
Chapter 3

Lagrangian Symmetries of

First-Class Hamiltonian

Systems

In this 
hapter we show how the well-known lo
al symmetries of Lagrangian

systems, and in parti
ular the di�eomorphism invarian
e, emerge in the

Hamiltonian formulation. We show that only the 
onstraints whi
h are

linear in the momenta generate Lagrangian symmetries. The nonlinear 
on-

straints (whi
h we have, for instan
e, in (super)gravity and string theory)

rather generate the dynami
s. Only in a very spe
ial 
ombination with 'triv-

ial' 
ompensating transformations proportional to the equations of motions

do they lead to symmetry transformations. We reveal the importan
e of

these spe
ial 'trivial' transformations for the inter
onne
tion theorems [7℄

whi
h relate the symmetries of a system with its dynami
s. In proving these

theorems for general Hamiltonian systems, we shall see that there is a deep


onne
tion between the stru
ture of the 
onstraints and the dynami
s. For

example, in string theory some of the Hamiltonian equations and in gravity

all of them are automati
ally follow if we demand that the 
onstraints are

satis�ed everywhere and for any foliation of spa
e time. We apply the de-

veloped formalism to 
on
rete physi
ally relevant systems, e.g. Yang-Mills

theories, the relativisti
 parti
le, the bosoni
 string and gravity.

An interesting appli
ation of the 
onsidered formalism one 
ould �nd in

the quantized theories, in whi
h we are ultimately interested. For example,

in the fun
tional integral approa
h it 
an be advantageous to 
onsider the

phase spa
e integral as 
ompared to the Lagrangian one. This is true in

parti
ular for di�eomorphism invariant theories where the question of the
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orre
t measure in the Lagrangian formulation be
omes nontrivial. On the

other hand, in phase spa
e at least the q; p part of the measure is just the

well-known Liouville measure. But then the question arises whi
h symme-

tries (the ones generated by the 
onstraints alone or the symmetries of the

Lagrangian system) should we use to 
onstru
t the '
orre
t' path integral

or BRST 
harge. Only in the simple 
ases of the relativisti
 parti
le and

supersymmetri
 parti
le it has been demonstrated that the results in both


ases are the same [12℄. For �eld theories it is still an open question whether

the di�erent quantization lead to equivalent results.

To see more 
learly what are the problems with generally 
ovariant sys-

tems we 
onsider the simplest example, namely the relativisti
 parti
le. We

des
ribe the relativisti
 parti
le moving in 4-dimensional Minkowski spa
e-

time by 4 s
alar �elds �

�

(t), � = 0; 1; 2; 3, in 1-dimensional 'spa
etime'. The

a
tion for the relativisti
 parti
le takes the form

S =

1

2

Z

p

g[g

00

_

�

�

_

�

�

�m

2

℄dt (3.1)

where the overdot denotes di�erentiation with respe
t to time t and �

�

�

�
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(�
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)
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�

P
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i

)
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. The m

2

-term maybe viewed as '
osmologi
al 
onstant' in

1-dimensional 'spa
etime'.

S is invariant with respe
t to general 
oordinate transformations (repara-

metrization invarian
e). The in�nitesimal form of these transformations

reads

t! t� �; g

00

! g

00

+ L

�

g

00

; �

�

! �

�

+ L

�

�

�

; (3.2)

where L

�

is the Lie-derivative. Introdu
ing the lapse fun
tion N a

ording

to

g

00

= N

2

(3.3)

we get the following transformation law from (3.2)

Æ�

�

=

_

�

�

� and ÆN =

d

dt

(N �) : (3.4)

The a
tion (3.1) leads to the primary 
onstraint �

1

=�

g

00
=0 whi
h in turn

implies the se
ondary one

�

2

� 
 =

1

2

(�

�

�

�

�m

2

); (3.5)

where the �

�

are the momenta 
onjugated to the �

�

,

f�

�

; �

�

g = Æ

�

�

: (3.6)

These are FCC. The partial gauge �xing F

1

= g

00

�1 = 0 and �

1

form a


onjugate se
ond 
lass pair and 
an be eliminated. Applying the standard

pro
edure one �nds then the following �rst order a
tion

S =

Z

[�

�

_

�

�

�N
℄dt: (3.7)
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The Lagrangian multiplier N a

ompanying the 
onstraint 
 (the super-

Hamiltonian) reintrodu
es the lapse fun
tion.

The a
tion (3.7) is invariant with respe
t to the in�nitesimal o� mass-

shell gauge transformations

Æ

�

�

�

= f�

�

; �
g = �

�

�; Æ

�

�

�

= f�

�

; �
g = 0; Æ

N

=

_

�: (3.8)

With the identi�
ation � = N � these transformations 
oin
ide with the

di�eomorphism transformations (3.4), but only on mass shell:

_

�

�

= N�

�

; _�

�

= 0: (3.9)

This is a general problem with di�eomorphism invariant theories. In�nites-

imal di�eomorphisms involve time derivatives of the 
anoni
al variables

whi
h 
annot be gotten by equal time 
ommutators with FCC. Only on-

shell 
an the transformations generated by the FCC be identi�ed with the

Lagrangian symmetries. On the te
hni
al side the diÆ
ulty of identifying

gauge and di�eomorphism transformations 
an be tra
ed ba
k to the nonlin-

ear dependen
e of the 
onstraint on the momentum. This is the important

di�eren
e between internal and spa
etime symmetries. In the following se
-

tion we shall see how the 
anoni
al transformations generated by the FCC

must be modi�ed to yield all Lagrangian symmetries.

3.1 Hamiltonian vs. Lagrangian symmetries

In this 
hapter I shall 
onsider a general FC system, the �rst order a
tion of

whi
h is given by (2.100). These a
tions des
ribes both systems with a �nite

or in�nite number of degrees of freedom if the following 
ondensed notation

[17℄ is assumed: For systems with a �nite number of degrees of freedom a

and i are dis
rete and for �eld theories they denote both internal indi
es and

spa
e-
oordinates. To distinguish internal from 
omposite indi
es we shall

use tildes for the latter ones. For �eld theories

~

i = fi; ~xg and ~a = fa; ~xg,

where i and a are some dis
rete (internal) indi
es. For a s
alar �eld q

~

i

(t)=

'

x

(t)='(x; t) and for a ve
tor �eld q

~

i

(t) = A

i;x

(t) = A

i

(x; t). We adopt the

Einstein 
onvention and assume summation over dis
rete repeated indi
es

and integration over 
ontinuous ones, for example

�

x

p

i;x

_q

i;x

=

X

i

Z

dx�(x)p

i

(x) _q

i

(x) but �

x

p

x

i

q

ix

=

X

i

�(x)p

i

(x)q

i

(x):

Also, we shall not distinguish q

i;x

and q

i

x

and use the position of the 
on-

tinuous index just to indi
ate when we should integrate. Sometimes it will

be 
onvenient to resolve the 
omposite index

~

i (or ~a) as i; x (or a; x). If
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the system 
ontains fermions then some of the variables p; q;N will be of

Grassmannian type.

In parti
ular the �rst order a
tion reads

S

e

=

Z

�

p

~

i

_q

~

i

�N

~a




~a

�H

�

dt: (3.10)

For FC systems the 
onstraints [1℄ and Hamiltonian form a 
losed algebra

(possibly extended to fermioni
 variables, in whi
h 
ase the algebra is graded

[14℄):

f


~a

; 


~

b

g = t

~


~a

~

b




~


and fH; 


~a

g = t

~

b

~a




~

b

: (3.11)

The stru
ture 
oeÆ
ients may depend on the 
anoni
al variables p; q.

The equation of motion resulting from the variation of the a
tion (3.10)

with respe
t to q; p and the Lagrangian multipliers N

ÆS

e

=

Z

�

Æp

~

i

EM(q

~

i

)� Æq

~

i

EM(p

~

i

)� ÆN

~a




~a

�

dt+ bound. terms (3.12)

are

EM(q

~

i

) � _q

~

i

� fq

~

i

;N

~

b




~

b

+Hg = 0;

EM(p

~

i

) � _p

~

i

� fp

~

i

;N

~

b




~

b

+Hg = 0; (3.13)




~a

= 0:

We use the abbreviations EM(q) and EM(p) for the equations of motion.

Of 
ourse, on mass shell we have EM =0, but o� mass shell either EM(q)

or EM(p) (or both) does not vanish.

To go from the Hamiltonian to the Lagrangian formalism we should

express the momenta in terms of the velo
ities via the Hamiltonian equations

EM(q

~

i

) = 0. Thus not all o� mass-shell traje
tories of the Hamiltonian

system 
an be 
onsidered in the Lagrangian formalism, but only those for

whi
h this equations hold. Hen
e one 
an say that the Lagrangian system

lives only in the subspa
e M of the 'extended phase spa
e' de�ned by the


onditions

M : EM(q) = _q

~

i

� fq

~

i

;N

~

b




~

b

+Hg = 0: (3.14)

The a
tion (3.10) invariant (up to boundary terms) with respe
t to the

in�nitesimal transformations generated by the 
onstraints if the Lagrangian

multipliers are transformed simultaneously [11, 2℄

Æ

�

q

ix

= fq

ix

; �

~

b




~

b

g;

Æ

�

p

x

i

= fp

x

i

; �

~

b




~

b

g;

Æ

�

N

~a

=

_

�

~a

� �

~

b

N

~


t

~a

~


~

b

� �

~

b

t

~a

~

b

:

(3.15)

The parameters �

~a

= �

a

(N ; ~x; t) are the parameters of the in�nitesimal
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transformations. The order in whi
h � enters in (3.15) is important if some

of the variables are of Grassmannian type. We shall only 
onsider the 
ase

when the parameters � depend expli
itly on spa
etime 
oordinates and La-

grangian multipliers, sin
e this suÆ
es to 
over all known physi
ally relevant

theories

1

. Be
ause of thisN -dependen
e we should keep � inside the Poisson

bra
ket even for purely bosoni
 theories sin
e if we 
al
ulate the 
ommuta-

tor of two subsequent in�nitesimal transformations, then � of the se
ond

transformation will depend on q; p if the stru
ture 
onstants depend on the


anoni
al variables.

It is not diÆ
ult to see that the variation of the a
tion (3.10) under these

transformations leads only to the boundary terms

Æ

�

S =

�

p

~

i

Æ

�

q

~

i

� �

~a




~a

�

j

t

f

t

i

: (3.16)

This term 
an be removed even if the parameters � do not vanish at the

boundaries if we add to the a
tion the total derivative of some fun
tion

Q(p; q) whi
h satis�es the equation

ÆQ

Æq

~

i

Æ

�

q

~

i

+

ÆQ

Æp

~

i

Æ

�

p

~

i

= �

~a




~a

� p

~

i

Æ

�

q

~

i

;

The question whi
h naturally arise here is the following: do the symmetry

transformations (3.15) 
orrespond to Lagrangian symmetries, that is are

they, for instan
e, the di�eomorphism transformations in general relativity

and string theory?

As we shall see below the answer is no if some 
onstraints are nonlinear

in the momenta. The reason is that the transformations (3.15) generated

by a nonlinear 
onstraint take a traje
tory on M away from it and the

transformed traje
tory 
an not be viewed as a traje
tory of the Lagrangian

system.

A
tually the set of in�nitesimal o� mass-shell transformations whi
h

leave the �rst order a
tion invariant is mu
h bigger than (3.15). Any in-

�nitesimal transformation (Æq; Æp; ÆN ) orthogonal to the (fun
tional) gra-

dient rS = (�EM(p); EM(q);�C) leaves the a
tion invariant [5, 31℄ , as


an be easily seen from (3.12). Hen
e we 
ould add to the transformations

generated by the 
onstraints for example any transformation of the form

Æq

~

i

= EM(q

~

j

)�

~

i

~

j

+EM(p

~

j

)�

~

j

~

i

;

Æp

~

i

= EM(p

~

j

)�

~

j

~

i

+EM(q

~

j

)�

~

j

~

i

;

ÆN

~a

= 0;

(3.17)

1

In prin
iple, we 
ould 
onsider more general transformations for whi
h � would also

depend on the 
anoni
al variables. Then �rst order a
tion is also invariant with respe
t

to in�nitesimal transformations generated by the 
onstraints if the N

~a

are transformed

as Æ

�

N

~a

= �

t

�

~a

(q; p; t)� �

~

b

N

~


t

~a

~


~

b

� �

~

b

t

~a

~

b

�N

~

b

f


~

b

; �

~a

g � fH;�

~a

g:
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where � are arbitrary 'matri
es' (kernels) and the �; � are antisymmetri
.

Generi
ally su
h transformations are nonlo
al, and they exist for all systems

even for those without any symmetries.

We will show that in all theories 
ontaining only one nonlinear 
onstraint

(e.g. gravity and string theory) we need only very spe
ial transformations

from (3.17), namely

Æ

�

q

ix

= EM(q

ix

)�

x

and Æ

�

p

x

i

= EM(p

x

i

)�

x

(3.18)

to re
over all Lagrangian symmetries. In the general 
ase with several non-

linear 
onstraints, e.g. in supergravity, one needs extra transformations from

(3.17).

The in�nitesimal transformations (3.18) are not important on their own,

but in a very spe
ial 
ombination with the transformations (3.15) generated

by the FCC they lead to physi
ally meaningful symmetries. To re
over the

Lagrangian symmetries we 
onsider the 
ombined transformations

^

I

�;�

F (q; p;N ) = F (

^

I

�;�

q;

^

I

�;�

p;

^

I

�;�

N );

^

I

�;�

=

^

1 + Æ

�;�

+ � � � ; (3.19)

where

Æ

�;�

q

ix

= EM(q

ix

)�

x

+ fq

ix

; �

~

b




~

b

g;

Æ

�;�

p

x

i

= EM(p

x

i

)�

x

+ fp

x

i

; �

~

b




~

b

g; (3.20)

Æ

�;�

N

~a

=

_

�

~a

� �

~

b

N

~


t

~a

~


~

b

� �

~

b

t

~a

~

b

:

The number of fun
tions (�; �

�

) whi
h appear here is equal to the number

of 
onstraints (per point of spa
e) plus one. This seems strange sin
e for

all 
onstrained theories the number of parameters for the symmetry trans-

formations is equal to the number of 
onstraints. To understand why we

need the 'trivial' transformations (3.18) and to reveal the 
onne
tions be-

tween the parameters � and �

�

we derive the 
onditions under whi
h the

transformations (3.20) are Lagrangian symmetries.

For that the transformations (3.20) should leave any traje
tory in the

subspa
e M in this subspa
e. The ne
essary 
onditions for this 
an be

gotten by varying (3.14) as follows

d

dt

(Æ

�;�

q

~

i

) =

Æ

2

(H +N

~e




~e

)

Æp

~

i

Æq

~

j

Æ

�;�

q

~

j

+

Æ

2

(H +N

~e




~e

)

Æp

~

i

Æp

~

j

Æ

�;�

p

~

j

+ fq

~

i

; Æ

�;�

N

~e




~e

g:

(3.21)

The transformations Æq; Æp and ÆN should satisfy the equation (3.21) on

the hyper-surfa
e M.
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Substituting (3.20) into (3.21) this 
ondition simpli�es to

Æ

2

(H +N

~e




~e

)

Æp

x

i

Æp

y

j

EM(p

y

j

)�

y

=

Æ

2




~e

Æp

x

i

Æp

y

j

EM(p

y

j

)�

~e

(3.22)

and imposes a 
ertain fun
tional dependen
e between � and �

a

. If this 
on-

dition is ful�lled the phase spa
e transformations (3.20) 
an be interpreted

as Lagrangian symmetries. At the same time the number of free fun
tions

be
omes equal to the number of 
onstraints as it should be.

Let us note that the 'trivial' transformations (3.17) and (3.18) do not

satisfy (3.22) for o� mass-shell traje
tories if the Hamiltonian H and/or 


~a

are nonlinear in momenta. Hen
e these transformations alone 
annot be

identi�ed with Lagrangian symmetries.

On the other hand, if some 
onstraints 


~a

are nonlinear, then the trans-

formations (3.15) generated by the nonlinear 
onstraints also 
annot sat-

isfy (3.22). Hen
e they 
annot be viewed as Lagrangian symmetries either.

Only when they are taken in a very spe
ial 
ombination with the 'trivial'

transformations 
an one satisfy this 
ondition. In other words, the 'trivial'

transformation bring the traje
tories ba
k toM. Also we shall see that the

transformations (3.15) generate the dynami
s for super-Hamiltonian sys-

tems. Now we would like to 
onsider two important examples:

Gauge Invarian
e. If the 
onstraints are linear and H at least quadrati


in the momenta then only for �

z

= 0 
an equation (3.22) be satis�ed

2

. So,

in this 
ase the transformations (3.15) generated by the 
onstraints alone

are also Lagrangian symmetries. We shall 
all them gauge transformations.

For example, in Yang-Mills theories or the gauged Wess-Zumino-Novikov-

Witten models investigated in the following 
hapter, all 
onstraints are linear

and the Lagrangian gauge transformations are indeed the transformations

(3.15).

Let us add another remark 
on
erning the gauge invarian
e. Assume

that we start with the 
anoni
al Hamiltonian and that N

~a

is 
onjugate to

the primary 
onstraint, now denoted by �

~a

. Then we know, that

_

�

~a

= f�

~a

;H




g = �

ÆH




ÆN

~a

� �


~a

are se
ondary 
onstraints

3

. Let us further assume that the 
onsisten
y 
on-

dition does not lead to tertiary 
onstraints. Thus we know that the 
anoni
al

Hamiltonian must have the form

H




= H +N

~a




~a

2

If H and all 
onstraints are at most linear in momenta, as it is the 
ase for the

Chern-Simons theories, then the Hamiltonian system is strongly degenerate.

3

we have 
hosen the last sign su
h as to agree with the other 
onventions in this 
hapter
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On the other hand we may eliminate the se
ond 
lass pairs N

~a

;�

~a

by set-

ting them to zero. Then we remain with the extended Hamiltonian on the

partially redu
ed phase spa
e

H

e

= H




(N = � = 0) +N

~a




~a

= H




where we denoted the Lagrangian multipliers of the se
ondary FCC again

by N . Let us know de�ne the �rst 
lass 
onstraint

G = �

~a

�

~a

+ �

~a




~a

(3.23)

Now we prove the following

Lemma 2

_

G = f

~a

�

~a

() G generates gauge transformations

Indeed, requiring that the 
oeÆ
ients of the se
ondary 
onstraints in

_

G = _�

~a

�

~a

+

_

�

~a




~a

+ �

~a

f�

~a

;H

p

g+ �

~a

f


~a

;H

p

g

= _�

~a

�

~a

+ (

_

�

~a

� �

~a

� t

~a

~

b

�

�

+ t

�

~

b~


�

~

b

N

~


)


a

(3.24)

vanish, �xes the �

~a

as fun
tion of the �

~a

. This the yields the FCC

G = (

_

�

~a

� t

~a

~

b

�

~

b

� t

~a

~

b~


N

~

b

�

~


)�

a

+ �

~a




~a

(3.25)

whi
h indeed generates the 
orre
t gauge transformations (3.15) for systems

with linear 
onstraints.

Reparametrization invarian
e. Usually the reparametrization invari-

an
e of a Lagrangian system, if it exists, is identi�ed with the gauge invari-

an
e (3.15) in the Hamiltonian formalism. As we shall see they are a
tually

very di�erent and this identi�
ation 
an only be made on mass shell.

If some 
onstraints are nonlinear then it is obvious that the transforma-

tions generated by the 
onstraints only (� = 0) do not satisfy the 
ondition

(3.22) and hen
e are not Lagrangian symmetries. However, in all known

theories with nonlinear 
onstraints H = 0 and the 
ondition (3.22) 
an be

satis�ed if we impose some fun
tional dependen
e between � and � in (3.20).

Thus the nonlinear 
onstraints generate the Lagrangian symmetry only in

very spe
ial 
ombination with 'trivial' �-transformations. The reason for

that is the following: a transformation generated by a nonlinear 
onstraints

takes o� mass-shell traje
tories away from the subspa
e M and the extra


ompensating transformation returns the traje
tories ba
k to it. More ex-

pli
itly taking �

~e

to be �

ez

= N

ez

�

z

in (3.22) we redu
e this equation to

N

ez

(�

y

� �

z

)

Æ

2




ez

Æp

x

i

Æp

y

j

EM(p

y

j

) = 0: (3.26)
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One sees at on
e that if

Æ

2




ez

Æp

x

i

Æp

y

j

� Æ(z � y) (3.27)

then even for nonlinear 
onstraints the equation (3.26) is satis�ed o� mass

shell (EM(p) 6= 0). From that it follows immediately that the transfor-

mations (3.20) with �

ez

= N

ez

�

z

are Lagrangian symmetries if H = 0.

We shall 
all the 
orresponding invarian
e reparametrization invarian
e:

^

R

�

=

^

I

�;�

ez

=N

ez

�

z

. The expli
it form of the reparametrization transfor-

mations read

Æ

�

q

ix

= _q

ix

�

x

+ (�

y

� �

x

)fq

ix

;N

by




by

g

Æ

�

p

x

i

= _p

x

i

�

x

+ (�

y

� �

x

)fp

x

i

;N

by




by

g (3.28)

Æ

�

N

ax

= (N

ax

�

x

)

�

� �

y

N

by

N


z

t

ax


z;by

:

These transformations are the 
orre
t ones for theories with non-linear 
on-

straints. For example, for the relativisti
 parti
le the transformations (3.28)

(and not the gauge transformations (3.8) generated by the FCC alone) 
o-

in
ide with (3.4) on M.

Algebra of transformations Clearly, the in�nitesimal transformations


an only be exponentiated to �nite ones if they for a 
lose algebra, that is the


ommutator of two subsequent transformations should be a transformation

of the same type. So let us 
al
ulate the result for the 
ommutator of

two subsequent in�nitesimal transformations (3.20) with parameters �

1

; �

1

and �

2

; �

2

, respe
tively. For an arbitrary algebrai
 fun
tion F (q; p) of the


anoni
al variables a rather lengthy but straightforward 
al
ulation yields

the 
ommutator

[

^

I

�

2

�

2

;

^

I

�

1

�

1

℄F

x

(q; p) =

�

ÆF

x

Æq

iz

EM(q

iz

) + (q ! p)

�

(

_

�

z

1

�

z

2

� �

z

1

_

�

z

2

)

+

�

(�

x

2

� �

y

2

)�

~


1

�N

~


�

x

2

�

y

1

� (1$ 2)

��

fF

x

;

Æ


~


Æq

jy

gEM(q

jy

) + (q ! p)

�

�(�

x

2

�

y

1

� �

x

1

�

y

2

)

�

fF

x

;

ÆH

Æq

jy

gEM(q

jy

) + (q ! p)

�

+ fF

x

;

�

�

~





~


g (3.29)

and 
orrespondingly for the Lagrangian multipliers one has

[

^

I

�

2

�

2

;

^

I

�

1

�

1

℄N

~a

= (

^

I

�

�

� 1)N

~a

+ �

~

d

2

�

~


1

�

_

t

~a

~


~

d

� ft

~a

~


~

d

;N

~e




~e

+Hg

�

�(�

~


2

�

x

1

� �

~


1

�

x

2

)

�

Æ

Æq

ix

(N

~

b

t

~a

~

b~


+ t

~a

~


)EM(q

ix

) + 2(q ! p)

�

;

(3.30)

where we have introdu
ed

�

�

~a

= �

~e

1

�

~

b

2

t

~a

~

b~e

+

Æ�

~a

2

ÆN

~

b

Æ

�

1

N

~

b

�

Æ�

~a

1

ÆN

~

b

Æ

�

2

N

~

b

: (3.31)
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In deriving (3.29,3.30) we used the identities

(�

~


1

�

~

d

2

� �

~


2

�

~

d

1

)(ft

~a

~e~


; 


~

d

g+ t

~

b

~e~


t

~a

~

b

~

d

) = �

~


1

�

~

d

2

(t

~

b

~


~

d

t

~a

~e

~

b

� ft

~a

~


~

d

; 


~e

g);

and

(�

~


1

�

~

d

2

� �

~


2

�

~

d

1

)(ft

~a

~


; 


~

d

g+ t

~

b

~


t

~a

~

b

~

d

) = �

~


1

�

~

d

2

(t

~

b

~


~

d

t

~a

~

b

� ft

~a

~


~

d

;Hg);

whi
h are 
onsequen
es of the Ja
obi identities for ff


~

b

; �

~


1




~


g; �

~e

2




~e

g and for

ffH;�

~


1




~


g; �

~e

2




~e

g.

4

Also we took into a

ount that if the 
anoni
al variables

are transformed, ~q = q +4q and ~p = p +4p, then the Poisson bra
ket of

some quantities A(~q; ~p) and B(~q; ~p) with respe
t to ~q; ~p are 
onne
ted with

the Poisson bra
ket of A(q; p) and B(q; p) with respe
t to the old variables

in �rst order in 4q; 4p in the following manner

fA(~q; ~p); B(~q; ~p)g

~q;~p

= fA(q; p); B(q; p)g

q;p

+

Æ

Æq

~

i

(fA;Bg)4q

~

i

+ (q ! p) +O(4q

2

;4p

2

):

(3.32)

We stress that when we are performing the se
ond transformation in (3.29,3.30)

whi
h follows the �rst one, then we must use the transformed variables. In

parti
ular, instead of �

2

(N ; x; t) we must take �

2

(

^

I

�

1

N ; x; t). This explains

the appearan
e of the last terms in (3.31)

When the stru
ture 
oeÆ
ients t

~a

~

b~


do not depend on the 
anoni
al vari-

ables then

�

� also does not depend on them and

_

t

~a

~

b~


= 0. Thus, in this


ase the 
ommutator of two transformations generated by the FCC only

(� = 0) yields again a transformation generated by the 
onstraints. Hen
e,

if the stru
ture 
oeÆ
ients do not depend on the 
anoni
al variables then

the transformations generated by the 
onstraints form a 
losed algebra o�

mass-shell. On the other hand, if the stru
ture 
oeÆ
ients depend on the


anoni
al variables that does not automati
ally imply that the algebra of

transformations will not 
lose. A
tually, the q; p-dependen
e in the formula

(3.31) for

�

� 
an, in prin
iple, be 
an
eled against an appropriate 
hoi
e of

the N -dependen
e of �. A
tually this takes pla
e for gravity, where some of

the stru
ture 
oeÆ
ients depend on q. Also the last terms in (3.30) vanish

in this 
ase onM and the algebra of transformations generated only by the

FCC is 
losed, but only on M where the Lagrangian system lives.

The algebra of transformations (3.29,3.30) 
an also be 
losed in all rele-

vant 
ases even when � 6= 0 if the �

~

b

and � are related in a 
ertain way. The

resulting transformations are a
tually the transformations 
orresponding to

Lagrangian symmetries when some FCC are nonlinear.

4

For simpli
ity we 
onsider only the bosoni
 
ase from now on.
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An interesting question to whi
h I have no general answer is the follow-

ing: what are the 
onditions to exponentiate the in�nitesimal transforma-

tions to �nite ones. For the relativisti
 parti
le, string and for gravity the

�nite transformations for the 
orresponding Lagrangian systems are just the

familiar symmetries. These �nite symmetries 
an then be formulated in the

Hamiltonian formulation and this way one 
an �nd the �nite transformation

in the �rst order formalism. But in general it is not 
lear whether the 
los-

ing of the algebra of in�nitesimal transformations is suÆ
ient to make them

�nite. I suppose that this 
annot be the 
ase sin
e for a free non-relativisti


parti
le, whi
h very probably does not admit any known �nite lo
al sym-

metry, the transformations (3.20) with � = 0 form a 
losed algebra. This

diÆ
ult and very important question (i.e. for the fun
tional integral) what

are the 
onditions su
h that the transformations 
an be made �nite needs

further investigation.

Constraints and the equations of motion. There is a very interest-

ing and non-trivial 
onne
tion between the equations of motion EM(q) =

EM(p)=0 and the 
onstraints 


~a

=0. Clearly, sin
e _


~a

=0 the 
lassi
al tra-

je
tories will stay on �




. Inversely, in some theories (e.g. gravity) we 
an get

the equations of motions if we only demand that the 
onstraints are ful�lled

for all t (i.e. everywhere) and that the symmetry transformations do not de-

stroy this property. For example, in di�eomorphism invariant theories this

means that we demand that the 
onstraints are valid everywhere and for any


hoi
e of spa
e-like hyper-surfa
es, be
ause the symmetry transformations


an be interpreted as a 
hange of foliation of spa
e-time.

It is very easy to arrive at this 
on
lusion using the developed formalism.

Let us 
onsider how the 
onstraints 
hange under the symmetry transfor-

mations (3.20):

Æ

�;�




~a

=

Æ


~a

Æq

ix

Æ

�;�

q

ix

+

Æ


~a

Æp

x

i

Æ

�;�

p

x

i

=

Æ


~a

Æq

ix

EM(q

ix

)�

x

+

Æ


~a

Æp

x

i

EM(p

x

i

)�

x

+ �

~


t

~

b

~a~





~

b

:

(3.33)

For the known theories the 
onstraints are lo
al in (q; p) and involve only

spa
e derivatives of q up to se
ond and p up to �rst order. It follows then

that the stru
ture of the fun
tional derivative of the 
onstraints have the

form
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Æ


ay

Æq

ix

= A

ia

Æ(x; y) +B

�

ia

�

�y

�

Æ(x; y) +D

��

ia

�

2

�y

�

�y

�

Æ(x; y)

Æ


ay

Æp

x

i

= E

i

a

Æ(x; y) + F

i�

a

�

�y

�

Æ(x; y);

(3.34)

where A;B; : : : are fun
tions of q

y

and p

y

. Substituting (3.34) into (3.33) a

straightforward 
al
ulation yields

Æ

�;�




ay

= ( _


ay

+N

~

b

t

~


~

b;ay




~


+ t

~


ay




~


)�

y

+ �

~


t

~

b

ay;~





~

b

+

�

B

�

ia

EM(q

iy

) + F

i�

a

EM(p

y

i

)

�

��

y

�y

�

(3.35)

+ D

��

ia

�

2

�EM(q

iy

)

�y

�

��

y

�y

�

+EM(q

iy

)

�

2

�

y

�y

�

�y

�

�

:

Now we 
an reformulate our question in the following manner: when 
an the

equations of motion (or some of them) be the 
onsequen
e of the equations




~a

= 0 and Æ

�;�




~a

= 0: (3.36)

The �rst 
ondition just means that the 
onstraints are ful�lled everywhere

and the se
ond one that this statement does not depend on the 
hosen

foliation.

From (3.33) we 
an immediately 
on
lude that the equations of motion


an be derived from (3.36) only if the following ne
essary 
onditions are

satis�ed:

� Some of the 
onstraints should be nonlinear in the momenta, sin
e, as

we showed earlier, only in this 
ase should we use the extra 'trivial'

transformations (and 
onsequently � 6= 0).

� The system should have an in�nite number of degrees of freedom.

Otherwise there are no spatial derivatives of � and the pie
es whi
h

are proportional to the equations of motion are absent.

� The 
onstraints should involve spatial derivatives of the p and/or the q.

Else all 
oeÆ
ients B;F;D in (3.34) vanish and the pie
es proportional

to the equations of motion are again absent.

If we demand that (3.36) holds for arbitrary �, then from (3.33,3.34) we

immediately get the following set of equations

D

��

ia

EM(q

iy

) = 0

B

�

ia

EM(q

iy

) + 2D

��

ia

�EM(q

iy

)

�y

�

= 0

F

i�

a

EM(p

y

i

) = 0

(3.37)
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whi
h 
an be solved to obtain the equations of motion. The equations

of motion whi
h we 
an get from (3.37) depends on the properties of the

matri
es D;B;F . Now we will brie
y review how the general results apply

to parti
ular systems:

Systems with a �nite number of degrees of freedom: In this 
ase no equa-

tions of motion follow from (3.36) even if � 6= 0 sin
e there are no

spatial derivatives of �.

Gauge theories: All of the 
onstraints are linear in the momenta and there-

fore the "trivial" transformations (3.17) are absent. Consequently,

none of the equations of motion 
an be obtained from (3.36).

Bosoni
 string: One 
onstraint is nonlinear in the momenta and hen
e

� 6= 0. The matri
es F;D are identi
ally zero in this 
ase and B 6= 0.

Then only some relations between the EM(q) follow from (3.36).

Gravity: This is the most interesting 
ase. One 
onstraint is nonlinear

and leads to � 6= 0 for the di�eomorphism transformations. The ma-

tri
es F and D are non-singular. As is 
lear from (3.37) all Hamil-

tonian equations follow then from (3.36), that is the whole dynami
s

of general relativity in the Hamiltonian formulation is hidden in the

requirement that the 
onstraints are satis�ed everywhere and for any

foliation. Let us stress that in distin
tion to [7℄ we did not assume

EM(q) = 0. These equations are also 
onsequen
es of eqs. (3.36) and

thus the inter
onne
tion theorem has been proved entirely within the

Hamiltonian formalism.

3.2 Yang-Mills Theories

We have seen that there is a big di�eren
e between systems with internal

symmetries and those whi
h are generally 
ovariant. All 
onstraints in the-

ories in the �rst 
lass are linear and generate the symmetries. The most

important theories with linear 
onstraints are the Yang-Mills theories. In

this se
tion I 
onsider YM theories [1℄ without 
oupling to matter and em-

phasize the role of the 
onstraints [30, 46℄. Pure non-Abelian YM theories

are interesting in their own right and they are non-trivial.

The YM a
tion for the gauge �elds is

S = �

1

4

Z

tr [F

��

F

��

℄d

3

xdt; (3.38)
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where

5

the �eld strength is Lie-algebra valued,

F

��

= �

�

A

�

� �

�

A

�

� i[A

�

; A

�

℄ , A

�

= A

a

�

T

a

, [T

a

; T




℄ = if




ab

T




;

(3.39)

and the a
tion is invariant under lo
al gauge transformations

A

�

�! e

�i�

A

�

e

i�

+ ie

�i�

�

�

e

i�

(3.40)

with � = �

a

(~x; t)T

a

. The in�nitesimal form of these gauge transformations

is

Æ

�

A

a

�

= �(�

�

�

a

+ f

a

b


A

b

�

�




) = �(D

�

�)

a

: (3.41)

The lo
al gauge invarian
e implies generalized Bian
hi identitiesD

�

D

�

F

��

=

0 and renders the system singular. Among the �eld equations D

�

F

��

= 0

there are some 
ontaining se
ond time-derivatives of A,

D

�

F

�i

= 0 , i = 1; 2; 3 (3.42)

and whi
h therefore are dynami
al equations of motion. The others

D

�

F

�0

= D

i

F

i0

or �

m

(A;

_

A) = �

i

F

i0

m

+ f

m

ab

A

a

i

F

i0

b

= 0; (3.43)

where m = 1; : : : ; N=dim(Gauge Group), are Lagrangian 
onstraints. No

further 
onstraints appear sin
e the time derivatives of the �

m

vanish on

a

ount of the �eld equations and the 
onstraints themselves.

The 
anoni
al momenta 
onjugate to the A's are

�

�

a

= �F

0�

a

, fA

a

�

(~x); �

�

b

(~y)g = Æ

a

b

Æ

�

�

Æ(~x � ~y): (3.44)

Sin
e the �eld strength tensor is antisymmetri
 we obtain N primary 
on-

straints

�

m

(A; �) = �

0

m

� 0: (3.45)

After a partial integration the 
anoni
al Hamiltonian is found to be

H =

Z

dx

�

1

2

�

a

i

�

a

i

+

1

4

F

a

ij

F

a

ij

�A

a

0

D

i

�

i

a

�

; (3.46)

and determines the time evolution

_

F = fF;H

p

g , H

p

= H +

Z

d~x u

m

�

m

: (3.47)

We need to 
he
k the 
onsisten
y of the primary 
onstraints:

_

�

m

= f�

m

;H

p

g = 0 =)

~

�

m

= (D

i

�

i

)

m

� 0: (3.48)

5

a; b; : : : denote internal indi
es, �; � : : : spa
e-time indi
es. The T

a

are hermitian

generators and the stru
ture 
onstants f




ab

are totally antisymmetri
.
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These N se
ondary 
onstraints are the generalizations of the Gauss 
on-

straint in ele
trodynami
s.

The only non-trivial Poisson bra
kets of the algebra of 
onstraints are

f

~

�

m

(~x);

~

�

n

(~y)g = f

p

mn

~

�

p

(~x)Æ(~x � ~y): (3.49)

The algebra is 
losed and therefore the 2N 
onstraints (�

m

;

~

�

n

) form a FC

system. Their Poisson bra
kets with H are 
omputed to be

f�

m

;Hg =

~

�

m

� 0 , f

~

�

m

;Hg = �f

p

mn

A

n

0

~

�

p

� 0: (3.50)

Let us now investigate the relation between the Hamiltonian gauge sym-

metries generated by the FCC and the Lagrangian gauge transformations

(3.41). A general 
ombination of the FCC � =

R

(�

m

1

�

m

+ �

m

2

~

�

m

) generates

the 
anoni
al symmetries

ÆA

a

�

= f�;A

a

�

g = Æ

0

�

�

a

1

� Æ

i

�

D

i

�

a

2

Æ�

�

a

= f�; �

�

a

g = Æ

�

i

f




ab

�

b

2

�

i




+

Z

�

m

f�

m

1

; �

m

a

g;

(3.51)

where we have already anti
ipated that �

1

depends on A

0

. From (3.41)

we read o� how the �'s must be 
hosen to 
orrespond to Lagrangian gauge

transformations. We �nd that the parti
ular 
ombination

G = D

0

�

m

�

m

� �

m

~

�

m

(3.52)

generates those transformations. Both primary and se
ondary FCC enter

the Lagrangian gauge transformations similarly as for the CS theory.

Alternatively we 
an introdu
e gauge invariant variables, e.g. the Wilson

loops [53℄, or �x the gauge. To �x the gauge freedom we need 2N gauge �xing


onditions on the phase spa
e variables (A; �). Contrary to the situation in

ele
trodynami
s the gauge �xing in YM theories is rather subtle due to the

Gribov problem. Let F

a

(A

�

) be lo
al gauge �xings (whi
h we assume not

to depend on the momenta). Then the following problem may arise:

There are several �eld A

(j)

�

whi
h are related by �nite gauge transformations

and all of them obey the gauge �xing.

This happens for the Coulomb (ba
kground) gauge 
onditions [28℄. It

already happens for QED

2

on the Eu
lidean torus where an arbitrary gauge

�eld 
an be de
omposed as in (2.118). The lo
al 
ondition �

�

A

�

eliminates

the gauge fun
tion � but does not 
onstrain the q

i

. But 2� and q

i

+2�

are gauge equivalent 
on�guration and this freedom 
annot be �xed by a

lo
al gauge 
onditions. This is an example to a more general situation

whi
h has been proven by Singer [44℄: For 
ompa
ti�ed YM-theories no

global 
ontinuous gauge 
hoi
e of the (lo
al) form F

a

(A) = 0 exists whi
h
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ompletely spe
i�es the gauge. This is due to the nontrivial topologi
al

nature of the �bration A ! C = A=G, where A is the aÆne spa
e of gauge

potentials andG the group of lo
al gauge transformations. For mathemati
al

investigations 
on
erning these stru
tures I refer to [5, 38℄. There were

attempt to 
ir
umvent the Gribov problem by restri
ting the gauge potential

to lie within the Gribov horizon [54℄. Unfortunately, until now all attempts

to make this idea in a fun
tional integration rigorous failed.

Rather then dwelling on the various gauge �xings, their merits and draw-

ba
ks, and to whi
h we 
ome ba
k in the fun
tional quantization of gauge

theories, let me make here some remarks about the variational problem.

The primary FCC �

m

are sort of uninteresting, sin
e the SC pair (�

0

; A

0

)


an easily be eliminated. The Dira
 bra
ket for the remaining variables are

just the Poisson bra
ket.

After this elimination we �nd the �rst order a
tion

S =

Z

h

�

i

a

_

A

a

i

�N

a




a

�

1

2

(�

i

a

�

a

i

+B

i

a

B

a

i

)

i

, 


a

=

~

�

a

= (D

i

�

i

)

a

; (3.53)

with multiplier �elds N

a

. This form of the a
tion is the one whi
h is usually

met in the literature (for example, in gravity one does not keep the momenta


onjugated to the lapse and shift fun
tions in the �rst order a
tion). After

having eliminated one pair of 
anoni
al variables one may wonder how one


an re
over the full set of Lagrangian gauge transformation (3.41). Of 
ourse,

that is exa
tly what we have a
hieved earlier. Indeed, applying (3.15) we

obtain the following symmetry transformations for the system (3.53)

Æ

~

A

~a

= f

~

A

~a

; �

~

b




~

b

g = �(

~

D�)

~a

ÆA

0

~a

= ÆN

~a

=

_

�

~a

� t

~a

~

b~


A

0

~

b

�

~


Æ~�

~a

= f~�

~a

; �

~

b




~

b

g = �f

a

b


~�

bx

�


x

;

(3.54)

where we have set A

a

�

= (A

a

0

;

~

A

a

) and �

i

a

= ~�

a

. These transformations 
or-

respond to symmetries of the 
orresponding Lagrangian system sin
e the


onstraints are linear in the momenta. The transformations (3.54) 
oin
ide

with (3.41) if we identify � = � and hen
e the whole group of gauge trans-

formations (in
luding time dependent ones) is generated by the se
ondary

FCC. It is easy to verify that the transformations for the momenta follow

from the �rst equation in (3.54) if we use the relation between velo
ities

~

A

~a

;

t

and momenta ~�

~a

(the �rst Hamiltonian equation) whi
h de�nes the

subspa
e M where the Lagrangian system lives. To 
ompare the symme-

tries in the Lagrangian and Hamiltonian formulations we need to use these

equations. However, the Lagrangian system lives in the subspa
e M while

the transformations (3.54) 
an be viewed as symmetries in the whole phase

spa
e.
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The transformations (3.54) 
an be made �nite in phase spa
e o� the

hyper-surfa
e M. A
tually the a
tion (3.53) is invariant under the global

transformation (2.123) if simultaneously the momenta are transformed as

� �! e

�i�

�e

i�

:

To prove this we do not need to use any of the Hamiltonian equations. So

this symmetry holds for all traje
tories in phase spa
e.

3.3 Generally 
ovariant theories

Here we apply the general results about the relation between Hamiltonian

and Lagrangian symmetries to the bosoni
 string and gravity

6

3.3.1 The bosoni
 string

The bosoni
 string propagating in a D-dimensional 
at target spa
e 
an be

viewed as the theory for D mass-less s
alar �elds �

�

; � = 0; : : : ;D � 1 on

a 2-dimensional world-sheet spa
etime with metri
 g

��

. The a
tion for this

theory 
an be written in an invariant form with respe
t to di�eomorphism

transformations as [10℄

S = �

1

2

Z

p

�gg

��

��

�

�x

�

��

�

�x

�

d

2

x; (3.55)

where x

�

� (t; x) are the 
oordinates in the 2-dimensional spa
etime. To

simplify the formulas we shall skip the target-spa
e index � sin
e it always

appears in a trivial way and 
an easily be reinserted.

The di�eomorphism transformations whi
h are manifest o� mass-shell

symmetries of the a
tion (3.55) are

x

�

! x

�

� �

�

; g

��

! g

��

+ L

�

g

��

; �! �+ L

�

�; (3.56)

where �

�

is the in�nitesimal parameter of the transformations. In addition

the a
tion is invariant with respe
t to Weyl transformations

g

��

! 


2

(x)g

��

and �! �: (3.57)

To arrive at the �rst order formulation it is 
onvenient to use the 1 + 1-

de
omposition for the world-sheet metri
 as [3℄

g

��

= �(N

2

�N

1

N

1

)dt

2

+ 2N

1

dxdt+ 


11

dx

2

; (3.58)

6

In this se
tion we shall use the sign 
onvention (�;+;+; : : :) for the signature of

spa
e-time as favored by most relativists
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where N and N

1

are the lapse and shift fun
tions, respe
tively. We rise and

lower the spatial index '1' using the metri
 


11

� 
 of the 1-dimensional

hyper-surfa
e t=
onstant in 2-dimensional spa
etime. Correspondingly we

have




11

=

1




; N

1

=

1




N

1

;

p

�g = N

p


: (3.59)

Using (3.56) an easy 
al
ulation yields the following expli
it transformations

laws for

N

0

=

N

p




; (3.60)

N

1

and � under di�eomorphism transformations x

�

! x

�

� �

�

; �

�

=

(�

0

; �

1

):

ÆN

0

= Æ(

N

p




) = (N

0

�

0

)

�

+N

10

(N

0

�

0

)�N

1

(N

0

�

0

)

0

+N

00

(�

1

+N

1

�

0

)�N

0

(�

1

+N

1

�

0

)

0

;

ÆN

1

= (�

1

+N

1

�

0

)

�

+N

10

(�

1

+N

1

�

0

)�N

1

(�

1

+N

1

�

0

)

0

(3.61)

+N

00

(�

1

+N

1

�

0

)�N

0

(�

1

+N

1

�

0

)

0

;

Æ� =

_

��

0

+ �

0

�

1

:

Here dot and prime mean the di�erentiations with respe
t to the time and

spa
e 
oordinates x

0

= t and x

1

= x, respe
tively. The transformation law

for the momentum � 
onjugate to �,

� =

�L

�

_

�

=

p




N

(

_

��N

1

�

0

) (3.62)

follows immediately from (3.61):

Æ� = _��

0

+ (��

1

)

0

+ (N

1

� +N

0

�

0

)�

00

: (3.63)

In the �rst order Hamiltonian formulation the a
tion (3.55) takes the form

S =

Z

(�

_

��N

a




a

)dxdt; (3.64)

where the Lagrangian multipliersN

a

are just the fun
tions de�ned in (3.59,3.60)

(that is they are the lapse and shift fun
tions up to

p


). The 
onstraints




0

=

1

2

(�

2

+ �

02

); and 


1

= ��

0

(3.65)

form a 
losed algebra, i.e. are FCC, with respe
t to the standard Poisson

bra
kets f�(x); �(y)g = Æ(x; y):
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f


i

(x); 


i

(y)g = 


1

(x)

�

�x

Æ(x; y)� 


1

(y)

�

�y

Æ(x; y) i=0,1

f


0

(x); 


1

(y)g = 


0

(x)

�

�x

Æ(x; y)� 


0

(y)

�

�y

Æ(x; y):

(3.66)

Rewriting these relations in terms of the light-
one 
onstraints 


0

� 


1

we

immediately re
ognize them as Virasoro algebra [4℄.

Con
erning the symmetries we �rst note that the Weyl symmetry (3.57)

takes the trivial form in the Hamiltonian formalism

N

0

=

N

p




!


N




p




= N

0

; N

1

=

N

1

p




! N

1

; (3.67)

so that all variables in the �rst order a
tion are Weyl invariant.

Be
ause one of the 
onstraints, namely 


0

, is quadrati
 in the momen-

tum, we need to 
ombine gauge and reparametrization transformations as

in (3.20) to re
over the di�eomorphism invarian
e (3.61,3.62) in the Hamil-

tonian formalism. For the bosoni
 string the expli
it transformation (3.20)

reads

ÆN

0

=

_

�

0

+N

10

�

0

�N

1

�

00

+N

00

�

1

�N

0

�

10

ÆN

1

=

_

�

1

+N

10

�

1

�N

1

�

10

+N

00

�

0

�N

0

�

00

(3.68)

Æ� = (

_

��N

0

� �N

1

�

0

)� + ��

0

+ �

0

�

1

;

Æ� = ( _� � (N

0

�

0

+N

1

�)

0

)� + (�

0

�

0

)

0

+ (��

1

)

0

;

where we need to assume that the parameters are related by the 
ondition

(3.22). This 
ondition is solved if we express the parameters �; �

0

; �

1

in

terms of two independent parameters as

� = �

0

; �

0

= N

0

�

0

=

N

p




�

0

; �

1

= �

1

+N

1

�

0

; (3.69)

and then we immediately re
ognize the transformations (3.68) as di�eomor-

phism transformations (3.61,3.62) without using the Hamiltonian equations.

On
e again we emphasize that the transformations (3.68) are in�nitesimal

symmetry transformations on the whole phase spa
e whereas the transfor-

mations (3.61,3.62) are appli
able only to traje
tories on M.

As a �rst step toward exponentiating the in�nitesimal transformations

(3.68), i.e. make them �nite, we should 
he
k their algebra. Using the

formulas for the parti
ular 
hoi
e (3.69) of parameters it easy to �nd that

the 
ommutator of two subsequent transformations

^

I

�;�

�

^

I(

~

�), where

~

� =

(�

0

; �

1

) be
omes

[

^

I(~�);

^

I(

~

�)℄ =

^

I(L

~�

~

�)�

^

1;
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ompletely o� mass shell. Hen
e the algebra of transformations (3.68) forms

a (in�nite dimensional) Lie-algebra even o� the subspa
e M.

The last remark 
on
erns the 
onne
tion between the 
onstraints and the

equations of motion for the string theory. Cal
ulating the �rst fun
tional

derivative of the 
onstraints with respe
t to the 
anoni
al variables we see

that the B and E 
oeÆ
ients in (3.34) are

B

0

= E

1

= �

0

y

; B

1

= E

0

= �

y

; (3.70)

while the D and F 
oeÆ
ients vanish. Then the eqs.(3.37) redu
e to

�

0�

EM(�

�

) = 0 and �

�

EM(�

�

) = 0 (3.71)

where � is the target-spa
e index. From these equations we 
annot 
on-


lude that all eqs. of motion should be satis�ed. However, they put 
ertain

restri
tions on the allowed EM(�). Sin
e the 
oeÆ
ients F are equal zero

(the 
onstraints do not involve any spatial derivatives of the momenta) the

requirement that the 
onstraints are satis�ed everywhere and for any foli-

ation does not tell us anything about the eqs. of motion EM(�) = 0. We

will see in the next se
tion that the inter
onne
tion theorem, whi
h we just

dis
ussed, is mu
h more interesting in gravity.

3.3.2 Gravity

General relativity without matter has the a
tion

7

S =

Z

R

p

�gd

4

x (3.72)

and is invariant with respe
t to 
oordinate (or di�eomorphism) transforma-

tions, the in�nitesimal form of whi
h read

x

�

! x

�

� �

�

; g

��

! g

��

+ L

�

g

��

: (3.73)

Rewriting the metri
 g

��

in the 3 + 1-split form [3℄

ds

2

= �(N

2

�N

i

N

i

)dt

2

+ 2N

i

dx

i

dt+ 


ij

dx

i

dx

j

; (3.74)

where N is the lapse fun
tion, N

i

are the shift fun
tions, N

i

= 


ij

N

j

, and




ij

is the metri
 of the 3-dimensional hyper-surfa
e �

t

of 
onstant time t,

we derive from (3.73) the following expli
it transformations for N , N

i

, and




ij

:

ÆN = (N �

0

)

�

�N

i

(N �

0

);

i

+N ;

m

(�

m

+N

m

�

0

) ;

ÆN

i

= (�

i

+N

i

�

0

)

�

� (�

i

+N

i

�

0

);

m

N

m

+N

i

;

k

(�

k

+N

k

�

0

)

�N


ij

(N �

0

);

j

+


ij

N ;

j

(N �

0

) ; (3.75)

Æ


ij

= ( _


ij

�N

ijj

�N

jji

)�

0

+

(3)

L

�+N �

0



ij

:

7

we adapt the sign and units 
onventions in [13℄
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Here the 
omma denotes ordinary di�erentiation with respe
t to the 
or-

responding spa
e 
oordinate, the bar denotes 
ovariant derivative in the 3

dimensional spa
e �

t

with metri
 


ij

, 


ij

is the inverse 3-dimensional metri


on �

t

and

(3)

L is the Lie derivative in �

t

. This Lie derivative is to be taken

in the dire
tion � +N �

0

� f�

i

+N

i

�

0

g.

In the �rst order Hamiltonian formalism the ADM a
tion for pure grav-

ity takes the form

8

S =

Z

(�

ij

_


ij

�N

s

H

a

)d

3

xdt; (3.76)

where �

ij

are the momenta 
onjugated to 


ij

and the 4 Lagrangian multi-

pliers are

N

0

= N ; and N

i

= 


ij

N

j

(3.77)

that is the lapse and shift fun
tion. Correspondingly the 
onstraints H

a

are

[3, 13℄

H

0

= G

ijkl

�

ij

�

kl

�

p




(3)

R; H

i

= �2


ij

�

jl

jl

; (3.78)

where

G

ijkl

=

1

2

p




(


ik




jl

+ 


il




jk

� 


ij




kl

); 
 = det(


ij

) (3.79)

is the metri
 in super-spa
e [13℄ and

(3)

R the intrinsi
 
urvature of the

hyper-surfa
e �

t

of 
onstant time t. With the help of the fundamental

Poisson bra
kets

f


ij

(x); �

kl

(y)g = Æ

(k

i

Æ

l)

j

Æ(x; y) =

1

2

(Æ

k

i

Æ

l

j

+ Æ

l

i

Æ

k

j

)Æ(x; y) (3.80)

one 
he
ks that the 
onstraints (3.78) are �rst 
lass [13℄

fH

0

(x);H

0

(y)g = 


ij

(x)H

j

(x)

�

�x

i

Æ(x; y) � 


ij

(y)H

j

(y)

�

�y

i

Æ(x; y)

fH

i

(x);H

0

(y)g = H

0

(x)

�

�x

i

Æ(x; y) (3.81)

fH

i

(x);H

j

(y)g = H

j

(x)

�

�x

i

Æ(x; y) �H

i

(y)

�

�y

j

Æ(x; y):

(3.82)

Let us note that if we add matter (
ovariantly 
oupled to gravity) to (3.72)

then the 
onstraints 
ontain extra pie
es, but their algebra remains un-


hanged. Another interesting observation is the following: If we use

p


H

0

instead of H

0

as a 
onstraint then the algebra of 
onstraints looks very mu
h

8

in this se
tion we denote the 
onstraints by H

a

, a notation whi
h is widely used in

gravity [13, 8, 9℄
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like a natural generalization of the Virasoro algebra (3.66) to four dimen-

sions. It is a nontrivial problem where the di�eomorphism invarian
e of the

original a
tion (3.72) is hidden in the �rst order Hamiltonian reformulation

of gravity. There have been various attempts to �nd this symmetry (see, for

instan
e [8, 9℄)

Three of the 
onstraints, namely the H

i

, are linear in momenta, so they

should generate transformations whi
h 
oin
ide with di�eomorphism trans-

formations. This has been realized for time independent transformations

some time ago [6℄. However, the fourth 
onstraint, namely H

0

, is quadrati


in the momenta and hen
e 
annot generate a symmetry of the 
orrespond-

ing Lagrangian system a

ording to our general results. Only 
ombined

with a 
ompensating transformation does it generate the symmetry we are

looking for. Sin
e the Hamiltonian is zero, this symmetry is exa
tly the

reparametrization invarian
e (3.28). Assuming that the parameters in (3.20)

are 
onne
ted su
h that the 
ondition (3.22) is satis�ed, we 
an write this o�

shell symmetry transformation for gravity in the following expli
it manner

ÆN =

_

�

0

�N

j

�

0

;

j

+N ;

j

�

j

;

ÆN

i

=

_

�

i

�N

j

�

i

;

j

+N

i

;

j

�

j

�N


ij

�

0

;

j

+


ij

N ;

j

�

0

;

Æ


ij

= EM(


ij

)� + f


ij

; �

~a

H

~a

g (3.83)

= EM(


ij

)� +

1

p




(2�

ij

� 


ij

�)�

0

+

(3)

L

�




ij

and

Æ�

ij

= EM(�

ij

)� + f�

ij

; �

~a

H

~a

g: (3.84)

Here the 5 parameters �; �

�

are to be expressed in terms of the four inde-

pendent parameters �

�

as

� = �

0

; �

0

= N �

0

; �

i

= �

i

+N

i

�

0

(3.85)

and then it be
omes evident that (3.83) is identi
al to (3.75). Again we

need not use any of the Hamiltonian equations. A rather lengthy 
al
ulation

shows that the transformation law one �nds for the momenta by using their

de�nition in terms of 


ij

; N

k

and (3.75) 
oin
ides with (3.84) also o� mass

shell.

Thus we found that in gravity the three 
onstraints whi
h are linear in

the momenta generate the di�eomorphism transformations while the forth


onstraintH

0

does it only in a parti
ular 
ombination with the 'trivial' trans-

formation (3.18). This nonlinear in momenta 
onstraint itself is responsible

for the origin of the dynami
s inM in the super-Hamiltonian reformulation

of gravity.

In gravity the stru
ture 
oeÆ
ients depend on the 
anoni
al variables

and one might expe
t that the algebra of in�nitesimal transformations (3.83-
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3.85) 
annot 
lose in this 
ase. Fortunately, this expe
tation is not 
on-

�rmed. In parti
ular, in the formula (3.31) for the

�

�-parameter this 
-

dependen
e of the various terms on the right hand side 
an
els for the 
on-


rete 
hoi
e (3.85) for the N -dependen
e of the parameters �. The pri
e

we pay for that is the expli
it dependen
e of the parameters of transforma-

tions on the Lagrangian multipliers, but not on the 
anoni
al variables 
; �.

Starting from the general formulas (3.29-3.31) a straightforward but rather

lengthy 
al
ulation shows that the transformations (3.83-3.85) form a Lie

algebra 
ompletely o� mass shell:

[

^

I(�);

^

I(�)℄ =

^

I(L

�

�)�

^

1; � = (�

0

; : : : ; �

3

); � = (�

0

; : : : ; �

3

); (3.86)

where �

0

; �

i

and �

0

; �

i

are de�ned in (3.85), as it should be for di�eomor-

phisms. The formula (3.86) holds even for paths whi
h are not inM.

There is a deep 
onne
tion between the 
onstraints and equations of

motion in gravity. Cal
ulating the derivative of the 
onstraints in this 
ase

we shall �nd that all of the 
oeÆ
ients A; � � � ; F in (3.34) do not vanish.

In parti
ular, taking into a

ount that the index k in the formulas

(3.34,3.15) is a 
omposite one, i � (j; k); a; b run over the same spatial

index l and 
al
ulating the derivatives of H

i

with respe
t to �

jk

and H

0

with respe
t to 


np

we �nd

F

l

ijk

= �2


i(j

Æ

l

k)

and D

nplk

0

= �G

nplk

; (3.87)

where G

nplk

is the inverse of the superspa
e-metri
, G

nplk

G

lkij

= Æ

(n

i

Æ

p)

j

.

Then the �rst and last equations in (3.37) take the form

G

nplk

EM(


np

) = 0 and 


ij

EM(�

jl

) = 0: (3.88)

Sin
e the determinants det G and det 
 are not equal zero the eqs. (3.88)

have the unique solution

EM(


np

) = 0 and EM(�

jl

) = 0: (3.89)

The remaining equations in (3.37) are then automati
ally ful�lled. Thus, we

see that in general relativity the whole dynami
s follows from the require-

ment that the 
onstraints are satis�ed everywhere and they are preserved

under di�eomorphisms.
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