Chapter 4

Hamiltonian Reduction of
WZNW Theories

Two dimensional conformally invariant field theories are based on various
extensions of the chiral Virasoro algebras. The best-known extensions is
the Kac-Moody (KM) algebra [23], whose most prominent Lagrangian real-
ization is the Wess-Zumino-Witten-Novikov (WZNW) model [50]. Another
extension is the so-called W-extension [52], which is a polynomial extension
of the Virasoro algebra by higher spin fields. These W-algebras proved very
fruitful in analyzing conformal field theories and they have become the sub-
ject of intense study (see [13] for a review on these algebras). It has been
realized by Gervais and Bilal that Toda theories provide a Lagrangian real-
ization of W-algebras [9]. In [20] we have shown that the exact relationship
is that Toda theories may be regarded as WZNW models reduced by confor-
mally invariant constraints. More precisely, Toda theories can be identified
as the constrained WZNW models, modulo the left-moving upper triangular
and right-moving lower triangular KM transformations, which are the gauge
transformations generated by the first class constraints.

The constrained WZNW (KM) setting of the Toda theories (VW-algebras)
calls for generalizations, some of which have been investigated. For exam-
ple, in [39] the reduction was generalized to produce a series of conformally
invariant integrable theories which interpolate between the WZNW and
Toda theories. These theories contain WZNW fields belonging to reducible
WZNW groups, with the irreducible pieces in nearest neighbor interaction,
thus providing a natural generalization of Toda theories. A remarkable fea-
ture of the theories is the emergence of a field which plays the role of the
two-dimensional gravitational density \/—g. Further features are the ease
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with which the general solutions of the field equations in these theories can
be obtained from the well-known WZNW solutions, and the formula for the
centers of the Virasoro algebra in terms of the WZNW center.
Also, it has been realized in [5, 18] that it is possible to associate a general-
ized W-algebra to every embedding of the Lie algebra s/(2) into the simple
Lie algebras. The standard W-algebra occurring in Toda theory, corresponds
to the so called principal sl(2). Another interesting development is the W,lZ
algebras introduced by Bershadsky [8]. It is known that the simplest non-
trivial case W2, which was originally proposed by Polyakov [44], is a special
sl(2)-based Wh-algebra. the classification based on sl(2) embeddings
In addition, the whole construction has been supersymmetrized by con-
straining super-WZNW theories [14]. As in the bosonic case one finds that
the reduced supersymmetric theories contain super W-algebras as non-linear
symmetry algebras. Here the classification of the W-algebras is based on
OSp(1]2) embeddings in a simple superalgebra G. A specially simple exam-
ple where the algebra closes linearly is the N = 1 superconformal algebra
made from the stress energy tensor and a conformal spin 3/2 fermionic field.

Here we undertake a systematic study of the Hamiltonian reductions of
WZNW theory, aiming at uncovering the general structure of the reduction.
We shall derive the effective field theories (some of them will contain fields
with half-integer spins) which contain generalized W-algebras as symme-
try algebras and investigate the relation between the different W-algebras.
We give purely Lie-algebraic conditions for the constraints to be first class,
conformally invariant and that they lead to a polynomial extension of the
Virasoro algebra. Finally we investigate the quantum reduction of WZNW
theories and derive the central charge for the effective reduced theories for
arbitrary reductions.

We start with recalling, that WZNW-theories are field theories for group
valued fields g(z) € G with action !

Swz(g) = g/dQ:vTr (97" 9ug) (g~ 1 0"g) - g/B Tr (97 'dg)®.  (4.1)

We assume that G is a a simple, maximally non-compact, connected real Lie
group or in other words that the simple Lie algebra, G, corresponding to G
allows for a Cartan decomposition over the field of real numbers. Thus G is
defined as the real span of a Chevalley basis H;, Fi, of the corresponding
complex Lie algebra G., and in the case of the classical series A,, B,, Cy
and D, is given by sl(n + 1, R), so(n,n + 1, R), sp(2n, R) and so(n,n, R),
respectively. The Cartan-Killing form of G is denoted by (.,.) = Tr (..).
The field equation of the WZNW theory can be written in the equivalent

'The KM level k is —4nk. The space-time conventions are: 70 = —ni1 = 1 and
et = 1(z° £ 2'). The WZNW field g is periodic in " with period 27r.
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forms

O_J=0 or 8.J=0, (4.2)
where

-1

J=kK01g9-¢g and J = —krg 'O_g. (4.3)

These equations express the conservation of the left- and right KM currents,
J and J, respectively. The general solution of the field equation have the
simple form

gz, 27) = gr(z%) - gr(z7), (4.4)

where g7, and gr are arbitrary G-valued functions, constrained only by the
boundary conditions imposed on g.

In what follows we shall need the remarkable Polyakov-Wiegmann iden-
tity [43],
Swz(abcfl) = Swz(a)+ Swz(b) + Swz(cfl)
- /Tr ~1'0_a) 1(&rc)b_l} (4.5)
+ Ii/Tr {(a 0 a) (@) — (b7'0 D) 'd.c).

4.1 Gauging the WZNW theories

For gauging the WZNW theories we couple the fields a and ¢ in (4.5) mini-
mally to gauge potentials, that is replace the ordinary derivatives by covari-
ant ones

D_a=0_a+Aa and Dyc=0d,c— Ac,

which transform covariant under the gauge transformations

—a

a—e%a, c—etc = g— ege (4.6)
A—eAe 4 e e ™ ;A= e®Ade 4 (0peY)e O '

The b field in the decomposition of g is gauge invariant. Clearly, if we
replace the derivatives of a,c in (4.5) by covariant ones and if we drop the
W Z-action of a and ¢!, then the resulting action
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I' = Sw(b) —[{/d2IT‘I' {(ailD_a)bcil(D-i—C)bil}

+ H/deTI‘ {(a—lD_a)(D+b)b—1 . (b_lD_b)C_1D+c} (47)

would be gauge invariant. However, in general this action cannot be re-
expressed in terms of the original field g. For example, for vanishing gauge
potential this is only possible if we would add the WZ-actions of @ and ¢ *
However, such terms are are not gauge invariant. The way out is to assume
that Sy z vanish on these fields. This is equivalent to assuming that a and ¢
vary in subgroups of G with Lie-algebras I' and T, respectively, which have
the property I' ¢ T+ and T'  T-. Of course, the gauge potentials lie then
also in these subalgebras, A € T'and A € T.

With these assumptions the gauge-invariant action (4.7) can be written
in terms of the original field, up to a term

/Tr A(dya)a 121(8_0)0_1}.

But because A and (8;a)a”! are both in T' and we assumed that T' C T'*
(and similarly for T') this difference vanishes. However, the resulting gauge-
theories are still rather uninteresting, they are essentially WZNW-theories
for the gauge-invariant field b. To get interesting new theories we couple the
gauge field to constant elements M and M and define

I=I'—n/TY (AM + Anr).
which, with our assumption on I',T' can be rewritten as

I(g, A, A) = Swz(g) + ﬁ/d2 A(04g9 ' — M)

_ (4.8)

+ A(gto_g- M)+ AgAgfl).
Later we shall see that for particular choices of M, M the reduced theories
are interesting interacting Toda-type theories. Note that the terms contain-
ing M and M are not invariant under the general transformations (4.6).
However, they become invariant if we assume that M is orthogonal to the
derived algebra [I',T']. For example, under an infinitesimal gauge transfor-
mation belonging to e® ~ 1 + «, the term (A, M) changes by

S(A, M) = —(0_a, M) + (M, [a, A]) ,

which is a total divergence since with our assumption on I' the second term
vanishes, as both A and « are from I'. This then proves that the action
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(4.8) is gauge invariant, provided we impose the following conditions on M
and I': for a, 8 €T

‘[a,,@] el (a, ) =0 and wpy(a, B) =0,

(4.9)

where I introduced the anti-symmetric Kostant-Kirillov 2-form on G:
wy(u,v) = (M, [u,v]) forafixed Me€G and Vu,veg. (4.10)

This means that I is a subalgebra on which the Cartan-Killing form and wps
vanish. Of course, we must impose exactly the same conditions on M, I". Tt
is easy to see that the 3 conditions in (4.9) can be equivalently written as

r,rt)jcrt, Tcrt  and [M,T]CTt, (4.11)

respectively. Subalgebras I' satisfying ' C T'" exist in every real form of the
complex simple Lie algebras except the compact one, since for the compact
real form the Cartan-Killing inner product is (negative) definite. Now we
have the following

Lemma 3 ' C 't = T is a solvable subalgebra of G.

We recall that T is solvable, if (™) = 0 for some n, where the T®) & > 0
are defined iteratively by:

r®—=r and 1® =k Pk,

The second condition in (4.11) can be satisfied for example by assuming
that every v € I' is a nilpotent element of G in which case I' is actually
a nilpotent Lie algebra, by Engel’s theorem [28]. We also recall that I' is
called nilpotent, if ',y = 0 for some n, where the '),k > 0 are defined
iteratively by:

F(O) =T and F(k) = [F(kfl)al—‘]

Clearly, any nilpotent I' is solvable. However, the nilpotency of T is not
necessary for T C T to hold. In fact, solvable but not nilpotent I'’s which
satisfy (4.11) can be found.

The FEuler-Lagrange equation derived from (4.8) by varying ¢ can be
written equivalently as

0 (0:99 " +9Ag") + [A 0199 ' +9Ag 1+, A=0

—1 —1 e -1 1 ~ (412)
0+(90-g+g Ag) — [Ag 0-g+g Agl+0-A=0

and they determine the evolution of the field g. Since the action contains
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no time-derivative of the gauge fields the A, A-equations are Lagrangian
constraints

(v,0+99" +9Ag! = M) =0, VyerT, (4.13)

(7,97 0_g+g " Ag— M) =0, vyerl. '
We now note that by making use of the gauge invariance, A and A can be set
equal to zero simultaneously. The important point for us is that, as is easy
to see, in the A = A = () gauge one recovers from (4.12) the field equations
(4.2) of the WZNW theory and from (4.13) the constraints

¢y = (v,J —kM) =0, and 5= (3,J+rM) =0, (4.14)

where the v and the ¥ form bases of I" and T, respectively.
Note that setting A, A to zero is not a complete gauge fixing, the residual
gauge transformations are exactly the chiral gauge transformations

g(zt,z7) — e@™) gzt z7) - e~ Mz7) , (4.15)

where « and & are arbitrary I' and T valued chiral functions, respectively.

4.1.1 Hamiltonian formalism of the gauged theory

To discuss the Hamiltonian formalism for these theories we need to specify
the canonical variables. For that purpose we parametrize the group elements
in some arbitrary way [11], g = g(£). We shall regard the parameters £¢,
a = 1,...,dim G, as the canonical coordinates in the theory. To find the
canonical momenta, we introduce the 2-form A = A4, (€) dé?d¢P to rewrite
the Wess-Zumino term as

1
ST (dgg™ 1) = dA. (4.16)

The 2-form A is well-defined only locally on G, since the Wess-Zumino 3-
form is closed but not exact. Fortunately we do not need to specify A
explicitly below. Next we express the Maurer-Cartan forms as

dgg™" = Nap(§)dé*T" and  g~'dg = Nop(€)de"T", (4.17)

where T? are some orthonormal generators of G 2. These non-singular ma-
trices are related with each other and A by

NN71:]\771N:B s Bab:<gTagil,Tb>:>BBt:1

el (4.18)
Aab,c + -Aca,b + -Abc,a = qurNaprchr = qurNaprchr-

*In real forms of the complex Lie algebra some T, have norm —1
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Furthermore, the Maurer-Cartan relations (or integrability condition on g)
take the form

Nbc»a _NaCab _fg)qNaprq = Nbc»a _Naab +fg)qNaprq = 0.

In these variables the action reads

I = g/n’“’(Ntaug,Nt&,O = n/ Tr (AM + A31)

. / s . (4.19)
= & [ (G A€) ~ (946N A) - (0-6, N ) - (4, BA)).
Since it does not depend on A, one has the primary constraints
I, = I, = 0.
The momenta conjugated to the é‘l are easily found to be
T, = /-@Naprpfb — kA" + kN AY + kN, AL (4.20)
The canonical Hamiltonian can be written as
1 1
H = —(LJ)+ (A, kM +-rA—J)
4k 2
NG5 S W% Gy 2
+ E(a >+<7K/ +§K/ + >a
where we have defined the KM-currents
J=J, T, Jo=(N"2(m + Apet’®) + 5Ny " .22

J=J,T¢ , J, = —(N_l)ab(wb + Apcl’€) + ﬁNba§’b.

The consistency of the primary constraints lead to the following secondary
constraints

(y,J — kM —kA) =0 and (3,J+ kM + kA) = 0. (4.23)

For arbitrary subalgebras these constraints do not weakly commute with
the primary constraints due to terms linear in the gauge fields. Thus to get
FCC we are again lead to impose the second condition in (4.9) or in (4.11).
Then the quadratic in A, A terms in (4.21) and the linear in A, A terms in
(4.23) vanish and we remain with the secondary constraints

¢y = (y,J —kM)=0 and ¢5 = (3,J+&M)=0. (4.24)

After a lengthy but straightforward calculation, where one uses (4.18,4.19)
and identities like

97 (9a(@g9™"))9 = 0s(97'0g) = QulN, Ny = N, °N,!
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or
fgqNapng + fg)qNachq = 07

one finds the following equal time Poisson brackets for the KM-currents

{{u, J(2)), (v, J(y))} = ([u, "],
{(u, J(2)), {0, J(w))} = ([, 0],

{(u, J(2)), (0, T(y))} = O

for arbitrary u,v € G. Here I abbreviated z — y = £. Thus we have

(2))5(€) + 26 (u,v)d (€)
(2))0(€) — 26(u,v)d" (&) (4.25)

S

{6 (2): 632 @)} = (D1yaa) + B0 (11,72) + 26071, 72)02 )8

- - - 4.26
(Fra@). 3} = (B — o) — 2o, 2)00)3

with the same arguments as in (4.25). Again it is evident that the constraints
are first class if, and only if, the conditions (4.9) are fulfilled, that is if I, T
are solvable subalgebras on which the Kostant-Kirillov forms vanish.

Finally we need to check the consistency of the secondary constraints.
Using the second assumption in (4.9) we find for the Poisson brackets of the
secondary constraints with the Hamiltonian density (4.21)

{620, 1w} = (6@ = ([ AL DIE) + (1, M) (€)
(5@ 1w} = ~(G3(@)5©) + (7, A, 7)) + (3, M)8'(€).

Using the last property in (4.9) and integrating over y we obtain for the
smeared constraints

[tadty = = [ (@4, +adnq)
[tad 1y = [ @6+ ady ).

(4.27)

(4.28)

We see, that the primary and secondary constraints form a FC system.
Finally, let us check which off-shell symmetries are generated by these
FCC. For that we define a general FCC

G = /dxl(ozi% + BT + &y + Biﬁi), where  ¢; = ¢,
calculate its time-derivative
d : : e
%G = / (alat QSZ + Blat Hl + alat QSZ + Blvt Hl) + {G7 H}

and demand that this must be proportional to the primary constraints.
One easily finds that this can only be the case if the coefficient functions are
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related as
/6:—870["'[0[714-] ’ ,8264»&4'[&71‘1]7 where a:aifyi?"‘

With these relations between the parameters one obtains the following off
mass-shell symmetry transformations

69 = {9,G} =g —ga,

A = v{A,G}=]a,A] -0 a, (4.29)
which are the infinitesimal gauge transformations (4.6). Finally note, that
if we set the gauge fields to zero, then we find ?

jt/(oz ¢z+a¢z)—/((&a,J—nM)-l-(aJr&,j_FﬁM)).

The right hand side vanishes if the @ and & depend only on z* and z~,
respectively. The corresponding smeared constraints generate transforma-
tions which leave the surface defined by the constraints and the conditions
A = A = 0 invariant. In other words, the conditions A=A =0 is only a
partial gauge fixing and the constraints

Gen = /dx ") ¢+ &' (z ‘)d%) (4.30)

generate chiral off mass-shell symmetries on the surface defined by the par-
tial gauge fixing. From (4.29) we see that these symmetries are just the chiral
gauge transformations (4.15), as expected. The currents are transformed as

§J =T {J(z), G} = [a(z), J(2)] + 260’

- - (4.31)
0J = T {Jx), G} = [a(x), J ()] — 266/
which, since 20/ = d,a and 26’ = —0_a for chiral functions, are just the
infinitesimal forms of the global gauge transformations
J—=eJe ¥+ (0,e%) e ® a=alz’
(0% e (@ .

J—edJe ® —e*0_e®, a=alx

)
These are just the transformation of the currents (4.2) which follow from
(4.15).

¢ From now on I shall always assume that the canonical pairs A" TI; and
A", II; have been eliminated.

3up to surface terms which vanish if we impose periodic boundary conditions
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The Dirac bracket on the so partially reduced phase space, are just the
ordinary Poisson bracket for the remaining degrees of freedom. The situation
is very much like in Yang-Mills theories, where one remains with the time-
independent gauge transformations after elimination of the primary pair
Ap, Iy and where these transformations are generated by the secondary
Gauss-constraints smeared with time-independent test functions. Also, in
the rest of this chapter, the notation f’ = 20, f is used for every function,
including the spatial d-functions. This has the advantage that for a chiral
function f(z™) one has then f' =, f.

4.1.2 Effective field theories from left-right dual reductions

The aim of this section is to describe the effective field equations and action
functionals for an important class of reduced WZNW theories. This class of
theories is obtained by making the assumption that the left and right gauge
algebras T and T are dual to each other with respect to the Cartan-Killing
form, which means that one can choose bases v; € I" and 7; € [ so that

(visj) = 045 - (4.33)

This technical assumption allows for having a simple general algorithm for
disentangling the constraints (4.24) which define the reduction. It holds if
one chooses I and T to be the images of each other under a Cartan invo-
lution* of the underlying simple Lie algebra. For maximally non-compact,
connected real Lie groups the Cartan involution is (—1)x transpose, oper-
ating on the Chevalley basis according to

Hi — _Hi E:I:a — _E:Fa .

It is obvious that (v, v!) > 0 for any non-zero v € G and from this one sees
that T' is dual to I with respect to the Cartan-Killing form, i.e., (4.33) holds
for T' = T'. Tt should also be mentioned that there is a Cartan involution for
every non-compact real form of the complex simple Lie algebras, as explained
in detail in [26].

Equation (4.33) implies that the left and right gauge algebras do not
intersect, and thus we can consider a direct sum decomposition of G of the
form

G=T+B+T, (4.34)

where B is some linear subspace of G. Here B is in principle an arbitrary
complementary space to (I' + T') in G, but one can always make the choice

*A Cartan involution o of the simple Lie algebra is an automorphism for which o = 1
and (v,o(v)) < 0.
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B=((T+0D)", (4.35)

which is natural in the sense that the Cartan-Killing form is non-degenerate
on this B. We note that matters simplify if the space B is a subalgebra of
G, but this is not necessary for our arguments and is not always possible
either.

We can associate a ‘generalized Gauss decomposition’ of the group G to
the direct sum decomposition (4.34). By ‘Gauss decomposing’ an element
g € G, we mean writing it in the form

g=a-b-c, with a=¢, b=¢€’ and c=¢7, (4.36)

where 7, 8 and 4 are from the respective subspaces in (4.34).

There is a neighborhood of the identity in G consisting of elements which
allow a unique decomposition of this sort, and in this neighborhood the
pieces a, b and ¢ can be extracted from g by algebraic operations. We make
the assumption that every G-valued field we encounter is decomposable as
g in (4.36). Tt is easily seen that in this ‘Gauss decomposable sector’ the
components of b(z",z~) provide a complete set of gauge invariant local
fields.

Below I explain how to solve the constraints (4.24) in the Gauss decom-
posable sector of the WZNW theory. For our method to work, we restrict
ourselves to fields which vary in such a Gauss decomposable neighborhood
of the identity where the matrix

Vij(b) = (7i,b7; b7 ") (4.37)

is invertible. Due to the assumptions, the analysis given in the following
yields a local description of the reduced theories. It is clear that for a global
description one should use patches on G obtained by multiplying out the
Gauss decomposable neighborhood of the identity, but we do not deal with
this issue here.

Field equations of the reduced theories: First I derive the field
equations of the reduced theory by implementing the constraints directly
in the WZNW field equation d_(0,gg~') = 0. (This is allowed since the
WZNW dynamics leaves the constraint surface invariant.) By inserting the
Gauss decomposition of g into (4.14) and making use of the constraints being
first class, the constraint equations can be rewritten as

(vi, 000+ b(Dpec b = M) = 0,

~ 4.38
<F?i7 b_la_b-l-b_l(a_l@_a)b— M> = ( )
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With the help of the inverse of Vj; in (4.37), one can solve these equations
for 9;cc! and a 10_a in terms of b,

dycc b =b'T(b)b, and @ '0 a=bT(b)b !, (4.39)
where

T(b) = > Vi'(b) (v, M —0:bb~")byib~",
ij

T(b) = > Viy'(b) (3 M —b'0_b) b~ "y;. (4.40)
]

The effective field equation for the field b(z*,z~) can be obtained, for in-
stance, by noting that the WZNW field equation can be written in the
zero-curvature form [0 — J,0— — 0] = 0 or equivalently after a gauge trans-
formation with a as

0y —AL,0- —A_]=0, (4.41)
where
AL =000 P+ b(0ycc )bt and A =-a"'0 a. (4.42)

Inserting the relations (4.39) we see that the field equation of the reduced
theory is the zero curvature condition of the following Lax potential:

A(b)=0,bb 1+ T() and A (b) = —bT(b)b . (4.43)

More explicitly, the effective field equation reads

O_ (84671 + BT ()b, T(b)] + O_T(b) + b(OLT(b))b~' = 0.|  (4.44)

The expression on the left-hand-side of (4.44) in general varies in the full
space G, but not all the components represent independent equations. The
number of the independent equations is the number of the independent com-
ponents of the WZNW field equation minus the number of the constraints in
(4.24), since the constraints automatically imply the corresponding compo-
nents of the WZNW equation. Thus there are exactly as many independent
equations in (4.44) as the number of the reduced degrees of freedom. In fact,
the independent field equations can be obtained by taking the Cartan-Killing
inner product of (4.44) with a basis of the linear space B. The inner prod-
uct of with the -; and the ¥; vanishes as a consequence of the constraints
together with the independent field equations.
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General solution of field equation: The effective field equation
(4.44) is in general a non-linear equation for the field b(z*,z "), and we can
give a procedure which can in principle be used for producing its general
solution. We are going to do this by making use of the fact that the space
of solutions of the reduced theory is the space of the constrained WZNW
solutions factorized by the chiral gauge transformations (4.15). Thus the
idea is to find the general solution of the effective field equation by first
parameterizing, in terms of arbitrary chiral functions, those WZNW solu-
tions which satisfy the constraints (4.24), and then extracting their b-part
by algebraic operations.

To be more concrete, one can start the construction of the general so-
lution by first Gauss-decomposing the chiral factors of the general WZNW
solution g(z™,z7) = gr.(z") - gr(z ™) as

gr(z") = ap (") -br(z™) - ep(z7)

B B B B (4.45)
gr(z") = ar(z”) - br(z") - cr(z™).
Then the constraint equations (4.24) become
drcrer' =b7'T(br)br, and agz'0_ar = brT(br)bz" . (4.46)

In addition to the the purely algebraic problems of computing the quantities
T and T and extracting b from g = gr.-gr = a-b-c, these first order systems of
ordinary differential equations are all one has to solve to produce the general
solution of the effective field equation. If this can be done by quadrature then
the effective field equation is also integrable by quadrature. In general, one
can proceed by trying to solve (4.46) for the functions ¢y (z1) and agr(z™)
in terms of the arbitrary ‘input functions’ by, (z™) and br(z ). Clearly, this
involves only a finite number of integrations whenever the gauge algebras T’
and T are nilpotent.

We note that in concrete cases some other choice of input functions,
instead of the chiral b’s, might prove more convenient for finding the gen-
eral solutions of the systems of first order equations on g7, and gg given in
(4.46) (see for instance the derivation of the general solution of the Liouville
equation given in [20]).

Effective action for gauge invariant fields: It is natural to ask
for the action functional underlying the effective field theory obtained by
imposing the constraints (4.24) on the WZNW theory. In fact, the effective
action is given by the following formula:

Tz (b) = Sw(b) - / &z BT~ , T(b)). (4.47)
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One can derive the following condition for the extremum of this action:

(6bb~ 1,0 (94bb 1)+ [BTh L, T+ 0T 4+ b0, T)b 1) = 0. (4.48)

It is straightforward to compute this, the only thing to remember is that
the objects bTh~" and b~'Tb introduced in (4.40) vary in the gauge algebras
I and T. The arbitrary variation of b(z) is determined by the arbitrary
variation of B(z) € B, according to b(z) = €@ and thus we see from
(4.48) that the Euler-Lagrange equation of the action (4.47) yields exactly
the independent components of the effective field equation (4.44).

The effective action given above can be derived from the gauged WZNW
action (4.8), by eliminating the gauge fields A4, A by means of their Euler-
Lagrange equations (4.13). By using the Gauss decomposition, these Euler-
Lagrange equations become equivalent to the relations

o 'D_a =0T, and eD c™' = —b"'T(b)b, (4.49)

where T and T are given by the expressions in (4.40) and D4 denotes the
gauge covariant derivatives introduced earlier. Now I show that I.g(b) can
indeed be obtained by substituting the solution of (4.49) for A, A back into
(4.8) with ¢ = abe. To this first we rewrite I(abe, A, A) in the form (4.5)
(plus the terms containing M and M) and use (4.49) by noting, for example,
that (0_aa~!, M) is a total derivative.

Parity operations: Here I point out that the particular left-right re-
lated choice (4.33) of the gauge algebras can also be used to ensure the parity
invariance of the effective field theory. Indeed, for maximally non-compact
connected Lie group G Swy(g) is invariant under any of the following two
‘parity transformations’ ¢ — Pg:

(Pig)(z’,z") = g'(a", —z') . (Pog)(a®,2!) =g~ (2", —2').  (4.50)

If one chooses ' = I'* and M = M then the parity transformation P, simply
interchanges the left and right constraints, ¢ and ¢ in (4.24), and thus the
corresponding effective field theory is invariant under the parity P;. The
space B in (4.35) is invariant under the transpose in this case, and thus
the gauge invariant field b transforms in the same way under P; as g does
in (4.50). Of course, the parity invariance can also be seen on the level of
the gauged action. Namely, I(g, A, A) is invariant under P; if one extends
the definition in (4.50) to include the following parity transformation of the
gauge fields:
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(PLA) (2%, 2"y = AY (20, —2') | (4.51)

and similarly for A. The P;-invariant reduction procedure does not preserve
the parity symmetry P», but it is possible to consider reductions preserving
just Py instead of P;. In fact, such azial reductions can be obtained by
taking ' =T and M = M.

It is obvious that to construct parity invariant WZNW reductions in
general, for some arbitrary but non-compact real form G of the complex
simple Lie algebras, one can use —o instead of the transpose, where o is a
Cartan involution of G.

Special cases: Finally I would like to mention certain special cases
when the above equations simplify. First we note that if one has

[B,T]cT” and [B,[]CT, (4.52)

then
T(b) =M — 70,06 ") and T(b) =M — (b o b), (4.53)

where we introduced the projectors onto the spaces I' and T,
= Z [y} (%l and 7 = Z %) (il (4.54)
i i

and, without loss of generality, (see 4.33) assumed that M € T and M € T.
One obtains (4.53) from (4.39,4.40) by taking into account that in this case
Vi;(b) in (4.37) is the matrix of the operator Ad, acting on T, and thus the
inverse is given by Ady-1.

The nicest possible situation occurs when B = (T —I—f‘)J— is a subalgebra of
G and also satisfies (4.52). In this case one simply has T = M and T = M
and thus (4.44) simplifies to

O_ (8 bb~ )y + pMb~', M] =0 . (4.55)

The derivative term is now an element of B and by combining the above
assumptions with the first class conditions [M,I'] € T'" and [M,I] c T'*
one sees that the commutator term in (4.55) also varies in B, which ensures
the consistency of this equation. Generalized, or non-Abelian, Toda theories
of this type have been first investigated by Leznov and Saveliev [32, 33] ,
who defined these theories by postulating their Lax potential

AT =o.b-b '+ M, AT = —bMb !, (4.56)
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which they obtained by considering the problem that if one requires a G-
valued pure-gauge Lax potential to take some special form, then the consis-
tency of the system of equations coming from the zero curvature condition
becomes a non-trivial problem. Also, in this particular situation the effective
action simplifies to

1) = Swalt) = [ d a1y, ), (4.57

where the field b varies in the subgroup with Lie-algebra B.

4.2 Conformally invariant reductions

The purpose of this section is to find sufficient conditions for the conformal
invariance of the constraints. The residual gauge symmetries on the partially
gauge fixed configurations consisting of currents of the form

J(z) = kM +j(z), with j(z) et (4.58)

are the chiral transformations (4.15) and (4.32) which are generated by the
FCC (4.24) smeared with chiral test functions. The analysis applies to each
current J and J separately so we choose one of them, J say, for definiteness.

It is clear from (4.24) that M can be shifted by an arbitrary element from
't without changing the actual content of the constraints. This ambiguity
is unessential, since one can fix M, for example, by requiring that it is
from some given linear complement of 't in G, which can be chosen by
convention. We shall assume that M ¢ T'" from now on.

Now let us discuss sufficient conditions which ensure conformal invari-
ance. The standard conformal symmetry generated by the Virasoro densityLyw ()
is broken by the constraints (4.24), since they set some component of the
current, which has spin 1, to a non-zero constant. The idea is to circumvent
this apparent violation of conformal invariance by changing the standard ac-
tion of the conformal group on the KM phase space to one which does leave
the constraint surface invariant. One can try to generate the new confor-
mal action by changing the usual KM Virasoro density to the new Virasoro
density

1
Ly(z) = Lxm(z) — (H,J' (z)), where Lgy = ﬂ<J’ J) (4.59)
is twice the energy-density (4.21) on the partially gauge fixed fields and H

is some constant element of G. The conformal action generated by L (z)
operates on the KM phase space as
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(@) = [ dy' (@), L)} )

o L e (4.60)
= [aT)(x) + [ (27)(J(2) + [H, J(@)]) + £ (z7)H

for any parameter function f(z™), corresponding to the conformal coordi-
nate transformation d;z* = —f(z"). In particular, j(z) in (4.58) trans-
forms under this new conformal action according to °

Srui(x) = f(@h)j'(@)+ (@) H

. . (4.61)
+ F@) (@) + [H, ()] + [H,M] + M),
and our condition is that this variation should be in I'", which means that
this conformal action preserves the constraint surface. From (4.61), one sees
that this is equivalent to having the following relations:

HeTt, [HIYcrt  and ([HM]+M)elt .| (462

In conclusion, the existence of an operator H satisfying these relations is
a sufficient condition for the conformal invariance of the KM reduction ob-
tained by imposing (4.24). The conditions in (4.62) are equivalent to Ly (z)
being a gauge invariant quantity, inducing a corresponding conformal ac-
tion on the reduced phase space. Obviously, the second relation in (4.62) is
equivalent to

[H,T]cl. (4.63)

An element H € G is called diagonalizable if the linear operator ady pos-
sesses a complete set of eigenvectors in G. By the eigenspaces of ad 7, such an
element defines a grading of G, and below we shall refer to a diagonalizable
element as a grading operator of G.

If H is a grading operator satisfying (4.62) then it is always possible to
shift M by some element of I'" so that the new M satisfies

[H,M]=—-M, (4.64)

instead of the last condition in (4.62). It is also clear that if H is a grading
operator then one can take graded bases in T and T'". On re-inserting (4.64)
into (4.61) it then follows that all components of j(x) are primary fields with
respect to the conformal action generated by Ly (z), with the exception of
the H-component, which also survives the constraints according to the first
condition in (4.62).

"From now on we set x = 1. Only when we compute the central extension in the
Virasoro algebra do we reinstall &.
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4.2.1 Gauge invariant polynomials

In the previous sections I derived the conditions for the constraints to be first
class and for Ly (J) in (4.59) being a gauge invariant polynomial. It is clear
that the KM Poisson brackets of all gauge invariant differential polynomials
of the current always close on such polynomials and §-distributions. The
corresponding algebra is of special interest in the conformally invariant case
when it is a polynomial extension of the Virasoro algebra, the so-called W-
algebra. Here I shall give sufficient conditions on the triple (T', M, H) which
allows one to construct out of the constrained current a complete set of
gauge invariant differential polynomials. Their KM Poisson bracket algebra
becomes the Dirac bracket algebra of the current components in the so-called
Drinfeld-Sokolov (DS) gauges [15]. Thus we can represent W-algebras as KM
Poisson bracket algebras of gauge invariant differential polynomials, which in
principle allows for its quantization through the KM representation theory.
Also we shall exhibit the primary fields for the W-algebras and describe
their structure in detail.

Let us suppose that

e (I'; M, H) satisfy the previously given conditions, (4.9) and (4.62).

e H is a grading operator and M is chosen so that [H, M| = —M, cf.
(4.64).

The grade-h subspaces of G are denoted by G and the direct sum of the G
with A/ > h by G-j. Also note that in the present situation I' and ' are
graded by the eigenvalues of ady. Now we can prove the following

Theorem 6 IfTNKy = {0} and T+ C G~ _1, where Ky = Ker(adyy), then
one can construct out of J(x) in (4.58) a complete set of gauge invariant
differential polynomials.

The condition on I'" plays a technical role in our considerations, but perhaps
it can be argued for also physically, on the basis that it ensures that the
conformal weights of the primary field components of j(z) in (4.58) are non-
negative with respect to Ly. Second, let us observe that in our situation
M satisfying (4.64) is uniquely determined, that is, there is no possibility
of shifting it by elements from I't, simply because there are no grade —1
elements in I'". The first condition means that the operator adys maps T’
into '™ in an injective manner, and for this reason we call it non-degeneracy
condition. Before proving this result, we discuss some consequences of the
conditions, which we shall need later.

Lemma 4 The conditions in the theorem imply the following conditions on
the gauge algebra and the kernel of M: G>1 CT' C Gso, G50 C rtcg.
and Ky C G-
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Hence every v € I' is represented by a nilpotent operator in any finite
dimensional representation of G.

To prove the lemma we note that the spaces G, and G_j, are dual to each
other with respect to the Cartan-Killing form which is a consequence of its
non-degeneracy and invariance under adg. This implies G>1 C I'. On the
other hand, if I' would contain an element v of grade < 0, then ada;vy, which
is non-zero according to our non-degeneracy condition and lies in ', would
have grade < —1. This would be in conflict with our assumption on I'".
So we conclude that I' C G-p. Using the duality property we also conclude
then G>o C I't. Finally, since T' contains all elements with grade > 1, the
Kernel of adj; must be a subset of G.1. This then proves the lemma.

Finally, I wish to establish a certain relationship between the dimensions
of G and KCps. For this purpose we consider an arbitrary complementary
space Tar to Kps, defining a linear direct sum decomposition

G =Ky +Tu . (4.65)

Clearly, wys(Kar,G) = 0, and the restriction of was to Ty is a symplectic
form, in other words:

wrr(Tar, Tar) is non—degenerate . (4.66)

We note in passing that 7js can be identified with the tangent space at M
to the co-adjoint orbit of G through M, and in this picture wys becomes
the Kirillov-Kostant symplectic form of the orbit [2]. The non-degeneracy
condition says that one can choose the space 7Tps in (4.65) in such a way
that T' C Tar. One then obtains the inequality

dim(T") < %dim(TM) = %(dim(g) — dim(Ky)) , (4.67)

where the factor % arises since wys is a symplectic form on 7Tjs, which van-
ishes on the subspace I' C Tyy.

After the above clarification of the meaning of conditions in the theo-
rem, I now wish to show that they indeed allow for exhibiting a complete
set of gauge invariant differential polynomials among the gauge invariant
functions. Generalizing the arguments of [15, 4, 40], this will be achieved
by demonstrating that an arbitrary current J(z) subject to (4.58) can be
brought to a certain normal form by a unique gauge transformation which
depends on J(zx) in a differential polynomial way.

A normal form suitable for this purpose can be associated to any graded
subspace ® C G which is dual to I' with respect to the 2-form wj;. Because
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of the non-degeneracy condition and the lemma such a space must obey
©CG and dim(©NGi_y) =dimGy,, h > 1.

It is possible to choose bases 72 and Oi in I' and © respectively such that

W (Vh, 04) = Sk, (4.68)

where the subscript A on *yfb denotes the grade, and the indices 7 and [ denote
the additional labels which are necessary to specify the base vectors at fixed
grade. The subscript £ on elements 0% € O does not denote the grade,
which is (1 — k). The reduced phase space corresponding to O is given by
the following equation:

Jred(2) = M + jrea(z) where jrea(z) eTtNOL =V . (4.69)

In other words, the set of reduced currents is obtained by supplementing the
FCC (4.24) by the gauge fizing condition

xo(z) = (J(2),0) — (M,8) =0, VOco. (4.70)

We call a gauge which can be obtained in the above manner a Drinfeld-
Sokolov (DS) gauge. Tt is not hard to see that the space V is a graded
subspace of T'" which is disjoint from the image of I' under the operator
adys and is in fact complementary to the image, i.e., one has

It =[MT]+V. (4.71)

It also follows from the non-degeneracy condition that any graded comple-
ment V in (4.71) can be obtained in the above manner, by means of using
some ©. Thus it is possible to define the DS normal form of the current
directly in terms of a complementary space V as well, as has been done in
special cases in [15, 4, 18].

As the first step in proving that any current in (4.58) is gauge equivalent
to one in the DS gauge, let us consider the gauge transformation by g (z) =
exp[y; al (z)v}] for some fixed grade h. Suppressing the summation over
[, it can be written as ©

j(z) = §9(z) = e M (j(x) + M)e™*h + (eah"Yh)le—ah"Yh - M .

5Throughout the chapter, all equations involving gauge transformations, Poisson brack-
ets, etc., are to be evaluated by using a fixed time. They are valid both on the canonical
phase space and on the chiral KM phase space belonging to space of solutions of the
theory.
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Taking the inner product of this equation with the basis vectors 6% in (4.68)
for all £ < h, we see that there is no contribution from the derivative term.
We also see that the only contribution from

e Mhj(z)e” "M = j(z) + [an - Yn, J(T)] + -

is the one coming from the first term, since all commutators containing the
elements *yfb drop out from the inner product in question as a consequence
of the following crucial relation:

i, 6 €T, for k<h, (4.72)

which follows from the lemma by noting that the grade of this commutator
is at least 1 for £ < h. Taking these into account, and computing the
contribution from those two terms in j9 (x) which contain M by using (4.68)
and (0%, M) = 0, we obtain

(013" (2)) = (), 3 (2)) — ah () 0k, forall k< h.
We see from this equation that
(Oh0(2)) =0 = (05" (@) =0, for k<h,
and
ay(a¥) = (0,,5(z)) = (0,5 (2)) =0, for k=h.

The last two equations tell us that if the gauge-fixing condition (6%, j(z)) = 0
is satisfied for all & < h then we can ensure that the same condition holds
for j9n(z) for the extended range of indices k < h, by choosing a’ (z ") to be
(0 ,4(z)). From this it is easy to see that the DS gauge (4.70) can be reached
by an iterative process of gauge transformations, and the gauge-parameters
al (z*) are unique polynomials in the current at each stage of the iteration.

In more detail, let us write the general element g(a(z™)) € el of the
gauge group as a product in order of descending grades, i.e.,as

9(a(zh)) = Gh, - Gy -+ gnys With gy, (@F) = eI

where h,, > h,_1 > ... > hy is the list of grades occurring in I'. Let us then
insert this expression into

=39 =9(+M)g ' +4dg ' -M, (4.73)

and consider the condition

Jg(I) = jred(I) ’ (4'74)

with jreq(z) in (4.69), as an equation for the gauge-parameters ay(z"). One
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sees from the above considerations that this equation is uniquely soluble for
the components of the a;(z") and the solution is a differential polynomial
in j(z). This implies that the components of jyeq(z) can also be uniquely
computed from (4.73,4.74) and the solution yields a complete set of gauge
invariant differential polynomials of j(x), which establishes the required re-
sult. The above iterative procedure is in fact a convenient tool for computing
the gauge invariant differential polynomials in practice [40]. Of course, any
unique gauge fixing can be used to define gauge invariant quantities, but
they are in general not polynomial, not even local in j(x).

4.2.2 The polynomiality of the Dirac bracket

It follows from the polynomiality of the gauge fixing that the components
of the gauge fixed current j.q in (4.69) generate a differential polynomial
algebra under Dirac bracket.

Now I wish to give a direct proof for the polynomiality of the Dirac
bracket algebra of the SCC, that is the FCC (4.24) and gauge fixings (4.70)

er(z) = (1, J(x) — M) =0 where 7€ {y,}U{hi}. (4.75)

We note that for certain purposes SCC might be more natural to use than

FCC since in the second class formalism one directly deals with the physical

fields. For example, the Wg—algebra discussed below is very natural from the

second class point of view and can be realized by starting with a number of

different first class systems of constraints, as we shall see in the next section.
The Dirac brackets (2.61) of the reduced currents is

{Jrea(®)s drea (W)} = {Jrea (%), Jrea(y) }
_ Z / dzldwl{jgéd(x), C#(Z)}AMU(Z, w){cy(w),j;}ed(y)}, (476)
pv

where ji,(z) = (u, jrea(z)) for any u € G and AM(z,w) is the inverse of
the kernel

A (z,w) = {ep(2), e (w)}

in the sense that (on the constraint surface)
Z/dxlA’W(z,x)Aw(x,w) = 0,00(2" — wh).
v

From the structure of the constraints in (4.75), ¢; = (¢, xs), One sees
that A,,(z) is a first order differential operator possessing the following
block structure
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2= ({ed tod) = #): 4)

where Et is the formal Hermitian conjugate of the matrix E. We see that
A, is invertible if and only if its block E is invertible, and in that case the
inverse takes the form

N-1Fpp-1 —(BH-
(EN'FE-! (E)1> (4.78)

@ = (1 :

Since E(z) and F(z) are polynomial (even linear) in the current and 9, it
follows that A" is a polynomial differential operator if and only if E~!(2)
is a polynomial differential operator.

To show that E~' exists and is a polynomial differential operator we
note that in terms of the basis of (I' + ©) in (4.75) the matrix E is given
explicitly by the following formula:

By o2 (2) = 0nk0mn + (1", O], Jrea (2)) + (005 05) 0z -

The crucial point is that, by the grading and the property in (4.72), we have

E,y)rln’gz (Z) = 5hk5nm s fOI“ k S h . (479)

The matrix F has a block structure labeled by the (block) row and (block)
column indices h and k, respectively, and (4.79) means that the blocks in the
diagonal of F are unit matrices and the blocks below the diagonal vanish. In
other words, F is of the form E = 1+¢, where ¢ is a strictly upper triangular
matrix. It is clear that such a matrix differential operator is polynomially
invertible, namely by a finite series of the form

El'=1—c4e 4. +(-D)VV (Nt = 0),

which finishes our proof of the polynomiality of the Dirac bracket in (4.76).
One can use the arguments in the above proof to set up an algorithm for
actually computing the Dirac bracket. The proof also shows that the poly-
nomiality of the Dirac bracket is guaranteed whenever E is of the form
(1+¢€) with € being nilpotent as a matriz. In our case this was ensured by a
special grading assumption, and it appears an interesting question whether
polynomial reductions can be obtained at all without using some grading
structure.

The zero block occurs in A*” in (4.78) because the SCC originate from
the gauge fixing of FCC. We note that the presence of this zero block im-
plies that the Dirac brackets of the gauge invariant quantities coincide with
their original Poisson brackets, namely one sees this from the formula of the
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Dirac bracket by keeping in mind that the gauge invariant quantities weakly
commute with the FCC.

In our proof of the polynomiality of the gauge fixing and of the algebra
we actually only used that the graded subspace © of G which defines the
gauge fixing in (4.70) is dual to the graded gauge algebra T" with respect to
wys and satisfies the condition

(O, > CcT, (4.80)

which is equivalent to the existence of the bases ’)’;1 and 02 satisfying (4.68)
and (4.72). We have seen that this condition follows from the assumption in
the theorem, but it should be noted that it is a more general condition, since
the converse is not true. This is best seen by considering an example. To
this let now G be the maximally non-compact real form of a complex simple
Lie algebra. Consider the principal sl/(2) embedding in G, with commutation
rules as in (4.81) below, and choose the one-dimensional gauge algebra I' =
{M,} and take M = M_. The wys-dual to My can be taken to be § = My,
and then (4.80) holds. To show that conditions in the theorem cannot be
satisfied, we prove that a grading operator H for which [H, M_] = —M_ and
Gl C T, does not exist. First of all, [H,M | = —M_and (M_, M) # 0
imply [H,M,] = M, and thus T'Y, = {M,}. Furthermore, writing H =
(My + A), we find from [H, My] = =M. that A must be an s[(2) singlet
in the adjoint of G. However, in the case of the principal s/(2) embedding,
there is no such singlet in the adjoint, and hence H = M. But then the
condition G2° C T is not fulfilled.

4.3 WW-algebras

4.3.1 First class constraints for the W{-algebras

Let S = {My, My} be an si(2) subalgebra of the simple Lie algebra G:

[Mo, My] = My, [My,M_]=2M, . (4.81)

One can associate an extended conformal algebra, denoted as Wg, to any
such sl(2) embedding [5, 18]. Namely, we defined the W{-algebra to be the
Dirac bracket algebra generated by the components of the constrained KM
current of the the following special form:

Jred(T) = M + jreq() , with jred(z) € Ker(adar, ) , (4.82)

which means that j.q(z) is a linear combination of the sl(2) highest weight
states in the adjoint of G. This definition is indeed natural in the sense that
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the conformal properties are manifest, since, as we shall see below, with
the exception of the M -component the spin s component of j.q(z) turns
out to be a primary field of conformal weight (s + 1) with respect to Lyy,.
Before showing this, we wish to find a gauge algebra I' for which the triple
(TyH = My, M = M_) satisfies our sufficient conditions for polynomiality
and (4.82) represents a DS gauge for the corresponding conformally invariant
FCC. The corresponding first class KM constraints will then be used in the
next section to construct generalized Toda theories which realize the Wg—
algebras as their chiral algebras.

We start by noticing that the dimension of such a I" has to satisfy the
relation

dimKer(adys, ) = dimW¢ = dimG — 2dimT .
From this, since the kernels of ad,, are of equal dimension, we obtain that
. 1. 1.,
dimT = §d1mg — §d1mKer(adM_) , (4.83)

which means by (4.67) that we are looking for a I" of mazimal dimension.
By the representation theory of s/(2), the above equality is equivalent to

1
dimI' = dimG>; + Edim g% , (4.84)

where the grading is by the, in general half-integral, eigenvalues of ads,. We
also know from our lemma that we should choose the graded Lie subalgebra
I" of G in such a way that G>1 CT" C G5o. Observe that the non-degeneracy
condition in the theorem is automatically satisfied for any such I' since in
the present case Ker(ady/_) C G<o, and H = M, € 't is also ensured,
which guarantees the conformal invariance, see (4.62).

It is obvious from the above that in the special case of an integral si(2)
subalgebra, for which G 1 is empty, one can simply take

F:gZI.

For grading reasons, wys_ vanishes on this I' and thus one indeed obtains
conformal FCC and polynomiality this way.

One sees from (4.84) that for finding the gauge algebra in the non-trivial
case of a half-integral sl(2) subalgebra, one should somehow add half of
g1 to G>1, in order to have the correct dimension. The key observation for
deﬁnlng the required halving of G1 1 consists in noticing that the restriction of
the 2-form wys to G 1 1S non- degenerate This can be seen as a consequence

of (4.66), but is also easy to verify directly. By the well known Darboux
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normal form of symplectic forms [2], there exists a (non-unique) direct sum
decomposition

1 =P+ Qs (4.85)

such that wys_ vanishes on the subspaces P and Q1 separately. The spaces
P1 and Q1, which are the analogues of the usual m02mentum and coordinate
su2bspaces of the phase space in analytic mechanics, are of equal dimension
and dual to each other with respect to wy;_. The point is that the first-

classness conditions in (4.13) are satisfied if we define the gauge algebra to
be

I'=0G>1+P., (4.86)
2

by using any symplectic halving of the above kind. Tt is obvious from the
construction that the FCC (4.58) obtained by using I' in (4.86) satisfy the
sufficient conditions for polynomiality given earlier. With this I" we have

I‘i:g20+Q7%, where O :[M,,P%]Cg,

M
M

By combining these relations with (4.86) one also easily verifies the following
direct sum decomposition:

It = [M_,T] + Ker(ady, ) ,

which is just (4.71) with V = Ker(adys, ). This means that (4.82) is indeed
nothing but a particular DS gauge for the FCC, and this gauge is called the
highest weight gauge [4]. There exists therefore a basis of gauge invariant
differential polynomials of the current in (4.58) such that the base elements
reduce to the components of jeq(x) in (4.82) by the gauge fixing. The KM
Poisson bracket algebra of these polynomials is clearly identical to the Dirac
bracket algebra of the corresponding current components, and we can thus
realize the Wg—algebra as a KM Poisson bracket algebra of gauge invariant
differential polynomials.

The SCC defining the highest weight gauge (4.82) are natural in the sense
that in this case 7 in (4.75) runs over the basis of the space Tay = [My, §]
which is a natural complement of K5; = Ker(adys_) in G, eq. (4.65).

In the second class formalism, the conformal action generated by Ly,
on the Wg—algebra is given by the following formula:

5y deoa @) = = [ dy' S5 {2 (®)  Jrea (@) (4.87
where the parameter function f(z") refers to the conformal coordinate
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transformation, cf. (4.60). To actually evaluate (4.87), we first replace
Ly, by the object

Linoa(z) = Lagy () — (M., J"())
which is allowed under the Dirac bracket since the difference (the second
term) vanishes upon imposing the constraints. The crucial point to notice is
that Lyoq weakly commutes with all FCC and gauge fixings the KM Poisson
bracket. This implies that with L,q the Dirac bracket in (4.87) is in fact
identical to the original KM Poisson bracket and by this observation we
easily obtain

1
O o Jrea (2) = F(27) foa + 1" (57%) (Grea + Mo, frea]) = 5" (a*) Mo

This proves that, with the exception of the M -component, the s/(2) high-
est weight components of jieq(z) in (4.82) transform as conformal primary
fields, whereby the conformal content of Wg is determined by the decom-
position of the adjoint of G under § in the aforementioned manner. We end
this discussion by noting that in the highest weight gauge Ly, (z) becomes a
linear combination of the M -component of j.q(z) and a quadratic expres-
sion in the components corresponding to the singlets of S in G. From this
we see that Ly, (z) and the primary fields corresponding to the s/(2) highest
weight states give a basis for the differential polynomials contained in Wg,
which is thus indeed a (classical) WW-algebra in the sense of the general idea
in [52].

In the above we proposed a ‘halving procedure’ for finding purely FCC
for which Wg appears as the algebra of the corresponding gauge invariant
differential polynomials. I now wish to clarify the relationship between our
method and the construction in a recent paper by Bais et al [5], where the
Wg—algebra has been described, in the special case of G = sl(n), by using a
different method. T recall that the W-algebra has been constructed in [5]
by adding to the FCC defined by the pair (G>1, M_) the SCC

(u, J(z)) =0 for vVueg . (4.88)

Clearly, we recover these constraints by first imposing our complete set of
FCC belonging to (I', M_) with T" in (4.86), and then partially fixing the
gauge by imposing the condition

(u, J(x)) =0, for V’U,EQ%.

One of the advantages of our construction is that by using only first class KM
constraints it is easy to construct generalized Toda theories which possess
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Wg as their chiral algebra, for any sl(2) subalgebra, namely by using our
general method of WZNW reductions. This will be elaborated in the next
section. We note that in [5] the authors were actually also led to replacing
the original constraints by a system of FCC, in order to be able to consider
the BRST quantization of the theory. For this purpose they introduced
unphysical ‘auxiliary fields’ and thus constructed FCC in an extended phase
space. However, in that construction one has to check that the auxiliary
fields finally disappear from the physical quantities.

The FCC leading to Wg are not unique. For example, arbitrary halving
in (4.85) lead to the same Wg It maybe conjectured that these W-algebras
always occur under certain natural assumptions on the constraints. To be
more exact, let us suppose that we have conformally invariant first class
constraints determined by (T, M_, H) where M_ is a nilpotent matrix and
the non-degeneracy condition in the theorem holds together with equation
(4.83). T expect that these assumptions are sufficient for the existence of
a complete set of gauge invariant differential polynomials and their algebra
is isomorphic to W¥, where S = {My, My} is an sl(2)-extension of the
nilpotent M_. Such an § can always be found, since we have the

Lemma 5 Let H be a grading operator and M_ € G™,. Then there exists
an sl(2) algebra S = { My, My} such that M, € GI.

Note that as a consequence the difference H— My commutes with S. To prove
this theorem one first extends the nilpotent M_ to an sl(2) subalgebra, which
always exists by the Jacobson-Morozow theorem. Then one decomposes the
generators of this s/(2) in components of definite H-grades. The components
with the desired grades form then the s/(2) with the properties in the lemma.
To prove this last fact one uses the lemma 7 on page 98 in [28].

I am not able to prove the above conjecture in general, but now I sketch
the proof in an important special case which illustrates the idea.

Let us assume that we have conformally invariant FCC described by
(T, M_, H) subject to the sufficient conditions for polynomiality. But in
addition we assume now that H is an integral grading operator of G so that
I' = G>1. Then the non-degeneracy condition says that

dimg¥ = dim[M_, G{]. (4.89)
Now I show that this condition implies
M_. G +G-1=¢6" (4.90)

Indeed, if it would not, then we would find an u € GI such that (u, [M_, G{T+
GH1) would vanish. By the invariance and non-degeneracy of the Cartan-
Killing form this in turn is equivalent to [M_,u] = 0 which means that
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the non-degeneracy condition (4.89) would be violated. Also, since H — M,
commutes with S, the difference ady — adjyy, is constant in each multiplet
in the decomposition of G under §. Then it follows immediately from the
sl(2) structure and (4.89,4.90) that

dimKer(adyz, ) = dimGy’ , Ker(ady,) C ggo < Ker(adys_) C ggo,

We introduce a definition at this point, which will be used in the rest of the
chapter. Namely, we call S an H--compatible sl(2) if there exists an integral
grading operator H such that [H, M1] = £ M is satisfied together with the
non-degeneracy condition. The non-degeneracy condition can be expressed
in various equivalent forms, it can be given for example as the relation in
above, and its (equivalent) analogue for M _.

Turning back to the problem at hand, we now point out that by using
the H-compatible s/(2) we have the following direct sum decomposition of
rt = g§0:

ggg = [M_, G + Ker(adar, ).

This means that the set of currents of the form (4.82) represents a DS gauge
for the present FCC. This implies the required result, that is that the W-
algebra belonging to the constraints defined by I' = ng together with a
non-degenerate M_ is isomorphic to Wg with M_ € §. In this example
both Ly (xz) and Ly (x) are gauge invariant differential polynomials. Al-
though the spectrum of ady is integral by assumption, in some cases the
H-compatible sl(2) is embedded into G in a half-integral manner.

I also would like to mention an interesting general fact about the Wg—
algebras, which will be used in the next section. Let us consider the decom-
position of G under the sl(2) subalgebra S. In general, we shall find singlet
states and they span a Lie subalgebra in the Lie subalgebra Ker(ads, ) of
G. Let us denote this zero spin subalgebra as Z. It is easy to see that we
have the semi-direct sum decomposition

Ker(ady,) = Z+R, [Z,RICR, [Z 2]CZ, (4.91)

where R is the linear space spanned by the rest of the highest weight states,
which have non-zero spin. It is not hard to prove that the subalgebra of the
original KM algebra which belongs to Z, survives the reduction to Wg In
other words, the Dirac brackets of the Z-components of the highest weight
gauge current, jreq in (4.82), coincide with their original KM Poisson brack-
ets, given by (4.25). Furthermore, this Z KM subalgebra acts on the Wg—
algebra by the corresponding original KM transformations, which preserve
the highest weight gauge:

Jred(T) — o0 (@)Gi Jred () e (@G 4 (eai(:r*)Ci)/ efai(ﬁ)(i,
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where the (; form a basis of Z. In particular, one sees that the Wg—algebra
inherits the semi-direct sum structure given by (4.91) [5]. The point is that it
is possible to further reduce the Wg—algebra by applying the general method
of conformally invariant KM reductions to the present Z KM symmetry. In
principle, one can generate a huge number of new conformally invariant
systems out of the Wg—algebras in this way, i.e., by applying conformally
invariant constraints to their singlet KM subalgebras. For example, if one
can find a subalgebra of Z on which the Cartan-Killing form of G vanishes,
then one can consider the obviously conformally invariant reduction obtained
by constraining the corresponding components of jyq in (4.82) to zero.

Finally, note that for a half-integral si(2), one can consider (instead of
using I' in (4.86)) also those conformally invariant FCC which are defined
by the triple (I, My, M_) with any graded T" for which G>; C T C (G>1 +
P1). The polynomiality conditions are clearly satisfied with any such non-
mgximal I', and the corresponding extended conformal algebras are in a
sense between the KM and Wg—algebras.

4.3.2 The WY interpretation of the 1V!-algebras

The W)-algebras are certain conformally invariant reductions of the si(n, R)
KM algebra introduced by Bershadsky [8] using a mixed set of FCC and
SCC. Tt is known [5] that the simplest non-trivial case W2, originally pro-
posed by Polyakov [44], coincides with the Wg—algebra belonging to the
highest root sl(2) of sl(3, R). The purpose of this section is to understand
whether or not these reduced KM systems fit into our framework and to
uncover their possible connection with the Wg—algebras in the general case
7 In fact, we shall construct here purely first class KM constraints leading
to the W/ -algebras. We will prove the

Lemma 6 The W/-algebras can in general be identified as further reduc-
tions of particular Wg—algebms. The secondary reduction process is obtained
by means of the singlet KM subalgebras of the relevant Wg—algebms

By definition [8], the KM reduction yielding the W} -algebra is obtained by
constraining the current to take the following form:

Je(z) = M_ +jp(z),  jp(z) e At (4.92)

where A denotes the set of all strictly upper triangular n X n matrices and

M = er+1,1 e+ ... +epn_i, (493)

the e’s being the standard sl(n, R) generators (I < n—1), i.e., M_ has 1’s all

"In this section, G = sl(n, R).
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along the /-th slanted line below the diagonal. Generally, these constraints
comprise first and second class parts, where the first class part is the one
belonging to the subalgebra D of A defined by the relation wy,_(D,A) =0,
(see 4.26). The second class part belongs to the complementary space, C, of
D in A. In fact, for [ = 1 the constraints are the usual first class ones which
yield the standard W-algebras, but the second class part is non-empty for
[ > 1. The above KM reduction is so constructed that it is conformally
invariant, since the constraints weakly commute with the Virasoro density
Ly, (z), see (4.59), where H; = 1 H, and Hj is the standard grading operator
of sl(n, R), for which [Hy , e;jx] = (k — i)e.

We start our construction by extending the nilpotent generator M_ in
(4.93) to an si(2) subalgebra S. In fact, parameterizing n = ml + r with

m = [7] and 0 < r <[, we can take

(I—7) times

r times r times

—h ———
m m—1 m ) (4.94)

MUZdla‘g(Ea"'a 9 ) 7_5

where the multiplicities, » and (I — r), occur alternately and end with r.
The meaning of this formula is that the fundamental of sl(n, R) branches
into [ irreducible representations under S, r of spin m/2 and | — r of spin
(m — 1)/2. The explicit form of M, is a certain linear combination of the
eir’s with (k — i) = [, which is straightforward to compute.

Next I describe the first and the second class parts of the constraints in
(4.92) in more detail by using the grading defined by My. We observe first
that in terms of this grading the space A admits the decomposition

A=RAo+G1+G1+G51- (4.95)

From this and the definition of wjs , the subalgebra D comprising the first
class part can also be decomposed into

D=Dy+D1+Gs1, where Dy=Ker (adM_) N Ay (496)

is the set of the sl(2) singlets in A, and D; is a subspace of G; which we
do not need to specify. By combining (4.95) and (4.96), we see that the
complementary space C, to which the second class part belongs, has the
structure

C=Q0+Q%+P1,

where the subspace Qg is complementary to Dy in Ay, and Py is complemen-
tary to D; in Gi. The 2-form wys_ is non-degenerate on C by construction,
and this implies by the grading that the spaces Qpand P; are symplectically
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conjugate to each other, which is reflected by the notation.

We shall construct a gauge algebra, I', so that Bershadsky’s constraints
will be recovered by a partial gauge fixing from the first class ones belonging
to I'. As a generalization of the halving procedure of the previous section,
we take the following ansatz:

I‘:D+P%+P1 ) (4.97)

where P, is defined by means of some symplectic halving G1 = Py + Q1,
2 2 2

2
like in (4.85). It is important to notice that this equation can be recasted
into

I'=Dy+P1+G>1, (4.98)

which would be just the familiar formula (4.86) if Dy was not here. By using
(4.93) and (4.94), Dy can be identified as the set of n x n block-diagonal
matrices, o, of the following form:

g = blOCk—diag{Eo,Ug,Zg, ..... ,20,0’0,20},

where the ¥y’s and the oy’s are identical copies of strictly upper triangular
r x rand (I —r) x (I —r) matrices respectively. This implies that

dim Dy = i[l(l —2)+(1—-2r)7,

which shows that Dy is non-empty except when [ = 2, » = 1, which is the
case of W2 with n = odd. The fact that Dy is in general non-empty gives us
a trouble at this stage, namely, we have now no guarantee that the above I'
is actually a subalgebra of G. By using the grading and the fact that Dy is
a subalgebra, we see that I' in (4.98) becomes a subalgebra if and only if

[Do, Pi] C Py (4.99)

I next show that it is possible to find such a ‘good halving’ of G 1 for which
P satisfies (4.99).

’ For this purpose, we use yet another grading here. This grading is pro-
vided by using the particular diagonal matrix, H € G, which we construct
out of My in (4.94) by first adding % to its half-integral eigenvalues, and then
subtracting a multiple of the unit matrix so as to make the result traceless.
In the adjoint representation, we then have adg = adjy, on the tensors, and
adg = adpg, £ 1/2 on the spinors. We notice from this that the H-grading
is an integral grading. In fact, the relationship between the two gradings
allows us to define a good halving of G 1as follows:
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PL=g

M

1 ngi’, and  QL=GiNGy . (4.100)

2 2 2

Since M_ is of grade —1 with respect to both gradings, the spaces given

by (4.100) clearly yield a symplectic halving of Gi with respect to wps_.
2

That this ensures the condition (4.99), can also be seen easily by observing
that Dy has grade 0 in the H-grading, too. Thus we obtain the required
subalgebra T" of G by using this particular P1 in (4.98).

Let us consider now the FCC corresponQding to the above constructed
gauge algebra I', ¢, (z) = 0 for v € ', which bring the current into the form

Jr(z) = M_+jr(z),  jr(z) et . (4.101)

It is easy to verify that the original constraint surface (4.92) can be recovered
from (4.101) by a partial gauge fixing in such a way that the residual gauge
transformations are exactly the ones belonging to the space D. In fact,this
is achieved by fixing the gauge freedom corresponding to the piece (73% +P1)

of I', (4.97), by imposing the partial gauge fixing condition
Pu(@) =0, g€ (Q+0Qy),

where the ¢; form a basis of the space (Qp + Q 1 ) and the ¢,’s are de-

fined like in (4.24). This implies that the reduced phase space defined by
the constraints in(4.101) is the same as the one determined by the original
constraints (4.92). In conclusion, our purely FCC, (4.101), have the same
physical content as Bershadsky’s original mixed set of constraints, (4.92).
Finally, we give the relationship between Bershadsky’s W} -algebras and
the sl(2) systems. Having seen that the reduced KM phase spaces carrying
the W!-algebras can be realized by starting from the FCC in (4.101), it fol-
lows from (4.98) that the W} -algebras coincide with particular Wg—algebras
if and only if the space Dy is empty, i.e., for W2 with n = odd. In order
to establish the Wg interpretation of W/ in the general case, note that the
reduced phase space can be reached from (4.101) by means of the following
two step process based on the sl(2) structure. Namely, one can proceed
by first fixing the gauge freedom corresponding to the piece (73% + G>1) of
I', and then fixing the rest of the gauge freedom. Clearly, the constraint
surface resulting in the first step is the same as the one obtained by putting
to zero those components of the highest weight gauge current representing
Wg which correspond to Dy. The final reduced phase space is obtained in
the second step by fixing the gauge freedom generated by the constraints
belonging to Dy, which we have seen to be the space of the upper triangular
singlets of S. Thus we can conclude that W/ can be regarded as a further
reduction of the corresponding Wg, where the ‘secondary reduction’ is of
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the type mentioned at the end of the previous subsection.

4.4 Generalized Toda theories
The standard conformal Toda field theories

! ! !

K 1 . . 1 .

LToda = 5 ( Z WKijau‘Plau@J - Z m% €xp {5 Z Kij‘ﬁ}) (4.102)
i—1 j=1

ij=1

where Kj; is the Cartan matrix and the «; the simple roots of G, are the
most simple cases of reduced WZNW theories, and as a consequence these
theories possess the chiral algebras Wg X Wg as their canonical symmetries,
where S is the principal s/(2) subalgebra of the maximally non-compact real
Lie algebra G. Tt is natural to seek for WZNW reductions leading to effective
field theories which would realize Wg X Wg as their chiral algebras for any
sl(2) subalgebra S of any simple real Lie algebra. The main purpose of this
chapter is to obtain generalized Toda theories meeting the above requirement
in the non-trivial case of the half-integral sl(2) subalgebras of the simple Lie
algebras. Before turning to describing these new theories, next I briefly
recall the main features of those generalized Toda theories, associated to
the integral gradings of the simple Lie algebras, which have been studied
before [33, 46, 39, 40, 5, 49, 18]. The simplicity of the latter theories will
motivate some subsequent developments.

4.4.1 Generalized Toda theories with integral gradings

The WZNW reduction leading to the generalized Toda theories in question
is set up by considering an integral grading operator H of G, and taking the
special case

r=¢% , Mmegh and T=¢%,, Megf. (4.103)

In the present case B in (4.35) is the subalgebra G/, and, because of the
grading structure, the properties expressed by equation (4.52) hold. Thus
the effective field equation reads as (4.55) and the corresponding action is
given by the simple formula (4.57) where the field b varies in the little group
Gl of H in G.

It was shown in [33, 46, 5] in the special case when H, M and M are taken
to be the standard generators of an integral sl(2) subalgebra of G, that the
non-Abelian Toda equation allows for conserved chiral currents underlying
its exact integrability. These currents then generate chiral WW-algebras of
the type Wg, for integrally embedded sl(2)’s.
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By means of the argument given in the previous section, we can establish
the structure of the chiral algebras of a wider class of non-Abelian Toda
systems [18]. Namely, we see that if M and M in (4.103) satisfy the non-
degeneracy conditions

Ker(ady) N\T'= {0} and Ker(ad,;)N r={0},

then the left x right chiral algebra of the corresponding generalized Toda
theory is isomorphic to W¢ x Wg, where S and S are sl(2) subalgebras
of G containing the nilpotent generator M and M, respectively. The H-
compatible sI(2) algebras S and S occurring here are not always integrally
embedded ones. Thus for certain half-integral sl(2) algebras Wg can be
realized in a generalized Toda theory of the type (4.57). As we would like to
have generalized Toda theories which possesng as their symmetry algebra
for an arbitrary sl(2) subalgebra, we have to ask whether the theories given
above are already enough for this purpose or not. This leads to the technical
question as to whether for every half-integral si(2) subalgebra S of G there
exists an integral grading operator H such that S is an H-compatible si(2),
in the sense introduced earlier. The answer to this question is negative. Thus
we have to find new integrable conformal field theories for our purpose.

4.4.2 Generalized Toda theories with half-integral s/(2)’s

In the following I exhibit a generalized Toda theory possessing the left x
right chiral algebra Wg X Wg for an arbitrarily chosen half-integral s/(2)
subalgebra S of the arbitrary but non-compact simple real Lie algebra G.
Clearly, if one imposes FCC of the type described in the previous section on
the currents of the WZNW theory then the resulting effective field theory
will have the required chiral algebra. We shall choose the left and right
gauge algebras in such a way to be dual to each other with respect to the
Cartan-Killing form.

Thus we choose a direct sum decomposition of G 1 of the type in (4.85),

=P

and then define the induced decomposition G_1 1+ Q 1 to be given
2 2 2

by the subspaces

Q;Epgﬂg, :[M,,Q%],

2

D=
M

=[M_,P] and P, = ornNgG.
p p 2

It is easy to see that the 2-form wys, vanishes on the above subspaces of

G_1as a consequence of the vanishing of wjs_ on the corresponding subspaces

2

of G1. Thus we can take the left and right gauge algebras to be

1.
2

I'= (gzl + 'P%) and T = (ggfl +P_ 1), (4.104)

2

with the constant matrices M and M entering the constraints given by M_
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and M, respectively. The duality hypothesis of section 4.1.2 is obviously
satisfied by this construction.

In principle, the action and the Lax potential of the effective theory
can be obtained by specializing the general formulas of section 4.1.2 to the
present particular case. In our case

BZQ%-I-QU-I-Q,%,

and the physical modes, which are given by the entries of b in the generalized
Gauss decomposition ¢ = abc with a € e’ and ¢ € e
parametrized as

, are now conveniently

b(x) = explgs(«)] - go() - explg_1 ()], (4.105)

where qi%(:zr) € Qi% and go(z) € Gy, the little group of My in G. Next
I introduce some notation which will be useful for describing the effective
theory.

The operator Adg, maps G_ 1 to itself and, by writing the general element
of G_ 1asa two-component column vector whose upper and lower compo-
nents belong to P_

1 and Q_1, respectively, we can write this operator as a
2

lv

2 X 2 matrix:

X11(90) X12(90)>
Ad = (
go|g_% X21 (90) X22(go) (4.106)
Analogously, T introduce the notation
Yi1(g0) Yi2(g0) >
Ad - ,
019y <Y21(90) Y22(g0) (4.107)

which corresponds to writing the general element of G, L asa column vector,
whose upper and lower components belong to 731 and Ql, respectively.

The action functional of the effective field theory resultmg from the
WZNW reduction at hand reads as follows:

Ieﬂ(g()aql q_ ) Swz(90) /d z(goMigy ', M)
) (4.108)
+ [ 00y, godra_yai) + g, X'y,

where the objects n, 1 € P, 1 are given by the formulas
2 2
n = [M-l-aq_%] +Yia - 3—(1% and n-1= [M—,Q%] — X 8+q_%.

The Euler-Lagrange equation of this action is the zero curvature condition
of the following Lax potential:
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A= M_+0:90-95" +90(4q_y + X3 - n_1)gp ",
< . _1 (4.109)
A2 = —90Mygy " — a—q% +Yn s

The above new (conformally invariant) effective action and Lax potential
are among the main results of the present chapter. Clearly, for an integrally
embedded sl(2) this action and Lax potential simplify to the ones given by
equation (4.57) and (4.56).

The derivation of the above formulas is not completely straightforward,
and next I wish to sketch the main steps. First, let us remember that, by
(4.39), to specialize the general effective action (4.47) and the Lax potential
(4.43) to our situation, we should express the objects d,cc ! and a 10_a
in terms of b by using the constraints on J and J, respectively 8. For this
purpose it turns out to be convenient to parametrize the WZNW field g by
using the grading defined by the sl(2), i.e., as

9=9+9o-g- where g, =a-explqi], g- =explg_i1]-c.

We recall that the fields a, ¢, g9 and ¢ have been introduced previously by
means of the parametrization g = abe, with b in (4.105). Also for later
convenience, we write g1 as

g+ = exp[r>1 +p% + Q%] and g_ = exp[r<_i +p_% + q_%]-

Note that here and below the subscript denotes the grade of the variables,
and p, 1 € P, 1. In our case this parametrization of g is advantageous,
since, as shown below, the use of the grading structure facilitates solving
the constraints.

For example, the left constraint are restrictions on J.q, for which we
have

J<0 = (g+gUNgalg<|il)<0 with N = 8+g7 . g:I

By considering this equation grade by grade, starting from the lowest grade,
it is easy to see that the constraints corresponding to G~ C I are equivalent
to the relation

Ne_y = 95 ' M_go .

The remaining left constraints set the P_1 part of J_1 to zero, and to unfold
2

1
2
these constraints first we note that

Joy=Ipy+ay, M J+go-N_y-g5', with N y=08p

®In the present case it would be tedious to compute the inverse matrix of V;; in (4.37),
which would be needed for using directly (4.40).
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By using the notation introduced in (4.106), the vanishing of the projection
of J to P_1 is written as
2

[Q% , M+ X1 - 3+P7% + Xio- 8+q7% =0,
and from this we obtain
Orp_1 = X5t {IM_, q1] = Xi2 - 01q_1}.

Combining our previous formulas, finally we obtain that on the constraint
surface of the WZNW theory

N =gy M_go+0sq 1+ X1 (90) - {[M—, q1] — X12(g0) - Oq_1 }.

A similar analysis applied to the right constraints yields that they are equiv-
alent to the following equation:

—95'0-g4 = —goMygy ' — 0-qy + Yy (90){[My, q_1) + Yi2(90)0-q1 }-

By using the relations established above, we can at this stage easily compute
b 1Th = dpcc ! and bTh ! = a=29_a as well, and substituting these into
(4.47), and using the Polyakov-Wiegmann identity to rewrite Swz(b) for b in
(4.105), results in the action in (4.108) indeed. The Lax potential in (4.109)
is obtained from the general expression in (2.32) by an additional ‘gauge
transformation’ by the field exp[—qg 1 ], which made the final result simpler.

The choice of the constraints leading to the effective theory (4.108) guar-
antees that the chiral algebra of this theory is the required one, Wg X Wg,
and thus one should be able to express the WW-currents in terms of the local
fields in the action. For that recall that in section 4.2.1 an algorithm has been
given for constructing the gauge invariant differential polynomials W (.J).
The point I wish to make is that the expression of the gauge invariant ob-
ject W (.J) in terms of the local fields in (4.108) is simply W (9,bb~ ' +T(b)),
where b is given by (4.105). Applying the reasoning of [18] to the present
case, this follows since the function W is form-invariant under any gauge
transformation of its argument, and the quantity (9.bb~' 4+ T(b)) is ob-
tained by a (non-chiral) gauge transformation from J, namely by the gauge
transformation defined by the field a=* € e, see equations (4.42,4.43). We
can in principle compute the object T'(b), as explained in the above, and
thus we have an algorithm for finding the formulas of the W’s in terms of
the local fields g and g 1.

The conformal symmetry of the effective theory (4.108) is determined
by the left and right Virasoro densities Ly, (J) and L_py,(J), which survive
the reduction. To see this conformal symmetry explicitly, it is useful to

extract the Liouville field ¢ by means of the decomposition gy = e?Mo - g,
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where g contains the generators from Gy orthogonal to My. One can easily
rewrite the action in terms of the new variables and then its conformal
symmetry becomes manifest since e? is of conformal weight (1,1), go is
conformal scalar, and the fields ¢, 1 have conformal weights (%, 0) and (0, %),
respectively. This assignment of the conformal weights can be established
in a number of ways, one can for example derive it from the corresponding
conformal symmetry transformation of the WZNW field g in the gauged
WZNW theory, see eq. (***). We also note that the action (4.108) can be
made generally covariant and thereby our generalized Toda theory can be
re-interpreted as a theory of two-dimensional gravity since ¢ becomes the
gravitational Liouville mode [39].

There is a certain freedom in constructing a field theory possessing the
required chiral algebra Wg, for example, one has a freedom of choice in the
halving procedure used here to set up the gauge algebra. The theories in
(4.108) obtained by using different halvings in equation (4.85) have their
chiral algebras in common, but it is not quite obvious if these theories are
always completely equivalent local Lagrangian field theories or not.

A special case of this problem arises from the fact that one can expect
that in some cases the theory in (4.108) is equivalent to one of the form
(4.57). This is certainly so in those cases when for the half-integral s/(2) of
My and M4 one can find an integral grading operator H such that:

i) [Hv Mi] =+My y ii) P% + gZI = ggl

4.110

i) Py +G< =67, | iv) Q1 +G+Q; =gfl, (4.110)

where one uses the My grading and the H-grading on the left- and on the

right hand sides of these conditions, respectively. By definition, we call

the halving G1 = P1 + Q1 an H-compatible halving if these conditions are
2 2 2

met. Those generalized Toda theories in (4.108) which have been obtained
by using H-compatible halvings in the WZNW reduction can be rewritten
in the simpler form (4.57) by means of a renaming of the variables, since
in this case the relevant FCC are in the overlap of the ones which have
been considered for the integral gradings and for the half-integral sl(2)’s to
derive the respective theories. Since the form of the action in (4.57) is much
simpler than the one in (4.108), it appears important to know the list of
those sl(2) embeddings which allow for an H-compatible halving, i.e., for
which conditions (4.110) can be satisfied with some integral grading operator
H and halving. The answer to this group theoretic question for the si(2)
subalgebras of the maximally non-compact real forms of the classical Lie
algebras are:

e For G = sl(n, R) an H-compatible halving can be found for every si(2)
subalgebra. This means that any chiral algebra Wg can be realized in
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a generalized Toda theory associated to an integral grading.

e For the the symplectic and orthogonal Lie algebras such halvings exist
only only for special sl(2)-embeddings listed in the appendix.

It is interesting to observe that those theories which can be alternatively
written in both forms (4.57) and (4.108) allow for several conformal struc-
tures. This is so since in this case at least two different Virasoro densities,
namely Ly and Ljy,, survive the WZNW reduction.

4.4.3 Two examples of generalized Toda theories

I wish to illustrate here the general construction of the previous section by
working out two examples. First I shall describe a generalized Toda theory
associated to the highest root sl(2) of sl(n + 2, R). This is a half-integral
sl(2) embedding, but, as we shall see explicitly, the theory (4.108) can in
this case be recasted in the form (4.57), since the corresponding halving is
H-compatible. Note that the W-algebras defined by these si(2) embeddings
have been investigated before by using auxiliary fields in [45]. According
to the group theoretic analysis in the appendix, the simplest case when a
Wg—algebra defined by a half-integral s/(2) embedding cannot be realized
in a theory of the type (4.57) is the case of G = sp(4,R). As our second
example, I shall elaborate on the generalized Toda theory in (4.108) which
realizes the W-algebra belonging to the highest root si(2) of sp(4, R).

Highest root s/(2) of sl(n + 2,R) In the usual basis where the Cartan
subalgebra consists of diagonal matrices, the sl(2) subalgebra S is generated
by the elements

] 1 -~ 0 o --- 1
M0=§(0 Op, 0) and M+=M£=<o On 0).
o --- —1 0O --- 0

Note that here and below dots mean 0’s in the entries of the various matrices.
The adjoint of si(n + 2) decomposes into one triplet, 2n doublets and n?
singlets under this S. It is convenient to parametrize the general element,
go, of the little group of My as

g=eM T 10 Gy 0], where T = §+n 0 -2I, 0
0 --- 1 0 --- n

is trace orthogonal to My and gy is from sl(n). We note that T" and M,
generate the center of the corresponding subalgebra, Gy. We consider the
halving of G 1 which is defined by the subspaces P %and Q. 1 consisting
of matrices of the following form:
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=
[N
Il
/-~
o O O
R
o O O
N~
<
[N
Il

0 --- 0
(0 O q),
0 --- 0
0 --- 0 0 --- 0
= (ﬁ Op, 0)7 q_lz(o 0, 0),
0 -~ 0 ’ 0 gt o

where ¢ and $ are n-dimensional column vectors and p! and ¢! are n-

dimensional row vectors, respectively. One sees that the P and Q sub-

spaces of G, 1 are invariant under the adjoint action of gg, which means
2

that the block-matrices in (4.106) and (4.107) are diagonal, and thus n 1 =
2

(4.111)
p_

M

[Mi,q¢l]. One can also verify that X1, = 67%‘1’71/’50, and that using this
2
the effective action (4.108) can be written as follows:

1 O
Lt (90, 91,4 1) = Swz(90) - /dQ:L" [0 et gt gyt g

- I (4.112)
- T (0,9) gyt (0-9),
where dot means usual matrix multiplication. With respect to the confor-
mal structure defined by My, e? has weights (1,1), the fields ¢ and § have
half-integer weights (%,0) and (0, %), respectively, 1 and gy are conformal
scalars. In particular, we see that ¢ is the Liouville mode with respect to
this conformal structure.

In fact, the halving considered in (4.111) can be written like the one in

(4.100), by using the integral grading operator H given explicitly as

1 1 n+1 0
H = M, T = .
°*3 n+2< 0 —nH)

It is an H -compatible halving as one can verify that it satisfies the conditions
(4.110). Tt follows that our reduced WZNW theory can also be regarded
as a generalized Toda theory associated with the integral grading H. In
other words, it is possible to identify the effective action (4.112) as a special
case of the one in (4.57). To see this in concrete terms,it is convenient to
parametrize the little group of H as

1 0
b=-exp(qL) go-exp(q_1), where gg= ePH . ¢85 . (0 Jo 0) ,
2 2
0 --- 1

and § = My — (%E2)T is trace orthogonal to H. Tt is easy to check that
by inserting this decomposition into the effective action (4.57) and using
the Polyakov-Wiegmann identity one recovers indeed the effective action
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(4.112), with

_2+n
2n

1
p=0+¢ and S §<I> €.
The conformal structure defined by H is different from the one defined by
M. In fact, with respect to the former conformal structure ® is the Liouville
mode and all other fields, including ¢ and ¢, are conformal scalars.

Highest root s/(2) of sp(4,R) We use the convention when the symplectic
matrices have the form

_ (A B _ pt _ it
g-(C —At>’ where B=B" C=C"
and the Cartan subalgebra is diagonal. The si(2) subalgebra S correspond-
ing to the highest root of sp(4, R) is generated by the matrices

1
My = 5(enn —es3), My =ei3, and M_=es,

where e;; denotes the elementary 4 X 4 matrix containing a single 1 in the
ij-position. The adjoint of sp(4) branches into 3+ 2 -2+ 3 -1 under S.
The three singlets generate an s/(2) subalgebra different from S, so that the
little group of My is GL(1) x SL(2). GL(1) is generated by My itself and the
corresponding field is the Liouville mode. Using usual Gauss-parameters for
the SL(2), we can parametrize the little group of My as

1 0 0 0
¥ - -
_ oMy | O e + afe 0 e
o =¢ 0 0 1 0
0 e ¥ 0 e

We decompose the G, 1 subspaces (spanned by the two doublets) into their
2
P and Q parts as follows

0 p q 0 0 0 O
00 ¢q 0 50 0 0
PLta=1o 0 o o> P3T94%10 4 0 —p
00 —p 0 i 00 0

Now the little group, or more precisely the SL(2) generated by the three
singlets, mixes the P and Q subspaces of G_1 so that the matrices X;; and
2

Yi; in (4.106) and (4.107) possess off-diagonal elements:

1 <e¢ + aBe? ae¢>

Xij — e 2¢ Yéj = in.
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Inserting this into (4.108) yields the following effective action:

I5:(90,9,4) = Swz(go) — /dQ»’U [64) - 26_%¢_¢(an) (049

g i, 1 (4.113)
L ogekeldte 22 VB0_q) - (g + e 2% Yad,q)
e¥ + afe ¥ ’

for the Liouville mode ¢, the conformal scalars 1, «, § and the fields ¢, ¢
with weights (1,0) and (0, 1), respectively.

It is easy to see directly from its formula that it is impossible to obtain the
above action as a special case of (4.57). Indeed, if the expression in (4.113)
was obtained from (4.57) then the non-derivative term ~ §g(e¥ +aBe™¥)!
could only be gotten from the second term in (4.57), but, since gy and b are
matrices of unit determinant, this term could never produce the denominator

in the non-derivative term in (4.113).

4.5 Quantum reduction of WZNW-theories

Here we study the quantum version of the WZNW reduction in the path-
integral formalism. We first show that the configuration space path-integral
of the constrained WZNW theory can be realized by the gauged WZNW
theory. We then point out that the effective action of the reduced theory,
(4.47), can be derived by integrating out the gauge fields in a convenient
gauge. We shall find that for the generalized Toda theories associated with
integral gradings the effective measure takes the form determined from the
symplectic structure of the reduced theory. This means that in this case the
quantum Hamiltonian reduction results in the quantization of the reduced
classical theory; in other words, the two procedures, the reduction and the
quantization, commute. We shall also exhibit the W-symmetry of the ef-
fective action for this example. By using the gauged WZNW theory, we
can construct the BRST formalism for the WZNW reduction in the general
case. For conformally invariant reductions, this allows for computing the
corresponding Virasoro center explicitly. In particular, we derive a general
formula for the Virasoro center of W¢ for an arbitrary s/(2) embedding.

4.5.1 Path-integral for constrained WZNW theory

In this section we set up the path-integral formalism for the constrained
WZNW theory. For this, we recall that classically the reduced theory has
been obtained by imposing a set of FCC in the Hamiltonian formalism.
Thus what we should do is to write down the path-integral of the WZNW
theory first in phase space with the constraints implemented and then find
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the corresponding configuration space expression. The phase space path-
integral can formally be defined once the canonical variables of the theory
are specified.

Classically, the constrained WZNW theory has been defined as the usual
WZNW theory with its KM phase space reduced by the FCC (4.24). No
relationship is assumed here between the two subalgebras, I' and [. The
Hamiltonian is then given by (4.21) with A = A = 0, that is has the usual
Sugawara form

1 ~
— ICVR 1 2 2
H_/dxH—%/d:c (e 72 +1x 7?) (4.114)
where the KM-currents have been defined in (4.22) and the momenta con-
jugated to the &% simplify to
Ta = KNP Nypt® — 6 Agpe". (4.115)

Now we write down the phase space path-integral for the constrained WZNW
theory. According to Faddeev’s prescription [16] it is defined as

7 = [ dnde 5(¢)0(@)5008(3) det {9, x} det [{3. 3}
. (4.116)
X exp(i/dQ:zr (ma&® — H)),

where we implement the FCC by inserting §(¢$) and d(¢) in the path-integral.
The d-functions of y and x refer to gauge fixing conditions corresponding to
the constraints, ¢ and é, which act as generators of gauge symmetries. By
introducing Lagrange-multiplier fields, A = A’y; and A = A'3;, (4.116) can
be written as
7 = [ dndgdAdAs()3(%) det {4, x} det {3, X
. . (4.117)
x exp(ifd% [Tr (7€ + Ad + Ad) — 7—[]).

By changing the momentum variable from 7, to
P =P°T, = Ta(N_l)ab(ﬂ'b + KApc01£°)

the measure acquires a determinant factor, dm = dP det N, and the inte-
grand of the exponent in (4.117) becomes
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Tr (n€ + Ad + Ad) — H
= nTr [~3(LP) = L(igg™)2 + LP(A+gAg™" + 009 9™") (4.118)
+A(1gg 1 = M) — A(g tong + M)] — (£, AL).

Since the matrix N () is independent of P, we can easily perform the inte-
gration over P provided that the remaining J-functions and the determinant
factors are also P-independent.We can choose the gauge fixing conditions,
x and ¥, so that this is true. (For example, the physical gauge which we
will choose in the next section fulfills this demand.) Then we end up with
the following formula of the configuration space path-integral:

7 = / dé det N dAdAS(x)8(x) det [{, x}| det |{$, x}| 704D (4119)

where I(g, A, A) is the gauged WZNW action (4.8). We note that the mea-
sure for the coordinates in this path-integral is the invariant Haar measure,

dp(g) = [[ d¢* det N = [ (dgg™")". (4.120)

This is a consequence of the fact that the phase space measure in (4.116) is
invariant under canonical transformations to which the group transforma-
tions belong.

The above formula for the configuration space path-integral means that
the gauged WZNW theory provides the Lagrangian realization of the Hamil-
tonian reduction, which we have already seen on the basis of a classical
argument in section 4.1.1.

4.5.2 Effective theory in the physical gauge

We next discuss the effective theory which arises when we eliminate all the
unphysical degrees of freedom in a particularly convenient gauge, the phys-
ical gauge. We shall re-derive, in the path-integral formalism, the effective
action which appeared in the classical context earlier in this paper. For
this purpose, within this section we restrict our attention to the left-right
dual reductions considered in section 4.1.2 It, however, should be noted that
this restriction is not absolutely necessary to get an effective action by the
method given below. In this respect, it is also worth noting that Polyakov’s
2-dimensional gravity action in the light-cone gauge can be regarded as an
effective action in a non-dual reduction, which is obtained by imposing a
constraint only on the left-current for G = SL(2) [1, 20]. We will not pur-
sue the non-dual cases here.
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To eliminate all the unphysical gauge degrees of freedom, we simply
gauge them away from g, i.e., we gauge fix the Gauss decomposed ¢ in
(4.36) into the form

g = abc —b.

More specifically, with the parametrization a(z) = exp [o;(z)vi], c(z) =
exp [0;(z)%;] we define the physical gauge by

Xi =0 =0, Xi = 0; = 0.

Note that for this gauge the determinant factors in (4.117) are actually
constants. Now the effective action is obtained by performing the A4 inte-
grations in (4.119). The integration of A gives rise to the delta-function,

TT6(tv.bAb~" +0.b57" — b)),

i

with 4; € T’ normalized by the duality condition (4.33). One then notices
that this delta-function implies exactly the condition (4.39) with d,cc™!
replaced by A. Hence, with the help of the matrix Vij(b) in (4.37) and T'(b)
in (4.40), it can be rewritten as

(det V)~' 3( A~ b7'T(b)b).
Finally, the integration of A yields
Z = /dueff(b) eler(®), (4.121)

where I.g(b) is the effective action (4.47) °, and dpucq(b) is the effective
measure given by

dpe(b) = (det V) du(g)d(0)6(5) = (det V) (4.122)

Of course, as far as the effective action is concerned, the path-integral
approach should give the same result as the classical one, because the in-
tegration of the gauge fields is Gaussian and hence equivalent to the clas-
sical elimination of the gauge fields by their field equations. However, a
non-trivial feature may arise at the quantum level when the effective path-
integral measure (4.122) is taken into account. Let us examine the effective

% Actually, the effective action always takes the form (4.47) if one restricts the WZNW

field to be of the form g = abc with a € e’, ¢ € e and b such that V;;(b) is invert-
ible.The duality between I' and T is not necessary but can be used to ensure this technical
assumption.
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measure in the simple case where the space B in (4.34) forms a subalgebra of
G satisfying (4.52), and thus the effective action in (4.121) simplifies (4.57)
In this case, the 1-form appearing in the measure du(g) of (4.120),

dg g*l =daa 1+ a(dbbil)af1 + ab(dccfl)bflafl,

turns out, in the physical gauge, to be

dgg '|s—5—0 = vido; + dbb  + Vi;(b)¥;d5;. (4.123)

As a result, the determinant factor in (4.122) is canceled by the one coming
from (4.123), and the effective measure admits a simple form:

dpieg(b) = dbb™". (4.124)

The point is that this is exactly the measure which is determined from the
symplectic structure of the effective theory (4.45) obtained by the classical
Hamiltonian reduction. This tells us that in this case the quantum Hamil-
tonian reduction results in the quantization of the reduced classical theory.
In particular, since the above assumption for B is satisfied for the general-
ized Toda theories associated with integral gradings, we conclude that these
generalized Toda theories are equivalent to the corresponding constrained
(gauged) WZNW theories even at the quantum level, i.e., including the
measure. This result has been established before in the special case of the
standard Toda theory (4.102) in [40], where the measure dueq(b) is simply
given by [], dy'.

We end this section by noting that it is not clear whether the measure
determined from the symplectic structure of the reduced classical theory is
identical to the effective measure (4.122) in general. In the general case both
measures in question could become quite involved and thus one would need
some geometric argument to see if they are identical or not.

4.5.3 The off-shell W-symmetry of the generalized Toda the-
ory

Because of the WZNW origin of the the generalized Toda theories they
possess W-currents. It is thus natural to expect that their effective actions,
Il in (4.57) and IS in (4.108), allow for symmetry transformations yielding
the W-currents as the corresponding Noether currents. We demonstrate
below that this is indeed the case for the integral graded theories, when the
action takes a simple form. We however believe that there are symmetries of
the effective action corresponding to the conserved chiral currents inherited
from the KM algebra for any reduced WZNW theory.

Let us consider a gauge invariant differential polynomial W (J) in the
constrained WZNW theory giving rise to the effective theory described by
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the action in (4.57). In terms of the generalized Toda field b(z), this con-
served W-current is given by the differential polynomial

Weg(8) = W (M + j), where S =0.bb7 " (4.125)

This equality [42, 18] holds because the constrained current J and (M + f3)
are related by a gauge transformation, as we have seen. By choosing some

test function f(z™), we now associate to Weg () the following transforma-
tion of the field b(z):

Swhl(y / d*z f 5Wef(¥() )] -b(y) (4.126)

and we wish to show that dy b is a symmetry of the action I'L(b). Before
proving this, we notice, by combining the definition in (4.126) with (4.125),
that (dyb)b~! is a polynomial expression in f, B and their d,-derivatives
up to some finite order.

We start the proof by noting that the change of the action under an
arbitrary variation db is given by the formula

SIIE
SITE () = d?y (6bb~(y), bly) 5 %)
f / ®ly)” (4.127)
- /d2 (066" (y) , 0-B(y) + [bly) Mb~' (y), M]).

In the next step, we use the field equation to replace d_3 by —[bMb~"', M]
in the obvious equality

O Wegr(z /d2 5Weﬁ 8 By)), (4.128)

and then, from the fact that _ W, = 0 on-shell, we obtain the following
identity:

[ . o ), 00 =0, (4.129)

Of course, the previous argument only implies that (4.129) holds on-shell.
However,we now make the crucial observation that (4.129) is an off-shell
identity, i.e., it is valid for any field b(z) not only for the solutions of the
field equation. This follows by noticing that the object in (4.129) is a local
expression in b(z) containing only z*-derivatives. In fact,any such object
which vanishes on-shell has to vanish also off-shell, because one can find
solutions of the field equation for which the zT-dependence of the field b is
prescribed in an arbitrary way at an arbitrarily chosen fixed value of ™.
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By using the above observation, it is easy to show that dyb in (4.126) is
indeed a symmetry of the action. First, simply inserting (4.126) into (4.127),
we have

—— [ 1) [y T 0 50) + bt o), ).

We then rewrite this equation as

/d%f )0 Wegr (),

with the aid of the identities (4.129) and (4.128). Hence the integrand is a
total derivative and this then proves that

owiIlk(b) =0.

One can also see, from equation (4.126), that Weg is the Noether charge
density corresponding to the symmetry transformation sy b of I'L(b).

4.5.4 BRST formalism for WZNW reductions

Since the constrained WZNW theory can be regarded as the gauged WZNW
theory (4.8), one is naturally led to construct the BRST formalism for the
theory as a basis for quantization.Below we discuss the BRST formalism
based on the gauge symmetry (4.6) and thus return to the general situation
where no relationship between the two subalgebras, I' and f‘, is supposed.
Prior to the construction we here note how the conformal symmetry is
realized in the gauged WZNW theory when there is an operator H satis-
fying the condition (4.62). (For simplicity, in what follows we discuss the
symmetry associated to the left-moving sector.) In fact, with such H and a
chiral test function f*(z™) one can define the following transformation,

dg = fTOyg9+04f Hy,
§A = fto,A+0,fT[H, A, (4.130)
A = fro,A+0,f1A,

which leaves the gauged WZNW action I(g, A, A) invariant. This corre-
sponds exactly to the conformal transformation in the constrained WZNW
theory generated by the Virasoro density Ly in (4.59), as can be confirmed
by observing that (4.130) implies the conformal action (4.60) for the current
with f(z%) = fT(2z%). We shall derive later the Virasoro density as the
Noether charge density in the BRST system.

Turning to the construction of the BRST formalism, we first choose
the space I'* C G which is dual to T" with respect to the Cartan-Killing
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form (and similarly I'* dual to T'). Following the standard procedure [31]
we introduce two sets of ghost, anti-ghost and Nakanishi-Lautrup fields,
{cel,éy,B, e} and {bel, b_,B_ €*}. The BRST transformation
corresponding to the (left-sector of the) local gauge transformation (4.6) is
given by

opg = -—cg opct =1iBy,
ogA = D_c 5By =0, (4.131)
opc = —c? ,  op(others) =0,

with D_ = 9_ +[A, ]. and D+ — = 9, — [A, ]. After defining the

BRST transformation &g for the right-sector in an analogous way, we write
the BRST action by adding a gauge fixing term and a ghost term to the
gauged action,

Igrst = I(ga A, "Zi) + Igf + Ighost-

The additional terms can be constructed by the manifestly BRST invariant
expression,

L + Ighoss = —iri(05 + 0p) / & (s, A) + (b_, A))

o - (4.132)
=k [d?z ((By, A) + (B_, A) +i{cy,D_c) +i(b_, D, b)),

where we have chosen the gauge fixing conditions as Ay = 0. Then the
path-integral for the BRST system is given by

7= / du(g) dAdAdedé, dbdb_dB,dB. &Pt (4.133)

which, upon integration of the ghosts and the Nakanishi-Lautrup fields,
reduces to (4.119). (Strictly speaking, for this we have to generalize the
gauge fixing conditions in (4.119) to be dependent on the gauge fields.) By
this construction the nilpotency, 63 = 0, and the BRST invariance of the
action, 0gIgrsT = 0, are easily checked.

It is, however, convenient to deal with the simplified BRST theory ob-
tained by performing the trivial integrations of Ay and By in (4.133),

Tast(g,.0+,0,5-) = Swalg) +in [ d* ((¢r,0-0) + (b, 0:8))-(4.134)

We note that this effective BRST theory is not merely a sum of a free
WZNW sector and free ghost sector as it appears, but rather it consists
of the two interrelated sectors in the physical space specified by the BRST
charge defined below. At this stage the BRST transformation which leaves
the simplified BRST action (4.134) invariant reads
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1

0Bg = —cg , OBCy = —7p+ [i(3+9 9~ —M_)+(cey + 5+C)]a

4.135
opc=—c?> , op(others) =0, ( )

where mp- = >, |7F)(7i| is the projection operator onto the dual space IT'™*
with the normalized bases, (y;,7;) = d;;. From the associated conserved
Noether current, B,jE = 0, the BRST charge Qg is defined to be

Qp = /d:cJ’jE(x) = /dx+(c, dygg~" — M —ciy). (4.136)
The physical space is then specified by the condition,

@g|phys) = 0.

In the simple case of the WZNW reduction which leads to the standard
Toda theory, the BRST charge (4.136) agrees with the one discussed earlier
[7].

In the case where there is an H operator which guarantees the con-
formal invariance, the BRST system also has the corresponding conformal
symmetry,

6g = [rOrg+0.fTHyg ) b= f*o,b,
Je = froye+0.ftH, ], b =fTO.b.,  (4.137)
0cy = [0 +04fT (e +[H, T4))

inherited from the one (4.130) in the gauged WZNW theory. If the H
operator further provides a grading, one finds from (4.137) that the currents
of grade —h have the (left-) conformal weight 1—h, except the H-component,
which is not a primary field. Similarly, the ghosts ¢, ¢4 of grade h, —h have
the conformal weight h, 1 — h, respectively, whereas the ghosts b, b are
conformal scalars. Now we define the total Virasoro density operator Liqt
from the associated Noether current, 0_ j_(ﬁ =0, by

1
/d:v+j$(:v) = _/d$+f+(x+)Lt0t(x)'
K
The (on-shell) expression is found to be the sum of the two parts, Ly =

L + Lghost, where Ly is indeed the Virasoro operator (4.59) for the WZNW
part, and

Lghost = 'L'Ii(<5_|_, 8_|_C> + 8+ (H, CE+ + E+C>), (4138)

is the part for the ghosts. The conformal invariance of the BRST charge,
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0Qp = 0, or equivalently, the BRST invariance of the total conformal charge,
0B Liot = 0, are readily confirmed.

Let us find the Virasoro center of our BRST system. The total Virasoro
center ctot is given by the sum of the two contributions, ¢ from the WZNW
part and cghesy from the ghost one. The Virasoro center from Ly is given
by

k dim G
= — 12k(H,H
i (H, H), (4.139)

where £ is the level of the KM algebra and g is the dual Coxeter number.
On the other hand, the ghosts contribute to the Virasoro center by the usual
formula,

Cghost = -2 Z[l + Gh(h - 1)]’ (4.140)
r

where the summation is performed over the eigenvectors of ady in the sub-
algebra I'. (One can confirm (4.140) by performing the operator product
expansion with Lgpes; in (4.138).)

4.5.5 The Virasoro center in 2 examples

By elaborating on the general result of the previous section, we here derive
explicit formulas for the total Virasoro center in two important special cases
of the WZNW reduction.

The generalized Toda theory I'L(b) In this case the summation in
(4.140) is over the eigenstates of ady with eigenvalues h > 0, since T' = ng.
We can establish a concise formula for cio, (4.143) below, by using the
following group theoretic facts.

First, we can assume that the grading operator H € G is from the Cartan
subalgebra of the complex simple Lie algebra G. containing G. Second, the
scalar product ( , ) defines a natural isomorphism between the Cartan subal-
gebra and the space of roots, and we introduce the notation § for the vector
in root space corresponding to H under this isomorphism. More concretely,
this means that we set H = )", 0; H; by using an orthonormal Cartan basis,
(H;, Hj) = 0;;. Third, we recall the strange formula of Freudenthal-de Vries
[21], which (by taking into account the normalization of (, )} and the duality
between the root space and the Cartan subalgebra) reads

. 12
dim G = ;Iﬁ]Q , (4.141)
where g is the Weyl vector, given by half the sum of the positive roots.
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Fourth, we choose the simple positive roots in such a way that the cor-
responding step operators, which are in general in G, and not in G, have
non-negative grades with respect to H.

By using the above conventions, it is straightforward to obtain the fol-
lowing expressions

1 -
Y 1=dimI = -(dimG — dim G§'), > h=2(5"9),
2
h>0 h>0

. .

> h? = —tr(adp)? = g(H, H) = g|s|%,
2

h>0

(4.142)

for the corresponding terms in (4.140). Substituting these into (4.140) and
also (4.141) into (4.139), one can finally establish the following nice formula
of the total Virasoro center [39]:

1 2
o| . 4.143
=1 (4.143)

In particular, in the case of the reduction leading to the standard Toda
theory (4.102) the result (4.143) is consistent with the one directly obtained
in the reduced theory [35, 9] '°.

Ctot :C+Cgh0st = dim gé{ - 12‘\/k+gg—

The Wg-algebra for half-integral s/(2) embeddings For si(2) embed-
dings the role of the H is played by My and in the half-integral case we have
I'=G>1+P1 =Gso— Q1. It follows that the value of the total Virasoro
center can now be obtained by subtracting the contribution of the ‘miss-
ing ghosts corresponding to Q 1 which is 1dim G 1 from the expression in

2
(4.143). We thus obtain that in this case

2

1 -
v = Ny = 5N, = 12|k +g8 — , (4.144)

Ly
Vitg”

where
Ny =dim Gy , and Ny, =dim G, ,

are the number of tensor and spinor multiplets in the decomposition of the
adjoint of G under the sl(2) subalgebra S, respectively. We note that, as
proven by Dynkin [34], it is possible to choose a system of positive simple
roots so that the grade of the corresponding step operators is from the

"“more precisely, the center (4.143) agrees with that of refs. [35, 9] if the ”coupling

constant” of the Toda theory k is replaced by k + g. The cause of the shift in the WZNW
reduction is discussed, e.g. in [27]
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set {0,1,1}, and that § is (3%) the so called defining vector of the sl(2)
embedding in Dynkin’s terminology.

As has been mentioned in section 4.3.1, Bais et al [5] (see also [45])
studied a similar reduction of the KM algebra for half-integral sl(2) embed-
dings where all the current components corresponding to G- are constrained
from the very beginning. In their system, the constraints (4.88) of G 1 being
inevitably second-class, are modified into first-class by introducing an aux-

iliary field to each constraint of Gi. Accordingly, the auxiliary fields give
2
rise to the extra contribution —%dim g 1 in the total Virasoro center. It is

clear that adding this to the sum of thez WZNW and ghost parts (which is
of the form (4.143) with M substituted for H), renders the total Virasoro
center of their system identical to that of our system, given by (4.144). This
result is natural if we recall the fact that their reduced phase space (after
complete gauge fixing) is actually identical to ours. It is obvious that our
method, which is based on purely first-class KM constraints and does not
require auxiliary fields, provides a simpler way to reach the identical reduced
theory.

The W)-algebras By using the results of section 4.3.2 we can easily com-
pute the Virasoro center of the W/ algebras. We consider the conformal
structure given by Lyy,, where M is the sl(2) generator (4.94), and intro-
duce ghosts for FCC defined by T', eq. (4.98). The contribution to the
Virasoro center from Ljy, is given by

(n? - 1)k

C= km(m 4+ 1)[3n — (2m + 1)1].

Taking into account the multiplicities of the grades in I, we find from (4.140)

Cghost = —2dim Dy + dim Py — 2 [I + 6i(i — 1)] dim G;
=1
= —(m3+4m® +3m + 1)1 —n?(3m? +2)
+[n(2m? + 3m? + 6m + 2) + 1]1.

(4.145)

This result disagrees with the one obtained for W2 in ref. [8], where instead
of our Ljy, a different Ly was adopted for defining the conformal structure
and a set of auxiliary fields has been introduced to render the constraints
first class. This disagreement is not surprising because of the ambiguity in
defining the conformal structure of W/, i.e. in choosing H in (4.59), which
eventually reflects in the value of ¢. In addition, there is also an arbitrariness
in the number of auxiliary fields introduced, and the Virasoro center agrees
only when one uses the minimal number of fields (with the same H).
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