Problems in Supersymmetry

Sheet 4

Problem 13: Spin- vs. Lorentz transformations

The earlier introduced matrices

$$
\Sigma^{\mu \nu}=-\Sigma^{\nu \mu}=\frac{1}{2 \mathrm{i}} \gamma^{\mu \nu}
$$

possess the following commutators with the γ-matrices and themselves:

$$
\begin{aligned}
{\left[\Sigma^{\mu \nu}, \gamma^{\rho}\right] } & =\mathrm{i}\left(\eta^{\mu \rho} \gamma^{\nu}-\eta^{\nu \rho} \gamma^{\mu}\right) \\
{\left[\Sigma_{\mu \nu}, \Sigma_{\rho \sigma}\right] } & =\mathrm{i}\left(\eta_{\mu \rho} \Sigma_{\nu \sigma}+\eta_{\nu \sigma} \Sigma_{\mu \rho}-\eta_{\mu \sigma} \Sigma_{\nu \rho}-\eta_{\nu \rho} \Sigma_{\mu \sigma}\right)
\end{aligned}
$$

Let $S(s)$ be the following one-parameter family of transformations

$$
\Gamma^{\rho}(s)=S^{-1}(s) \gamma^{\rho} S(s) \quad \text { with } \quad S(s)=e^{\frac{\mathrm{i} s}{2}(\omega, \Sigma)}
$$

with 'initial value' $S(0)=\mathbb{1}$. Prove that

$$
\Gamma^{\rho}(s)=S^{-1}(s) \gamma^{\rho} S(s)=\left(e^{s \omega}\right)_{\sigma}^{\rho} \gamma^{\sigma}
$$

Set $s=1$ and discuss the resulting relation $S^{-1} \gamma^{\rho} S=\Lambda^{\rho}{ }_{\sigma} \gamma^{\sigma}$ between the matrices

$$
S=e^{\frac{\mathrm{i}}{2}(\omega, \Sigma)} \quad \text { and } \quad \Lambda=e^{\omega}
$$

What type of matrix is Λ ? Prove that $S \rightarrow \Lambda$ is a representation.

Problem 14: Super-Liealgebras and Jacobi-Identities

A super-Liealgebra (graduated algebra) uses the brackets

$$
[A, B\}=C \quad \text { with } \quad[A, B\}=A B-(-1)^{b a} B A
$$

and

$$
a=g(A)= \begin{cases}0 & \text { if } A \text { bosonic } \\ 1 & \text { if } A \text { fermionic }\end{cases}
$$

and similarly for $b=g(B)$. The grade of C is $g(C):=(a+b) \bmod 2$ (\mathbb{Z}_{2} grading).

1. What is the relation between $[A, B\}$ and $[B, A\}$?
2. Prove the super-Jacobi identity

$$
[[A, B\}, C\}+(-1)^{(b+c) a}[[B, C\}, A\}+(-1)^{c(a+b)}[[C, A\}, B\}=0
$$

by considering the four cases $\mathcal{B B B}, \mathcal{F B B}, \mathcal{F F B}$ and $\mathcal{F F \mathcal { F }}$ (\mathcal{B} for a bosonic and \mathcal{F} for a fermionic Operator).
3. Check whether the super-Jacobi identities are fulfilled for the simple superalgebra

$$
\left\{Q, Q^{\dagger}\right\}=2 H, \quad\{Q, Q\}=0=\left\{Q^{\dagger}, Q^{\dagger}\right\}, \quad[H, Q]=0=\left[H, Q^{\dagger}\right]
$$

Problem 15: Equations of motion for super-particle

The action of a supersymmetric particle in flat space has the form

$$
S[q, \psi, \bar{\psi}]=\int d t L(q, \dot{q}, \psi, \dot{\psi}, \bar{\psi}, \dot{\bar{\psi}})
$$

1. Find the corresponding equations of motion.
2. Apply the general result for a system with

$$
L=\frac{1}{2} \dot{q}^{2}-\frac{1}{2}\left(W^{\prime}(q)\right)^{2}+\frac{\mathrm{i}}{2}(\bar{\psi} \dot{\psi}-\dot{\bar{\psi}} \psi)-W^{\prime \prime}(q) \bar{\psi} \psi
$$

where W does not depend on \dot{q}.

Problem 16: On shell susy transformations

The supersymmetry transformations for the degrees of freedom of a superparticle read

$$
\delta q=\varepsilon \psi+\bar{\psi} \bar{\varepsilon}, \quad \delta \psi=-\bar{\varepsilon}\left(\mathrm{i} \dot{q}+W^{\prime}(q)\right), \quad \delta \bar{\psi}=\left(\mathrm{i} \dot{q}-W^{\prime}(q)\right) \varepsilon
$$

1. Prove that the action is invariant.
2. Calculate the commutator of two supersymmetry transformations, $\left[\delta_{1}, \delta_{2}\right]$ on every field q, ψ and $\bar{\psi}$. You may use the equations of motion derived earlier.
