
Kapitel 2

Instantons

This 
hapter is devoted to the study of (anti)selfdual solutions of the Eu
lidan Yang-Mills equations.

These minimize the Eu
lidean a
tion in a �xed topologi
al se
tor of the 
on�guration spa
e. We

begin with the useful Hobart-Derri
h-Theorem. Based on s
aling arguments one may show that


enrtain eu
lidean �eld equations possess no solutions with �nite a
tion. The we turn to the

Lax-Pairs of Yang-Mills systems. Then we dis
uss the asso
iated linear system with the help of

the powerful Fa
torization theorem of Birkho�. Finally we study instantons on the 4-dimensional

torus.

2.1 Hobart-Derri
k-Theorem

This is rather simple but nevertheless useful theorem whi
h is proven by s
aling arguments only.

We start with the eu
lidean a
tion for a Yang-Mills-Higgs system with �xed ba
kground metri
,
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It varies as follows under variations of the gauge potential and matter �elds,
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We have introdu
ed the gauge 
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The �eld equations are the Yang-Mills equation
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and the Higgs equation
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S
ale instabilities in eu
lidean spa
etimes

The s
ale instability arguments were formulated by Hobart (1963) and Derri
k (1964) and give

ne
essary 
onditions for the existen
e of solutions with �nite eu
lidean a
tion or �nite energy in


at spa
etime. We assume, that

V (�) = �

�

(�; �) � 1

�

2

� 0:

Let � = (A; �) be a solution of the Yang-Mills-Higgs (YMH) �eld equations with �nite a
tion.

Consider the simplest type of perturbation �! �

�

de�ned by

A

�
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�

(x) = �(�x):

This perturbation is a parti
ular di�eomorphism on the matter �elds. However, the metri
 is not

transformed, su
h that the a
tion is not invariant. Indeed, the a
tion s
ales as
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From this interesting relation we draw the following 
onsequen
es: if (A; �) solves the Yang-Mills-

Higgs equation, then

� A pure YM -theory in d < 4 dimensions has only the trivial solution F = 0. Hen
e, there are

no instantons in less then 4 dimensions.

� An eu
lidean solution in 4 dimensions is gauge-equivalent to a pure YM -solution. Indeed, in

4 dimensions
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Su
h a Higgs �eld 
an be gauged to a 
onstant �eld.

� In more as 4 dimensions there are no nontrivial eu
lidean solutions of the YMH equations

with �nite a
tion.
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� In 2 dimensions and for � = 0 the only solution is F = 0 and j�j = 1. This result is relevant

for super
ondu
tivity. There are no vortex solutions with �nite energy and � = 0. Indeed,

for � = 0 it follows that F = 0. Hen
e A 
an be gauged to zero and 4� must vanish. But

the only harmoni
 � with d� 2 L

2

is � =
onstant.

� If j�j = 1 for d < 4, then D� = 0; F = 0. To see that, we note that V

0

vanishes at these

values of � and hen
e D

2
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From (2.3) we 
on
lude that F = 0 and that there are no interesting stati
 solutions with


onstant �.

2.2 Instantons - Introdu
tion

Instantons are solution with �nite a
tion of the pure YM -equations
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in spa
etimes with eu
lidean signature. One furthermore demands, that the �eld strength is dual

or antiselfdual

F =

�

F or F = �

�

F () F

��

= �

1

2

�

����

F

��

:

(2.4)

This 
ondition on the �eld strength is di�eomorphism and Weyl invariant. Be
ause of the Bian
hi-

identity

dF � iA ^ F + iF ^ A = 0

a (anti)selfdual 
on�guration automati
ally solves the Yang-Mills equation.
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alar produ
t for p-forms with values in the Lie algebra of a (
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here one needs the eu
lidean signature
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from whi
h we 
on
lude, that
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where we have used our earlier result, namely that

R

F ^ F is a surfa
e integral. Clearly, the

inequality be
omes an equality if and only if F is (anti)selfdual. If F is (anti)selfdual, then
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Thus, the �eld strength is selfdual, if

~

E =

~

B and it is antiselfdual if

~

E = �

~

B.

Now we shall see, that for 
on�gurations with �nite a
tion the surfa
e integral in (2.6) is a multiple

of an integer, the so-
alled instanton number. The following arguments apply to 
at spa
etime

2

.

Sin
e the eu
lidean a
tion should be �nite, we expe
t, that

F �! 0 or A �! igdg

�1

for jxj �! 1

It follows, that asymptoti
ally
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Let us assume, that G = SU(2) � S

3

. In this 
ase the map

x̂ �! lim

r!1

g(x = rx̂)

is a map from S

3

to S

3

. Continuous maps from S

3

to S

3

may have winding numbers. To understand

what I mean by winding numbers, let us �rst 
onsider the simpler example of an Abelian gauge

potential on R

2

:

R

2
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We demand, that for r ! 1 the potential is pure gauge, A ! igdg
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1
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The Cartesian 
omponents of the gauge potential are
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2

In other 
ompa
t or non-
ompa
t spa
etimes modi�
ations maybe in order
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For large r we have

A � igdg

�1

= nd':

Clearly, if x̂ rotates on
e by a full 
ir
le, the g(') rotates n-times. The winding number of g is

n =

i

2�

I

d' gdg

�1

=

1

2�

2�

Z

0

nd' =

I
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Note that the fun
tion multiplying igdg

�1

in (2.7) has a zero at r = 0. This must be the 
ase,

sin
e the gauge potential must unwind at the origin.

Let us now dis
uss the maps S

3

! SU(2). We parametrize SU(2) a

ording to
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�
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i
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Now we assume, that the boundary (e.g. the sphere at in�nity) over whi
h !

3

is integrated is

parametrized by three parameters �

i

, i.e. x

�
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�
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=
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One 
an show, that the integrand on the right hand side satis�es the identity
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i.e. is proportional to the determinant of the indu
ed metri
 on the boundary. Hen
e we end up

with

I
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Z
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where q is the instanton number. While the point � 
overs the spheres S

3

R

on
e, the ve
tor V

�


an


over the sphere any q number of times, ea
h 
ontributing a 4-dimensional solid angle

R

d

3

� = 2�

2

.
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where � 2 [0; 2�℄ and �; ' 2 [0; �℄. Setting (�

1

; �

2

; �

3

) = ('; �; �) the indu
ed metri
 reads

g

ij
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0

�

n

2

0 0
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2

n' 0

0 0 sin

2
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2

n'

1

A

=)

q

(g
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) = n sin

2
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A short 
al
ulation yields then

Z

q
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) d

3

� = 2n�

2

:

Note, that the group element belonging to V

(n)

is just the n'th power of that belonging to V

(1)

.

Degree of a mapping. The instanton number is the degree of the mapping S

3

! SU(2). The


on
ept of a degree of a mapping is of 
ourse more general and it is helpful to know this generali-

zation when one deals with other dimensions (vorti
es, monopoles, textures). In instanton 
ontext

the following theorem due to Bott is helpful:

Theorem: Any 
ontinuous mapping of S

3

into a simple Lie group G 
an be 
ontinuously deformed

into a mapping into an SU(2) subgroup of G.

Therefore, for a Yang-Mills theory with simple gauge group it is only ne
essary to 
onsider S

3

!

SU(2). As a preparation, we need the following

Theorem: Let M be a orientable 
ompa
t and 
onne
ted d-dimensional manifold and ! a d-form,

su
h that

Z

M

! = 0:

Then ! is exa
t. For a proof see S. Sternberg, Le
tures on Di�erential Geometry, p. 120.

It follows immediately, that the dimension of H

d

(M) (
losed modulo exa
t d forms) is one: Let �

be the 
losed (but not exa
t) volume form and ! another d-form. Then there is a real number �

su
h that

0 =

Z

M

� � �

Z

M

! = 0 =) � = �! + d�;

and hen
e � � !.

LetM and

~

M be two orientable 
ompa
t and 
onne
ted d-dimensional manifolds, ~� a volume form

on

~

M (

R

~� 6= 0) and

f :M �!

~

M

a di�erentiable map. The degree of this map is

deg f =

R

M

f

�

~�

R

~

M

~�

:

(2.9)

The degree is independent of the 
hoi
e of the volume form. Let ~! be another volume form of

~

M
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whi
h we normalize, su
h that it leads to the same volume as ~�. Then ~! = ~� + d

~

�. Re
alling, that

the pullba
k 
ommutes with the exterior di�erential, we have

f

�

~! = f

�

~� + d(f

�

~

�);

whi
h prove the statement. If f and g are homotopi
 to ea
h other, then deg(f) =deg(g). The

following theorem shows, that the degree is an integer:

Theorem: If q is a regular value of f , then f

�1

(q) is a �nite set, and

deg(f) =

X

p2f

�1

(q)

[signature of det(f

�

)

p

℄:

Here det(f

�

)

p

is the determinant of the matrix of the di�erential (f

�

)

p

of f with respe
t to a

positive lo
al 
oordinate system at ea
h p. If f

�1

(q) is empty, then the degree vanishes.

The signature in this formula is 1 if the map p ! q is orientation preserving and it is �1 if the

orientation is reversed.

Let us now return to the instantons. Together with (2.5) we 
on
lude, that the eu
lidean a
tion is

bounded below by the instanton number as follows:

S

YM

�

4�

2

g

2

jqj:

The instanton number q is the integer-valued winding number.

We have got the following pi
ture: The gauge �elds with �nite eu
lidean a
tion must be pure gauge

at in�nity. Hen
e we 
an assign an integer instanton number to any su
h 
on�guration and the


on�guration spa
e de
omposes into homotopy 
lasses 
hara
terized by winding numbers q, the

number of times the S

3


overs the group manifold SU(2). The absolute minimum in ea
h se
tor is

a
hieved by an (anti)selfdual 
on�guration.

To 
ontinue, we need some results about double-null 
oordinates, sin
e in these 
oordinates the

(anti)-selfduality 
ondition takes a parti
ularly simple form. Sin
e we want to deal with the Eu
li-

dean, Minkowskian and ultrahyperboli
 
ases at the same time, we introdu
e the 
omplexi�ed

Minkowski spa
etime with metri


ds

2

= 2

�

dzd~z � dwd ~w

�

(2.10)

and the volume element

� = dz ^ d~z ^ dw ^ d ~w:

(2.11)

The 
oordinate ve
tors �

z

; �

w

; �

~z

; �

~w

form a null-tetrad at ea
h point. A general null tetrad is a

basis of 4�ve
tors fZ;W;

~

Z;

~

Wg su
h that

�(Z;

~

Z) = ��(W;

~

W ) = 1 and �(Z;

~

Z;W;

~

W ) = 1;

where � is the metri
 tensor, and su
h that all the other inner produ
ts vanish. We re
over the

various real sli
es by imposing reality 
onditions on the 
omplex 
oordinates as follows:
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� Eu
lidean real sli
e E:

B =

�

~z w

~w z

�

=

1

p

2

�

x

0

� ix

1

x

2

+ ix

3

�(x

2

� ix

3

) x

0

+ ix

2

�

;

where x

�

are real Cartesian 
oordinates. E is pi
ked out by the reality 
onditions ~w =

� �w; ~z = �z: The normalized matri
es B span SU(2),

�

2

B�

2

=

�

B; det(B) =

1

2

r

2

; r

2

= (x

0

)

2

+ (x

3

)

2

+ (x

1

)

2

+ (x

2

)

2

:

� Minkowski real sli
e M :

B =

�

~z w

~w z

�

=

1

p

2

�

x

0

� x

1

x

2

+ ix

3

x

2

� ix

3

x

0

+ x

1

�

;

with real x

�

. The reality 
onditions are that z; ~z are real and �w = ~w. We have

B = B

y

and detB =

1

2

r

2

; r

2

= (x

0

)

2

� (x

3

)

2

� (x

1

)

2

� (x

2

)

2

:

� Ultrahyperboli
 real sli
e U :

B =

�

~z w

~w z

�

=

1

p

2

�

x

0

� ix

1

x

2

+ ix

3

x

2

� ix

3

x

0

+ ix

1

�

;

with real x

�

. The reality 
onditions are ~z = �z; ~w = �w. The (normalized) matri
es B span

SU(1; 1):

�

1

B�

1

=

�

B; detB =

1

2

r

2

�

3

; r

2

= (x

0

)

2

+ (x

3

)

2

� (x

1

)

2

� (x

2

)

2

:

One should keep in mind that the volume form � (with our 
onvention) is real on E and U but

imaginary on M :

� =

(

dx

0

^ dx

1

^ dx

2

^ dx

3

on E

�dx

0

^ dx

1

^ dx

2

^ dx

3

on U

idx

0

^ dx

1

^ dx

2

^ dx

3

on M.

We shall denote a general 
oordinate system on CM by x

a

. Then

ds

2

= �

ab

dx

a

dx

b

, � = � � dx

0

^ dx

1

^ dx

1

^ dx

3

; � =

p

det(�

ab

):

The exterior produ
t, derivative and Lie derivative are de�ned as in the real 
ase we dis
ussed

earlier. The Hodge dual of a p-form is

�

� =

1

(d� p)!

�

�

ef:::

dx

e

^ dx

f

: : : ;

�

�

ef:::

=

1

p!

��


d:::ef:::

�


d:::

:

For 2-forms in 4 dimensions

�

�

ab

=

1

2

��

ab
d

�


e

�

df

�

ef

;
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and

�

is idempotent. Given a double-null 
oordinate system, for whi
h

g

z~z

= g

z~z

= �g

w ~w

= �g

w ~w

= 1 and ��

z~zw ~w

= 1

we 
an de
ompose a general 1-form and 2-form as

� = (�

z

dz + �

w

dw) + (�

~z

d~z + �

~w

d ~w)

� = (�

zw

dz ^ dw) + (�

~z ~w

d~z ^ d ~w)

+(�

z~z

dz ^ d~z + �

w ~w

dw ^ d ~w + �

z ~w

dz ^ d ~w + �

w~z

dw ^ d~z):

The one-form � de
omposes into �

(1;0)

+ �

0;1)

and the two-form � into �

2;0

+ �

0;2

+ �

1;1

. The

de
omposition depends on the 
hoi
e of 
oordinates, but is invariant under transformations whi
h

preserve the foliation by 
onstant z; w and the foliation by surfa
es of 
onstant ~z; ~w. With the

above formula for the dual one �nds

�

� =

�

�

(1;0)

� �

(0;1)

�

^ !; ! = dz ^ d~z � dw ^ d ~w

and

�

� = (�

zw

dz ^ dw) + (�

~z ~w

d~z ^ d ~w)

�(�

z~z

dw ^ d ~w + �

w ~w

dz ^ d~z + �

z ~w

dz ^ d ~w + �

w~z

dw ^ d~z)

from whi
h follows, that

� = dz ^ dw; ~� = d~z ^ d ~w and ! = dz ^ d~z � dw ^ d ~w

span the spa
e of selfdual 2-forms and

dz ^ d ~w; dw ^ d~z and dz ^ d~z + dw ^ d ~w

span the spa
e of anti-selfdual forms.

The exterior derivative de
omposes into a a 'holomorphi
' and 'antiholomorphi
' pie
e

3

, d = �+

�

�

of two operators,

� = dz�

z

+ dw�

w

;

~

� = d~z�

~z

+ d ~w�

~w

:

(2.12)

All instantons in eu
lidean spa
etime or equivalently on S

4

are known. The general solutions have

been found by Atiyah, Drinfeld, Hit
hin and Manin (ADHM) and depend on 8q � 3 parameters.

The �rst solution has been found by Belavin, Polyakov, Tyupkin and S
hwartz. The BPS instanton

has the form

A = if(r) gdg

�1

; where g =

p

2

r

B

so that

F = if

0

dr ^ gdg

�1

+ i(f � f

2

)d(gdg

�1

)

3

Only on E and U are z;w holomorphi
 
oordinates
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with

gdg

�1

=

1

r

2

�

~zdz � zd~z + ~wdw � wd ~w �2~zdw + 2wd~z

2 ~wdz � 2zd ~w �~zdz + zd~z � ~wdw + wd ~w

�

and

d(gdg

�1

) = �

2dr

r

gdg

�1

+

2

r

2

�

d~zdz + d ~wdw �2d~zdw

2d ~wdz �d~zdz � d ~wdw

�

we obtain

F = i

�

f

0

+

2f(f � 1)

r

�

dr ^ gdg

�1

�

2if(f � 1)

r

2

�

d~zdz + d ~wdw �2d~zdw

2d ~wdz �d~zdz � d ~wdw

�

The last term is anti-selfdual. Hen
e, if

rf

0

+ 2f(f � 1) = 0()

�

r

2

f

�

0

= 2r () f =

r

2

r

2

+ �

2

;

then F is anti-selfdual.

The ansatz

A = if(r) gdg

�1

; g =

p

2

r

B

�1

leads to a selfdual instanton. Indeed,

F = i

�

f

0

+

2f(f � 1)

r

�

dr ^ gdg

�1

�

2if(f � 1)

r

2

�

�d~zdz + d ~wdw 2dzdw

2d~zd ~w d~zdz + d ~wdw

�

is selfdual, if f ful�lls the same equation as above. To 
al
ulate the topologi
al 
harge, we 
al
ulate

F ^ F = �24

�

4

(r

2

+ �

2

)

4

�

2

3

dzd~zdwd ~w;

where the plus (minus) sign holds for the selfdual (anti-selfdual) instanton. Thus we end up with

the following topologi
al 
harge density in eu
lidean spa
etime

trF ^ F = �48�

4

r

3

(�

2

+ r

2

)

4

drd
;

with the plus (minus) sign for the selfdual (anti-selfdual) 
on�guration. Using that

Z

r

3

dr

(r

2

+ �

2

)

4

=

1

12�

4

and

Z

d
 = 2�

2
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this yields

Z

trF ^ F = �8�

2

as required. The above PBS-instantons have instanton number �1. The parameter �

2

'measures'

the s
ale of the instanton. Indeed, a s
ale-transformation a
ting on the instanton solution

A

�

(x; �

2

) �! e

��

A

�

(e

��

x; �

2

) = A

�

(x; e

2�

�

2

)

just s
ales the parameter �. The translations move the 
enter of the instantons away from the

origin and leads to a 5-parameter family of solutions, parametrized by the 
enter of the instanton

and the s
ale parameter. To dis
uss the other 
onformal transformations we �rst dis
uss how the


onformal transformations look like on the 
omplexi�ed Minkowski spa
etime.

The 
omplex 
onformal group: Let x = (x

��

); �; � = 0; 1; 2; 3 be a skew-symmetri
 
omplex

matrix with zero determinant. Su
h a matrix has 6 � 1 = 5 
omplex entries. If x

23

6= 0, x is a

nonzero 
omplex multiple of

x =

�

s� B

�B

t

�

�

with � =

�

0 1

�1 0

�

:

Sin
e det(x) =

�

s� (z~z�w ~w)

�

2

holds true we must demand that s = z~z�w ~w for the determinant

of x to vanish. We may identify the points of CM with the 
omplex skew symmetri
 matri
es with

vanishing determinant if we identify two matri
es who are 
omplex multiples of ea
h other. When

x

23

= 0, then some or all to the spa
e time 
oordinates are in�nite. These points still belong to

the 
ompa
ti�
ation of CM . One easily proves, that

�

����

dx

��


 dx

��

= 8(dx

01

dx

23

� dx

02

dx

13

+ dx

03

dx

12

) = �8 ds

2

;

where ds

2

= dzd~z � dwd ~w is the line element on the 
omplexi�ed Minkowski spa
etime CM . It

follows, that any transformation

x �! ~x = �x�

t

; where � 2 GL(4; C)

indu
es a 
onformal transformation of spa
etime.

Real forms: The real forms of the 
onformal group are obtained by requiring that the transfor-

mations should preserve the 
orresponding real sli
es:

� Eu
lidean sli
e: Be
ause

�

� 0

0 �

�

x

�

� 0

0 �

�

� ��x

the eu
lidean sli
e is invariant if

�

� 0

0 �

�

�

�

� 0

0 �

�

= ���;

that is, if � 2 GL(2; H). The minus sign on the right follows from �

2

= �1.

39



� Minkowski sli
e: Be
ause B = B

y

this sli
e is invariant, if

�

�

0 1

�1 0

�

�

y

=

�

0 1

�1 0

�

;

that is, if � 2 U(2; 2).

� Ultrahyperboli
 sli
e: Be
ause

�

�

1

0

0 �

1

�

x

�

�

1

0

0 �

1

�

� �x

the sli
e is invariant if

�

�

1

0

0 �

1

�

�

�

�

1

0

0 �

1

�

= ��:

In this 
ase the 
onformal group is isomorphi
 to GL(4; R).

The in�nitesimal 
onformal transformation A 2 gl(4; C) in � = e

A

ful�ll the 
onditions

8

<

:

(�

0


 �)A(�

0


 �) = �

�

A on E

(�
 �

0

)A(�
 �

0

) = A

y

on M

(�

0


 �

1

)A(�

0


 �

1

) =

�

A on U .

Tho ea
h A belongs a 
onformal Killing �eld K, whi
h 
an be found by equating Æx to a s
alar

multiple of (Ax+ xA

t

). If we de
ompose A into a 2� 2 blo
k-form,

A =

�

� ���

�

t

�

~

�

�

;

then

ÆB = � + s� + �

0

� B +B �

~

�

t

Æs = tr (s�) + str (B

�1

�); Æ(1) = tr (

~

�) + str (B

�1

�)

where we have used, that

�A+A

t

� = tr (A)� and s � trB

�1

� = �tr (�

t

�B�):

Hen
e, the entries of � generate translations, the entries of � spe
ial 
onformal transformations,

and � and

~

� in�nitesimal rotations and a dilatation. Let us be a bit more pre
ise. We de
ompose

� and

~

� into their tra
e-free parts plus multiples of the identity:

� = �

T

+

1

2

tr (�)�

0

;

~

� =

~

�

T

+

1

2

tr (

~

�)�

0

:

Demanding that Æ(1) = 0 and setting tr (�) = � and writing again � for the tra
e-free �

T

we �nd

ÆB = � + s� �

s

2

tr (B

�1

�)B +

�

2

B + � � B +B �

~

�

t

Æs = s � �+ s � tr (B

�1

�); tr� = tr

~

� = 0
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where, of 
ourse, the last equation follows from the �rst.

We see, that the rotations 
an be represented by a pair (�;

~

�) 2 SL(2; C )� SL(2; C ),

B ! �B and B ! B

~

�

t

; � = e

�

;

~

� = e

~

�

:

The transformations (�;

~

�) and (��;�

~

�) are identi�ed, and the 
omplex rotation group is

�

SL(2; C )� SL(2; C )

�

=Z

2

= SO(4; C):

The generators X(A) of the 
onformal transformations are 
al
ulated via

L

X(A)

� =

d

du

�(X + uAx+ uxA

t

) =) L

X(A)

� � (AX)

ij

�;

ij

;

where �;

ij

is the derivative of � with respe
t to the entry (i; j) of its matrix-valued argument x.

In eu
lidean spa
e we have

� = i�

i

�

i

with real �

i

and similarly for

~

�, so that � and

~

� are in SU(2). Thus, under a rotation

B �! U

1

BU

t

2

;

so that the gauge potential of the BPS-instanton transforms under rotations as

A �! U

1

AU

�1

1

:

This is just a global gauge transformation. We 
on
lude, that the BPS-instanton is invariant under

rotations, up to a global gauge transformation.

Null 2-planes

A 2-plane � in spa
etime is null if �(X;Y ) = 0 for every pair of tangent ve
tors X;Y . With

ea
h � we asso
iate a tangent bive
tor X ^ Y with 
omponents �

ab

= X

[a

Y

b℄

, where X and Y

are independent tangent ve
tors, and the 
orresponding 2-form � =

1

2

�

ab

dx

a

^ dx

b

. The tangent-

bive
tor determines the tangent spa
e to the 2-plane, and is determined by it up to a nonzero

multiple. Now we have the following

Lemma: If � is a null-plane, then �

ab

�

ab

= 0 and � is either selfdual or anti-selfdual.

Proof: Sin
e

�

�

ab

C

b

=

1

2

��

ab
d

�


d

C

b

=

1

2

��

ab
d

A




B

d

C

b

= 0

for every C tangent to � (and hen
e in the span of A and B) and on the other hand

�

ab

C

b

=

1

2

(A

a

B

b

C

b

�B

a

A

b

C

b

) = 0

we must have � �

�

�. But

�

is idempotent whi
h proves, that

�

� = ��. The se
ond statement in

the lemma follows dire
tly from the de�nition of �.

41



We 
all � an �-plane whenever � is selfdual and a �-plane whenever � is anti-selfdual. In double-

null 
oordinates, the surfa
es of 
onstant z; w and the surfa
es of 
onstant ~z; ~w are �-planes. More

generally, sin
e �(�

a

; �

b

) = �

ab

, and a ASD-form has

�

zw

= �

~w~z

= �

z~z

� �

w ~w

= 0

it follows, that a 2-form is anti-selfdual if is orthogonal to the selfdual bive
tors,

�(�

z

; �

w

) = �(�

~z

; �

~w

) = �(�

z

; �

~z

)� �(�

w

; �

~w

) = 0;

and similarly, a 2-form is selfdual if it is orthogonal to the antiselfdual bive
tors. The anti-selfduality


ondition 
an be expressed more 
ompa
tly as the 
onditions

�(L;M) = 0; L = �

w

� ��

~z

; M = �

z

� ��

~w

;

identi
ally in �. Later on � will be interpreted as spe
tral parameter. Let us see, how a right

rotation

~

� =

�

a b


 d

�

a
ts on L;M : Be
ause of

�

~z

0

w

0

~w

0

z

0

�

=

�

~z w

~w z

�

�

t

;

�

�

~z

0

�

w

0

�

~w

0

�

z

0

�

=

�

�

~z

�

w

�

~w

�

z

�

�

�1

we have

L

0

= �

w

0

� ��

~z

0

= (a+ �
)�

w

� (b+ d�)�

~z

M

0

= �

z

0

� ��

~w

0

= (a+ �
)�

z

� (b+ d�)�

tw

:

(2.13)

Hen
e a right rotation maps �

�

to �

�

0

, where

�

0

=

b+ d�

a+ 
�

:

They a
t on the Riemann sphere of �-planes through the origin by M

�

obius transformations.

2.2.1 Lax Pairs and Yang's equation

In double null 
oordinates, the �eld strength

F =

1

2

�

F

z~z

dz ^ d~z + : : :

�

is antiselfdual, if

F

zw

= F

~z ~w

= F

z~z

� F

w ~w

= 0

(2.14)

holds. If we write

D

z

= �

z

� iA

z

; D

~z

= �

~z

� iA

~z

; D

w

= �

w

� iA

w

; D

~w

= �

~w

� iA

~w

;
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then these 
onditions read

[D

z

; D

w

℄ = [D

~z

; D

~w

℄ = [D

z

; D

~z

℄� [D

w

; D

~w

℄ = 0: (2.15)

An equivalent 
onditions is that the Lax pair of operators

L = D

w

� �D

~z

and M = D

z

� �D

~w

should 
ommute for every value of the 'spe
tral parameter' �. This last formulation in terms of a

linear system is 
entral to the the theory of integrability.

Yangs equation:

The �rst two equations in (2.14) are the lo
al integrability 
onditions for the existen
e of two

matrix-valued fun
tions g and ~g su
h that

A

z

= ig

�1

�

z

g; A

w

= ig

�1

�

w

g; A

~z

= i~g�

~z

~g

�1

; A

~w

= i~g�

~w

~g

�1

:

This �elds are determined uniquely by A up to

g �! h(~z; ~w)g and ~g �! ~g

~

h(z; w):

If A is repla
ed by a gauge equivalent potential U

�1

AU + iUdU

�1

, then g and ~g 
an be repla
ed

by gU and U

�1

~g. The matrix

J = g~g

(2.16)

is Yang's matrix. It is determined by A up to the freedom

J �! h(~z; ~w)J

~

h(z; w):

Now we 
an write the remaining ASD-equations in terms of J . Indeed, the �eld strength 
omponent

F

z~z

= i

�

�

z

(~g�

~z

~g

�1

)� �

~z

(g

�1

�

z

g) + [g

�1

�

z

g; ~g�

~z

~g

�1

℄

�

;

is proportional to

~g

�

�

~z

(J

�1

�

z

J)

�

~g

�1

= �

~z

(g

�1

�

z

g)� [g

�1

�

z

g; ~g�

~z

~g

�1

℄ + ~g�

~z

(~g

�1

�

z

~g)~g

�1

if we use the identity

~g�

~z

(~g

�1

�

z

~g)~g

�1

= �

z

(�

~z

~g~g

�1

)

and similarly for F

w ~w

: Thus we �nd

F

z~z

� F

w ~w

= �i~g

n

�

~z

(J

�1

�

z

J)

�

� �

~w

(J

�1

�

w

J)

o

~g

�1

:

Thus, the remaining third ASD equation holds if and only if J satis�es the Yang equation

�

~z

(J

�1

�

z

J)� �

~w

(J

�1

�

w

J) = 0: (2.17)
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Single Instanton: For the BPS-instanton we have

A

z

=

i

2f

�

�~z 2 ~w

0 ~z

�

A

~z

=

i

2f

�

z 0

2w �z

�

A

w

=

i

2f

�

� ~w 0

�2~z ~w

�

A

~w

=

i

2f

�

w �2z

0 �w

�

;

where f = z~z � w ~w + �

2

and one �nds

g =

�

p

f

0

�

�

q

~z

~w

w ~w

�

2

q

~w

~z

(1 +

z~z

�

2

)

�

q

~z

~w

q

~w

~z

1

A

; ~g =

�

p

f

�

p

z

w

�

p

z

w

(1�

w ~w

�

2

)

p

w

z

p

w

z

z~z

�

2

�

:

The Yang matrix is

J =

�

2

f

0

�

q

w ~w

z~z

�(

f

�

2

+ 1)

�

1

�

(

f

�

2

� 1)

q

z~z

w ~w

1

A

; where � =

p

z~zw ~w

�

2

:

Note, that det J = 1.

2.2.2 Birkho�'s Fa
torization Theorem

Let F (') be a smooth 
omplex-valued fun
tion on the unit 
ir
le S

1

= f� = e

i'

g in the 
omplex

�-plane. The Fourier series of F 
an be split into positive- and negative 'frequen
y-parts'

F = f �

~

f; f =

1

X

0

a

j

�

j

;

~

f =

1

X

0

~a

j

�

�j

:

The positive frequen
y part f is the limit of a holomorphi
 fun
tion on the disk j�j < 1 and the

negative frequen
y part

~

f is the limit of a holomorphi
 fun
tion on the exterior j�j > 1, in
luding

the point � =1, where it is regular as a fun
tion of

~

� = 1=�. This splitting of F into the di�eren
e

of f and

~

f is unique, apart from the freedom to apportion the 
onstant term in the Fourier series

between f and

~

f ; that is up to f ! f + 
;

~

f !

~

f + 
 for any 
omplex number 
.

Now we want to �nd the analogous splitting when F takes values in some 
omplex Lie group. In

the 
ase of the multipli
ative group fzjz 6= 0;1g, the problem is as follows: Given a smooth non-

vanishing F on the unit 
ir
le, we must �nd smooth non-vanishing fun
tions f and

~

f on j�j � 1 and

j�j � 1, respe
tively, su
h that f is holomorphi
 for j�j < 1,

~

f holomorphi
 for j�j > 1 (in
luding

1) and

F =

~

f

�1

f on S

1

:

If there is a solution, then

q(F ) =

I

S

1

dF

F

=

I

df

f

�

I

d

~

f

~

f

= 0;
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by Chau
hy's theorem. We used that f and

~

f possess no zeroes in j�j � 1 and j�j � 1, respe
tively.

Thus a fa
torization 
an only exist if the winding number q vanishes. In this 
ase logF is single

valued and we 
an split its Fourier series and then exponentiate.

For any q(F ) 2 Z the fun
tion �

�q

F has zero winding number and 
an therefore be fa
torized.

Thus a non-vanishing smooth fun
tion on the 
ir
le 
an always be written as

F =

~

f

�1

�

q

f; where q = q(F )

and f;

~

f are non-vanishing holomorphi
 fun
tions inside and outside of the unit 
ir
le.

This Birkho� theorem has been extended to other Lie groups by Pressley and Segal (1986). Let us

dis
uss the generalization to GL(n;C). We use the following de�nitions:

The loop group LGL(n;C) of GL(n;C) is the group of smooth maps or loops

F : S

1

�! GL(n;C)

under pointwise multipli
ation. The subsets of loops that are boundary values of holomorphi
 maps

on

fj�j � 1g and fj�j � 1g [ f1g;

respe
tively, will be denoted by LGL

+

(n;C) and LGL

�

(n;C). LGL(n;C) is an in�nite-dimensional

Lie group.

Birkho�'s Theorem: Any loop F 2 LGL(n;C) 
an be fa
torized

F =

~

f

�1

�f

where f 2 LGL

+

(n;C);

~

f 2 LGL

�

(n;C) and � =diag(�

q

1

; : : : :�

q

n

) for some integers q

i

. These

integers are unique up to permutations. For loops with � = 1 the fa
torization is unique up to

f ! 
f and

~

f ! 


~

f for some 
onstant 
 2 GL(n;C).

The theorem holds true if we repla
e GL(n;C) by SL(n;C) (in whi
h 
ase f;

~

f and � are in

SL(n;C) and in parti
ular

P

q

i

= 0) and for polynomials in � and �

�1

or rational fun
tions of �

instead of holomorphi
 fun
tions.

Example 1 : Let w 2 C and put

F =

�

� w

0 �

�1

�

2 SL(2; C ):

Then, whenever w 6= 0, we have the Birkho� fa
torization

F =

~

f

�1

f where

~

f =

�

�

�1

�w

w

�1

0

�

; f =

�

1 0

w

�1

� 1

�

:

However, for w = 0 the fa
torization is F =

~

f

�1

�f with

~

f = f = 1 and � =diag(�; �

�1

).

Example 2 : Suppose that F = CR, where C : C ! GL(n;C) is entire and R is a rational matrix-

valued fun
tion of �. We shall 
onsider the 
ase where all poles of R and all zeros of r = detR lie

inside of the unit 
ir
le. Then, in general, one 
an 
onstru
t the fa
torization with � = 1 expli
itly.
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Sin
e � = 1, the winding number of detF must vanish. Thus r must have an equal number of

poles and zeros in the unit disk. So we assume that

r(�) =

q

Y

1

� � �

i

� � �

i

;

where j�

i

j < 1 and j�

i

j < 1, and that R is holomorphi
 ex
ept at the points �

i

. Furthermore, we

assume that, for ea
h i

� A

i

= R(�

i

) has rank n� 1

� B

i

= lim

�!�

i

(� � �

i

)R(�

i

) exists and has rank 1.

These holds for almost all 
hoi
es of R. For ea
h i, we 
hoose a

i

; b

i

2 C

n

su
h that

a

t

i

A

i

= 0 and b

i

2 Image of B

i

:

The fa
torization is 
onstru
ted by taking

~

f to be of the form

~

f = 1 +

q

X

1

x

i

y

t

i

� � �

i

;

where x

i

; y

i

2 C

n

. We must 
hoose x

i

and y

i

so that f =

~

fCR is holomorphi
 everywhere inside

the unit 
ir
le. For that we must have for ea
h j that

y

t

j

C(�

j

)A

j

= 0;

�

1�

q

X

i=1

x

i

y

t

i

�

j

� �

i

�

C(�

j

)B

j

= 0:

These we 
an satisfy by putting y

t

j

= �

t

j

C

�1

(�

j

) and by 
hoosing the x

i

so that

C(�

j

)b

j

+

q

X

i=1

x

i

M

ij

= 0;

where M is the q � q matrix

M

ij

=

�

t

i

C

�1

(�

i

)C(�

j

)b

j

�

j

� �

i

:

We must make the further assumption that M is nonsingular. We have the freedom of res
aling

the a

i

and b

i

; but this leaves

~

f unaltered. Thus f is uniquely determined by C and by the data


onsisting of the points �

i

; �

i

together with the one-dimensional subspa
es of C

n

spanned by the

ve
tors a

i

; b

i

.

2.2.3 The zero-
urvature 
ondition revisited

The zero-
urvature 
ondition [L;M ℄ implies that the linear system

L = 0; M = 0
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an be integrated for ea
h value of the spe
tral parameter � in L = D

w

� �D

~z

andM = D

z

� �D

~w

.

We 
an put together the n independent solutions to form the 
olumns of a n�nmatrix fundamental

solutions f . The equations satis�ed by the fundamental solution are

(�

w

� iA

w

)f � �(�

~z

� iA

~z

)f = 0

(�

z

� iA

z

)f � �(�

~w

� iA

~w

)f = 0:

(2.18)

The fundamental solution 
annot, however, be regular (holomorphi
 with non-vanishing determi-

nant) on the whole �-plane. If f were regular for all �, in
luding � = 1, then, by Liouville's

theorem, it would be independent of �. In that 
ase (2.18) would imply, that

D

w

f = D

z

f = D

~z

f = D

~w

f = 0 =) F

zw

f = : : : = 0;

so that the 
onne
tion would be 
at. If f is a fundamental solution, then fH is one, if M(fH) =

(Mf)H + f(�

w

� ��

~z

)H = 0, and similarly for L, that is, if H is a regular solution of

�

w

H � ��

~z

H = 0; �

z

H � ��

~w

H = 0:

That is, H 
an be expressed as a fun
tion of

� = �w + ~z; � = �z + ~w and �:

When the 
onne
tion is not 
at, then it is impossible to 
hoose f so that it is regular at � = 1

as well as for �nite values of �. We 
an, however, �nd another fundamental solution

~

f whi
h is

holomorphi
 in � on the whole Riemann sphere, ex
ept at � = 0, by setting

~

� = 1=� and solving

the linear system in the form

~

�(�

w

� iA

w

)f � (�

~z

� iA

~z

)f = 0

~

�(�

z

� iA

z

)f � (�

~w

� iA

~w

)f = 0:

(2.19)

The solution is unique, up to

~

F �!

~

F

~

H where

~

H =

~

H(w +

~

�~z; z +

~

� ~w;

~

�):

The pat
hing matrix:

We shall denote by V;

~

V a two-set 
over of the Riemann sphere, su
h that V is 
ontained in the


omplement of � =1 and

~

V is 
ontained in the 
omplement of � = 0: In the overlap V \

~

V of the

domains of f and

~

f we have

f =

~

fF;

where F satis�es

�

w

F � ��

~z

F = 0; �

z

F � ��

~w

F = 0:

(2.20)

F is the pat
hing matrix asso
iated with A. It is determined by A up to the equivalen
e

F �

~

H

�1

FH
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where

~

H is regular on

~

V and H regular on V . The equivalen
e 
lasses are the pat
hing data of A.

When F is in the 
lass of the identity fun
tion, that is when F 
an be fa
torized in the form

F =

~

H

�1

H;

with H;

~

H regular in V;

~

V , respe
tively, we have a fundamental solution fH =

~

f

~

H whi
h is global

in �. Then the 
urvature vanishes. When su
h a fa
torization does not exist, the 
urvature is

nonzero. A
tually, the ASDYM-�eld 
an be re
overed from F . The map that assigns the pat
hing

data to an ASDYM �eld is the forward Penrose transform.

The reverse Penrose transform.

For ea
h �xed (z; w; ~z; ~w) we have the Birkho� fa
torization

F (�w + ~z; �z + ~w; �) =

~

f

�1

f:

From Lf = L

~

f = 0 we have

A

w

� �A

~z

= �i

�

�

w

f � ��

~z

f

�

f

�1

= �i

�

�

w

~

f � ��

~z

~

f

�

~

f

�1

;

together with a analogous formula following from Mf =M

~

f = 0. By the uniqueness statement of

the Birkho� theorem, any other fa
torization must be given by

f

0

= gf and

~

f

0

= g

~

f

with �-independent g. The potentials belonging to f

0

;

~

f

0

are just the gauge transform of A. Thus

F determines the gauge potential up to a gauge transformation.

Now we start with a given F (�; �; �) on the annulus V \

~

V . Applying Birkho�s theorem for ea
h

spa
e-time point, we 
an fa
torize F in the form

F (�w + ~z; �z + ~w; �) =

~

f

�1

�f;

where f(z; w; ~z; ~w; �) is regular for j�j � 1,

~

f is regular for j�j � 1 and � =diag(�

q

1

; : : : ; �

q

N

) for

some integers q

i

whi
h may jump at sub-manifolds of spa
etime.

Let us assume, that F is 
hosen su
h that � = 1 at some point of spa
e time. Then � = 1 in an

open set U 
ontaining this point. Now we show, that su
h a F is a pat
hing matrix asso
iated with

some solution of the ASDYM-equations on U . Sin
e (�

w

� ��

~z

)F = 0 we have

~

f

�1

(�

w

� ��

~z

)f)�

~

f

�1

�

(�

w

� ��

~z

)

~

f

�

~

f

�1

f = 0

or that

(�

w

f � ��

~z

f)f

�1

= (�

w

~

f � ��

~z

~

f)

~

f

�1

at ea
h point in U , for all � in some neighborhood of the unit 
ir
le. The left hand side is holo-

morphi
 inside and the right hand side holomorphi
 outside, ex
ept for a simple pole at in�nity.

It follows from the Liouville theorem, that both sides must be of the form

(�

w

f � ��

~z

f)f

�1

= (�

w

~

f � ��

~z

~

f)

~

f

�1

= i(A

w

� �A

~z

):
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Similarly, one 
on
ludes, that

(�

z

f � ��

~w

f)f

�1

= (�

z

~

f � ��

~w

~

f)

~

f

�1

= i(A

z

� �A

~w

):

We then have

D

w

f � �D

~z

f = 0 and D

z

f � �D

~w

f = 0:

It follows, that the linear system asso
iated with D is integrable and hen
e A is ASD. A 
an be

re
overed from the pat
hing matrix F and is a solution of the ASDYM equation on an open subset

of spa
e-time.

Lemma: The gauge potential is given in terms of f and

~

f by

iA = �f(0)f

�1

(0) +

~

�

~

f(1)

~

f

�1

(1); (2.21)

where f(0) = f(� = 0) et
. The proof is simple. Just set � = 0 in (2.18) and

~

� = 0 in (2.19).

Comparing (2.21) with

A = ig

�1

�g + i~g

~

�~g

�1

whi
h leads to the Yang-equation, we see, that we may identify

g = f

�1

(0); ~g =

~

f(1) =) J = f

�1

(0)

~

f(1):

The Atiyah-Ward ansatz: Consider the pat
hing matrix

F =

�

� 


0 �

�1

�

where 
 is a holomorphi
 fun
tion on the annulus. Again we put � = �w + ~z and � = �z + ~w and

expand 
 in a Laurent series in �:


 =

1

X

�1




i

�

i

= 


+

+ �+ 


�

where we have split 
 into a positive frequen
y part, a �-independent part and a negative frequen
y

part. Now (2.20) implies the re
ursion relation

�

w




i

= �

~z




i�1

and �

z




i

= �

~w




i�1

:

Taking the ~w-derivative of the �rst equation, ex
hanging the two derivatives and using the se
ond

equation, one obtains

�

~w

�

w




i

= �

~w

�

~z




i�1

= �

z

�

~z




i

;

so that ea
h 


i

obeys the s
alar wave equation. The Birkho� fa
torization is F =

~

f

�1

f where

f =

1

p

�

�

� �+ 


+

�1 ��

�1




+

�

;

~

f =

1

p

�

�

1 ��


�

��

�1

�+ 


�

�

:
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The fa
torization is non-degenerate whenever � 6= 0 (when � = 0 then we must take � =diag(�; �

�1

))

From the above lemma and the re
ursions relations, we have

A =

i

2�

�

~

��� �� 2(�

z

d ~w + �

w

d~z)

2(�

~z

dw + �

~w

dz) ���

~

��

�

:

With

f(0) =

1

p

�

�

0 �

�1 �


1

�

and

~

f(1) =

1

p

�

�

1 �


�1

0 �

�

one �nds the Yang-matrix

J =

1

�

�

�


1




1




�1

� �

2

1 �


�1

�

:

The Yang equation reads

0 = �

~z

�

�

z

�

�

�

�

�

~z




�1

�

z




1

�

2

� �

~w

�

�

w

�

�

�

+

�

~w




�1

�

w




1

�

2

0 = �

~z

�

�

z




1

�

2

�

� �

~w

�

�

w




1

�

2

�

0 = �

~z

�

z




�1

� �

~w

�

w




�1

:

The last equation is just the wave equation for 


�1

Using

�

z




1

= �

~w

� and �

w




1

= �

~z

�

(2.22)

the middle equation be
omes

(�

~z

�

~w

� �

~w

�

~z

) log� = 0

whi
h is also ful�lled. The last equation reads

2�

�

�

1

�

2

�

�

~z

��

z

�+ �

~z




�1

�

z




1

� �

~w

��

w

�� �

~w




�1

�

w




1

�

= 0:

Using (2.22) together with

�

~z




�1

= �

w

� and �

~w




�1

= �

z

� (2.23)

this equation is also ful�lled, sin
e � must obey the wave equation. Thus we have expli
itly 
he
ked,

that the Atiyah-Ward ansatz for the pat
hing matrix and the 
orresponding f and

~

f given by the

Birkho� theorem yield a selfdual solution of the Yang-Mills-equation with 
harge �1.

2.2.4 Instantons on the eu
lidean torus

The Abelian gauge potentials
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A

z

=

�

2iV

01

(z � �z)H

1

; A

w

=

�

2iV

23

(w � �w)H

3

(2.24)

are anti-selfdual on the eu
lidean torus, if

H

1

V

01

+

H

3

V

23

= 0

holds. In this 
ase

D

z

= �

z

�

�

2V

01

(z � �z)H

1

, D

w

= �

w

+

�

2V

01

(w � �w)H

1

D

�z

= �

�z

�

�

2V

01

(z � �z)H

1

, D

�w

= �

�w

+

�

2V

01

(w � �w)H

1

:

Two solutions of Lf =Mf = 0 with the 
orre
t holomorphi
 properties are

f = e

A(z

2

�w

2

+ �w

2

��z

2

)

e

�2A(�z+�w)

~

f = e

A(z

2

�w

2

+ �w

2

��z

2

)

e

�2A(� �w���z)=�

;

where A = �H

1

=4V

01

. Re
all, that � = �z � �w and � = �w + �z. Clearly, f is holomorphi
 in a

neighborhood of � = 0 and

~

f in a neighborhood of � =1. The two regions have an overlap whi
h


ontains the unit 
ir
le j�j = 1. The pat
hing matrix has the simple form

F =

~

f

�1

f = e

�A��=�

(2.25)

and is a fun
tion of �; � and � and is holomorphi
 on the annulus 
ontaining the unit 
ir
le, as

required by the general theory. Using

f(0) = e

A(z

2

�2z�z��z)

e

A( �w

2

+2w �w�w

2

)

,

~

f(1) = e

A(z

2

+2z�z��z

2

)

e

A( �w

2

�2w �w�w

2

)

in (2.21) one immediately re
onstru
ts the Abelian gauge potential A in (2.24). A
tually, there is

a simpler fa
torization of (2.25), namely by

f = e

�2A(�z+�w)

and

~

f = e

�2A(� �w���z)=�

:

The 
orresponding gauge potential is

A =

�H

1

2iV

01

�

� �zdz + zd�z + �wdw � wd �w

�

and is gauge equivalent to A in (2.24) by the non-periodi
 gauge transformation

e

A(z

2

�w

2

+ �w

2

��z

2

)

:
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