Summer term 2016

Friedrich-Schiller-University Jena Prof. Andreas Wipf M.Sc. Tobias Hellwig

Will be discussed: 19th week of year

Problems in Supersymmetry

Sheet 5

Problem 17: Spinrotations in 2 dimensions

Take an irreducible representation for the γ -matrices in 2 dimensions and calculate

$$\Sigma^{\mu\nu} = \frac{1}{2i} \gamma^{\mu\nu}$$

Also calculate the group elements $S = \exp(i\omega_{\mu\nu}\Sigma^{\mu\nu}/2)$ generated by Σ . Prove explicitly the identity

$$S^{-1}\gamma^{\rho}S = \Lambda^{\rho}{}_{\sigma}\gamma^{\sigma}, \quad \Lambda = e^{\omega},$$

which was already introduced in problem 13. How does a spinor transform under spin transformation.

Take a chiral representation, for example $\gamma^0 = \sigma_1$ and $\gamma^1 = i\sigma_2$. Let ψ be a chiral spinor,

$$\gamma_*\psi=\pm\psi.$$

Are these constraints compatible with Lorentz invariance? How does a chiral spinor transform under spin transformations? Which lorentz-invariant tensor field can you build out of bilinears of ψ ?

Problem 18: Spinrotations in 4 dimensions

We can choose the chiral representation

$$\gamma_{\mu} = \begin{pmatrix} 0 & \sigma_{\mu} \\ \tilde{\sigma}_{\mu} & 0 \end{pmatrix}, \quad \sigma_{\mu} = (\sigma_0, -\sigma_i), \quad \tilde{\sigma}_{\mu} = (\sigma_0, \sigma_i)$$

for which the infinitesimal spin-rotations have the block-diagonal form

$$\gamma_{\mu\nu} = \begin{pmatrix} \sigma_{\mu\nu} & 0\\ 0 & \tilde{\sigma}_{\mu\nu} \end{pmatrix}.$$

Calculate the matrices $\sigma_{\mu\nu}$ and $\tilde{\sigma}_{\mu\nu}$. What is $\gamma_* = -i\gamma_0\gamma_1\gamma_2\gamma_3$.