Chapter 3

Lagrangian Symmetries of
First-Class Hamiltonian
Systems

In this chapter we show how the well-known local symmetries of Lagrangian
systems, and in particular the diffeomorphism invariance, emerge in the
Hamiltonian formulation. We show that only the constraints which are
linear in the momenta generate Lagrangian symmetries. The nonlinear con-
straints (which we have, for instance, in (super)gravity and string theory)
rather generate the dynamics. Only in a very special combination with "triv-
ial” compensating transformations proportional to the equations of motions
do they lead to symmetry transformations. We reveal the importance of
these special ’trivial’ transformations for the interconnection theorems [7]
which relate the symmetries of a system with its dynamics. In proving these
theorems for general Hamiltonian systems, we shall see that there is a deep
connection between the structure of the constraints and the dynamics. For
example, in string theory some of the Hamiltonian equations and in gravity
all of them are automatically follow if we demand that the constraints are
satisfied everywhere and for any foliation of space time. We apply the de-
veloped formalism to concrete physically relevant systems, e.g. Yang-Mills
theories, the relativistic particle, the bosonic string and gravity.

An interesting application of the considered formalism one could find in
the quantized theories, in which we are ultimately interested. For example,
in the functional integral approach it can be advantageous to consider the
phase space integral as compared to the Lagrangian one. This is true in
particular for diffeomorphism invariant theories where the question of the
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correct measure in the Lagrangian formulation becomes nontrivial. On the
other hand, in phase space at least the ¢,p part of the measure is just the
well-known Liouville measure. But then the question arises which symme-
tries (the ones generated by the constraints alone or the symmetries of the
Lagrangian system) should we use to construct the ’correct’ path integral
or BRST charge. Only in the simple cases of the relativistic particle and
supersymmetric particle it has been demonstrated that the results in both
cases are the same [12]. For field theories it is still an open question whether
the different quantization lead to equivalent results.

To see more clearly what are the problems with generally covariant sys-
tems we consider the simplest example, namely the relativistic particle. We
describe the relativistic particle moving in 4-dimensional Minkowski space-
time by 4 scalar fields ¢*(t), p = 0,1, 2,3, in 1-dimensional ’spacetime’. The
action for the relativistic particle takes the form

5 =2 [ Valg® gy — i G.1)

where the overdot denotes differentiation with respect to time ¢ and ¢ ¢, =
(¢°)? — °3(¢%)%. The m?-term maybe viewed as 'cosmological constant’ in
1-dimensional ’spacetime’.

S is invariant with respect to general coordinate transformations (repara-
metrization invariance). The infinitesimal form of these transformations
reads

t—=1t-¢, goo —* goo + Legoo, ¢ — ¢+ L, (3.2)

where L¢ is the Lie-derivative. Introducing the lapse function N according
to

goo = N? (3.3)

we get the following transformation law from (3.2)

S = ¢ and SN = %(Ng) : (3.4)

The action (3.1) leads to the primary constraint ¢; =m0 =0 which in turn

implies the secondary one

Y

1
d2 =7y = (', - m?), (3.5)
where the 7, are the momenta conjugated to the ¢*,
{" 7, } = ok. (3.6)

These are FCC. The partial gauge fixing F; = ¢°° —1 =0 and ¢; form a
conjugate second class pair and can be eliminated. Applying the standard
procedure one finds then the following first order action

S = / [ — Nydt. (3.7)
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The Lagrangian multiplier ' accompanying the constraint  (the super-
Hamiltonian) reintroduces the lapse function.

The action (3.7) is invariant with respect to the infinitesimal off mass-
shell gauge transformations

Sagt = {¢* My} =N, Gy = {m, M =0, by = A\ (3.8)

With the identification A = N¢ these transformations coincide with the
diffeomorphism transformations (3.4), but only on mass shell:

¢ =Nrt, 7 =0. (3.9)

This is a general problem with diffeomorphism invariant theories. Infinites-
imal diffeomorphisms involve time derivatives of the canonical variables
which cannot be gotten by equal time commutators with FCC. Only on-
shell can the transformations generated by the FCC be identified with the
Lagrangian symmetries. On the technical side the difficulty of identifying
gauge and diffeomorphism transformations can be traced back to the nonlin-
ear dependence of the constraint on the momentum. This is the important
difference between internal and spacetime symmetries. In the following sec-
tion we shall see how the canonical transformations generated by the FCC
must be modified to yield all Lagrangian symmetries.

3.1 Hamiltonian vs. Lagrangian symmetries

In this chapter I shall consider a general FC system, the first order action of
which is given by (2.100). These actions describes both systems with a finite
or infinite number of degrees of freedom if the following condensed notation
[17] is assumed: For systems with a finite number of degrees of freedom «a
and ¢ are discrete and for field theories they denote both internal indices and
space-coordinates. To distinguish internal from composite indices we shall
use tildes for the latter ones. For field theories ¢ = {i,#} and & = {a, T},
where i and a are some discrete (internal) indices. For a scalar field qi(t)=
o (t)=(z,t) and for a vector field ¢*(t) = A (t) = A’(z,t). We adopt the
Einstein convention and assume summation over discrete repeated indices
and integration over continuous ones, for example

Ep; " = > / dzé(z)pi(z)g'(z) but &pfqg™ = >¢ (z)pi(z)q ().

Also, we shall not distinguish ¢** and q},} and use the position of the con-
tinuous index just to indicate when we should integrate. Sometimes it will
be convenient to resolve the composite index ¢ (or a) as i,z (or a,z). If
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the system contains fermions then some of the variables p,q, NV will be of
Grassmannian type.
In particular the first order action reads

S, = / (p;qZ — Ny, — H)dt. (3.10)

For FC systems the constraints [1] and Hamiltonian form a closed algebra
(possibly extended to fermionic variables, in which case the algebra is graded
[14]): ~

(ot =t5v  and  {H,y} =ty (3.11)
The structure coefficients may depend on the canonical variables p, q.

The equation of motion resulting from the variation of the action (3.10)
with respect to ¢,p and the Lagrangian multipliers A/

08, = / ((5p2E'M(q;) - (5q;E'M(p;) - 5Na’)/d)dt + bound. terms (3.12)
are
EM(¢") = ¢'—{¢"\ N’y +H} =0,
EM (p;) p; —{p; NPy + H} =0, (3.13)

va = 0.

We use the abbreviations EM (q) and EM (p) for the equations of motion.
Of course, on mass shell we have EM =0, but off mass shell either EM(q)
or EM (p) (or both) does not vanish.

To go from the Hamiltonian to the Lagrangian formalism we should
express the momenta in terms of the velocities via the Hamiltonian equations
EM(q") = 0. Thus not all off mass-shell trajectories of the Hamiltonian
system can be considered in the Lagrangian formalism, but only those for
which this equations hold. Hence one can say that the Lagrangian system
lives only in the subspace M of the ’extended phase space’ defined by the
conditions

M:EM(q) =i’ — {q",N'y + H} = 0. (3.14)

The action (3.10) invariant (up to boundary terms) with respect to the
infinitesimal transformations generated by the constraints if the Lagrangian
multipliers are transformed simultaneously [11, 2]

g™ = {g" Ay},
oo = {pf, Ay}, (3.15)
ON® = AT — XN — AtD

The parameters A\ = \(N,Z,t) are the parameters of the infinitesimal
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transformations. The order in which A enters in (3.15) is important if some
of the variables are of Grassmannian type. We shall only consider the case
when the parameters A depend explicitly on spacetime coordinates and La-
grangian multipliers, since this suffices to cover all known physically relevant
theories!. Because of this A'-dependence we should keep X inside the Poisson
bracket even for purely bosonic theories since if we calculate the commuta-
tor of two subsequent infinitesimal transformations, then A of the second
transformation will depend on g, p if the structure constants depend on the
canonical variables.

It is not difficult to see that the variation of the action (3.10) under these
transformations leads only to the boundary terms

oS = (pg5A q' - Aa%) |§f (3.16)
This term can be removed even if the parameters A do not vanish at the
boundaries if we add to the action the total derivative of some function
Q(p, q) which satisfies the equation

%f&qz + ;%Qgﬁpg = A" —pioag’,

The question which naturally arise here is the following: do the symmetry
transformations (3.15) correspond to Lagrangian symmetries, that is are
they, for instance, the diffeomorphism transformations in general relativity
and string theory?

As we shall see below the answer is no if some constraints are nonlinear
in the momenta. The reason is that the transformations (3.15) generated
by a nonlinear constraint take a trajectory on M away from it and the
transformed trajectory can not be viewed as a trajectory of the Lagrangian
system.

Actually the set of infinitesimal off mass-shell transformations which
leave the first order action invariant is much bigger than (3.15). Any in-
finitesimal transformation (dq, dp,dN’) orthogonal to the (functional) gra-
dient VS = (—EM (p), EM(q), —C) leaves the action invariant [5, 31] , as
can be easily seen from (3.12). Hence we could add to the transformations
generated by the constraints for example any transformation of the form

6" = EM(¢')¢; + EM(pyn’,
bp; = EM(py)é + EM(g?) (3.17)

NG = 0,

i

Tn principle, we could consider more general transformations for which A would also
depend on the canonical variables. Then first order action is also invariant with respect
to infinitesimal transformations generated by the constraints if the N @ are transformed
as AN = 9\ (q,p,1) — ANtE — Nt — N*{y;, A"} — {H, A"}
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where ¢ are arbitrary 'matrices’ (kernels) and the 1, ( are antisymmetric.
Generically such transformations are nonlocal, and they exist for all systems
even for those without any symmetries.

We will show that in all theories containing only one nonlinear constraint
(e.g. gravity and string theory) we need only very special transformations
from (3.17), namely

0¢q’® = EM(¢*)€" and  dgp? = EM (p?)E® (3.18)

to recover all Lagrangian symmetries. In the general case with several non-
linear constraints, e.g. in supergravity, one needs extra transformations from
(3.17).

The infinitesimal transformations (3.18) are not important on their own,
but in a very special combination with the transformations (3.15) generated
by the FCC they lead to physically meaningful symmetries. To recover the
Lagrangian symmetries we consider the combined transformations

IepnF(q,p,N) = F(Ig ) q,I¢ ) p, Iey N), Tex=140x4-, (3.19)
where

Senq” = EM(q™)E" + {q", \'y;},
Sepap? = EM(pP)E" + {pf, Ay}, (3.20)
Sea N = A0 — NONERD — NPyl

The number of functions (£, \*) which appear here is equal to the number
of constraints (per point of space) plus one. This seems strange since for
all constrained theories the number of parameters for the symmetry trans-
formations is equal to the number of constraints. To understand why we
need the ’trivial’ transformations (3.18) and to reveal the connections be-
tween the parameters £ and A* we derive the conditions under which the
transformations (3.20) are Lagrangian symmetries.

For that the transformations (3.20) should leave any trajectory in the
subspace M in this subspace. The necessary conditions for this can be
gotten by varying (3.14) as follows

d i 0%(H 4+ N®vz) 5
L (5erat) = ) 5 qi
dt( exd") o) e
0?(H + N°v) (3:21)

e D5 + {q", 0 A\N e}

The transformations dg, dp and JN should satisfy the equation (3.21) on
the hyper-surface M.
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Substituting (3.20) into (3.21) this condition simplifies to

0*(H + N°) O 2

)

) 3
5pf-’5p§/- EM(pj A (3.22)
and imposes a certain functional dependence between ¢ and A®. If this con-
dition is fulfilled the phase space transformations (3.20) can be interpreted
as Lagrangian symmetries. At the same time the number of free functions
becomes equal to the number of constraints as it should be.

Let us note that the ’trivial’ transformations (3.17) and (3.18) do not
satisfy (3.22) for off mass-shell trajectories if the Hamiltonian H and/or v,
are nonlinear in momenta. Hence these transformations alone cannot be
identified with Lagrangian symmetries.

On the other hand, if some constraints -y; are nonlinear, then the trans-
formations (3.15) generated by the nonlinear constraints also cannot sat-
isfy (3.22). Hence they cannot be viewed as Lagrangian symmetries either.
Only when they are taken in a very special combination with the ’trivial’
transformations can one satisfy this condition. In other words, the ’trivial’
transformation bring the trajectories back to M. Also we shall see that the
transformations (3.15) generate the dynamics for super-Hamiltonian sys-
tems. Now we would like to consider two important examples:

Gauge Invariance. If the constraints are linear and H at least quadratic
in the momenta, then only for £¢* = 0 can equation (3.22) be satisfied 2. So,
in this case the transformations (3.15) generated by the constraints alone
are also Lagrangian symmetries. We shall call them gauge transformations.
For example, in Yang-Mills theories or the gauged Wess-Zumino-Novikov-
Witten models investigated in the following chapter, all constraints are linear
and the Lagrangian gauge transformations are indeed the transformations
(3.15).

Let us add another remark concerning the gauge invariance. Assume
that we start with the canonical Hamiltonian and that A/® is conjugate to
the primary constraint, now denoted by II;. Then we know, that

il; = {llz, Ho} = ~ 0% =
are secondary constraints®. Let us further assume that the consistency con-
dition does not lead to tertiary constraints. Thus we know that the canonical
Hamiltonian must have the form

H,=H+ Ny

’If H and all constraints are at most linear in momenta, as it is the case for the
Chern-Simons theories, then the Hamiltonian system is strongly degenerate.
3we have chosen the last sign such as to agree with the other conventions in this chapter
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On the other hand we may eliminate the second class pairs N II; by set-
ting them to zero. Then we remain with the extended Hamiltonian on the
partially reduced phase space

H,=H. (N =11 = 0) + N%; = H,

where we denoted the Lagrangian multipliers of the secondary FCC again
by N. Let us know define the first class constraint

G= ,udHa + )\dva (3.23)
Now we prove the following
Lemma 2 G = fell; <= G generates gauge transformations

Indeed, requiring that the coefficients of the secondary constraints in

G = [‘dHfl + j‘d’Yﬁ + :U*d{Hﬁv Hp} + Ad{vﬁv HP} (3 24)
= AT+ (AT = — 2N 2 NN T )y, '
vanish, fixes the u® as function of the A%. This the yields the FCC
G = (A" = 0\ — 2 NPAOT, + Mg (3.25)

which indeed generates the correct gauge transformations (3.15) for systems
with linear constraints.

Reparametrization invariance. Usually the reparametrization invari-
ance of a Lagrangian system, if it exists, is identified with the gauge invari-
ance (3.15) in the Hamiltonian formalism. As we shall see they are actually
very different and this identification can only be made on mass shell.

If some constraints are nonlinear then it is obvious that the transforma-
tions generated by the constraints only (¢ = 0) do not satisfy the condition
(3.22) and hence are not Lagrangian symmetries. However, in all known
theories with nonlinear constraints H = 0 and the condition (3.22) can be
satisfied if we impose some functional dependence between A and £ in (3.20).
Thus the nonlinear constraints generate the Lagrangian symmetry only in
very special combination with ’trivial’ ¢-transformations. The reason for
that is the following: a transformation generated by a nonlinear constraints
takes off mass-shell trajectories away from the subspace M and the extra
compensating transformation returns the trajectories back to it. More ex-
plicitly taking A® to be A** = N'®*¢7 in (3.22) we reduce this equation to

N (gY — €2) e EM(p") = 0. (3.26)
opfop]
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One sees at once that if

d VYez
~J —_— .2

then even for nonlinear constraints the equation (3.26) is satisfied off mass
shell (EM(p) # 0). From that it follows immediately that the transfor-
mations (3.20) with A®* = N®*¢* are Lagrangian symmetries if H = 0.
We shall call the corresponding invariance reparametrization invariance:
Rg = jE’Aez: Nez¢=.  The explicit form of the reparametrization transfor-
mations read

0¢q™ " + (67 = " Ny}
0ep? = PYET+ (€ — NPT, Ny} (3.28)
55/\/‘0& — (.N’axgac) . nybchztgg:,by'

These transformations are the correct ones for theories with non-linear con-
straints. For example, for the relativistic particle the transformations (3.28)
(and not the gauge transformations (3.8) generated by the FCC alone) co-
incide with (3.4) on M.

Algebra of transformations Clearly, the infinitesimal transformations
can only be exponentiated to finite ones if they for a close algebra, that is the
commutator of two subsequent transformations should be a transformation
of the same type. So let us calculate the result for the commutator of
two subsequent infinitesimal transformations (3.20) with parameters &1, A\
and &9, A9, respectively. For an arbitrary algebraic function F(q,p) of the
canonical variables a rather lengthy but straightforward calculation yields
the commutator

A A oF?T . . .
e T F(0.0) = (52 FM(@) + (a = p)) (565 - 6565)
N N 6z )
+((6 - N - NTGE - (10 2) (77, L EM @) + (0 p))
0H

~(ee — T (P, L EM(@) + (g > ) + (F7. X% (329

and correspondingly for the Lagrangian multipliers one has

[j§2k2a f§1A1]Nd = (jX - 1)Nd + Ag)‘% (tgg - {td Né’)/é + H})

éd’
i i 5o . (3.30)
—O8T - 28) (W EM(G) + 20— p),
where we have introduced
—& é 7 & 5Ad 7 5Ad 7
= MG + 6/\f2’~’5A1Nb — 6N155A2Nb' (3.31)
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In deriving (3.29,3.30) we used the identities

(NINS = MM ({t, vz} + £hatls) = NN (et — {125,%2)),

and

(NEAS = NNT) ({82, vgh + thtag) = NN (tL e — {2, D),
which are consequences of the Jacobi identities for {{v;, A9z}, ASve} and for
{{H, XSvs}, Aoy}t Also we took into account that if the canonical variables
are transformed, ¢§ = ¢ + Ag and p = p + Ap, then the Poisson bracket of
some quantities A(q,p) and B(q,p) with respect to ¢,p are connected with
the Poisson bracket of A(q,p) and B(q,p) with respect to the old variables
in first order in Ag, Ap in the following manner

{A(G,9), B(¢:P)}ip = {A(g:p), B(a:P)}ap

+%({A,B})Aqi 4 (g p) + O(AG, Ap?). (3.32)

We stress that when we are performing the second transformation in (3.29,3.30)
which follows the first one, then we must use the transformed variables. In
particular, instead of Ao(N, z,t) we must take Ay(Iy, N, z,t). This explains
the appearance of the last terms in (3.31)

When the structure coefficients td do not depend on the canonical vari-

ables then X also does not depend on them and tg = 0. Thus, in this
case the commutator of two transformations generated by the FCC only
(¢ = 0) yields again a transformation generated by the constraints. Hence,
if the structure coefficients do not depend on the canonical variables then
the transformations generated by the constraints form a closed algebra off
mass-shell. On the other hand, if the structure coefficients depend on the
canonical variables that does not automatically imply that the algebra of
transformations will not close. Actually, the ¢, p-dependence in the formula
(3.31) for X can, in principle, be canceled against an appropriate choice of
the N-dependence of X. Actually this takes place for gravity, where some of
the structure coefficients depend on ¢g. Also the last terms in (3.30) vanish
in this case on M and the algebra of transformations generated only by the
FCC is closed, but only on M where the Lagrangian system lives.

The algebra of transformations (3.29,3.30) can also be closed in all rele-

vant cases even when ¢ # 0 if the A’ and ¢ are related in a certain way. The
resulting transformations are actually the transformations corresponding to
Lagrangian symmetries when some FCC are nonlinear.

*For simplicity we consider only the bosonic case from now on.
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An interesting question to which I have no general answer is the follow-
ing: what are the conditions to exponentiate the infinitesimal transforma-
tions to finite ones. For the relativistic particle, string and for gravity the
finite transformations for the corresponding Lagrangian systems are just the
familiar symmetries. These finite symmetries can then be formulated in the
Hamiltonian formulation and this way one can find the finite transformation
in the first order formalism. But in general it is not clear whether the clos-
ing of the algebra of infinitesimal transformations is sufficient to make them
finite. I suppose that this cannot be the case since for a free non-relativistic
particle, which very probably does not admit any known finite local sym-
metry, the transformations (3.20) with A =0 form a closed algebra. This
difficult and very important question (i.e. for the functional integral) what
are the conditions such that the transformations can be made finite needs
further investigation.

Constraints and the equations of motion. There is a very interest-
ing and non-trivial connection between the equations of motion EM(q) =
EM (p)=0 and the constraints y; =0. Clearly, since 3; =0 the classical tra-
jectories will stay on I'.. Inversely, in some theories (e.g. gravity) we can get
the equations of motions if we only demand that the constraints are fulfilled
for all ¢ (i.e. everywhere) and that the symmetry transformations do not de-
stroy this property. For example, in diffeomorphism invariant theories this
means that we demand that the constraints are valid everywhere and for any
choice of space-like hyper-surfaces, because the symmetry transformations
can be interpreted as a change of foliation of space-time.

It is very easy to arrive at this conclusion using the developed formalism.
Let us consider how the constraints change under the symmetry transfor-
mations (3.20):

0Ya i, 0a
deAVa = —0e \q"" + — 0 2P}
f:A’Y 6qzx ngq + 6p1$ £a>\pl
573 (3.33)

. v -
EM(q™)¢% + %;EM(Z)‘?)S’” + Xt ;.
1

(5(]”

For the known theories the constraints are local in (¢,p) and involve only
space derivatives of ¢ up to second and p up to first order. It follows then
that the structure of the functional derivative of the constraints have the
form
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0 o 0?2
§(z,y) + DP 8(z,y)

May  _ Aiad(z,y) + B

sqir i gy e Jy>oyP
oy _ i .y (3.34)
5pfip - a («Tay) + a a—ya (xay)a

where A, B, ... are functions of ¢¥ and pY. Substituting (3.34) into (3.33) a
straightforward calculation yields

O¢\Vay = (Yay + thg,ay75 + tgy%)@
Nth oyt (BREM(gY) + FOBM@Y)) 2 (3.35
+ ay,67b + ( ia (q ) + a (pz)) aya ( : )
OEM (") DY L. O
aﬁ 1Y
+ DY (2 Sy 5P + EM(q )ayaayﬂ)'

Now we can reformulate our question in the following manner: when can the
equations of motion (or some of them) be the consequence of the equations

Ya = 0 and (551)\’)@ = 0. (3.36)

The first condition just means that the constraints are fulfilled everywhere
and the second one that this statement does not depend on the chosen
foliation.

From (3.33) we can immediately conclude that the equations of motion
can be derived from (3.36) only if the following necessary conditions are
satisfied:

e Some of the constraints should be nonlinear in the momenta, since, as
we showed earlier, only in this case should we use the extra ’trivial’
transformations (and consequently & # 0).

e The system should have an infinite number of degrees of freedom.
Otherwise there are no spatial derivatives of £ and the pieces which
are proportional to the equations of motion are absent.

e The constraints should involve spatial derivatives of the p and/or the g.
Else all coefficients B, F, D in (3.34) vanish and the pieces proportional
to the equations of motion are again absent.

If we demand that (3.36) holds for arbitrary &, then from (3.33,3.34) we
immediately get the following set of equations

DY’ EM(¢") =0
. OEM (g
BAEM (¢%) + 2Dfaa% =0 (3.37)
y

F,"EM(p}) =0
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which can be solved to obtain the equations of motion. The equations
of motion which we can get from (3.37) depends on the properties of the
matrices D, B, F. Now we will briefly review how the general results apply
to particular systems:

Systems with a finite number of degrees of freedom: In this case no equa-
tions of motion follow from (3.36) even if £ # 0 since there are no
spatial derivatives of &.

Gauge theories: All of the constraints are linear in the momenta and there-
fore the ”trivial” transformations (3.17) are absent. Consequently,
none of the equations of motion can be obtained from (3.36).

Bosonic string: One constraint is nonlinear in the momenta and hence
¢ # 0. The matrices F, D are identically zero in this case and B # 0.
Then only some relations between the EM(q) follow from (3.36).

Gravity: This is the most interesting case. One constraint is nonlinear
and leads to & # 0 for the diffeomorphism transformations. The ma-
trices F' and D are non-singular. As is clear from (3.37) all Hamil-
tonian equations follow then from (3.36), that is the whole dynamics
of general relativity in the Hamiltonian formulation is hidden in the
requirement that the constraints are satisfied everywhere and for any
foliation. Let us stress that in distinction to [7] we did not assume
EM/(q) = 0. These equations are also consequences of egs. (3.36) and
thus the interconnection theorem has been proved entirely within the
Hamiltonian formalism.

3.2 Yang-Mills Theories

We have seen that there is a big difference between systems with internal
symmetries and those which are generally covariant. All constraints in the-
ories in the first class are linear and generate the symmetries. The most
important theories with linear constraints are the Yang-Mills theories. In
this section I consider YM theories [1] without coupling to matter and em-
phasize the role of the constraints [30, 46]. Pure non-Abelian YM theories
are interesting in their own right and they are non-trivial.

The YM action for the gauge fields is
1 V1,3
S=-7 / b0 [ PP ddt, (3.38)
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where ° the field strength is Lie-algebra valued,

Fup = 04 Ay — A, — i[Ay, A)] ) Ay = AST, , [To, T = ifS T,
(3.39)

and the action is invariant under local gauge transformations
Ay — e A e 9,6 (3.40)
with @ = 6%(Z,t)T,. The infinitesimal form of these gauge transformations
is
SgAlL = — (0,0 + fALO) = —(D,0)". (3.41)

The local gauge invariance implies generalized Bianchi identities D, D, F*" =
0 and renders the system singular. Among the field equations D, F'*” =0
there are some containing second time-derivatives of A,

D,FF =0 , i=1,2,3 (3.42)
and which therefore are dynamical equations of motion. The others
D,F* = D;F° or ¢p(A,A) = 0;F0 + f,mAFP =0, (3.43)

where m = 1,..., N=dim(Gauge Group), are Lagrangian constraints. No
further constraints appear since the time derivatives of the ¢,, vanish on
account of the field equations and the constraints themselves.

The canonical momenta conjugate to the A’s are

= —F {ALD), T ()} = 66,08 — 7). (3.44)

Since the field strength tensor is antisymmetric we obtain N primary con-
straints

¢m (A, ) = mp, = 0. (3.45)

After a partial integration the canonical Hamiltonian is found to be

H= / d (Smimd + F;;F;; AgDiT), (3.46)

and determines the time evolution
F={FH) , H=H+ /dfumqsm. (3.47)
We need to check the consistency of the primary constraints:

(}-Sm = {¢maHp} =0= (gm = (Dzﬂ'z)m ~ 0. (3-48)

®a,b,... denote internal indices, p,v... space-time indices. The T, are hermitian
generators and the structure constants fg, are totally antisymmetric.
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These N secondary constraints are the generalizations of the Gauss con-
straint in electrodynamics.
The only non-trivial Poisson brackets of the algebra of constraints are

The algebra is closed and therefore the 2N constraints (¢, én) form a FC
system. Their Poisson brackets with H are computed to be

{(ﬁm,H}:(;sz ) {QNSTIHH}:_ n’f’n g(gpzo' (3'50)

Let us now investigate the relation between the Hamiltonian gauge sym-
metries generated by the FCC and the Lagrangian gauge transformations
(3.41). A general combination of the FCC ¢ = [(¢/"¢pm + €)'dm) generates
the canonical symmetries

6A, = {$, AL} = 526‘{” - 52Dieg

. 3.51
wwp = (o) =g+ [onteprmy, O
where we have already anticipated that e; depends on Ajy. From (3.41)
we read off how the €’s must be chosen to correspond to Lagrangian gauge
transformations. We find that the particular combination

G = Dy pm, — 0" by, (3.52)

generates those transformations. Both primary and secondary FCC enter
the Lagrangian gauge transformations similarly as for the CS theory.

Alternatively we can introduce gauge invariant variables, e.g. the Wilson
loops [53], or fix the gauge. To fix the gauge freedom we need 2N gauge fixing
conditions on the phase space variables (A, w). Contrary to the situation in
electrodynamics the gauge fixing in YM theories is rather subtle due to the
Gribov problem. Let F,(A,) be local gauge fixings (which we assume not
to depend on the momenta). Then the following problem may arise:

There are several field A,gj) which are related by finite gauge transformations
and all of them obey the gauge fixing.

This happens for the Coulomb (background) gauge conditions [28]. It
already happens for QQ £ D> on the Euclidean torus where an arbitrary gauge
field can be decomposed as in (2.118). The local condition 0*A,, eliminates
the gauge function A but does not constrain the ¢;. But 27 and ¢; + 2
are gauge equivalent configuration and this freedom cannot be fixed by a
local gauge conditions. This is an example to a more general situation
which has been proven by Singer [44]: For compactified YM-theories no
global continuous gauge choice of the (local) form F,(A) =0 exists which
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completely specifies the gauge. This is due to the nontrivial topological
nature of the fibration A — C = A/G, where A is the affine space of gauge
potentials and G the group of local gauge transformations. For mathematical
investigations concerning these structures I refer to [5, 38]. There were
attempt to circumvent the Gribov problem by restricting the gauge potential
to lie within the Gribov horizon [54]. Unfortunately, until now all attempts
to make this idea in a functional integration rigorous failed.

Rather then dwelling on the various gauge fixings, their merits and draw-
backs, and to which we come back in the functional quantization of gauge
theories, let me make here some remarks about the variational problem.

The primary FCC ¢, are sort of uninteresting, since the SC pair (7%, Ag)
can easily be eliminated. The Dirac bracket for the remaining variables are
just the Poisson bracket.

After this elimination we find the first order action

. 1 . ) _ .
S — / (Mg = N, = S(rint + BB ) e = da = (Dim')?, (3.53)

with multiplier fields NV,. This form of the action is the one which is usually
met in the literature (for example, in gravity one does not keep the momenta
conjugated to the lapse and shift functions in the first order action). After
having eliminated one pair of canonical variables one may wonder how one
can recover the full set of Lagrangian gauge transformation (3.41). Of course,
that is exactly what we have achieved earlier. Indeed, applying (3.15) we
obtain the following symmetry transformations for the system (3.53)

JAT = (A% Ny} = (D))
SAY = SN = A i A0hyE (3.54)

- - \b b
571—& = {ﬂ-fla)‘ 7[;} = - I;lcﬂ- IACI?

where we have set A, = (Af, A®) and 7t =®,. These transformations cor-
respond to symmetries of the corresponding Lagrangian system since the
constraints are linear in the momenta. The transformations (3.54) coincide
with (3.41) if we identify A = 6 and hence the whole group of gauge trans-
formations (including time dependent ones) is generated by the secondary
FCC. Tt is easy to verify that the transformations for the momenta follow
from the first equation in (3.54) if we use the relation between velocities
A}m and momenta 7; (the first Hamiltonian equation) which defines the
subspace M where the Lagrangian system lives. To compare the symme-
tries in the Lagrangian and Hamiltonian formulations we need to use these
equations. However, the Lagrangian system lives in the subspace M while
the transformations (3.54) can be viewed as symmetries in the whole phase
space.
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The transformations (3.54) can be made finite in phase space off the
hyper-surface M. Actually the action (3.53) is invariant under the global
transformation (2.123) if simultaneously the momenta are transformed as

m— e el

To prove this we do not need to use any of the Hamiltonian equations. So
this symmetry holds for all trajectories in phase space.

3.3 Generally covariant theories

Here we apply the general results about the relation between Hamiltonian
and Lagrangian symmetries to the bosonic string and gravity ©

3.3.1 The bosonic string

The bosonic string propagating in a D-dimensional flat target space can be
viewed as the theory for D mass-less scalar fields ¢*, p = 0,...,D — 1 on
a 2-dimensional world-sheet spacetime with metric g,g. The action for this
theory can be written in an invariant form with respect to diffeomorphism
transformations as [10]

1 OP* D¢
—_ —— \/ — OL,B__IJ« 2
S 2 / 99 e 9B @2, (3:55)

where % = (t,z) are the coordinates in the 2-dimensional spacetime. To
simplify the formulas we shall skip the target-space index y since it always
appears in a trivial way and can easily be reinserted.

The diffeomorphism transformations which are manifest off mass-shell
symmetries of the action (3.55) are

T = % — &%, 9ap — Gap + Legas, ¢ — ¢+ Leo, (3.56)

where £% is the infinitesimal parameter of the transformations. In addition
the action is invariant with respect to Weyl transformations

gap = P ()gas and ¢ — ¢, (3.57)

To arrive at the first order formulation it is convenient to use the 1 + 1-
decomposition for the world-sheet metric as [3]

Jap = —(N? = N'NV)dE* + 2N ddt + y11da?, (3.58)

In this section we shall use the sign convention (—,+,+,...) for the signature of
space-time as favored by most relativists
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where A and N7 are the lapse and shift functions, respectively. We rise and
lower the spatial index ’1’ using the metric 11 = < of the 1-dimensional
hyper-surface t=constant in 2-dimensional spacetime. Correspondingly we
have

Pl W= V=NV (3.59)

Using (3.56) an easy calculation yields the following explicit transformations
laws for N
NO=—, 3.60
i (3.60)
N'! and ¢ under diffeomorphism transformations z* — 1% — €%, ¢@ =
(€%,¢h):
T = B(EE) = (WY AT - A
+N0'(§1 +/\/1£0) —/\/'O(fl +leo)l,
(€ + NIE) + NV(E+ NI — N(E + N (3.61)
+NUI(§1 +N1§0) —N0(§1 +N1§0)I,
ip = &0+ ¢l

N

Here dot and prime mean the differentiations with respect to the time and
space coordinates z° = ¢t and z! = z, respectively. The transformation law
for the momentum 7 conjugate to ¢,

_a_‘czﬂ'_ 1 4
n= WA (3.62)

follows immediately from (3.61):
om = €0 + (m€h) + (N + N0 ). (3.63)
In the first order Hamiltonian formulation the action (3.55) takes the form
S = / (1 — N, )dzdt, (3.64)

where the Lagrangian multipliers N'® are just the functions defined in (3.59,3.60)
(that is they are the lapse and shift functions up to /7). The constraints

1
W= g, amd =g (369

form a closed algebra, i.e. are FCC, with respect to the standard Poisson
brackets {¢(z), 7(y)} = d(z,y):
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(@ mW} = )5 0) = )5 ey) =01
5 5 (3.66)
ol@m)} = w@)59.9) =) g 0@ y).

Rewriting these relations in terms of the light-cone constraints vy + v, we
immediately recognize them as Virasoro algebra [4].
Concerning the symmetries we first note that the Weyl symmetry (3.57)
takes the trivial form in the Hamiltonian formalism
ol NN e N
Vi s Vi
so that all variables in the first order action are Weyl invariant.

Because one of the constraints, namely 7, is quadratic in the momen-
tum, we need to combine gauge and reparametrization transformations as
in (3.20) to recover the diffeomorphism invariance (3.61,3.62) in the Hamil-
tonian formalism. For the bosonic string the explicit transformation (3.20)
reads

— N1, (3.67)

ON® = A0 VXD — XY VAT — AONY

SN = A NVAL - NIV 4 VU0 - A0NY (3.68)
0p = (p—Nm = N'¢)E+mX0 + §A,
om = (7= (N + N'1))E+ (¢'A°) + (rA1),

where we need to assume that the parameters are related by the condition
(3.22). This condition is solved if we express the parameters &, X%, \! in
terms of two independent parameters as

N
Vel

and then we immediately recognize the transformations (3.68) as diffeomor-
phism transformations (3.61,3.62) without using the Hamiltonian equations.
Once again we emphasize that the transformations (3.68) are infinitesimal
symmetry transformations on the whole phase space whereas the transfor-
mations (3.61,3.62) are applicable only to trajectories on M.

As a first step toward exponentiating the infinitesimal transformations
(3.68), i.e. make them finite, we should check their algebra. Using the
formulas for the particular choice (3.69) of parameters it easy to find that
the commutator of two subsequent transformations fg,)\ =] (E), where E =
(€9, €1) becomes

£=¢,  N=N%="72 M=+ N, (3.69)

—

1), ()] = 1(Lz€) — 1,
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completely off mass shell. Hence the algebra of transformations (3.68) forms
a (infinite dimensional) Lie-algebra even off the subspace M.

The last remark concerns the connection between the constraints and the
equations of motion for the string theory. Calculating the first functional
derivative of the constraints with respect to the canonical variables we see
that the B and E coefficients in (3.34) are

BO = E1 = (ﬁ; y Bl = EO = 7Ty, (370)
while the D and F coefficients vanish. Then the egs.(3.37) reduce to
$PEM(¢,) =0 and m'EM(d,) =0 (3.71)

where p is the target-space index. From these equations we cannot con-
clude that all egs. of motion should be satisfied. However, they put certain
restrictions on the allowed EM (¢). Since the coefficients F' are equal zero
(the constraints do not involve any spatial derivatives of the momenta) the
requirement that the constraints are satisfied everywhere and for any foli-
ation does not tell us anything about the eqs. of motion EM(w)=0. We
will see in the next section that the interconnection theorem, which we just
discussed, is much more interesting in gravity.

3.3.2 Gravity

General relativity without matter has the action 7

S = / Ry/—gd'z (3.72)

and is invariant with respect to coordinate (or diffeomorphism) transforma-
tions, the infinitesimal form of which read

% — % — &9, 9o = Gap + Legas- (3.73)
Rewriting the metric gog in the 3 + 1-split form [3]
ds? = —(N? = NiNDYdt? + 2N;dz'dt + v;jda’ da? (3.74)

where N is the lapse function, A; are the shift functions, N; = v;;N7, and
7i; is the metric of the 3-dimensional hyper-surface ¥; of constant time ¢,
we derive from (3.73) the following explicit transformations for N'; A%, and

Yij:

ON = (NE) = NHNE) i ANy (€7 + NE)

ONT = (€ H+NE) — (€ +NE)m N+ Ny, (68 + NFe)
_N7ij (Ngo)aj +7ijN7j (Néo) ) (3-75)

oy = (g = Nijj = Nji)€® +) L wreo i

we adapt the sign and units conventions in [13]

7

61



Here the comma denotes ordinary differentiation with respect to the cor-
responding space coordinate, the bar denotes covariant derivative in the 3
dimensional space ¥; with metric v;;, 7% is the inverse 3-dimensional metric
on ¥, and @)L is the Lie derivative in &;. This Lie derivative is to be taken
in the direction & + N'¢0 = {¢ + N€0Y.

In the first order Hamiltonian formalism the ADM action for pure grav-
ity takes the form 8

S = / (75;; — N*H,)d>zdt, (3.76)

where 7% are the momenta conjugated to 7i; and the 4 Lagrangian multi-
pliers are

NP =N, and Ni=4UN; (3.77)

that is the lapse and shift function. Correspondingly the constraints H, are
[3, 13] .
Ho = Gijur?m" — vy PR, H; = _2'Yij77|]lla (3.78)

where

1
Gijki = ﬁ(%’k’)’jl +Yirvie — Yijver), ¥ = det(vij) (3.79)

is the metric in super-space [13] and ®)R the intrinsic curvature of the
hyper-surface ¥; of constant time ¢. With the help of the fundamental
Poisson brackets

1
(@), 7 ()} = 06 d(.y) = S0F0) + dlofo(a.y)  (3.80)

one checks that the constraints (3.78) are first class [13]

[Ho(e), Holy)} = 9 (2 Hy () 8z, y) — 4 (), (1) s 8, )

ot oyt
[Hila) How)) = () i) (3.81)
(Uia) W)} = M) 0(e.0) — Halw) 3 0(0.0)

(3.82)

Let us note that if we add matter (covariantly coupled to gravity) to (3.72)
then the constraints contain extra pieces, but their algebra remains un-
changed. Another interesting observation is the following: If we use ,/7Ho
instead of Hg as a constraint then the algebra of constraints looks very much

8in this section we denote the constraints by H,, a notation which is widely used in
gravity [13, 8, 9]
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like a natural generalization of the Virasoro algebra (3.66) to four dimen-
sions. It is a nontrivial problem where the diffeomorphism invariance of the
original action (3.72) is hidden in the first order Hamiltonian reformulation
of gravity. There have been various attempts to find this symmetry (see, for
instance [8, 9])

Three of the constraints, namely the H;, are linear in momenta, so they
should generate transformations which coincide with diffeomorphism trans-
formations. This has been realized for time independent transformations
some time ago [6]. However, the fourth constraint, namely Hy, is quadratic
in the momenta and hence cannot generate a symmetry of the correspond-
ing Lagrangian system according to our general results. Only combined
with a compensating transformation does it generate the symmetry we are
looking for. Since the Hamiltonian is zero, this symmetry is exactly the
reparametrization invariance (3.28). Assuming that the parameters in (3.20)
are connected such that the condition (3.22) is satisfied, we can write this off
shell symmetry transformation for gravity in the following explicit manner

N = j\O—NjAO,j-l-N,j)\j,
ONT = N - Nj)‘ivj +Ni’j )jj o N7ij>‘0aj +7ijNaj )\0’
0vij = EM(vij)& + {ij, AN Ha} (3.83)
1
= EM(’)’ij)s + ﬁ(?ffij - ’yij'rr))\o +(3) E/\'Yij

and Ny N L
ol = EM (r'9)¢ + {r'l Xi#; ). (3.84)

Here the 5 parameters &, \* are to be expressed in terms of the four inde-
pendent parameters £% as

£=¢,  N=Ng,  N=g+ N (3.85)

and then it becomes evident that (3.83) is identical to (3.75). Again we
need not use any of the Hamiltonian equations. A rather lengthy calculation
shows that the transformation law one finds for the momenta by using their
definition in terms of ~;;, Ny and (3.75) coincides with (3.84) also off mass
shell.

Thus we found that in gravity the three constraints which are linear in
the momenta generate the diffeomorphism transformations while the forth
constraint Hy does it only in a particular combination with the 'trivial’ trans-
formation (3.18). This nonlinear in momenta constraint itself is responsible
for the origin of the dynamics in M in the super-Hamiltonian reformulation
of gravity.

In gravity the structure coefficients depend on the canonical variables
and one might expect that the algebra of infinitesimal transformations (3.83-
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3.85) cannot close in this case. Fortunately, this expectation is not con-
firmed. In particular, in the formula (3.31) for the A-parameter this ~y-
dependence of the various terms on the right hand side cancels for the con-
crete choice (3.85) for the N-dependence of the parameters A. The price
we pay for that is the explicit dependence of the parameters of transforma-
tions on the Lagrangian multipliers, but not on the canonical variables «, 7.
Starting from the general formulas (3.29-3.31) a straightforward but rather
lengthy calculation shows that the transformations (3.83-3.85) form a Lie
algebra completely off mass shell:

T(m), 1)) =1(Len) =1,  €=(...,€%, n="....n%, (3.86)

where ¢°,¢% and 1°, 7" are defined in (3.85), as it should be for diffeomor-
phisms. The formula (3.86) holds even for paths which are not in M.

There is a deep connection between the constraints and equations of
motion in gravity. Calculating the derivative of the constraints in this case
we shall find that all of the coefficients A, ---, F in (3.34) do not vanish.

In particular, taking into account that the index £k in the formulas
(3.34,3.15) is a composite one, i = (4,k); a,b run over the same spatial
index [ and calculating the derivatives of H,; with respect to m/* and #,
with respect to 7,, we find

Fly = =270k and  DyP* = -Gk, (3.87)

where G™" is the inverse of the superspace-metric, G"plkleij = 65”6;’).
Then the first and last equations in (3.37) take the form

G""*EM (v,,) =0 and ;; EM(n?') = 0. (3.88)

Since the determinants det G and det y are not equal zero the egs. (3.88)
have the unique solution

EM(ynp) =0 and EM(x'') =0. (3.89)

The remaining equations in (3.37) are then automatically fulfilled. Thus, we
see that in general relativity the whole dynamics follows from the require-
ment that the constraints are satisfied everywhere and they are preserved
under diffeomorphisms.
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