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Abstra
t

This S
hrift provides a rather self-
ontained review and some re
ent results

about gauge theories. The �rst part 
ontains an introdu
tion into the 
lassi-


al theory of 
onstrained systems stressing the relation between symmetries

in the Hamiltonian and Lagrangean formulations. Then I present some new

developments about the 
lassi
al and quantum Hamiltonian redu
tion of

Wess-Zumino-Novikov-Witten theories to generalized Toda theories or of

Ka
-Moody algebras to W algebras. In the se
ond part some new results

about 2-dimensional gauge theories and in parti
ular the 
hiral symmetry

breaking and thermodynami
 of su
h models is investigated. In the last


hapter the fun
tional S
hr�odinger equation for fermions in external gauge

�elds is studied and solutions to the time-dependent fun
tional S
hr�odinger

equation and expli
it expressions for the ground state fun
tional are given.
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Chapter 1

Introdu
tion

The mother of �eld theories, namely quantum ele
trodynami
s, is a gauge

theory. All other fundamental �eld theories in physi
s are also invariant

with respe
t to some group of lo
al symmetry transformations. For Yang-

Mills theories these are the gauge transformations, for string theory and

gravity spa
e-time di�eomorphisms and for supersymmetri
 theories lo
al

supersymmetry transformations. Unfortunately we still have a poor un-

derstanding of these 
lasses of �eld theories. What we know best are the

perturbative expansions in powers of Plan
k's 
onstant or the gauge 
ou-

pling 
onstant. This presumably divergent formal power series expansions


ompare well with experimental data. However, we must admit that often

we have to rely on not well understood tri
ks and methods, e.g. on partial

resummations in high temperature QCD, to arrive at meaningful results.

In this S
hrift I shall not be 
on
erned about perturbation expansions

and Feynman diagrams for gauge theories. Rather I shall be more 
on
erned

about algebrai
 stru
tures, symmetries and non-perturbative aspe
ts. The

most general mathemati
al setting for gauge theories is Dira
's 
onstraint

formalism within the Hamiltonian formulation, sin
e any gauge theory is a

theory with �rst 
lass 
onstraints. Indeed, for gauge theories or more gener-

ally singular systems the lo
al symmetry relates di�erent solutions stemming

from the same initial 
onditions and the general solution of the equations

of motion 
ontains arbitrary time-dependent fun
tions. Hen
e there is a


ontinuous set of a

elerations whi
h belong to the same initial position and

velo
ity and we expe
t that all a

elerations 
orrespond only to a subset

of initial 
onditions. This subset is de�ned by the Lagrangian 
onstraints

so that all gauge theories are systems with 
onstraints. In the Hamiltonian

formalism this means that there are 
onditions on the allowed initial mo-

menta and positions. These 
onditions must then be 
onserved by the time

evolution, and this 
onsisten
e requirement may lead to further 
onstraints

[2℄.
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For gauge theories with internal symmetries all 
onstraints are linear in

the momenta and the Hamiltonian does not vanish. The lo
al symmetry

transformations are generated by the �rst 
lass 
onstraints.

For (non-topologi
al) generally 
ovariant theories at least one 
onstraint

is quadrati
 in the momenta and there are 
anoni
al variables for whi
h the

Hamiltonian H itself is a 
onstraint, usually 
alled super-Hamiltonian. This

leads to the question whether H generates the dynami
al time-evolution or

kinemati
 lo
al symmetries as the other �rst 
lass 
onstraints. This question

is very mu
h related to the interpretation of time in generally 
ovariant

theories. We shall see that in super-Hamiltonian systems the 
onstraints

whi
h are nonlinear in the momenta do not generate kinemati
 symmetries

but rather generate the dynami
s of su
h systems.

In a gauge theory the gauge-related 
on�gurations must be identi�ed and

this identi�
ation may be a
hieved either by introdu
ing gauge-invariant

variables or by �xing the gauge freedom. In most 
ases the theory gets

more 
ompli
ated on the redu
ed spa
e of gauge �xed 
on�gurations. In-

deed, re
ent progress has been made in the quantization of nonlinear Toda-

type theories by interpreting them as gauged �xed versions of mu
h simpler

gauged Wess-Zumino-Novikov-Witten theories [1℄. The WZNW ! Toda

Hamiltonian redu
tion is a
hieved by imposing 
ertain �rst 
lass, 
onfor-

mally invariant 
onstraints on the Ka
-Moody (KM) 
urrents of the WZNW

theories. The stru
ture of the symmetry redu
tions to the redu
ed phase

spa
e 
ontains all information of the redu
ed theories. For example, one

easily understands the appearan
e of non-linear W symmetry algebras [23℄

as they are just the proje
tion of linear Ka
-Moody symmetry algebras to

the redu
ed phase spa
e.

There are several alternative ways of quantizing systems with 
onstraints.

In the 
onventional S
hr�odinger representation quantization (see e.g. [11℄)

the dynami
al quantities are expressed in terms of �xed-time 
anoni
al vari-

ables. The quantum �eld theory involves states j	i that are realized in the

S
hr�odinger representation as fun
tionals 	(') of a 
-number �eld '(~x).

The �eld operator a
ts on these states by multipli
ation, while the 
anoni-


al momentum operator a
ts by fun
tional di�erentiation

�(~x)j	i �! '(~x)	(') and �(~x)j	i �!

1

i

Æ

Æ'(~x)

	('):

The �rst 
lass 
onstraints, e.g. the Gauss 
onstraint in quantum ele
trody-

nami
s, should annihilate the physi
al states and this way de�ne the physi
al

Hilbert spa
e.

Sin
e the Lorentz invarian
e is blurred in the non-
ovariant S
hr�odinger

representation the regularization program is not very transparent. This may

explain why this physi
ally intuitive way of quantizing gauge theories has

not been popular in the past. However, at least for pure Yang-Mills theories
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it has been shown that the S
hr�odinger fun
tional 
an be renormalized by

adding the usual 
ounter-terms to the a
tion plus a set of further terms that

are integrals of lo
al polynomials in the �eld and its derivatives over the

boundary of spa
e-time [20, 14, 15, 21℄.

More popular has been the path integral quantization, in parti
ular after

the important 
ontributions of Slavnov, Faddeev and Popov and later of

Be

hi, Rouet, Stora and Tyutin. For 
onstraint systems Faddeev's expres-

sion

Z

D�D�Æ(
)Æ(F )jdetf
; Fgj exp

�

i

�h

Z

t0

t

d�d

3

x(�

_

��H)

�

;

where the F 's are gauge �xing 
onditions for the gauge transformations gen-

erated by the �rst 
lass 
onstraints 
, is the starting point for perturbative

expansions after introdu
ing ghosts and auxiliary �elds to rewrite the deter-

minant and gauge-�xing delta fun
tion. Any serious attempt to 
al
ulate in

the standard model involves Faddeev-Popov ghosts, obje
ts whi
h appear

in 
ovariant gauges in order to guarantee gauge invarian
e. However, when

addressing non-perturbative questions, e.g. the 
hiral symmetry breaking in

gauge theories with fermions or the 
on�nement problem in QCD, one must

be 
autious in summing over all gauge �eld 
on�gurations, in
luding those

with windings. Re
ently arguments have been put forward whi
h show that,

depending on the 
urrent quark masses, 
on�gurations with windings may

be essential in �nite-volume QCD [12℄.

In the se
ond 
hapter of this Habilitationss
hrift I review the 
lassi
al

theory of 
onstraints systems. First we dis
uss singular Lagrangian theories

and in parti
ular the o�-shell Bian
hi identities and show that all gauge

theories are 
onstrained systems. Then some important fa
ts about 
on-

strained Hamiltonian systems are reviewed and dis
ussed. In parti
ular pri-

mary/se
ondary and �rst/se
ond 
lass 
onstraints, the generalized Legendre

transformation and the Dira
-Bergman algorithm are introdu
ed. Then we

dis
uss the redu
ed phase spa
e for �rst and se
ond 
lass systems. Here

the important Dira
 bra
ket for se
ond 
lass (SC) systems, the 
on
ept of

observables and gauge transformations for �rst 
lass (FC) systems and the

�rst order formalism for mixed SC and FC systems are dis
ussed. The de-

veloped formalism is then applied to the Abelian Chern-Simons model with

sour
es [8, 22℄. It has been argued that these type of models 
at
h the

long wavelength features of the Quantum-Hall e�e
t [7, 6℄ and high tem-

perature super
ondu
tors [16℄. Here I am not elaborating on these very

important aspe
ts but rather use these models just to illustrate the general


onstraint formalism. This way the reader may be
ome a
quainted with

the 
onstrained dynami
s by way of example. We will go through Dira
's

program, step by step, and will arrive at a �nite dimensional redu
ed phase

spa
e. Also, we argue that in the '
ompa
t' version the only observables are
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the Wilson-loops.

This review about Hamilton's formalism for 
onstraint systems in the se
ond


hapter is an extended version of a series of le
tures given by the author at

the 1993-Bad Honnef meeting on quantum gravity.

In 
hapter 3 I investigate the relation between Lagrangian symmetries

and the Hamiltonian gauge transformations generated by the �rst 
lass 
on-

straint [9℄. We shall see that for generally 
ovariant theories the latter

must be supplemented by transformations whi
h vanish on-shell in order

to re
over the Lagrangian symmetries. The pre
ise relation between the

gauge transformations in the Lagrangian and Hamiltonian form is derived

for general gauge gauge theories. We will see that the Hamiltonian gauge

transformations whi
h 
an be identi�ed with Lagrangian symmetries form

a 
losed algebra o� mass-shell. Also, we shall see that in general relativ-

ity the whole dynami
s follows from the requirement that the 
onstraints

are satis�ed everywhere and they are preserved under di�eomorphisms [10℄.

More generally, I will dis
uss for whi
h theories the equations of motion

follow from the lo
al symmetries. The general results are then applied to

relevant theories, i.e. Yang-Mills theories, string theory and Einstein`s the-

ory of gravity. Some of the results are new and have not previously been

published. I feel that the results o�ered are somewhat novel.

Re
ently it has been dis
overed that 
onformal Toda �eld theories 
an be

naturally viewed as Hamiltonian redu
tions of the Wess-Zumino-Novikov-

Witten (WZNW) theory [3, 1, 17℄ The main feature of the WZNW theory

is its aÆne Ka
-Moody (KM) symmetry, whi
h underlies its integrability

[13℄. The redu
tion WZNW! generalized Toda theories, whi
h we 
onsider

in 
hapter 4, is a
hieved by imposing 
ertain �rst 
lass and 
onformally

invariant 
onstraints on the KM 
urrents. The 
onstrained theory is a gauge

theory and the gauge transformations are generated by the imposed �rst


lass 
onstraints. The redu
ed phase spa
e 
arries then a 
hiral W-algebra

as its Poisson bra
ket stru
ture. This algebra is related to the phase spa
e

of the generalized Toda theory in the same way as the KM algebra is related

to the phase spa
e of the WZNW theory. This way of looking at Toda

theories has numerous advantages, e.g. it allows for an easy 
onstru
tion of

the general solution to the nonlinear Toda-�eld equation, the W-algebra of

Toda theory arises immediately as the algebra formed by the gauge invariant

polynomials of the 
onstrained KM 
urrents and their derivatives and �nally

there are natural gauges whi
h fa
ilitate the analysis of the the theory.

In se
tion 4.1 we gauge the WZNW theory, study the Hamiltonian stru
ture

of the resulting gauge theory and give Lie-algebrai
 
ondition for the 
on-

straints, whi
h generate the gauge transformations, to be �rst 
lass. Next

we derive the e�e
tive theories for the gauge invariant �elds. These turn

out to be generalizations of the well-known Toda theories. In se
tion 4.2

we give Lie-algebrai
 
onditions for the resulting theories to be 
onformally
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invariant and for the gauge invariant fun
tion to be generated by polynomi-

als. The Poisson bra
ket algebras of these gauge invariant polynomials, the

so-
alled W-algebras have been introdu
ed by Zamolod
hikov [23℄ and are

non-linear extensions of the Virasoro algebra. In the rest of the 
hapter I

present a systemati
 study of the 
onformally invariant Hamiltonian redu
-

tions of the WZNW-theory. In parti
ular we shall 
onstru
t the nonlinear

e�e
tive �eld theories whi
h possess the W algebras as symmetry algebras,

investigate the quantum redu
tion of WZNW theories and �nally derive the

general formula for the 
entral 
harge of the redu
ed 
onformal �eld theo-

ries. The results presented in this 
hapter have been obtained in a series of

papers [3, 17, 1, 4, 18, 5℄ with various 
ollaborators.

It is supposed that 2-dimensional U(1)-gauge theories mimi
 
ertain as-

pe
ts of one-
avor QCD [12℄. In parti
ular, gauge �elds with windings, the

so-
alled instantons, should be responsible for the non-vanishing 
ondensate

in both theories. In 
hapter 5 an idealized intera
ting 2-dimensional U(1)

gauge theory is investigated in detail. For 
ertain values of the 
oupling


onstants the theory redu
es to the gauged Thirring model, the S
hwinger

model or 
onformal �elds 
oupled to a ba
kground 
urvature. Similarly as

QCD the model possess so-
alled �-va
ua, �eld 
on�gurations with wind-

ings and shows a 
hiral symmetry breaking at �nite temperature. Due to

the non-trivial topology of the 
on�guration spa
e a 
areful quantization of

these generalized gauged Thirring models at �nite temperature turns out

to be rather subtle. For example, when introdu
ing a 
hemi
al potential

for the 
onserved U(1)-
harge, there arise ambiguities in the de�nition of

fermioni
 determinants [19℄. Also, the same problem arises if one introdu
es

twisted boundary 
onditions for the Dira
-fermions.

By using fun
tional te
hniques I shall solve the �nite temperature and den-

sity model and in parti
ular derive the exa
t equation of state and expli
it

temperature and 
urvature dependen
e of the 
hiral 
ondensate. It turns

out the 
ondensate vanishes exponentially for high temperature and/or big


urvature of spa
e time. Indeed, we 
an asso
iate an e�e
tive temperature to

the 
urvature and this way arrive at a non-perturbative identi�
ation of the

Hawking temperature in deSitter spa
e time. If the ele
tri
 
harge is set to

zero then the model redu
es to a generalization of the ordinary 
onformally

invariant Thirring model. Besides the Virasoro algebra the model 
ontains

an U(1) Ka
-Moody symmetry algebra. At the end of 
hapter 5 I investi-

gate the 
onformal stru
ture of these un-gauged models and determine the


onformal weights and U(1)-
harges of the fundamental �elds.

In the last 
hapter of this S
hrift I dis
uss the S
hr�odinger pi
ture for

fermioni
 �elds [11℄ in external gauge �elds for both stationary and time-

dependent problems. I give formal results for the ground state and the

solution of the time-dependent S
hr�odinger equation for QED in arbitrary

dimensions, while more expli
it results are obtained in two dimensions. For
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both the mass-less and massive S
hwinger model I give an expli
it expres-

sion for the ground state fun
tional as well as for the expe
tation values of

energy, ele
tri
 and axial 
harge. I also give the 
orresponding results for

non-Abelian �elds. Then I solve the fun
tional S
hr�odinger equation for a


onstant external �eld in four dimensions and obtain the amount of parti
le


reation. Next, the S
hr�odinger equation for arbitrary external �elds for

mass-less QED

2

is solved and a 
areful dis
ussion of the anomalous parti
le


reation rate follow. Finally, I dis
uss some subtleties 
onne
ted with the

interpretation of the quantized Gauss 
onstraint.

At the end of ea
h 
hapter I added the referen
es relevant for that 
hapter.

I am indebted to J. Balog, A. Dettki, L. Feher, P. Forga
s, J. Fr�ohli
h,

C. Kiefer, E. Mottola, V. Mukhanov, L. O'Raifeartaigh, D. Ruelle, I. Sa
hs,

M.V. Saveliev, E. Seiler, C. S
hmid, R. Stora, N. Straumann and I. Tsutsui

for dis
ussions and 
ollaborations. This work has been supported by the

Swiss National Foundation.
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