Summer term 2016

Friedrich-Schiller-University Jena Prof. Andreas Wipf M.Sc. Tobias Hellwig

Will be discussed: 16th week of year

Problems in Supersymmetry

Sheet 2

Problem 7: Fermionic vs. Clifford algebra

Show that the fermionic creation/annihilation algebra $\{b_i, b_j^{\dagger}\} = \delta_{ij}$ with i, j = 1, ..., n is equivalent to the Clifford algebra in D = 2n dimensions and that the Fock space representation provides a irreducible representation with $\gamma_{2i-1} = b_i + b_i^{\dagger}$ and $\gamma_{2i} = i(b_i - b_i^{\dagger})$. Note that Lorentz-Transformations transform bosonic/fermionic states into themselves so that even/odd subspaces correspond to Weyl-spinors.

Problem 8: Lorentzalgebra III

Define the following 6 matrices $M_{\mu\nu}$:

$$(M_{\mu\nu})_{\alpha\beta} = -i \left(\eta_{\mu\alpha}\eta_{\nu\beta} - \eta_{\mu\beta}\eta_{\nu\alpha}\right).$$

and calculate the commutators

$$[M_{\mu\nu}, M_{\alpha\beta}].$$

Repeat the same calculations for

$$L_{\mu\nu} = \frac{1}{i} \left(x_{\mu} \partial_{\nu} - x_{\nu} \partial_{\mu} \right) \text{ and } S_{\mu\nu} = \frac{1}{4i} [\gamma_{\mu}, \gamma_{\nu}].$$

What do these results tell you?

Problem 9: Noether charges for Lorentz-Transformations

Calculate the Noether charges for Lorentz-Transformations,

$$\Phi(x) \longrightarrow S\Phi\left(\Lambda^{-1}x\right) = e^{\frac{i}{2}(\omega,S)}\Phi\left(e^{-\frac{i}{2}(\omega,M)}x\right).$$

Problem 10: Conserved current for Dirac field

The Lagrangian density for the Dirac field is $\mathcal{L} = \bar{\psi}(i\partial \!\!/ - m)\psi$. Prove, that

- \mathcal{L} is invariant under phase transformation of ψ . Calculate the Noether current.
- For m = 0 the density \mathcal{L} is invariant under chiral rotations $\psi \to e^{i\alpha\gamma_5}\psi$. Calculate the Noether current.