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Kapitel 1

Classi
al Field Theories

1.1 Introdu
tion and Notation

It is now a

epted that Quantum Chromodynami
s (QCD) is the 
orre
t theory of strong intera
-

tion. The strong nu
lear for
es are the 'van der Waals'- for
es of the intera
tion between quarks

and gluons. The stru
ture of the intera
tion (e.g. the Feynman rules) 
omes from the Lagrangian

density, whi
h at the 
lassi
al level is

L

QCD

= �

1

4g

2

F

a

��

F

a��

+

N

f

X

f=1

�

 

i

f

�




�

D

ij

�

�im

f

Æ

ij

�

 

j

f

+

�

16�

2

�

����

F

a

��

F

a

��

:

(1.1)

The impli
it sum over the 
olour-indi
es a; i; j and Lorentz-indi
es �; �; �; � is assumed. We have

used the totally antisymmetri
 tensor

�

����

= e �

����

=) �

0123

= e; �

0123

=

sign(g)

e

; e =

p

jgj;

where g and sign(g) are the determinant and signature of the metri
 g

��

, e is the determinant of

the vierbein and �

����

the totally antisymmetri
 symbol with �

0123

= 1. We write the expressions

su
h that they also hold in 
urved spa
e times of an arbitrary signature. This way the transition

to Eu
lidean spa
etime is almost evident. The fermioni
 part is the tri
ky one.

To �nd the 
orre
t expression for the Eu
lidean a
tion one may use the fa
t, that for �nite tem-

perature the path integral is automati
ally the Eu
lidean one!! Thus the Eu
lidean Lagrangian is

automati
ally gotten if one (formally) represents the partition fun
tion

Z = tr e

��H

QCD

by a fun
tional integral

1

1

for the following dis
ussion the gauge �xings and ghost-
ontributions are irrelevant
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Z =

Z

DAD D 

y

e

�S

E

[A; ; 

y

℄

:

(1.2)

The result of the analysis in 
at spa
es is the following: the Eu
lidean 
oordinates, derivative,

gamma-matri
es and �elds are related to the Minkowskian one as follows:

�

x

0

; �

0

; x

i

; �

i

; 


0

; 


i

�

M

=

�

� ix

0

; i�

0

; x

i

; �

i

; 


0

; i


i

�

E

�

 ;

�

 ;A

0

; A

i

; F

0i

; F

0i

; F

ij

; F

ij

�

M

=

�

 ;  

y

; iA

0

; A

i

; iF

0i

;�iF

0i

; F

ij

; F

ij

�

E

:

As a result of these repla
ements, the a
tion in Minkowski spa
etime, S

M

=

R

�L is to be repla
ed

by iS

E

with Eu
lidean a
tion

S

E

=

1

4g

2

F

a

��

F

a��

�

N

f

X

f=1

 

yi

f

�

i


�

D

ij

�

� im

f

Æ

ij

�

 

j

f

� i

�

16�

2

�

����

F

a

��

F

a

��

:

(1.3)

The indi
es are raises and lowered with the metri
 tensor, e.g.

F

��

a

= g

��

g

��

F

a��

:

The gauge- and general 
ovariant derivative of the quark-�elds is

D

�

= �

�

+ i!

�

� iA

�

or D

ij

�

= (�

�

+ i!

�

)Æ

ij

� iA

a

�

(T

a

)

ij

;

(1.4)

where !

�

is the spin-
onne
tion, whi
h will be dis
ussed below. The 
ommutators of two 
ovariant

derivatives yield the 
omponents of the Yang-Mills �eld strength and the '
urvature' of spa
etime,

[D

�

; D

�

℄ = �iF

��

+ IE

��

;

where

F

��

= �

�

A

�

� �

�

A

�

� i[A

�

; A

�

℄ = F

a

��

T

a

R

��

= �

�

!

�

� �

�

!

�

+ i[!

�

; !

�

℄:

(1.5)

The generators T

a

of the 
olour-symmetry are hermitian, normalized a

ording to trT

a

T

b

= 2Æ

ab

and have real and antisymmetri
 stru
ture 
onstants,

[T

a

; T

b

℄ = if

ab


T




;

su
h that

F

a

��

= �

�

A

a

�

� �

�

A

a

�

+ f

ab


A

b

�

A




�

:

We shall dis
uss the 
urvature term more 
arefully later in this 
hapter.

QCD itself is a theory for six 
avored quarks (up, down, strange, 
harm, bottom and top) in

the fundamental representation of the 
olour group SU(3) that intera
t strongly with the o
tet
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of gluons. The strength of this intera
tion is des
ribed by the dimensionless 
oupling 
onstant

2

g.

Most of the nontrivial properties of QCD result from the three- and four-gluon intera
tion in F

2

and the, 
ompared to QED, big 
oupling 
onstant.

In these le
tures we shall not 
on�ne ourselves to the 
olour group SU(3) but allow for other

gauge groups as well. This way we may also in
lude the ele
troweak theory or GUT-theories in

our dis
ussion. For SU(2) we may 
hoose T

a

= �

a

and for SU(3) the 3 � 3 Gell-Mann matri
es

�

a

. Also, the fermions may not ne
essarily be in the fundamental representation but transform

a

ording to a arbitrary representation U(g); g 2 G of the gauge group G. The Lagrangian for a

general theory reads then

L

gauge

= �

1

4g

2

F

a

��

F

a��

+

�

 

�

D= � im

�

 +

�

16�

2

�

����

F

a

��

F

a

��

+ Higgs and Yukawa terms;

(1.6)

where

D= = 


�

D

�

; f


�

; 


�

g = 2g

��

and D

�

 =

�

�

�

+ i!

�

� iU

�

(A

�

)

�

 :

The �-Term in (1.1,1.6) is odd under time reversal and thus breaks CP by the CPT -theorem.

The strong CP-problem in QCD is still a theoreti
ally debated issue. Be
ause of the very small

ele
tri
 dipole moment of the neutron one 
on
ludes that the �-term is negligible, � < 10

�10

. The

�-term is a total derivative and does not enter the �eld equations and in parti
ular the Yang-Mills

equations. But it has 
onsequen
es in the quantized theories. Its understanding will lead us to

study instantons. Sin
e instantons are one of the main topi
s of these le
tures we shall now dis
uss

this term in detail.

To prove, that the �-term is a total di�erential, we use the exterior 
al
ulus. We shall use these


al
ulus in these le
tures again and again and thus re
all some important formulas. More will 
ome

later. Let

� =

1

p!

�

�

1

:::�

p

dx

�

1

^ : : : ^ dx

�

p

be a p-form. The 
omponents �

�

1

:::�

p

of a p-form is an antisymmetri
 tensor-�eld. The exterior

di�erential of � is the p+ 1-form

d� =

1

p!

�

�

�

�

1

:::�

p

dx

�

^ dx

�

1

^ : : : ^ dx

�

p

and the wedge-produ
t of a p-form and a q-form is a p+ q-form:

� ^ � =

1

p!q!

�

�

1

:::�

p

�

�

1

:::�

q

dx

�

1

^ : : : ^ dx

�

p

^ dx

�

1

^ : : : ^ dx

�

q

:

One easily proves, that d is nilpotent, d

2

= 0, and that

� ^ � = (�1)

pq

� ^ �; d(� ^ �) = d� ^ � + (�1)

p

� ^ d�:

2

unfortunately the symbol g is used for the 
oupling 
onstant, the determinant of the metri
 and for elements of

the gauge group. The lo
al meaning should follow from the 
ontext
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d� is the generalization of the rotation of a ve
tor �eld in 3 dimensions. A form � is 
alled 
losed if

d� = 0, it is 
alled exa
t if � = d�. Lo
ally every 
losed form is exa
t. Also, there is a generalization

of the well-known Stoke-theorem, namely:

Theorem: Let M be a d-dimensional, orientable and di�erentiable manifold and let D �M be a

subset of M with smooth boundary �D and 
ompa
t 
losure

�

D. For every d� 1-form � we have

Z

D

d� =

Z

�D

�: (1.7)

An integral over an exa
t form 
an be 
onverted into a surfa
e integral. We shall need this important

result when we dis
uss the quantization of the instanton-number.

A
tually there is a generalization of this theorem to p forms and this generalization is needed when

one studies the de Rham 
ohomology. Is �

p�1

a (p� 1)-form and C

p

a p-dimensional submanifold

(a p-simplex), then the generalization reads

Z

�C

p

�

p�1

=

Z

C

p

d�

p�1

:

(1.8)

In parti
ular the gauge-potential and �eld-strength are Lie algebra-valued 1- and 2-forms, respe
-

tively:

A = A

a

�

T

a

dx

�

= A

�

dx

�

and F =

1

2

F

a

��

T

a

dx

�

^ dx

�

=

1

2

F

��

dx

�

^ dx

�

Let us see, how the 2-form F is related to the 1-form A. To see that, we 
al
ulate

dA = �

�

A

�

dx

�

^ dx

�

=

1

2

�

�

�

A

�

� �

�

A

�

�

dx

�

^ dx

�

A ^A = A

�

A

�

dx

�

^ dx

�

=

1

2

A

a

�

A

b

�

[T

a

; T

b

℄dx

�

^ dx

�

=

1

2

[A

�

; A

�

℄dx

�

^ dx

�

from whi
h immediately follows, that

dA� iA ^ A =

1

2

�

�

�

A

�

� �

�

A

�

� i[A

�

; A

�

℄

�

dx

�

dx

�

= F;

(1.9)

where F is the �eld strength two-form.

The �-term is easily expressed in terms of F :

trF ^ F =

1

4

F

a

��

F

b

��

tr (T

a

T

b

) dx

�

^ dx

�

^ dx

�

^ dx

�

=

1

2

sign(g)�

����

F

a

��

F

a

��

�;

where � = e dx

0

^ : : : dx

3

is the volume form and we used

dx

�

^ dx

�

^ dx

�

^ dx

�

= sign(g)�

����

dx

0

^ dx

1

^ dx

2

^ dx

3

= sign(g)�

����

�:
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The �-term in the a
tion

S =

Z

� L;

belonging to the last term in (1.1), reads

S

�

=

�

16�

2

Z

� �

����

F

a

��

F

a

��

= sign(g)

�

8�

2

Z

trF ^ F:

Now we 
laim, that

trF ^ F = d!

3

; !

3

= tr

�

A ^ dA�

2i

3

A ^ A ^ A

�

; (1.10)

or that S

�

is a surfa
e term. To prove that, we �rst note that tr (A

4

) vanishes

3

. This follows from

tr (AAAA) = �tr (AAAA);

where we used the 
y
li
ity of the tra
e, and that A

a

^A

b

= �A

b

^ A

a

. Now we 
al
ulate

d!

3

= tr

�

dAdA�

2i

3

(dAA

2

�AdAA+A

2

dA)

	

= tr

�

dAdA�

2i

3

(dAA

2

+

1

2

A

2

dA+

1

2

dAA

2

+A

2

dA)

	

:

We subtra
t trA

4

= 0 and end up with

d!

3

= tr

�

dAdA� idAA

2

� iA

2

dA�A

4

�

= tr (dA� iA

2

�

2

= trF

2

;

as was 
laimed.

To rewrite the a
tion in terms of forms we introdu
e the dual

�

� of a p-form �, whi
h is a (d� p)-

form, by

�

� =

1

(d� p)!

�

�

�

p+1

:::�

d

dx

�

p+1

^ : : : ^ dx

�

d

; where

�

�

�

p+1

:::�

d

=

1

p!

�

�

1

:::�

d

�

�

1

:::�

p

:

The star-operation is, up to a sign, idempotent. For a p-form one shows, that

�

(

�

�) = (�1)

p(d�p)

sign(g)�;

where in Eu
lidean spa
etimes sign(g) = 1 and in Lorentzian spa
etimes �1. We shall need the

dual of the �eld strength, whi
h is

�

F =

1

2

�

F

��

dx

�

^ dx

�

; where

�

F

��

=

1

2

�

����

F

��

=

1

2

�

����

F

��

:

3

we abbreviate A ^ A ^A ^ A by AAAA = A

4

.
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Note that

�

(

�

F ) = F in Eu
lidean spa
etimes with signatures (+;+;+;+) and ultra-hyperboli


spa
etimes with signature (+;+;�;�; ), whereas

�

(

�

F ) = �F in Lorentzian spa
etimes. The (an-

ti)selfduality 
onditions

�

F = �F =) �F =

�

(

�

F ) = �

�

F = �

2

F

requires, that � = �1 for sign(g) = 1 and � = �i for sign(g) = �1. There are no real (anti)selfdual

�eld strength on Lorentzian manifolds. But 
ir
ular polarized light (whi
h maybe des
ribed by


omplex �elds) is selfdual.

The produ
t of

�

F and F is part of the Yang-Mills a
tion:

tr

�

F ^ F =

1

8

�

����

tr (F

��

F

��

)dx

�

dx

�

dx

�

dx

�

= sign(g)

1

8

�

����

�

����

� tr

�

F

��

F

��

�

:

Using that �

����

= e �

����

and that �

����

�

����

= 2 sign(g)(Æ

�

�

Æ

�

�

� Æ

�

�

Æ

�

�

), this yields

tr

�

F ^ F =

e

2

tr

�

F

��

F

��

�

:

(1.11)

Using this result, the a
tion S =

R

�L in a Riemannian spa
etime a
quires the following form, up

to Yukawa terms and terms 
ontaining a possible Higgs �eld:

S

E

=

1

2g

2

Z

�

F ^ F �

Z

�  

y

�

iD= � im

�

 �

i�

8�

2

Z

trF ^ F; (1.12)

In Lorentzian manifolds it reads

S

M

= �

1

2g

2

Z

�

F ^ F +

Z

�

�

 

�

D= � im

�

 +

�

8�

2

Z

trF ^ F: (1.13)

We have seen, that the �-term is a surfa
e term,

Z

trF ^ F =

I

!

3

;

and does not a�e
t the 
lassi
al dynami
s. We re
all, that

F = dA�iA ^ A; D= = 


�

D

�

; f


�

; 


�

g = 2g

��

; D

�

= �

�

+i!

�

�iU

�

(A

�

):

In Eu
lidean spa
etime the 


�

are hermitian

4

. Next we dis
uss the various symmetries of this

a
tion or pie
es of this a
tion.

4

In Minkowskian spa
etime not all 


�


an be hermitian. This would 
ontradi
t the anti-
ommutation relations.
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1.2 Symmetries

The a
tion has several symmetries, namely lo
al gauge symmetry, global 
hiral invarian
e if the

fermions are massless, lo
al Lorentz-invarian
e, di�eomorphism-invarian
e and sometimes Weyl-

invarian
e. We shall now dis
uss these symmetries and some 
onsequen
es, like the 
onformal

symmetry, in turn.

1.2.1 Gauge symmetry

Under the lo
al gauge transformations

A �! A

g

= gAg

�1

+ igdg

�1

and  �!  

g

= U(g) ;  

y

�!  

y

U

y

(g)

is the a
tion invariant. Indeed, the �eld strength and 
ovariant derivative transform a

ording to

F (A

g

) = gF (A)g

�1

and d+ i! � iU

�

(A

g

) = U

�

d+ i! � iU

�

(A)

�

U

�1

;

where U = U(g) is the representation of the gauge group a

ording to whi
h the fermions transform.

For example, in QCD the quarks transform a

ording to the fundamental representation and

U(g) = g. However, the right-handed quarks have vanishing weak isospin and thus do not transform

under the weak SU(2). Hen
e U(g) = e in this 
ase.

The bits entering the a
tion transform as

F ^ F ! g(F ^ F )g

�1

,

�

F ^ F ! g(

�

F ^ F )g

�1

 

y

�

iD= � im

�

 �!  

y

�

iD= � im

�

 :

Be
ause of the tra
e-operation the Lagrangian and the a
tion are indeed invariant under lo
al

gauge transformation.

1.2.2 Chiral symmetry

Sin
e the hermitian 


5

= 



0




1




2




35

anti-
ommutes with the 


�

and 
ommutes with the spin-


onne
tion, and sin
e




2

5

= 1 =) e

�


5

= 
osh(�) + 


5

sinh(�) =) 


�

e

�


5

= e

��


5




�

the Dira
 term in the Eu
lidean a
tion transforms under a global 
hiral transformation

 ! e

�


5

and  

y

!  

y

e

�


5

; � reel,

(1.14)

as

 

y

�

iD= � im

�

 �!  

y

�

iD= � ime

2�


5

�

 :

5


 = 1 in Eu
lidean and 
 = i in Minkowskian spa
etime, the 
's here are the one in 
at spa
etime.

9



It follows, that (1.14) is a global 
lassi
al symmetry if the fermions are massless. For this reason

the limit m! 0 is 
alled the 
hiral limit. We expe
t that this 
lassi
al symmetry is spontaneously

broken in QCD. We shall 
ome ba
k to this breaking later on.

We remark, that in Minkowskian spa
etime the 
hiral transformations are

 ! e

i�


5

and

�

 !

�

 e

i�


5

; � reel and 


5

= 


y

5

:

This is required by the anti-
ommutation relations for the Fermi �elds or that  

y

in

�

 =  

y




0

is

the adjoint of  .

1.2.3 Lo
al Lorentz-invarian
e

In the se
ond part of the le
tures we shall investigate quantum �elds in external gravitational

�elds. As a preparation we dis
uss the important 
onformal invarian
e of gauge theories, we now

investigate the 
oupling of matter �elds to gravity. For bosons this is rather easy, at least if we

implement the equivalen
e prin
iple by minimally 
oupling the bosons to gravity. Let us �rst re
all

some important formulas from (pseudo)Riemannian geometry.

The metri
 tensor in the line-element

ds

2

= g

��

dx

�

dx

�

determines the geometry of a (pseudo)Riemannian manifold. The Levi-Civita 
onne
tion is given

by

�

�

��

=

1

2

g

��

�

g

��

;

�

+g

��

;

�

�g

��

;

�

�

and enters the 
ovariant derivative of tensor �elds

T

�

1

:::�

p

�

1

:::�

q

;�

= T

�

1

:::�

p

�

1

:::�

q

;�

+ �

�

1

��

T

�:::�

p

�

1

:::�

q

+ : : :� �

�

��

1

T

�

1

:::�

p

�:::�

q

� : : : :

The 
oordinate expression of the Riemann tensor is

R

�

���

= �

�

��

;

�

��

�

��

;

�

+�

�

��

�

�

��

� �

�

��

�

�

��

:

The 'di�eomorphism'-
onne
tion 1-form and the 
urvature 2-form by

�

�

�

= �

�

��

dx

�

and 


�

�

=

1

2

R

�

���

dx

�

^ dx

�

;

where




�

�

= d�

�

�

+ �

�

�

^ �

�

�

:

(1.15)

The Ri

i tensor and Ri

i s
alar are

R

��

= g

��

R

����

and R = g

��

R

��

:
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For the various symmetry properties of the Riemann tensor I refer you to the extensive literature

on general relativity.

For the gauge bosons we have already a

omplished the minimal 
oupling. Let us repeat: the

di�eren
e to 
at spa
e is, that in F

��

F

��

the indi
es are lowered and raised with the metri
 tensor

g

��

and its inverse g

��

. The a
tion is the integral over the Lagrangian density, where one integrates

with the invariant measure � whi
h 
ontains the determinant g of the metri
.

For spin-zero �elds the generally 
ovariant derivative is just the ordinary derivative, so that

S

�

=

1

2

Z

�

�

g

��

D

�

�D

�

�� V (�) + �R�

2

�

;

(1.16)

where D = d � iU

�

(A) and V (�) is the Higgs-potential 
ontaining a possible mass term and

self-intera
tion for the s
alar �eld. The last term 
ontaining the Ri

i-s
alar R violates the equiva-

len
e prin
iple. It is an additional renormalizable term whi
h is sometimes added to improve the


onformal properties of the theory. Note, that after a partial integration this a
tion reads

S

�

=

1

2

Z

�

�

� �D

2

�� V (�) + �R�

2

�

;

where D

2

is the gauge-
ovariant d'Alambert operator

D

2

� = g

��

D

�

D

�

� = g

��

�

�

�

�

� iU

�

(A

�

)

�

D

�

�� �

�

��

D

�

�

�

=

1

p

jgj

�

�

�

� iU

�

(A

�

)

�

p

jgjg

��

�

�

�

� iU

�

(A

�

)

�

�:

When proving the last identity, one needs that

g

��

�

�

��

= �

1

p

jgj

�

�

�

p

jgjg

��

�

:

For un
harged parti
les

D

2

=

1

p

jgj

�

�

�

p

jgjg

��

�

�

�

= 2

g

is the d'Alambert operator in 
urved spa
etime.

Coupling fermions to gravity is a bit more tri
ky, sin
e in 
at spa
e those transform under the 'spin

representation' of the Lorentz group. When the tangent spa
e group to a 
urved spa
etime manifold

is (pseudo-)orthogonal one 
an still introdu
e spinors by referring them to the lo
al orthonormal

tangent frame. We assume that this is the 
ase and introdu
e orthonormal tetrads or 4-beins. A

4-bein is a 'square-root' of the metri
:

g

��

= �

ab

e

a

�

e

b

�

; g

��

= �

ab

e

�

a

e

�

b

=) e

a�

e

a�

= Æ

�

�

;

where �

ab

is the 
at metri
, i.e. �

ab

= diag(1;�1;�1;�1) on manifolds with Lorentzian signature

and �

ab

= diag(1; 1; 1; 1) on manifolds with Riemannian signature. Multiplying the last equation

with e

a�

and summing over � yields

e

a�

e

b�

e

b�

= e

a�

=) e

a�

e

b�

= Æ

a

b

; e

a�

e

b

�

= �

ab

:

11



The indi
es �; � are spa
etime-indi
es whi
h are lowered and raised with g

��

and g

��

and a; b are

Lorentz-indi
es whi
h are lowered and raised with �

ab

and �

ab

. The �

a

= e

a

�

dx

�

form a orthonormal

basis of tetrads. The pri
e one pays when one introdu
es 4-beins is an additional symmetry, the

lo
al Lorentz invarian
e. Let �(x) be a spa
etime dependent Lorentz transformation. Then

e

a

�

and ~e

a

�

= �

a

b

e

b

�

lead to the same metri


~e

a

�

�

ab

~e

b

�

= �

a




e




�

�

ab

�

b

d

e

d

�

= e

a

�

�

ab

e

b

�

= g

��

;

sin
e �

t

�� = � for Lorentz-transformations. To this lo
al SO(1; 3) resp. SO(4) symmetry belongs

a 
ovariant derivative. To determine the 
orresponding 
onne
tion we observe that with the help of

the 4-bein we 
an 
onvert ve
tors (tensors) into s
alars and vi
e versa. Let A

�

be the 
omponents

of a ve
tor �eld. Its 
ovariant derivative is

r

�

A

�

= �

�

A

�

+ �

�

��

A

�

:

We 
an 
onvert A

�

into into a Lorentz ve
tor and vi
e versa:

A

a

= e

a

�

A

�

and A

�

= A

a

e

�

a

whi
h are the entries of a ve
tor under the lo
al Lorentz transformations

A

a

! �

a

b

A

b

; � = �(x):

Sin
e � is spa
etime-dependent, the ordinary derivative of a Lorentz-tensor is not a Lorentz-tensor.

As usual we need to introdu
e a 
onne
tion to de�ne a 
ovariant derivative whi
h maps Lorentz-

tensors into Lorentz-tensors. In parti
ular there must be a !, su
h that

r

�

A

a

= �

�

A

a

+ !

a

�b

A

b

is a Lorentz-ve
tor. This requirement is ful�lled if it doesn't matter whether we �rst take the


ovariant derivative of a ve
tor �eld and then 
onvert the result into a Lorentz ve
tor, or �rst


onvert the spa
etime ve
tor into a Lorentz ve
tor and then take the 
ovariant derivative. Thus

we demand that

e

a

�

r

�

A

�

= r

�

(e

a

�

A

�

) = r

�

A

a

:

The �rst equation is equivalent to

�

�

e

a

�

� �

�

��

e

a

�

+ !

a

�b

e

b

�

� r

�

e

a

�

= 0:

(1.17)

Similarly one �nds, that

�

�

e

�

a

+ �

�

��

e

�

a

+ !

�ab

e

b�

� r

�

e

�

a

= 0:

(1.18)

These equations allow us to 
al
ulate the 
onne
tion !

�

from the vierbein as follows: Let

�

a

= e

a

�

dx

�

and !

a

b

= !

a

�b

dx

�

12



be the tetrad and 
onne
tion-one-form, respe
tively. Then

d�

a

+ !

a

b

^ �

b

=

1

2

�

�

�

e

a

�

� �

�

e

a

�

+ !

a

�b

e

b

�

� !

a

�b

e

b

�

�

dx

�

^ dx

�

= 0;

sin
e the term in the bra
kets is just the anti-symmetrized left hand side of (1.17). The important

formula

d�

a

+ !

a

b

^ �

b

= 0 (1.19)

is the �rst stru
ture equation of Cartan. To obtain the se
ond stru
ture equation we multiply (1.17)

with dx

�

whi
h yields

de

a

�

� e

a

�

�

�

�

+ !

a

b

e

b

�

= 0; where �

�

�

= �

�

��

dx

�

:

(1.20)

The 
urvature tensor 
an be written as follows:

d�

�

�

+ �

�

�

^ �

�

�

=

1

2

�

�

�

��

;

�

��

�

��

;

�

+�

�

��

�

�

��

� �

�

��

�

�

��

�

dx

�

^ dx

�

� 


�

�

;

where we introdu
ed the 
urvature 2-form. Now we di�erentiate (1.20) whi
h results in

�de

a

�

^ �

�

�

� e

a

�

d�

�

�

+ d!

a

b

e

b

�

� !

a

b

^ de

b

�

= 0: (1.21)

Here we insert for de

a

�

the result (1.20) and �nd the formula

d�

�

�

+ �

�

�

^ �

�

�

=

�

d!

a

b

+ !

a




!




b

�

e

b

�

e

�

a

:

Comparison with (1.21) yields the se
ond stru
ture equation of Cartan:

d!

a

b

+ !

a




^ !




b

= 


a

b

where 


a

b

= e

a

�

e

�

b




�

�

(1.22)

is the 
urvature 2-form with respe
t th the orthonormal frame. We now use the stru
ture equation

to derive the S
hwarzs
hild solution for a spheri
ally symmetri
 body. We 
hoose the manifold

M = R�R

+

� S

2

. In polar 
oordinates the metri
 has the form

g = e

2a(r)

dt

2

�

h

e

2b(r)

dr

2

+ r

2

(d�

2

+ sin

2

�d'

2

)

i

:

(1.23)

We now must insert this ansatz into Einstein's �eld equation

G

��

= 8�GT

��

; G

��

= R

��

�

1

2

g

��

R:

(1.24)

This is done most qui
kly with the help of the Cartan 
al
ulus. We 
hoose the following orthonormal

tetrad

�

0

= e

a

dt; �

1

= e

b

dr; �

2

= rd�; �

3

= r sin �d':

13



A

ording to the �rst stru
ture equation we need to 
al
ulate the derivative of the tetrad:

d�

0

= a

0

e

a

dr ^ dt; d�

1

= 0

d�

2

= dr ^ d�; d�

3

= sin �dr ^ d'+ r 
os � d� ^ d':

We express the right hand sides in terms of the basis �

�

^ �

�

, obtaining

d�

0

= a

0

e

�b

�

1

^ �

0

; d�

1

= 0

d�

2

=

1

r

e

�b

�

1

^ �

2

; d�

3

=

1

r

�

e

�b

�

1

^ �

3

+ 
ot � �

2

^ �

3

�

:

When this is 
ompared with the �rst stru
ture equation one expe
ts the following 
onne
tion forms:

!

0

1

= a

0

e

�b

�

0

; !

0

2

= !

0

3

= 0; !

2

1

= r

�1

e

�b

�

2

!

3

1

= r

�1

e

�b

�

3

; !

3

2

= r

�1


ot � �

3

:

The other 
onne
tion forms are determined by !

ab

= �!

ba

. This ansatz indeed satis�es the �rst

stru
ture equation. The 
urvature forms 


a

b


an now be gotten from the se
ond stru
ture equation.

The result is




0

1

= e

�2b

(a

0

b

0

� a

00

� a

02

) �

0

^ �

1

; 


0

2

= �

a

0

e

�2b

r

�

0

^ �

2




0

3

= �

a

0

e

�2b

r

�

0

^ �

3

; 


1

2

=

b

0

e

�2b

r

�

1

^ �

2




1

3

=

b

0

e

�2b

r

�

1

^ �

3

; 


2

3

=

1� e

�2b

r

2

�

2

^ �

3

:

The other 
omponents are gotten from 


ab

= �


ba

. For the nonzero 
omponents of the Einstein

tensor G

a

b

(with Lorentz-indi
es) one obtains

G

0

0

=

1

r

2

� e

�2b

�

1

r

2

�

2b

0

r

�

; G

1

1

=

1

r

2

� e

�2b

�

1

r

2

+

2a

0

r

�

G

2

2

= G

3

3

= �e

�2b

�

a

02

� a

0

b

0

+ a

00

+

a

0

� b

0

r

�

:

If we demand asymptoti
 
atness, then the Einstein equation im va
uum imply a+ b = 0 and

e

�2b

= 1� 2m=r

so that we obtain the S
hwarzs
hild solution

g =

�

1�

2m

r

�

dt

2

�

dr

2

1� 2m=r

� r

2

(d�

2

+ sin

2

�d'

2

):

(1.25)

We shall need this result later, when we dis
uss quantum �elds near bla
k holes.

Let us now determine, how the 
onne
tion transforms under frame-rotations � !

~

� = ��: if (�; !)

obey the stru
ture equations, then (

~

�; ~!) must obey them. Sin
e

0 = �

�1

�

d

~

� + ~! ^

~

�

�

= �

�1

d� ^ � + d� +�

�1

~!� ^ �

14



this requirement implies the following transformation law for the 
onne
tion under lo
al frame

rotation:

!

a

b

�! ~!

a

b

= �

a




!




d

(�

�1

)

d

b

� (d��

�1

)

a

b

: (1.26)

!

a

b

transforms inhomogeneously under lo
al frame rotations, as expe
ted for a 
onne
tion.

How do we now 
ouple fermions to gravity? For that we re
all that the Lie-algebra of the Lorentz-

group 
onsists of 6 matri
es �

a

b

whi
h are antisymmetri
 in the lower indi
es, �

ab

+ �

ba

= 0. As

generators of a representation of the Lorentz-algebra we may 
hoose operators J

ab

= �J

ba

whi
h

obey the 
ommutation relations

[J

ab

; J


d

℄ = i

�

�

a


J

bd

+ �

bd

J

a


� �

b


J

ad

� �

bd

J

a


�

:

Examples are the generalizations of the orbital angular momentum, spin and total angular mo-

mentum (supplemented by the in�nitesimal boosts)

M

ab

= i

�

x

a

�

b

� x

b

�

a

�

; �

ab

=

1

4i

[


a

; 


b

℄ and J

ab

=M

ab

+�

ab

:

Let

�

a

b

= (e

�

)

a

b

; �

ab

= ��

ba

be a Lorentz-transformation. Spinors transform under Lorentz-transformations with the spin re-

presentation

 (x) �!

~

 (x) = S (x) = e

i

2

�

ab

�

ab

 =) S

�1




a

S = �(S)

a

b




b

: (1.27)

The map S �! �(S) is a representation of the spin group by Lorentz transformations

�(S

1

S

2

) = �(S

1

)�(S

2

); �(1) = 1: (1.28)

The 
ovariant derivative D

�

= �

�

+ i!

�

a
ting on spinors must be 
ompatible with the lo
al

spin-rotation

~

D

�

~

 =

�

�

�

+ i~!

�

�

~

 = S

�

�

�

+ i!

�

�

 :

(1.29)

This implies, that

~!

�

= S!

�

S

�1

+ i�

�

SS

�1

(1.30)

must hold. The spin 
onne
tion must be in the Lie-algebra of the spin group, i.e. a linear 
ombi-

nation of its generators,

!

�

=

1

2

!

�ab

�

ab

:

(1.31)

As indi
ated by the notation, we 
laim that the !

�ab

is the 
onne
tion of the frame rotations. We
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must show, that this spin-
onne
tion indeed transforms as in (1.30) under spin rotations. Using

the transformation (1.26) for the 
onne
tion we �nd

~!

�

=

1

2

~!

�
d

�


d

=

1

2

�

�

a




!

�ab

(�

�1

)

b

d

� (�

�

��

�1

)


d

�

�


d

:

(1.32)

On the other hand, using the last identity in (1.27) and (�

�1

)

a

b

= �

a

b

we �nd

S!

�

S

�1

=

1

2

!

�ab

S�

ab

S

�1

=

1

2

�

a




!

�ab

(�

�1

)

b

d

�


d

;

(1.33)

that is, the homogeneous term in (1.32). To see that the inhomogeneous term in (1.30) 
oin
ides

with that in (1.32) we note, that the last identity in (1.27) implies

[


a

; dSS

�1

℄ = (d��

�1

)

a

b




b

Now we multiply this equation with 


a

from the left and sum over a. Using that

6




a




a

= 4 and 


a

dSS

�1




a

= 0

we end up with

4dSS

�1

= (d��

�1

)

ab




a




b

;

we �nd, that

idSS

�1

= �

1

2

(d��

�1

)

ab

�

ab

whi
h proves that also the inhomogeneous term in (1.30) 
oin
ides with that in (1.32).

So summarize: The 
ovariant derivative of spinors is

D

�

 = �

�

 + i!

�

 ; where !

�

=

1

2

!

�ab

�

ab

:

D

�

 transforms under frame-rotations the same way as  does.

Spinor �elds are s
alars with respe
t to general 
oordinate transformations or di�eomorphism. Is

the spinor �eld 
harged, then

D

�

 = �

�

 + i!

�

 � iU

�

(A

�

) :
(1.34)

One should keep in mind that the lo
al spin rotation are implemented di�erently in Riemannian

and pseudo-Riemannian manifolds. In Riemannian manifolds

 ! S ;  

y

!  

y

S

y

=  

y

S

�1

and ! ! S!S

�1

+ idSS

�1

(1.35)

and in pseudo-Riemannian manifolds

6

to get the se
ond of the following identities, one uses that [�

ab

; 





℄ = i(�

a





b

� �

b





a

).
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 ! S ;  

y

!  

y

S

y

;

�

 !

�

 S

�1

and ! ! S!S

�1

+ idSS

�1

(1.36)

In the Riemannian 
ase S

y

= S

�1

. The 
orresponding relation in the pseudo-Riemannian 
ase is




0

S

y




0

= S

�1

. The reason for this di�eren
e is that the spin groups are the 
overings of SO(4)

and SO(1; 3), respe
tively. Now we 
an show, that the fermioni
 part of the a
tion is lo
al Lorentz-

invariant. From our previous results it follows immediately, that

Z

~

 

y

�

i~


�

~

D

�

�im

�

~

 =

Z

 

y

S

y

�

i~


�

~

D

�

�im

�

S =

Z

 

y

�

iS

y

~


�

SD

�

�im

�

 ;

where we have used (1.29). It remains to be shown, that

S

y

~


�

S = 


�

:

(1.37)

The 


�

are spa
etime-dependent gamma-matri
es whi
h must transform the spa
etime-ve
tor D

�

into a Lorentz ve
tor. Their anti-
ommutators are

f


�

; 


�

g = 2g

��

:

One 
onvin
es one-selves, that they are related to the numeri
al gamma-matri
es 


a

on 
at spa
e-

time a

ording to




�

= 


a

e

�

a

: (1.38)

Now we 
al
ulate

S

y

~


�

S = S

y




a

S~e

�

a

= �




a

�

a

b




b

e

�

a

= 


�

and see, that (1.37) indeed holds. Thus the a
tion is lo
al Lorentz-invariant.

1.2.4 Di�eomorphism and Lie derivative

The general 
oordinate invarian
e is built into our a
tion sin
e only spa
etime s
alars enter the

Lagrangian density. Now we interpret a 
oordinate transformation a
tively as a point transforma-

tion, rather than passively as one usually does. Consider a 
ongruen
e of 
urves x

�

(u) and de�ne

the tangent ve
tor �eld dx

�

=du along the 
urve. We do that for every 
urve in the 
ongruen
e and

end up with a ve
tor �eld X

�

. Conversely, given a non-vanishing ve
tor �eld X

�

(x) de�ned over

the manifold, then this 
an be used to de�ne a 
ongruen
e of 
urves in the manifold 
alled the

orbits or traje
tories of X

�

. This 
urves are the integral 
urves on the ve
tor �eld and are obtained

by solving

dx

�

du

= X

�

�

x(u)

�

):

We suppose that X

�

has been given and the 
orresponding 
ongruen
e of 
urves has been 
onstru
-

ted. We want to di�erentiate a tensor �eld T

�

1

:::

�

1

:::

. For that we drag the tensor �eld at some point

17



p along the 
urve passing through p to some neighboring point q and 
ompare the dragged-along

tensor with the tensor already there. We subtra
t the two tensors at q and de�ne the derivative

by some limiting pro
ess as q ! p.

Consider the transformation

y

�

= x

�

+ �X

�

(x);

where � is small. This point transformation sends a point p with 
oordinates x to a point q whi
h

lies on the 
urve of the 
ongruen
e through p and has 
oordinates x+ �X (in the same 
oordinate

system). Under a point transformation a tensor T

��

is mapped a

ording to

T

��

(x) �!

~

T

��

(y) =

�y

�

�x

�

�y

�

�x

�

T

��

(x):

(1.39)

Sin
e

�y

�

�x

�

= Æ

�

�

+ ��

�

X

�

we have

~

T

��

(y) =

�

Æ

�

�

+ ��

�

X

�

��

Æ

�

�

+ ��

�

X

�

�

T

��

(x)

= T

��

(x) + �

�

�

�

X

�

T

��

(x) + �

�

X

�

T

��

(x)

�

+O(�

2

):

Applying Taylor's theorem to �rst order, we also get

T

��

(y) = T

��

(x + �X(x)) = T

��

(x) + �X

�

�

�

T

��

(x):

Now we are ready to de�ne the Lie derivative of a tensor by

L

X

T

��

= lim

�!0

T

��

(y)�

~

T

��

(y)

�

:
(1.40)

The Lie derivative 
ompares the tensor T

��

(y) at the point q with

~

T

��

(y), the dragged-along tensor

at q. We �nd

L

X

T

��

= X

�

�

�

T

��

� T

��

�

�

X

�

� T

��

�

�

X

�

:

The Lie derivative maps (p; q)-tensors into (p; q) tensors, is linear, ful�lls the Leibniz rule and


ommutes with 
ontra
tions. For general tensor �eld is it

L

X

T

�

1

�

2

:::

�

1

�

2

:::

= X

�

�

�

T

�

1

�

2

:::

�

1

�

2

:::

� T

��

2

:::

�

1

�

2

:::

�

�

X

�

1

� : : :+ T

�

1

�

2

:::

��

2

:::

�

�

1

X

�

+ : : : :

(1.41)

In parti
ular, the Lie-derivative of the metri
 is

L

X

g

��

= X

�

�

�

g

��

+ g

��

X

�

;

�

+g

��

X

�

;

�

:

Using the metri
ity of the 
onne
tion,

r

�

g

��

� �

�

��

g

��

� �

�

��

g

��

= 0;
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this Lie-derivative 
an be rewritten as

L

X

g

��

= X

�

�

�

�

��

g

��

+ �

�

��

g

��

�

+ g

��

X

�

;

�

+g

��

X

�

;

�

= r

�

X

�

+r

�

X

�

:

If there is a ve
tor �eld su
h that L

X

g

��

= 0, su
h a �eld is 
alled Killing ve
tor �eld, then the

metri
 is dragged into itself by the 
ux generated by X . In other word, the 
ux is an isometry. A

Killing ve
tor �eld generates an in�nitesimal isometry and obeys the Killing equation

L

X

g

��

= r

�

X

�

+r

�

X

�

= 0:

(1.42)

Let us see more expli
itly that the 
ux generated by a Killing �eld is an isometry. The di�eomor-

phism generated by X(x) maps the 
urve x(v) 
onne
ting the points A and B to the 
urve y(x(v))


onne
ting A

0

and B

0

.

y(x(v))

x(v)

X
X

A’ B’

BA

Abbildung 1.1: The isometry generated by a Killing �eld

Let us see, that the two 
urves have the same length:

d(A

0

; B

0

) =

Z

q

g

��

�

y(v)

�

_y

�

_y

�

dv =

Z

r

g

��

�

y[x(v)℄

�

�y

�

�x

�

�y

�

�x

�

_x

�

_x

�

dv

=

Z

s

�x

�

�y

�

�x

�

�y

�

g

��

�

x(v)

�

�y

�

�x

�

�y

�

�x

�

_x

�

_x

�

dv = d(A;B);

where in the se
ond to last equation we used, that the metri
 at y 
oin
ides with the dragged along

metri
 if X(x) is a Killing �eld.

19



The isometries of Minkowski spa
etime are the d translations with 
onstant Killing �elds X

�

(x) =




�

, and the

1

2

d(d� 1) Lorentz transformations with Killing �elds X

�

(x) = !

�

�

x

�

; !

��

+ !

��

= 0.

There is another spa
etime whi
h admits the same maximal number of

1

2

d(d + 1) Killing �elds,

namely the (anti) de Sitter spa
etimes.

A spa
etime is stationary if there exists a spe
ial 
oordinate system in whi
h the metri
 is time-

independent, i.e.

�g

��

�x

0

= 0;

(1.43)

where x

0

is a time-like 
oordinate. In an arbitrary 
oordinate system the metri
 will probably

depend expli
itly on all the 
oordinates; so we need to make the statement (1.43) 
oordinate-

independent. If we de�ne a ve
tor �eld

X

�

= Æ

�

0

(1.44)

in the spe
ial 
oordinate system, then

L

X

g

��

= X

�

�

�

g

��

+ g

��

�

�

X

�

+ g

��

�

�

X

�

= Æ

�

0

�

�

g

��

=

�g

��

�x

0

= 0:

Sin
e L

X

g

��

is a tensor it vanishes in all 
oordinate systems and hen
e X

�

is a Killing ve
tor

�eld. Conversely, given a time-like Killing �eld X

�

, then there always exist 
oordinates adapted

to the Killing �eld, that is, in whi
h (1.44) holds. In this 
oordinate system the metri
 is time

independent. Thus, a spa
etime is stationary if and only if it admits a time-like Killing ve
tor �eld.

A stati
 spa
etime admits a hypersurfa
e-orthogonal time-like Killing �eld. To see what this means

let

f(x) = � (1.45)

de�ne a family of hypersurfa
es. Di�erent members of the family 
orrespond to di�erent values of

�. If two neighboring point with 
oordinates x and x+ dx lie on the same surfa
e, then

�f

�x

�

dx

�

� n

�

dx

�

= 0:

Sin
e dx

�

lies in a surfa
e S de�ned by (1.45) it follows by 
onstru
tion that n

�

is orthogonal to

S. A ve
tor �eld X

�

is 
alled hypersurfa
e-orthogonal if it is everywhere orthogonal to the family

of hypersurfa
es, in whi
h 
ase it must be proportional to n

�

,

X

�

= �(x)n

�

= ��

�

f:

This 
onditions imply

X

�

�

�

X

�

= �f;

�

�;

�

f;

�

+�

2

f

�

f;

��

:

Taking the total antisymmetri
 part of this equation we �nd

X

[�

�

�

X

�℄

= 0, X ^ dX = 0; X = X

�

dx

�

:
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This equation is un
hanged, if we repla
e the ordinary derivative by a 
ovariant derivative, namely

X

[�

r

�

X

�℄

= 0:

(1.46)

Any hypersurfa
e-orthogonal ve
tor �eld satis�es this Frobenius 
ondition. The 
onverse is also

true: any non-null Killing ve
tor �eld (X

�

X

�

6= 0) satisfying the Frobenius 
ondition is ne
essarily

hypersurfa
e-orthogonal. Indeed, one 
an show that then

X;

�

= X

2

f;

�

for some fun
tion f:

Given a hypersurfa
e-orthogonal time-like Killing �eld one 
an introdu
e adapted 
oordinates along

the 
ongruen
e and in one hypersurfa
e (see �gure (1.2)) su
h that the metri
 is time-independent

x

x

x

0

1

2

S

K

Abbildung 1.2: Adapted 
oordinates in a stati
 spa
etime

and no 
ross terms appear in the line element involving the time, i.e. the shift ve
tor g

0i

vanishes.

1.2.5 Weyl-transformations

Under a lo
al Weyl-transformation

ds

2

�! e

2�

ds

2

transform the metri
 and vielbein a

ording to

g

��

�! ĝ

��

= e

2�

g

��

; e

a

�

�! ê

a

a

= e

�

e

a

�

=) ê = e

d�

e:
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The transformed tetrad

^

�

a

= e

�

�

a

must obey the �rst stru
ture equation with transformed 
onne
-

tion !̂

a

b

:

d

^

�

a

+ !̂

a

b

^

�

b

= e

�

�

d�

a

+ !̂

a

b

�

b

+ d��

a

�

= 0:

The right hand is zero, i�

!̂

a

b

�

b

= !

a

b

�

b

� d��

a

holds. Together with the antisymmetry of the 
onne
tion forms this �xes the Weyl-transformed


onne
tion as

!̂

a

b

= !

a

b

+ �

a

�

b

� � �

b

�

a

�; where �

b

� = e

�

b

�

�

�:

The Christo�el-symbols transform as

^

�

�

��

= �

�

��

+

�

Æ

�

�

�;

�

+Æ

�

�

�;

�

�g

��

�

;�

�

:

Finally we need the transformation of the 
urvature: From

^




ab

= 


ab

� �

a

�




�

r




�;

b

��

;




�;

b

�

+ �

b

�




�

r




�;

a

��

;


�;

a

�

� �

a

�

b

(r�)

2

:

One derives, that

^

R

ab
d

= e

�2�

h

R

ab
d

+ �

b


�

�

;ad

� �;

a

�;

d

�

� �

a


�

�

;bd

� �;

b

�;

d

�

� �

a


�

bd

(r�)

2

��

bd

�

�

;a


� �;

a

�;




�

+ �

ad

�

�

;b


� �;

b

�;




�

+ �

ad

�

b


(r�)

2

i

:

Contra
tions yield the following transformation laws for the Ri

i tensor and Ri

i s
alar:

^

R

ab

= e

�2�

h

R

ab

+ (2� d)

�

�

;ab

� �;

a

�;

b

+�

ab

(r�)

2

�

� �

ab

4�

i

^

R = e

�2�

h

R� 2(d� 1)4� � (d� 1)(d� 2)(r�)

2

i

:

The Weyl tensor, whi
h is the tra
eless part of the 
urvature tensor,

C

ab
d

= R

ab
d

+

1

d� 2

�

�

ad

R


b

+ �

b


R

da

� �

a


R

db

� �

bd

R


a

�

+

1

(d� 1)(d� 2)

�

�

a


�

db

� �

ad

�


b

�

R

is Weyl-invariant:

^

C

�

���

= C

�

���

:

Hen
e, if a spa
etime 
an be related to 
at spa
etime by a Weyl-transformation (is 
onformally


at) then the Weyl tensor vanishes. In d � 4 dimensions the 
onverse is also true: a spa
etime is


onformally 
at

g

��

= e

2�

�

��

; up to 
oordinate transformations,
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if and only if the Weyl-tensor vanishes. In 3 dimensions the Weyl tensor vanishes identi
ally and

another tensor (see Eisenhart) 
an be used to determine if a spa
e is 
onformally 
at. Every 1 and

2-dimensional spa
etime is 
onformally 
at (up to moduli parameter).

Transformation of wave-operators

The Lapla
ian or d'Alambertian

4 =

1

e

�

�

�

eg

��

�

�

�

; e = det(e

a

�

)

transforms under Weyl transformations as

^

4 = e

�

d+2

2

�

�

4�

d� 2

2

4� + (

d� 2

2

)

2

(r�)

2

�

e

d�2

2

�

:

When rewriting the transformation of the Ri

i s
alar as

^

R = e

�

d+2

2

�

�

R� 2(d� 1)4� � (d� 1)(d� 2)(r�)

2

�

e

d�2

2

�

then one sees immediately, that the wave operator

4




=4�

d� 2

4(d� 1)

R

transforms homogeneously under Weyl-transformations,

^

4




= e

�

d+2

2

�

4




e

d�2

2

�

:

(1.47)

Using the transformation property of the 
onne
tion,

!̂

�ab

= !

�ab

+

�

e

a�

e

�

b

� e

b�

e

�

a

�

�

�

� and 


a

�

ab

=

d� 1

2i




b

one easily �nds, that

^

D= = e

��




�

�

�

�

+ i!

�

+

d� 1

2

�

�

�

�

whi
h is a homogeneous transformation

^

D= = e

�

d+1

2

�

D=e

d�1

2

�

: (1.48)

Now we turn to the Yang-Mills equations. From the very de�nition of the star-operator, one �nds

^

�

� = e

(d�2p)��

�̂ for a p-form �:

We see, that the Yang-Mills a
tion and theta terms are both invariant under Weyl-transformations

in 4 dimensions if

^

F = F =)

^

A = A:

23



Weyl-invariant a
tions

The term

R

��4




� is Weyl-invariant, if the s
alar �eld has Weyl-weight �(d�2)=2, i.e. transforms

a

ording to

^

� = e

��

� with weight � = �

1

2

(d� 2)

under Weyl transformations, sin
e then

^

�

^

4




^

� = e

�d�

�4




�

as it must be for the a
tion to be invariant

7

. Also, an intera
tion term

�

Z

��

d




; where d




=

2d

d� 2

is Weyl invariant. The general Weyl-invariant a
tion for a s
alar �eld reads

S

�

=

Z

�

�

�

1

2

�

�;4




�

�

+ ��

d




:

�

:

The a
tion for massless spin-

1

2

parti
les,

S

 

=

Z

� 

y

iD= 

is Weyl invariant in any dimensions if we assign the weight � = �(d� 1)=2 to a spinor �eld in d

dimensions. The Yang-Mills a
tion is Weyl invariant in 4 dimensions and the gauge potential has

weight zero.

A Yukawa term transforms as

^

 

y

^

�

^

 = e

(2�

3d

2

)�

 

y

� 

and hen
e

R

� 

y

� is Weyl invariant in 4 dimensions.

Now we wish to 
ombine the di�eomorphism- and Weyl transformations. For Weyl-invariant theo-

ries these are symmetry transformations. Give a ve
tor �eld X and its 
orresponding 
ux, the

dragged along metri
 is

~g

��

(y) =

�x

�

�y

�

�x

�

�y

�

g

��

(x):

Now we assume, that the ~g

��

(y) 
oin
ides with the metri
 present at y, up to a 
onformal fa
tor:

~g

��

(y) = e

2�(y)

g

��

(y):

As above, we investigate the in�nitesimal form of this 
ondition. Setting y = x+ �X we �nd

�

1 + 2��(x)

��

1 + �X

�

�

�

�

g

��

(x) = g

��

(x)� �

�

�

�

X

�

g

��

+ �

�

X

�

g

��

�

+O(�

2

):

7

Re
all, that �̂ = e

d�

�.
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We see, that the ve
tor �eld must obey the equation

2�g

��

+ L

X

g

��

= 0:

When using g

��

�

�

g

��

= 2�

�

��

the 
ontra
tion of this equation determines the leading 
ontribution

to � as

� = �

1

d

r

�

X

�

= �

1

d

divX:

Thus the �eld X must obey the 
onformal Killing equation

L

X

g

��

=

2

d

divX g

��

:

(1.49)

Minkowski spa
etime allows for

1

2

(d + 1)(d + 2) 
onformal Killing �elds. Beside the Killing �elds

belonging to the translations and Lorentz transformations these are the dilatations and d spe
ial


onformal transformations with 
onformal Killing �elds

X

�

= �x

�

and X

�

= 2(
 � x)x

�

� x

2




�

:

The dimension of the 
onformal group is

1

2

(d + 1)(d + 2) and is just the group SO(d; 2) (resp.

SO(d+ 1; 1) in Eu
lidean spa
etime).

1.2.6 Conformal transformations in Minkowski spa
etime

If a spa
etime possesses Killing �elds, then a di�eomorphism invariant theory possesses symmetries.

However, a di�eomorphism- and Weyl invariant theory has additional symmetries. They 
an be


ombined su
h that the metri
 is invariant, as it is the 
ase for isometries. In Minkowski spa
etime

su
h a theory is not only invariant under translations and Lorentz boost but under all 
onformal

transformations.

So let us assume, that X is a 
onformal Killing �eld with 
orresponding 
ux x �! y(x). The

metri
 and matter �elds are dragged along a

ording to

g

��

(x) �! ~g

��

(y) =

�x

�

�y

�

�x

�

�y

�

g

��

(x) = e

2�(y)

g

��

(y)

T

�

1

:::

�

1

:::

(x) �!

~

T

�

1

:::

�

1

:::

(y) =

�y

�

1

�x

�

1

: : :

�x

�

1

�y

�

1

: : : T

�

1

:::

�

1

:::

(x):

Next we perform a 
ompensating Weyl transformation with 
onformal fa
tor

e

2�(y)

=

1

d

g

��

(y)~g

��

(y):

whi
h results in

~g

��

(y) �! e

�2�(y)

~g

��

(y)

~

T

�

1

:::

�

1

:::

(y) �! e

���(y)

~

T

�

1

:::

�

1

:::

(y)
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The 
omposition a di�eomorphism generated by a 
onformal Killing �eld and a 
ompensating Weyl

transformation leaves the metri
 tensor invariant

g

��

(x) �! g

��

(y)

(1.50)

and 
hanges a matter �eld with Weyl-weight � a

ording to

T

�

1

:::

�

1

:::

(x) �!

�

T

�

1

:::

�

1

:::

(y) = e

���(y)

�y

�

1

�x

�

1

: : :

�x

�

1

�y

�

1

: : : T

�

1

:::

�

1

:::

(x):

(1.51)

The in�nitesimal form of these transformations is

Æ

X

T

�

1

:::

�

1

:::

=

�

L

X

�

2�

d

divX

�

T

�

1

:::

�

1

:::

(1.52)

For a di�eomorphism- and Weyl invariant theory the transformation (1.51) or its in�nitesimal form

(1.52) are symmetries. The important point is, that if x ! y is a di�eomorphism generated by a


onformal Killing �eld, then the metri
 remains un
hanged under this transformation.

Let us apply these general results to Eu
lidean and Minkowski

8

spa
etime. In the following we shall

need these symmetry transformations for the 
onformal Killing �eld for s
alar �elds in arbitrary

dimensions and gauge potentials in 4 dimensions:

Æ

X

� = L

X

�+

d� 2

d

�

�

X

�

� and Æ

X

A

�

= L

X

A

�

:

Inserting the expli
it expressions for the the 
onformal Killing �elds we end up with the following

in�nitesimal 
onformal symmetries:

X

�

Æ

X

� Æ

X

A

�

a

�

X

�

�

�

� X

�

�

�

A

�

!

�

�

x

�

X

�

�

�

� X

�

�

�

A

�

+ !

�

�

A

�

�x

�

�

X

�

�

�

+ �(d � 2)

�

�

�

X

�

�

�

+ �

�

A

�

x

2




�

� 2(
; x)x

�

�

X

�

�

�

� 2(d�2)(
; x)

�

�

�

X

�

�

�

+ 2[(
; A)x

�

�(x;A)


�

� (
; x)A

�

℄

�

A

�

For an arbitrary tensor �eld of weight �, the in�nitesimal dilatations read

Æ

X

D

T

��:::

��:::

= �

�

x

�

+ s� 2�

�

T

��:::

��:::

;

where s is the number of 
ovariant minus the number 
ontravariant indi
es of T

��:::

��:::

. The number

� = s� 2� is the 
onformal weight of T

��:::

��:::

:

For 
ompleteness we re
all the form of the 
onformal transformations:

8

a
tually 
ompa
ti�ed Minkowski spa
etime, see below
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Translations y

�

= x

�

+ a

�

Lorentz transformations y

�

= �

�

�

x

�

; � = e

!

Dilatations y

�

= e

�

x

�

Spe
ial 
onformal transformations y

�

=

�

1 + 2(
; x) + 


2

x

2

�

�1

�

x

�

+ 


�

x

2

�

Let us assume, that S[g

��

;�℄ is Weyl-invariant, where � denotes all matter �elds of the theory.

Now we de�ne the energy-momentum tensor a

ording to

T

��

=

2

e

Æ

Æg

��

S[g

��

;�℄:

The Weyl-invarian
e implies

ÆS

Æ�

= 0 =

ÆS

Æg

��

Æg

��

Æ�

+

ÆS

Æ�

Æ�

Æ�

= �eT

�

�

+ �

ÆS

Æ�

�:

(1.53)

We see, that the T

��

is tra
eless o�-shell if the weights of all matter �elds vanish. For example, using

Æe = �

1

2

e g

��

Æg

��

the variation of the Yang-Mills a
tion under a 
hange of the metri
 be
omes

Æ

Z

p

jgjg

��

g

��

F

��

F

��

= 2

Z

p

jgjÆg

��

�

F

��

F

�

�

�

1

4

g

��

F

��

F

��

�

and we 
an read o� the tra
eless energy-momentum tensor in spa
es with Minkowskian resp.

Eu
lidean signatures

T

M

��

= �

1

g

2

�

F

��

F

�

�

�

1

4

g

��

F

��

F

��

�

T

E

��

=

1

g

2

�

F

��

F

�

�

�

1

4

g

��

F

��

F

��

�

:

(1.54)

To write this in terms of the 
hromoele
tri
 and 
hromomagneti
 �elds, we insert

F

��

M;E

=

0

B

�

0 E

1

E

2

E

3

�E

1

0 B

3

�B

2

�E

2

�B

3

0 B

1

�E

3

B

2

�B

1

0

1

C

A

(1.55)

F

E

��

=

0

B

�

0 E

1

E

2

E

3

�E

1

0 B

3

�B

2

�E

2

�B

3

0 B

1

�E

3

B

2

�B

1

0

1

C

A

; F

M

��

=

0

B

�

0 �E

1

�E

2

�E

3

E

1

0 B

3

�B

2

E

2

�B

3

0 B

1

E

3

B

2

�B

1

0

1

C

A

It follows in parti
ular, that

T

M

00

=

1

2g

2

�

~

E

2

+

~

B

2

�

; T

E

00

=

1

2g

2

�

~

E

2

�

~

B

2

�

:

For a s
alar �eld in 4 dimensions the improved energy-momentum tensor, whi
h is gotten by varying

S

�

=

Z

�

�

1

2

g

��

�

�

��

�

�� V (�) +

d� 2

4(d� 1)

R�

2

�
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is tra
eless only on shell, sin
e � 6= 0.

Finally we note, that to ea
h 
onformal Killing �eld there belongs a 
onserved 
urrent. Let T

��

be the tra
eless energy-momentum tensor and X

�

a 
onformal Killing �eld. We de�ne the Bessel-

Hagen 
urrent belonging to X by

J

�

X

= T

��

X

�

:

Using the 
onservation of T

��

we �nd

r

�

J

�

X

= T

��

r

�

X

�

= T

��

1

2

�

r

�

X

�

+r

�

X

�

�

=

1

d

divX T

��

g

��

= 0;

where we used the symmetry of T

��

, the 
onformal Killing equation L

X

g

��

� g

��

divX and that

T

�

�

= 0. These 
onserved 
urrents lead to 
onserved 
harges. Sin
e

1

e

�

�

�

eJ

�

X

�

= �

�

J

�

X

+

1

e

(�

�

e)J

�

X

= r

�

J

�

X

= 0;

these 
harges read

Q

X

=

Z

�

ê J

0

:

They are 
onserved if the �elds fall o� fast enough at spatial in�nity. In this formula � is a

spa
elike hypersurfa
e and ê denotes the indu
ed volume form on this hypersurfa
e. In parti
ular, in

Minkowski spa
etime there are

1

2

(d+1)(d+2) 
onserved Bessel-Hagen 
urrents. The 
orresponding


harges are the d momenta, the angular momenta, dilatoni
 
harge and d additional 
harges.
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