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Abstract

This Schrift provides a rather self-contained review and some recent results
about gauge theories. The first part contains an introduction into the classi-
cal theory of constrained systems stressing the relation between symmetries
in the Hamiltonian and Lagrangean formulations. Then I present some new
developments about the classical and quantum Hamiltonian reduction of
Wess-Zumino-Novikov-Witten theories to generalized Toda theories or of
Kac-Moody algebras to W algebras. In the second part some new results
about 2-dimensional gauge theories and in particular the chiral symmetry
breaking and thermodynamic of such models is investigated. In the last
chapter the functional Schrodinger equation for fermions in external gauge
fields is studied and solutions to the time-dependent functional Schrodinger
equation and explicit expressions for the ground state functional are given.
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Chapter 1

Introduction

The mother of field theories, namely quantum electrodynamics, is a gauge
theory. All other fundamental field theories in physics are also invariant
with respect to some group of local symmetry transformations. For Yang-
Mills theories these are the gauge transformations, for string theory and
gravity space-time diffeomorphisms and for supersymmetric theories local
supersymmetry transformations. Unfortunately we still have a poor un-
derstanding of these classes of field theories. What we know best are the
perturbative expansions in powers of Planck’s constant or the gauge cou-
pling constant. This presumably divergent formal power series expansions
compare well with experimental data. However, we must admit that often
we have to rely on not well understood tricks and methods, e.g. on partial
resummations in high temperature QCD, to arrive at meaningful results.

In this Schrift I shall not be concerned about perturbation expansions
and Feynman diagrams for gauge theories. Rather I shall be more concerned
about algebraic structures, symmetries and non-perturbative aspects. The
most general mathematical setting for gauge theories is Dirac’s constraint
formalism within the Hamiltonian formulation, since any gauge theory is a
theory with first class constraints. Indeed, for gauge theories or more gener-
ally singular systems the local symmetry relates different solutions stemming
from the same initial conditions and the general solution of the equations
of motion contains arbitrary time-dependent functions. Hence there is a
continuous set of accelerations which belong to the same initial position and
velocity and we expect that all accelerations correspond only to a subset
of initial conditions. This subset is defined by the Lagrangian constraints
so that all gauge theories are systems with constraints. In the Hamiltonian
formalism this means that there are conditions on the allowed initial mo-
menta and positions. These conditions must then be conserved by the time
evolution, and this consistence requirement may lead to further constraints

[2].



For gauge theories with internal symmetries all constraints are linear in
the momenta and the Hamiltonian does not vanish. The local symmetry
transformations are generated by the first class constraints.

For (non-topological) generally covariant theories at least one constraint
is quadratic in the momenta and there are canonical variables for which the
Hamiltonian H itself is a constraint, usually called super-Hamiltonian. This
leads to the question whether H generates the dynamical time-evolution or
kinematic local symmetries as the other first class constraints. This question
is very much related to the interpretation of time in generally covariant
theories. We shall see that in super-Hamiltonian systems the constraints
which are nonlinear in the momenta do not generate kinematic symmetries
but rather generate the dynamics of such systems.

In a gauge theory the gauge-related configurations must be identified and
this identification may be achieved either by introducing gauge-invariant
variables or by fixing the gauge freedom. In most cases the theory gets
more complicated on the reduced space of gauge fixed configurations. In-
deed, recent progress has been made in the quantization of nonlinear Toda-
type theories by interpreting them as gauged fixed versions of much simpler
gauged Wess-Zumino-Novikov-Witten theories [1]. The WZNW — Toda
Hamiltonian reduction is achieved by imposing certain first class, confor-
mally invariant constraints on the Kac-Moody (KM) currents of the WZNW
theories. The structure of the symmetry reductions to the reduced phase
space contains all information of the reduced theories. For example, one
easily understands the appearance of non-linear W symmetry algebras [23]
as they are just the projection of linear Kac-Moody symmetry algebras to
the reduced phase space.

There are several alternative ways of quantizing systems with constraints.
In the conventional Schrodinger representation quantization (see e.g. [11])
the dynamical quantities are expressed in terms of fixed-time canonical vari-
ables. The quantum field theory involves states |¥) that are realized in the
Schrodinger representation as functionals ¥(p) of a c-number field ¢(Z).
The field operator acts on these states by multiplication, while the canoni-
cal momentum operator acts by functional differentiation

)

(7)|V) — @(7)¥(p) and 7(7)|¥) — 7 000D

U (p).

The first class constraints, e.g. the Gauss constraint in quantum electrody-
namics, should annihilate the physical states and this way define the physical
Hilbert space.

Since the Lorentz invariance is blurred in the non-covariant Schrodinger
representation the regularization program is not very transparent. This may
explain why this physically intuitive way of quantizing gauge theories has
not been popular in the past. However, at least for pure Yang-Mills theories



it has been shown that the Schrodinger functional can be renormalized by
adding the usual counter-terms to the action plus a set of further terms that
are integrals of local polynomials in the field and its derivatives over the
boundary of space-time [20, 14, 15, 21].

More popular has been the path integral quantization, in particular after
the important contributions of Slavnov, Faddeev and Popov and later of
Becchi, Rouet, Stora and Tyutin. For constraint systems Faddeev’s expres-
sion

/D¢Dﬂ6(7)6(F)| det{y, F'}| exp (% /ttl drd®z(md — 7-[)),

where the F’s are gauge fixing conditions for the gauge transformations gen-
erated by the first class constraints 7y, is the starting point for perturbative
expansions after introducing ghosts and auxiliary fields to rewrite the deter-
minant and gauge-fixing delta function. Any serious attempt to calculate in
the standard model involves Faddeev-Popov ghosts, objects which appear
in covariant gauges in order to guarantee gauge invariance. However, when
addressing non-perturbative questions, e.g. the chiral symmetry breaking in
gauge theories with fermions or the confinement problem in QC D, one must
be cautious in summing over all gauge field configurations, including those
with windings. Recently arguments have been put forward which show that,
depending on the current quark masses, configurations with windings may
be essential in finite-volume QCD [12].

In the second chapter of this Habilitationsschrift I review the classical
theory of constraints systems. First we discuss singular Lagrangian theories
and in particular the off-shell Bianchi identities and show that all gauge
theories are constrained systems. Then some important facts about con-
strained Hamiltonian systems are reviewed and discussed. In particular pri-
mary/secondary and first /second class constraints, the generalized Legendre
transformation and the Dirac-Bergman algorithm are introduced. Then we
discuss the reduced phase space for first and second class systems. Here
the important Dirac bracket for second class (SC) systems, the concept of
observables and gauge transformations for first class (FC) systems and the
first order formalism for mixed SC and FC systems are discussed. The de-
veloped formalism is then applied to the Abelian Chern-Simons model with
sources [8, 22]. It has been argued that these type of models catch the
long wavelength features of the Quantum-Hall effect [7, 6] and high tem-
perature superconductors [16]. Here I am not elaborating on these very
important aspects but rather use these models just to illustrate the general
constraint formalism. This way the reader may become acquainted with
the constrained dynamics by way of example. We will go through Dirac’s
program, step by step, and will arrive at a finite dimensional reduced phase
space. Also, we argue that in the ’compact’ version the only observables are



the Wilson-loops.

This review about Hamilton’s formalism for constraint systems in the second
chapter is an extended version of a series of lectures given by the author at
the 1993-Bad Honnef meeting on quantum gravity.

In chapter 3 I investigate the relation between Lagrangian symmetries
and the Hamiltonian gauge transformations generated by the first class con-
straint [9]. We shall see that for generally covariant theories the latter
must be supplemented by transformations which vanish on-shell in order
to recover the Lagrangian symmetries. The precise relation between the
gauge transformations in the Lagrangian and Hamiltonian form is derived
for general gauge gauge theories. We will see that the Hamiltonian gauge
transformations which can be identified with Lagrangian symmetries form
a closed algebra off mass-shell. Also, we shall see that in general relativ-
ity the whole dynamics follows from the requirement that the constraints
are satisfied everywhere and they are preserved under diffeomorphisms [10].
More generally, I will discuss for which theories the equations of motion
follow from the local symmetries. The general results are then applied to
relevant theories, i.e. Yang-Mills theories, string theory and Einstein‘s the-
ory of gravity. Some of the results are new and have not previously been
published. I feel that the results offered are somewhat novel.

Recently it has been discovered that conformal Toda field theories can be
naturally viewed as Hamiltonian reductions of the Wess-Zumino-Novikov-
Witten (WZNW) theory [3, 1, 17] The main feature of the WZNW theory
is its affine Kac-Moody (KM) symmetry, which underlies its integrability
[13]. The reduction WZNW — generalized Toda theories, which we consider
in chapter 4, is achieved by imposing certain first class and conformally
invariant constraints on the KM currents. The constrained theory is a gauge
theory and the gauge transformations are generated by the imposed first
class constraints. The reduced phase space carries then a chiral W-algebra
as its Poisson bracket structure. This algebra is related to the phase space
of the generalized Toda theory in the same way as the KM algebra is related
to the phase space of the WZNW theory. This way of looking at Toda
theories has numerous advantages, e.g. it allows for an easy construction of
the general solution to the nonlinear Toda-field equation, the W-algebra of
Toda theory arises immediately as the algebra formed by the gauge invariant
polynomials of the constrained KM currents and their derivatives and finally
there are natural gauges which facilitate the analysis of the the theory.

In section 4.1 we gauge the WZNW theory, study the Hamiltonian structure
of the resulting gauge theory and give Lie-algebraic condition for the con-
straints, which generate the gauge transformations, to be first class. Next
we derive the effective theories for the gauge invariant fields. These turn
out to be generalizations of the well-known Toda theories. In section 4.2
we give Lie-algebraic conditions for the resulting theories to be conformally



invariant and for the gauge invariant function to be generated by polynomi-
als. The Poisson bracket algebras of these gauge invariant polynomials, the
so-called Wh-algebras have been introduced by Zamolodchikov [23] and are
non-linear extensions of the Virasoro algebra. In the rest of the chapter 1
present a systematic study of the conformally invariant Hamiltonian reduc-
tions of the WZNW-theory. In particular we shall construct the nonlinear
effective field theories which possess the W algebras as symmetry algebras,
investigate the quantum reduction of WZNW theories and finally derive the
general formula for the central charge of the reduced conformal field theo-
ries. The results presented in this chapter have been obtained in a series of
papers [3, 17, 1, 4, 18, 5] with various collaborators.

It is supposed that 2-dimensional U(1)-gauge theories mimic certain as-

pects of one-flavor QCD [12]. In particular, gauge fields with windings, the
so-called instantons, should be responsible for the non-vanishing condensate
in both theories. In chapter 5 an idealized interacting 2-dimensional U(1)
gauge theory is investigated in detail. For certain values of the coupling
constants the theory reduces to the gauged Thirring model, the Schwinger
model or conformal fields coupled to a background curvature. Similarly as
QCD the model possess so-called #-vacua, field configurations with wind-
ings and shows a chiral symmetry breaking at finite temperature. Due to
the non-trivial topology of the configuration space a careful quantization of
these generalized gauged Thirring models at finite temperature turns out
to be rather subtle. For example, when introducing a chemical potential
for the conserved U(1)-charge, there arise ambiguities in the definition of
fermionic determinants [19]. Also, the same problem arises if one introduces
twisted boundary conditions for the Dirac-fermions.
By using functional techniques I shall solve the finite temperature and den-
sity model and in particular derive the exact equation of state and explicit
temperature and curvature dependence of the chiral condensate. It turns
out the condensate vanishes exponentially for high temperature and/or big
curvature of space time. Indeed, we can associate an effective temperature to
the curvature and this way arrive at a non-perturbative identification of the
Hawking temperature in deSitter space time. If the electric charge is set to
zero then the model reduces to a generalization of the ordinary conformally
invariant Thirring model. Besides the Virasoro algebra the model contains
an U(1) Kac-Moody symmetry algebra. At the end of chapter 5 I investi-
gate the conformal structure of these un-gauged models and determine the
conformal weights and U (1)-charges of the fundamental fields.

In the last chapter of this Schrift T discuss the Schrédinger picture for
fermionic fields [11] in external gauge fields for both stationary and time-
dependent problems. I give formal results for the ground state and the
solution of the time-dependent Schrodinger equation for QED in arbitrary
dimensions, while more explicit results are obtained in two dimensions. For



both the mass-less and massive Schwinger model I give an explicit expres-
sion for the ground state functional as well as for the expectation values of
energy, electric and axial charge. I also give the corresponding results for
non-Abelian fields. Then T solve the functional Schrédinger equation for a
constant external field in four dimensions and obtain the amount of particle
creation. Next, the Schrodinger equation for arbitrary external fields for
mass-less QF D5 is solved and a careful discussion of the anomalous particle
creation rate follow. Finally, I discuss some subtleties connected with the
interpretation of the quantized Gauss constraint.
At the end of each chapter I added the references relevant for that chapter.
I am indebted to J. Balog, A. Dettki, L. Feher, P. Forgacs, J. Frohlich,
C. Kiefer, E. Mottola, V. Mukhanov, L. O’Raifeartaigh, D. Ruelle, I. Sachs,
M.V. Saveliev, E. Seiler, C. Schmid, R. Stora, N. Straumann and I. Tsutsui
for discussions and collaborations. This work has been supported by the
Swiss National Foundation.
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