ned by the �eld a

�1

2 e

�

, see equations (4.42,4.43). We


an in prin
iple 
ompute the obje
t T (b), as explained in the above, and

thus we have an algorithm for �nding the formulas of the W 's in terms of

the lo
al �elds g

0

and q

�

1

2

.

The 
onformal symmetry of the e�e
tive theory (4.108) is determined

by the left and right Virasoro densities L

M

0

(J) and L

�M

0

(

~

J), whi
h survive

the redu
tion. To see this 
onformal symmetry expli
itly, it is useful to

extra
t the Liouville �eld � by means of the de
omposition g

0

= e

�M

0

� ĝ

0

,
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where ĝ

0


ontains the generators from G

0

orthogonal to M

0

. One 
an easily

rewrite the a
tion in terms of the new variables and then its 
onformal

symmetry be
omes manifest sin
e e

�

is of 
onformal weight (1; 1), ĝ

0

is


onformal s
alar, and the �elds q

�

1

2

have 
onformal weights (

1

2

; 0) and (0;

1

2

),

respe
tively. This assignment of the 
onformal weights 
an be established

in a number of ways, one 
an for example derive it from the 
orresponding


onformal symmetry transformation of the WZNW �eld g in the gauged

WZNW theory, see eq. (***). We also note that the a
tion (4.108) 
an be

made generally 
ovariant and thereby our generalized Toda theory 
an be

re-interpreted as a theory of two-dimensional gravity sin
e � be
omes the

gravitational Liouville mode [39℄.

There is a 
ertain freedom in 
onstru
ting a �eld theory possessing the

required 
hiral algebra W

G

S

, for example, one has a freedom of 
hoi
e in the

halving pro
edure used here to set up the gauge algebra. The theories in

(4.108) obtained by using di�erent halvings in equation (4.85) have their


hiral algebras in 
ommon, but it is not quite obvious if these theories are

always 
ompletely equivalent lo
al Lagrangian �eld theories or not.

A spe
ial 
ase of this problem arises from the fa
t that one 
an expe
t

that in some 
ases the theory in (4.108) is equivalent to one of the form

(4.57). This is 
ertainly so in those 
ases when for the half-integral sl(2) of

M

0

and M

�

one 
an �nd an integral grading operator H su
h that:

i) [H ; M

�

℄ = �M

�

; ii) P
1

2

+ G

�1

= G

H

�1

iii) P

�

1

2

+ G

��1

= G

H

��1

; iv) Q

�

1

2

+ G

0

+Q
1

2

= G

H

0

;

(4.110)

where one uses the M

0

grading and the H-grading on the left- and on the

right hand sides of these 
onditions, respe
tively. By de�nition, we 
all

the halving G
1

2

= P
1

2

+Q
1

2

an H-
ompatible halving if these 
onditions are

met. Those generalized Toda theories in (4.108) whi
h have been obtained

by using H-
ompatible halvings in the WZNW redu
tion 
an be rewritten

in the simpler form (4.57) by means of a renaming of the variables, sin
e

in this 
ase the relevant FCC are in the overlap of the ones whi
h have

been 
onsidered for the integral gradings and for the half-integral sl(2)'s to

derive the respe
tive theories. Sin
e the form of the a
tion in (4.57) is mu
h

simpler than the one in (4.108), it appears important to know the list of

those sl(2) embeddings whi
h allow for an H-
ompatible halving, i.e., for

whi
h 
onditions (4.110) 
an be satis�ed with some integral grading operator

H and halving. The answer to this group theoreti
 question for the sl(2)

subalgebras of the maximally non-
ompa
t real forms of the 
lassi
al Lie

algebras are:

� For G = sl(n;R) an H-
ompatible halving 
an be found for every sl(2)

subalgebra. This means that any 
hiral algebra W

G

S


an be realized in
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a generalized Toda theory asso
iated to an integral grading.

� For the the symple
ti
 and orthogonal Lie algebras su
h halvings exist

only only for spe
ial sl(2)-embeddings listed in the appendix.

It is interesting to observe that those theories whi
h 
an be alternatively

written in both forms (4.57) and (4.108) allow for several 
onformal stru
-

tures. This is so sin
e in this 
ase at least two di�erent Virasoro densities,

namely L

H

and L

M

0

, survive the WZNW redu
tion.

4.4.3 Two examples of generalized Toda theories

I wish to illustrate here the general 
onstru
tion of the previous se
tion by

working out two examples. First I shall des
ribe a generalized Toda theory

asso
iated to the highest root sl(2) of sl(n + 2; R). This is a half-integral

sl(2) embedding, but, as we shall see expli
itly, the theory (4.108) 
an in

this 
ase be re
asted in the form (4.57), sin
e the 
orresponding halving is

H-
ompatible. Note that theW-algebras de�ned by these sl(2) embeddings

have been investigated before by using auxiliary �elds in [45℄. A

ording

to the group theoreti
 analysis in the appendix, the simplest 
ase when a

W

G

S

-algebra de�ned by a half-integral sl(2) embedding 
annot be realized

in a theory of the type (4.57) is the 
ase of G = sp(4; R). As our se
ond

example, I shall elaborate on the generalized Toda theory in (4.108) whi
h

realizes the W-algebra belonging to the highest root sl(2) of sp(4; R).

Highest root sl(2) of sl(n + 2; R) In the usual basis where the Cartan

subalgebra 
onsists of diagonal matri
es, the sl(2) subalgebra S is generated

by the elements

M

0

=

1

2

0

�

1 � � � 0

0 0

n

0

0 � � � �1

1

A

and M

+

=M

t

�

=

0

�

0 � � � 1

0 0

n

0

0 � � � 0

1

A

:

Note that here and below dots mean 0's in the entries of the various matri
es.

The adjoint of sl(n + 2) de
omposes into one triplet, 2n doublets and n

2

singlets under this S. It is 
onvenient to parametrize the general element,

g

0

, of the little group of M

0

as

g

0

= e

�M

0

� e

 T

�

0

�

1 : : : 0

0 ~g

0

0

0 � � � 1

1

A

; where T =

1

2

+ n

0

�

n � � � 0

0 �2I

n

0

0 � � � n

1

A

is tra
e orthogonal to M

0

and ~g

0

is from sl(n). We note that T and M

0

generate the 
enter of the 
orresponding subalgebra, G

0

. We 
onsider the

halving of G

�

1

2

whi
h is de�ned by the subspa
es P

�

1

2

and Q

�

1

2


onsisting

of matri
es of the following form:
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p
1

2

=

0

�

0 p

t

0

0 0

n

0

0 � � � 0

1

A

; q
1

2

=

0

�

0 � � � 0

0 0

n

q

0 � � � 0

1

A

;

p

�

1

2

=

0

�

0 � � � 0

~p 0

n

0

0 � � � 0

1

A

; q

�

1

2

=

0

�

0 � � � 0

0 0

n

0

0 ~q

t

0

1

A

;

(4.111)

where q and ~p are n-dimensional 
olumn ve
tors and p

t

and ~q

t

are n-

dimensional row ve
tors, respe
tively. One sees that the P and Q sub-

spa
es of G

�

1

2

are invariant under the adjoint a
tion of g

0

, whi
h means

that the blo
k-matri
es in (4.106) and (4.107) are diagonal, and thus �

�

1

2

=

[M

�

; q

�

1

2

℄. One 
an also verify that X

11

= e

�

1

2

�� 

~g

0

, and that using this

the e�e
tive a
tion (4.108) 
an be written as follows:

I

e�

(g

0

; q
1

2

; q

�

1

2

) = S

WZ

(g

0

) �

Z

d

2

x

h

e

�

+ e

1

2

�+ 

~q

t

� ~g

�1

0

� q

� e

�

1

2

�+ 

(�

+

~q)

t

� ~g

�1

0

� (�

�

q);

i

(4.112)

where dot means usual matrix multipli
ation. With respe
t to the 
onfor-

mal stru
ture de�ned by M

0

, e

�

has weights (1; 1), the �elds q and ~q have

half-integer weights (

1

2

; 0) and (0;

1

2

), respe
tively,  and ~g

0

are 
onformal

s
alars. In parti
ular, we see that � is the Liouville mode with respe
t to

this 
onformal stru
ture.

In fa
t, the halving 
onsidered in (4.111) 
an be written like the one in

(4.100), by using the integral grading operator H given expli
itly as

H =M

0

+

1

2

T =

1

n+ 2

�

n+ 1 0

0 �I

n+1

�

:

It is anH -
ompatible halving as one 
an verify that it satis�es the 
onditions

(4.110). It follows that our redu
ed WZNW theory 
an also be regarded

as a generalized Toda theory asso
iated with the integral grading H. In

other words, it is possible to identify the e�e
tive a
tion (4.112) as a spe
ial


ase of the one in (4.57). To see this in 
on
rete terms,it is 
onvenient to

parametrize the little group of H as

b = exp(q
1

2

) � g

0

� exp(q

�

1

2

); where g

0

= e

�H

� e

�S

�

0

�

1 � � � 0

0 ~g

0

0

0 � � � 1

1

A

;

and S = M

0

� (

n+2

2n

)T is tra
e orthogonal to H. It is easy to 
he
k that

by inserting this de
omposition into the e�e
tive a
tion (4.57) and using

the Polyakov-Wiegmann identity one re
overs indeed the e�e
tive a
tion
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(4.112), with

� = �+ � and  =

1

2

��

2 + n

2n

�:

The 
onformal stru
ture de�ned by H is di�erent from the one de�ned by

M

0

. In fa
t, with respe
t to the former 
onformal stru
ture � is the Liouville

mode and all other �elds, in
luding q and ~q, are 
onformal s
alars.

Highest root sl(2) of sp(4; R) We use the 
onvention when the symple
ti


matri
es have the form

g =

�

A B

C �A

t

�

; where B = B

t

; C = C

t

;

and the Cartan subalgebra is diagonal. The sl(2) subalgebra S 
orrespond-

ing to the highest root of sp(4; R) is generated by the matri
es

M

0

=

1

2

(e

11

� e

33

); M

+

= e

13

; and M

�

= e

31

;

where e

ij

denotes the elementary 4 � 4 matrix 
ontaining a single 1 in the

ij-position. The adjoint of sp(4) bran
hes into 3 + 2 � 2 + 3 � 1 under S.

The three singlets generate an sl(2) subalgebra di�erent from S, so that the

little group ofM

0

is GL(1)�SL(2). GL(1) is generated byM

0

itself and the


orresponding �eld is the Liouville mode. Using usual Gauss-parameters for

the SL(2), we 
an parametrize the little group of M

0

as

g

0

= e

�M

0

0

B

B

�

1 0 0 0

0 e

 

+ ��e

� 

0 �e

� 

0 0 1 0

0 �e

� 

0 e

� 

1

C

C

A

:

We de
ompose the G

�

1

2

subspa
es (spanned by the two doublets) into their

P and Q parts as follows

p
1

2

+ q
1

2

=

0

B

B

�

0 p 0 q

0 0 q 0

0 0 0 0

0 0 �p 0

1

C

C

A

; p

�

1

2

+ q

�

1

2

=

0

B

B

�

0 0 0 0

~p 0 0 0

0 ~q 0 �~p

~q 0 0 0

1

C

C

A

:

Now the little group, or more pre
isely the SL(2) generated by the three

singlets, mixes the P and Q subspa
es of G

�

1

2

so that the matri
es X

ij

and

Y

ij

in (4.106) and (4.107) possess o�-diagonal elements:

X

ij

= e

�

1

2

�

�

e

 

+ ��e

� 

�e

� 

�e

� 

e

� 

�

; Y

ij

= X

ji

:
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Inserting this into (4.108) yields the following e�e
tive a
tion:

I

S

e�

(g

0

; q; ~q) = S

WZ

(g

0

)�

Z

d

2

x

"

e

�

� 2e

�

1

2

�� 

(�

�

q) � (�

+

~q)

+ 2e

1

2

�

(~q + e

�

1

2

�� 

��

�

q) � (q + e

�

1

2

�� 

��

+

~q)

e

 

+ ��e

� 

#

;

(4.113)

for the Liouville mode �, the 
onformal s
alars  ; �; � and the �elds q, ~q

with weights (

1

2

; 0) and (0;

1

2

), respe
tively.

It is easy to see dire
tly from its formula that it is impossible to obtain the

above a
tion as a spe
ial 
ase of (4.57). Indeed, if the expression in (4.113)

was obtained from (4.57) then the non-derivative term � ~q q(e

 

+��e

� 

)

�1


ould only be gotten from the se
ond term in (4.57), but, sin
e g

0

and b are

matri
es of unit determinant, this term 
ould never produ
e the denominator

in the non-derivative term in (4.113).

4.5 Quantum redu
tion of WZNW-theories

Here we study the quantum version of the WZNW redu
tion in the path-

integral formalism. We �rst show that the 
on�guration spa
e path-integral

of the 
onstrained WZNW theory 
an be realized by the gauged WZNW

theory. We then point out that the e�e
tive a
tion of the redu
ed theory,

(4.47), 
an be derived by integrating out the gauge �elds in a 
onvenient

gauge. We shall �nd that for the generalized Toda theories asso
iated with

integral gradings the e�e
tive measure takes the form determined from the

symple
ti
 stru
ture of the redu
ed theory. This means that in this 
ase the

quantum Hamiltonian redu
tion results in the quantization of the redu
ed


lassi
al theory; in other words, the two pro
edures, the redu
tion and the

quantization, 
ommute. We shall also exhibit the W-symmetry of the ef-

fe
tive a
tion for this example. By using the gauged WZNW theory, we


an 
onstru
t the BRST formalism for the WZNW redu
tion in the general


ase. For 
onformally invariant redu
tions, this allows for 
omputing the


orresponding Virasoro 
enter expli
itly. In parti
ular, we derive a general

formula for the Virasoro 
enter of W

G

S

for an arbitrary sl(2) embedding.

4.5.1 Path-integral for 
onstrained WZNW theory

In this se
tion we set up the path-integral formalism for the 
onstrained

WZNW theory. For this, we re
all that 
lassi
ally the redu
ed theory has

been obtained by imposing a set of FCC in the Hamiltonian formalism.

Thus what we should do is to write down the path-integral of the WZNW

theory �rst in phase spa
e with the 
onstraints implemented and then �nd
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the 
orresponding 
on�guration spa
e expression. The phase spa
e path-

integral 
an formally be de�ned on
e the 
anoni
al variables of the theory

are spe
i�ed.

Classi
ally, the 
onstrained WZNW theory has been de�ned as the usual

WZNW theory with its KM phase spa
e redu
ed by the FCC (4.24). No

relationship is assumed here between the two subalgebras, � and

~

�. The

Hamiltonian is then given by (4.21) with A =

~

A = 0, that is has the usual

Sugawara form

H =

Z

dx

1

H =

1

4�

Z

dx

1

�

Tr J

2

+Tr

~

J

2

�

(4.114)

where the KM-
urrents have been de�ned in (4.22) and the momenta 
on-

jugated to the

_

�

a

simplify to

�

a

= �N

p

a

N

bp

_

�

b

� �A

ab

�

0b

:

(4.115)

Now we write down the phase spa
e path-integral for the 
onstrainedWZNW

theory. A

ording to Faddeev's pres
ription [16℄ it is de�ned as

Z =

Z

d�d� Æ(�)Æ(

~

�)Æ(�)Æ(~�) det jf�; �gjdet jf

~

�; ~�gj

� exp

�

i

Z

d

2

x (�

a

_

�

a

�H)

�

;

(4.116)

where we implement the FCC by inserting Æ(�) and Æ(

~

�) in the path-integral.

The Æ-fun
tions of � and ~� refer to gauge �xing 
onditions 
orresponding to

the 
onstraints, � and

~

�, whi
h a
t as generators of gauge symmetries. By

introdu
ing Lagrange-multiplier �elds, A = A

i




i

and

~

A =

~

A

i

~


i

, (4.116) 
an

be written as

Z =

Z

d�d�d

~

AdAÆ(�)Æ(~�) det jf�; �gjdet jf

~

�; ~�gj

� exp

�

i

R

d

2

x [Tr (�

_

� +A�+

~

A

~

�)�H℄

�

:

(4.117)

By 
hanging the momentum variable from �

a

to

P = P

a

T

a

= T

a

(N

�1

)

ab

(�

b

+ �A

b


�

1

�




)

the measure a
quires a determinant fa
tor, d� = dP detN , and the inte-

grand of the exponent in (4.117) be
omes
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Tr (�

_

� +A�+

~

A

~

�)�H

= �Tr

h

�

1

2

(

1

�

P )

2

�

1

2

(�

1

g g

�1

)

2

+

1

�

P (A+ g

~

Ag

�1

+ �

0

g g

�1

)

+A(�

1

g g

�1

�M)�

~

A(g

�1

�

1

g +

~

M)

i

� (

_

�;A�

0

):

(4.118)

Sin
e the matrix N(�) is independent of P , we 
an easily perform the inte-

gration over P provided that the remaining Æ-fun
tions and the determinant

fa
tors are also P -independent.We 
an 
hoose the gauge �xing 
onditions,

� and ~�, so that this is true. (For example, the physi
al gauge whi
h we

will 
hoose in the next se
tion ful�lls this demand.) Then we end up with

the following formula of the 
on�guration spa
e path-integral:

Z =

Z

d� detN d

~

AdAÆ(�)Æ(~�) det jf�; �gjdet jf

~

�; ~�gj e

iI(g;A;

~

A)

;

(4.119)

where I(g;A;

~

A) is the gauged WZNW a
tion (4.8). We note that the mea-

sure for the 
oordinates in this path-integral is the invariant Haar measure,

d�(g) =

Y

a

d�

a

detN =

Y

a

(dg g

�1

)

a

:

(4.120)

This is a 
onsequen
e of the fa
t that the phase spa
e measure in (4.116) is

invariant under 
anoni
al transformations to whi
h the group transforma-

tions belong.

The above formula for the 
on�guration spa
e path-integral means that

the gauged WZNW theory provides the Lagrangian realization of the Hamil-

tonian redu
tion, whi
h we have already seen on the basis of a 
lassi
al

argument in se
tion 4.1.1.

4.5.2 E�e
tive theory in the physi
al gauge

We next dis
uss the e�e
tive theory whi
h arises when we eliminate all the

unphysi
al degrees of freedom in a parti
ularly 
onvenient gauge, the phys-

i
al gauge. We shall re-derive, in the path-integral formalism, the e�e
tive

a
tion whi
h appeared in the 
lassi
al 
ontext earlier in this paper. For

this purpose, within this se
tion we restri
t our attention to the left-right

dual redu
tions 
onsidered in se
tion 4.1.2 It, however, should be noted that

this restri
tion is not absolutely ne
essary to get an e�e
tive a
tion by the

method given below. In this respe
t, it is also worth noting that Polyakov's

2-dimensional gravity a
tion in the light-
one gauge 
an be regarded as an

e�e
tive a
tion in a non-dual redu
tion, whi
h is obtained by imposing a


onstraint only on the left-
urrent for G = SL(2) [1, 20℄. We will not pur-

sue the non-dual 
ases here.
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To eliminate all the unphysi
al gauge degrees of freedom, we simply

gauge them away from g, i.e., we gauge �x the Gauss de
omposed g in

(4.36) into the form

g = ab
! b:

More spe
i�
ally, with the parametrization a(x) = exp [�

i

(x)


i

℄, 
(x) =

exp [~�

i

(x)~


i

℄ we de�ne the physi
al gauge by

�

i

= �

i

= 0; ~�

i

= ~�

i

= 0:

Note that for this gauge the determinant fa
tors in (4.117) are a
tually


onstants. Now the e�e
tive a
tion is obtained by performing the A

�

inte-

grations in (4.119). The integration of A gives rise to the delta-fun
tion,

Y

i

Æ

�

h


i

; b

~

Ab

�1

+ �

+

b b

�1

�Mi

�

;

with 


i

2 � normalized by the duality 
ondition (4.33). One then noti
es

that this delta-fun
tion implies exa
tly the 
ondition (4.39) with �

+


 


�1

repla
ed by

~

A. Hen
e, with the help of the matrix V

ij

(b) in (4.37) and T (b)

in (4.40), it 
an be rewritten as

(det V )

�1

Æ

�

~

A� b

�1

T (b)b

�

:

Finally, the integration of

~

A yields

Z =

Z

d�

e�

(b) e

I

e�

(b)

;

(4.121)

where I

e�

(b) is the e�e
tive a
tion (4.47)

9

, and d�

e�

(b) is the e�e
tive

measure given by

d�

e�

(b) = (det V )

�1

d�(g)Æ(�)Æ(~�) = (det V )

�1

d�(g)

d�d~�

�

�

�

�

�=~�=0

:

(4.122)

Of 
ourse, as far as the e�e
tive a
tion is 
on
erned, the path-integral

approa
h should give the same result as the 
lassi
al one, be
ause the in-

tegration of the gauge �elds is Gaussian and hen
e equivalent to the 
las-

si
al elimination of the gauge �elds by their �eld equations. However, a

non-trivial feature may arise at the quantum level when the e�e
tive path-

integral measure (4.122) is taken into a

ount. Let us examine the e�e
tive

9

A
tually, the e�e
tive a
tion always takes the form (4.47) if one restri
ts the WZNW

�eld to be of the form g = ab
 with a 2 e

�

, 
 2 e

~

�

and b su
h that V

ij

(b) is invert-

ible.The duality between � and

~

� is not ne
essary but 
an be used to ensure this te
hni
al

assumption.

111



measure in the simple 
ase where the spa
e B in (4.34) forms a subalgebra of

G satisfying (4.52), and thus the e�e
tive a
tion in (4.121) simpli�es (4.57)

In this 
ase, the 1-form appearing in the measure d�(g) of (4.120),

dg g

�1

= da a

�1

+ a(db b

�1

)a

�1

+ ab(d
 


�1

)b

�1

a

�1

;

turns out, in the physi
al gauge, to be

dg g

�1

j

�=~�=0

= 


i

d�

i

+ db b

�1

+ V

ij

(b)~


i

d~�

j

:

(4.123)

As a result, the determinant fa
tor in (4.122) is 
an
eled by the one 
oming

from (4.123), and the e�e
tive measure admits a simple form:

d�

e�

(b) = db b

�1

: (4.124)

The point is that this is exa
tly the measure whi
h is determined from the

symple
ti
 stru
ture of the e�e
tive theory (4.45) obtained by the 
lassi
al

Hamiltonian redu
tion. This tells us that in this 
ase the quantum Hamil-

tonian redu
tion results in the quantization of the redu
ed 
lassi
al theory.

In parti
ular, sin
e the above assumption for B is satis�ed for the general-

ized Toda theories asso
iated with integral gradings, we 
on
lude that these

generalized Toda theories are equivalent to the 
orresponding 
onstrained

(gauged) WZNW theories even at the quantum level, i.e., in
luding the

measure. This result has been established before in the spe
ial 
ase of the

standard Toda theory (4.102) in [40℄, where the measure d�

e�

(b) is simply

given by

Q

i

d'

i

.

We end this se
tion by noting that it is not 
lear whether the measure

determined from the symple
ti
 stru
ture of the redu
ed 
lassi
al theory is

identi
al to the e�e
tive measure (4.122) in general. In the general 
ase both

measures in question 
ould be
ome quite involved and thus one would need

some geometri
 argument to see if they are identi
al or not.

4.5.3 The o�-shell W-symmetry of the generalized Toda the-

ory

Be
ause of the WZNW origin of the the generalized Toda theories they

possess W-
urrents. It is thus natural to expe
t that their e�e
tive a
tions,

I

H

e�

in (4.57) and I

S

e�

in (4.108), allow for symmetry transformations yielding

the W-
urrents as the 
orresponding Noether 
urrents. We demonstrate

below that this is indeed the 
ase for the integral graded theories, when the

a
tion takes a simple form. We however believe that there are symmetries of

the e�e
tive a
tion 
orresponding to the 
onserved 
hiral 
urrents inherited

from the KM algebra for any redu
ed WZNW theory.

Let us 
onsider a gauge invariant di�erential polynomial W (J) in the


onstrained WZNW theory giving rise to the e�e
tive theory des
ribed by
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the a
tion in (4.57). In terms of the generalized Toda �eld b(x), this 
on-

served W-
urrent is given by the di�erential polynomial

W

e�

(�) =W (M + �); where � � �

+

b b

�1

: (4.125)

This equality [42, 18℄ holds be
ause the 
onstrained 
urrent J and (M + �)

are related by a gauge transformation, as we have seen. By 
hoosing some

test fun
tion f(x

+

), we now asso
iate to W

e�

(�) the following transforma-

tion of the �eld b(x):

Æ

W

b(y) =

h

Z

d

2

x f(x

+

)

ÆW

e�

(x)

Æ�(y)

i

� b(y) ;

(4.126)

and we wish to show that Æ

W

b is a symmetry of the a
tion I

H

e�

(b). Before

proving this, we noti
e, by 
ombining the de�nition in (4.126) with (4.125),

that (Æ

W

b)b

�1

is a polynomial expression in f , � and their �

+

-derivatives

up to some �nite order.

We start the proof by noting that the 
hange of the a
tion under an

arbitrary variation Æb is given by the formula

ÆI

H

e�

(b) = �

Z

d

2

y hÆb b

�1

(y) ; b(y)

ÆI

H

e�

Æb(y)

i

= �

Z

d

2

y hÆb b

�1

(y) ; �

�

�(y) + [b(y)

~

Mb

�1

(y);M ℄i :

(4.127)

In the next step, we use the �eld equation to repla
e �

�

� by �[b

~

Mb

�1

;M ℄

in the obvious equality

�

�

W

e�

(x) =

Z

d

2

y h

ÆW

e�

(x)

Æ�(y)

; �

�

�(y)i;

(4.128)

and then, from the fa
t that �

�

W

e�

= 0 on-shell, we obtain the following

identity:

Z

d

2

y h

ÆW

e�

(x)

Æ�(y)

; [b(y)

~

Mb

�1

(y);M ℄i = 0 ;

(4.129)

Of 
ourse, the previous argument only implies that (4.129) holds on-shell.

However,we now make the 
ru
ial observation that (4.129) is an o�-shell

identity, i.e., it is valid for any �eld b(x) not only for the solutions of the

�eld equation. This follows by noti
ing that the obje
t in (4.129) is a lo
al

expression in b(x) 
ontaining only x

+

-derivatives. In fa
t,any su
h obje
t

whi
h vanishes on-shell has to vanish also o�-shell, be
ause one 
an �nd

solutions of the �eld equation for whi
h the x

+

-dependen
e of the �eld b is

pres
ribed in an arbitrary way at an arbitrarily 
hosen �xed value of x

�

.
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By using the above observation, it is easy to show that Æ

W

b in (4.126) is

indeed a symmetry of the a
tion. First, simply inserting (4.126) into (4.127),

we have

Æ

W

I

H

e�

(b) = �

Z

d

2

x f(x

+

)

Z

d

2

y h

ÆW

e�

(x)

Æ�(y)

; �

�

�(y) + [b(y)

~

Mb

�1

(y);M ℄i:

We then rewrite this equation as

Æ

W

I

H

e�

(b) = �

Z

d

2

x f(x

+

)�

�

W

e�

(x);

with the aid of the identities (4.129) and (4.128). Hen
e the integrand is a

total derivative and this then proves that

Æ

W

I

H

e�

(b) = 0 :

One 
an also see, from equation (4.126), that W

e�

is the Noether 
harge

density 
orresponding to the symmetry transformation Æ

W

b of I

H

e�

(b).

4.5.4 BRST formalism for WZNW redu
tions

Sin
e the 
onstrained WZNW theory 
an be regarded as the gauged WZNW

theory (4.8), one is naturally led to 
onstru
t the BRST formalism for the

theory as a basis for quantization.Below we dis
uss the BRST formalism

based on the gauge symmetry (4.6) and thus return to the general situation

where no relationship between the two subalgebras, � and

~

�, is supposed.

Prior to the 
onstru
tion we here note how the 
onformal symmetry is

realized in the gauged WZNW theory when there is an operator H satis-

fying the 
ondition (4.62). (For simpli
ity, in what follows we dis
uss the

symmetry asso
iated to the left-moving se
tor.) In fa
t, with su
h H and a


hiral test fun
tion f

+

(x

+

) one 
an de�ne the following transformation,

Æg = f

+

�

+

g + �

+

f

+

Hg;

ÆA = f

+

�

+

A+ �

+

f

+

[H;A℄;

Æ

~

A = f

+

�

+

~

A+ �

+

f

+

~

A;

(4.130)

whi
h leaves the gauged WZNW a
tion I(g;A;

~

A) invariant. This 
orre-

sponds exa
tly to the 
onformal transformation in the 
onstrained WZNW

theory generated by the Virasoro density L

H

in (4.59), as 
an be 
on�rmed

by observing that (4.130) implies the 
onformal a
tion (4.60) for the 
urrent

with f(x

+

) = f

+

(x

+

). We shall derive later the Virasoro density as the

Noether 
harge density in the BRST system.

Turning to the 
onstru
tion of the BRST formalism, we �rst 
hoose

the spa
e �

�

� G whi
h is dual to � with respe
t to the Cartan-Killing
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form (and similarly

~

�

�

dual to

~

�). Following the standard pro
edure [31℄

we introdu
e two sets of ghost, anti-ghost and Nakanishi-Lautrup �elds,

f
 2 �; �


+

; B

+

2 �

�

g and fb 2

~

�;

�

b

�

; B

�

2

~

�

�

g. The BRST transformation


orresponding to the (left-se
tor of the) lo
al gauge transformation (4.6) is

given by

Æ

B

g = �
g ; Æ

B

�


+

= iB

+

;

Æ

B

A = D

�


 ; Æ

B

B

+

= 0;

Æ

B


 = �


2

; Æ

B

(others) = 0;

(4.131)

with D

�

= �

�

+ [A; ℄. and D + � = �

+

� [

~

A; ℄. After de�ning the

BRST transformation

�

Æ

B

for the right-se
tor in an analogous way, we write

the BRST a
tion by adding a gauge �xing term and a ghost term to the

gauged a
tion,

I

BRST

= I(g;A;

~

A) + I

gf

+ I

ghost

:

The additional terms 
an be 
onstru
ted by the manifestly BRST invariant

expression,

I

gf

+ I

ghost

= �i�(Æ

B

+

�

Æ

B

)

Z

d

2

x (h�


+

; Ai+ h

�

b

�

;

~

Ai)

= �

R

d

2

x (hB

+

; Ai+ hB

�

;

~

Ai+ ih�


+

;D

�


i+ ih

�

b

�

;D

+

bi);

(4.132)

where we have 
hosen the gauge �xing 
onditions as A

�

= 0. Then the

path-integral for the BRST system is given by

Z =

Z

d�(g) d

~

AdAd
 d�


+

db d

�

b

�

dB

+

dB

�

e

iI

BRST

;

(4.133)

whi
h, upon integration of the ghosts and the Nakanishi-Lautrup �elds,

redu
es to (4.119). (Stri
tly speaking, for this we have to generalize the

gauge �xing 
onditions in (4.119) to be dependent on the gauge �elds.) By

this 
onstru
tion the nilpoten
y, Æ

2

B

= 0, and the BRST invarian
e of the

a
tion, Æ

B

I

BRST

= 0, are easily 
he
ked.

It is, however, 
onvenient to deal with the simpli�ed BRST theory ob-

tained by performing the trivial integrations of A

�

and B

�

in (4.133),

I

BRST

(g; 
; �


+

; b;

�

b

�

) = S

WZ

(g) + i�

Z

d

2

x (h�


+

; �

�


i+ h

�

b

�

; �

+

bi):

(4.134)

We note that this e�e
tive BRST theory is not merely a sum of a free

WZNW se
tor and free ghost se
tor as it appears, but rather it 
onsists

of the two interrelated se
tors in the physi
al spa
e spe
i�ed by the BRST


harge de�ned below. At this stage the BRST transformation whi
h leaves

the simpli�ed BRST a
tion (4.134) invariant reads
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Æ

B

g = �
g ; Æ

B

�


+

= ��

�

�

h

i(�

+

g g

�1

�M

�

) + (
�


+

+ �


+


)

i

;

Æ

B


 = �


2

; Æ

B

(others) = 0;

(4.135)

where �

�

�

=

P

i

j


�

i

ih


i

j is the proje
tion operator onto the dual spa
e �

�

with the normalized bases, h


i

; 


�

j

i = Æ

ij

. From the asso
iated 
onserved

Noether 
urrent, �

�

j

B

+

= 0, the BRST 
harge Q

B

is de�ned to be

Q

B

=

Z

dx

+

j

B

+

(x) =

Z

dx

+

h
; �

+

g g

�1

�M � 
�


+

i:

(4.136)

The physi
al spa
e is then spe
i�ed by the 
ondition,

Q

B

jphysi = 0:

In the simple 
ase of the WZNW redu
tion whi
h leads to the standard

Toda theory, the BRST 
harge (4.136) agrees with the one dis
ussed earlier

[7℄.

In the 
ase where there is an H operator whi
h guarantees the 
on-

formal invarian
e, the BRST system also has the 
orresponding 
onformal

symmetry,

Æg = f

+

�

+

g + �

+

f

+

Hg ; Æb = f

+

�

+

b;

Æ
 = f

+

�

+


+ �

+

f

+

[H; 
℄ ; Æ

�

b

�

= f

+

�

+

�

b

�

;

Æ�


+

= f

+

�

+

�


+

+ �

+

f

+

(�


+

+ [H; �


+

℄)

(4.137)

inherited from the one (4.130) in the gauged WZNW theory. If the H

operator further provides a grading, one �nds from (4.137) that the 
urrents

of grade �h have the (left-) 
onformal weight 1�h, ex
ept theH-
omponent,

whi
h is not a primary �eld. Similarly, the ghosts 
, �


+

of grade h, �h have

the 
onformal weight h, 1 � h, respe
tively, whereas the ghosts b,

�

b are


onformal s
alars. Now we de�ne the total Virasoro density operator L

tot

from the asso
iated Noether 
urrent, �

�

j

C

+

= 0, by

Z

dx

+

j

C

+

(x) =

1

�

Z

dx

+

f

+

(x

+

)L

tot

(x):

The (on-shell) expression is found to be the sum of the two parts, L

tot

=

L

H

+L

ghost

, where L

H

is indeed the Virasoro operator (4.59) for the WZNW

part, and

L

ghost

= i�(h�


+

; �

+


i+ �

+

hH; 
�


+

+ �


+


i);

(4.138)

is the part for the ghosts. The 
onformal invarian
e of the BRST 
harge,
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ÆQ

B

= 0, or equivalently, the BRST invarian
e of the total 
onformal 
harge,

Æ

B

L

tot

= 0, are readily 
on�rmed.

Let us �nd the Virasoro 
enter of our BRST system. The total Virasoro


enter 


tot

is given by the sum of the two 
ontributions, 
 from the WZNW

part and 


ghost

from the ghost one. The Virasoro 
enter from L

H

is given

by


 =

k dimG

k + g

� 12khH;Hi;

(4.139)

where k is the level of the KM algebra and g is the dual Coxeter number.

On the other hand, the ghosts 
ontribute to the Virasoro 
enter by the usual

formula,




ghost

= �2

X

�

[1 + 6h(h� 1)℄;

(4.140)

where the summation is performed over the eigenve
tors of ad

H

in the sub-

algebra �. (One 
an 
on�rm (4.140) by performing the operator produ
t

expansion with L

ghost

in (4.138).)

4.5.5 The Virasoro 
enter in 2 examples

By elaborating on the general result of the previous se
tion, we here derive

expli
it formulas for the total Virasoro 
enter in two important spe
ial 
ases

of the WZNW redu
tion.

The generalized Toda theory I

H

e�

(b) In this 
ase the summation in

(4.140) is over the eigenstates of ad

H

with eigenvalues h > 0, sin
e � = G

H

>0

.

We 
an establish a 
on
ise formula for 


tot

, (4.143) below, by using the

following group theoreti
 fa
ts.

First, we 
an assume that the grading operator H 2 G is from the Cartan

subalgebra of the 
omplex simple Lie algebra G





ontaining G. Se
ond, the

s
alar produ
t h ; i de�nes a natural isomorphism between the Cartan subal-

gebra and the spa
e of roots, and we introdu
e the notation

~

Æ for the ve
tor

in root spa
e 
orresponding to H under this isomorphism. More 
on
retely,

this means that we set H =

P

i

Æ

i

H

i

by using an orthonormal Cartan basis,

hH

i

;H

j

i = Æ

ij

. Third, we re
all the strange formula of Freudenthal-deVries

[21℄, whi
h (by taking into a

ount the normalization of h ; i and the duality

between the root spa
e and the Cartan subalgebra) reads

dim G =

12

g

j~�j

2

;

(4.141)

where ~� is the Weyl ve
tor, given by half the sum of the positive roots.
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Fourth, we 
hoose the simple positive roots in su
h a way that the 
or-

responding step operators, whi
h are in general in G




and not in G, have

non-negative grades with respe
t to H.

By using the above 
onventions, it is straightforward to obtain the fol-

lowing expressions

X

h>0

1 = dim� =

1

2

(dimG � dim G

H

0

);

X

h>0

h = 2(~� �

~

Æ);

X

h>0

h

2

=

1

2

tr (ad

H

)

2

= ghH;Hi = gj

~

Æj

2

;

(4.142)

for the 
orresponding terms in (4.140). Substituting these into (4.140) and

also (4.141) into (4.139), one 
an �nally establish the following ni
e formula

of the total Virasoro 
enter [39℄:




tot

= 
+ 


ghost

= dim G

H

0

� 12

�

�

�

p

k + g

~

Æ �

1

p

k + g

~�

�

�

�

2

: (4.143)

In parti
ular, in the 
ase of the redu
tion leading to the standard Toda

theory (4.102) the result (4.143) is 
onsistent with the one dire
tly obtained

in the redu
ed theory [35, 9℄

10

.

The W

G

S

-algebra for half-integral sl(2) embeddings For sl(2) embed-

dings the role of the H is played byM

0

and in the half-integral 
ase we have

� = G

�1

+ P
1

2

= G

>0

� Q
1

2

. It follows that the value of the total Virasoro


enter 
an now be obtained by subtra
ting the 
ontribution of the `miss-

ing ghosts 
orresponding to Q
1

2

, whi
h is

1

2

dim G
1

2

, from the expression in

(4.143). We thus obtain that in this 
ase




tot

= N

t

�

1

2

N

s

� 12

�

�

�

p

k + g

~

Æ �

1

p

k + g

~�

�

�

�

2

; (4.144)

where

N

t

= dim G

0

; and N

s

= dim G
1

2

;

are the number of tensor and spinor multiplets in the de
omposition of the

adjoint of G under the sl(2) subalgebra S, respe
tively. We note that, as

proven by Dynkin [34℄, it is possible to 
hoose a system of positive simple

roots so that the grade of the 
orresponding step operators is from the

10

more pre
isely, the 
enter (4.143) agrees with that of refs. [35, 9℄ if the "
oupling


onstant" of the Toda theory k is repla
ed by k+ g. The 
ause of the shift in the WZNW

redu
tion is dis
ussed, e.g. in [27℄
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set f0;

1

2

; 1g, and that

~

Æ is (

1

2

�) the so 
alled de�ning ve
tor of the sl(2)

embedding in Dynkin's terminology.

As has been mentioned in se
tion 4.3.1, Bais et al [5℄ (see also [45℄)

studied a similar redu
tion of the KM algebra for half-integral sl(2) embed-

dings where all the 
urrent 
omponents 
orresponding to G

>0

are 
onstrained

from the very beginning. In their system, the 
onstraints (4.88) of G
1

2

, being

inevitably se
ond-
lass, are modi�ed into �rst-
lass by introdu
ing an aux-

iliary �eld to ea
h 
onstraint of G
1

2

. A

ordingly, the auxiliary �elds give

rise to the extra 
ontribution �

1

2

dim G
1

2

in the total Virasoro 
enter. It is


lear that adding this to the sum of the WZNW and ghost parts (whi
h is

of the form (4.143) with M

0

substituted for H), renders the total Virasoro


enter of their system identi
al to that of our system, given by (4.144). This

result is natural if we re
all the fa
t that their redu
ed phase spa
e (after


omplete gauge �xing) is a
tually identi
al to ours. It is obvious that our

method, whi
h is based on purely �rst-
lass KM 
onstraints and does not

require auxiliary �elds, provides a simpler way to rea
h the identi
al redu
ed

theory.

The W

l

n

-algebras By using the results of se
tion 4.3.2 we 
an easily 
om-

pute the Virasoro 
enter of the W

l

n

algebras. We 
onsider the 
onformal

stru
ture given by L

M

0

, where M

0

is the sl(2) generator (4.94), and intro-

du
e ghosts for FCC de�ned by �, eq. (4.98). The 
ontribution to the

Virasoro 
enter from L

M

0

is given by


 =

(n

2

� 1)k

k + n

� km(m+ 1)[3n� (2m+ 1) l℄:

Taking into a

ount the multipli
ities of the grades in �, we �nd from (4.140)




ghost

= �2dim D

0

+ dim P

1=2

� 2

m

X

i=1

[l + 6i(i� 1)℄ dim G

i

= �(m

3

+ 4m

2

+ 3m+ 1) l

2

� n

2

(3m

2

+ 2)

+[n(2m

3

+ 3m

2

+ 6m+ 2) + 1℄ l:

(4.145)

This result disagrees with the one obtained for W

2

n

in ref. [8℄, where instead

of our L

M

0

a di�erent L

H

was adopted for de�ning the 
onformal stru
ture

and a set of auxiliary �elds has been introdu
ed to render the 
onstraints

�rst 
lass. This disagreement is not surprising be
ause of the ambiguity in

de�ning the 
onformal stru
ture of W

l

n

, i.e. in 
hoosing H in (4.59), whi
h

eventually re
e
ts in the value of 
. In addition, there is also an arbitrariness

in the number of auxiliary �elds introdu
ed, and the Virasoro 
enter agrees

only when one uses the minimal number of �elds (with the same H).
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