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Kapitel 1

Classical Field Theories

1.1 Introduction and Notation

It is now accepted that Quantum Chromodynamics (QCD) is the correct theory of strong interac-
tion. The strong nuclear forces are the 'van der Waals’- forces of the interaction between quarks
and gluons. The structure of the interaction (e.g. the Feynman rules) comes from the Lagrangian
density, which at the classical level is

Ny
1 _ g o
Locp = ——F, F*™" + E 1/1}(7“D:f—imf6”)w} +

_492 o uuaBFa a (11)
f=1

o Lwas

The implicit sum over the colour-indices a,i,j and Lorentz-indices u,v,a, 3 is assumed. We have
used the totally antisymmetric tensor
sign(g
NuvaB = € €uva = No123 = €, 770123 = %7 e=/lgl,
where g and sign(g) are the determinant and signature of the metric g,., e is the determinant of
the vierbein and €,,q3 the totally antisymmetric symbol with €p123 = 1. We write the expressions

such that they also hold in curved space times of an arbitrary signature. This way the transition
to Euclidean spacetime is almost evident. The fermionic part is the tricky one.

To find the correct expression for the Euclidean action one may use the fact, that for finite tem-
perature the path integral is automatically the Euclidean one!! Thus the Euclidean Lagrangian is
automatically gotten if one (formally) represents the partition function

Z = tr e #Haop

by a functional integral®

Lfor the following discussion the gauge fixings and ghost-contributions are irrelevant



7= /DAWDW@—SE[WW. (1.2)

The result of the analysis in flat spaces is the following: the Euclidean coordinates, derivative,
gamma-matrices and fields are related to the Minkowskian one as follows:

(xo,ao,xi,ai,’yo,’yi)M = (—ixo,iao,xi,ai,fyo,ifyi)E
(w,z/?,Ao,Ai,Fm,FOi,Fij,F”j)M = (z/J,z/ﬁ,iAo,Ai,iFOi,—iFOi,Fij,Fii)E

As a result of these replacements, the action in Minkowski spacetime, Spr = [ L is to be replaced
by iSg with Euclidean action

Ny

1 a apv i ij s ij j . va a ra
Se = 4_92F;WF - Z¢f (W“Du]_ im g6 J)d]} - 1167r277“ g nvtap: (1.3)
f=1
The indices are raises and lowered with the metric tensor, e.g.
Faﬁw = g“agVBFaozB-
The gauge- and general covariant derivative of the quark-fields is
Dy =8y +iw, —iA, or DY = (0, +iw,)67 —iA%(T,)Y, (1.4)

where w), is the spin-connection, which will be discussed below. The commutators of two covariant
derivatives yield the components of the Yang-Mills field strength and the ’curvature’ of spacetime,

[Dy,D,] = —iF,, +IE,,,
where

Fw/ = auAV - aVAM - i[AN’A”] = F:”Ta

1.5
Ry, = 0Ouwy, — Opwy +ifwy,wy]. (1.5)

The generators T® of the colour-symmetry are hermitian, normalized according to tr 7,7}, = 204
and have real and antisymmetric structure constants,
[T, T = i fabeT,,
such that
FY, = 0,AL — 0, A5 + f*°AD A5
We shall discuss the curvature term more carefully later in this chapter.

QCD itself is a theory for six flavored quarks (up, down, strange, charm, bottom and top) in
the fundamental representation of the colour group SU(3) that interact strongly with the octet



of gluons. The strength of this interaction is described by the dimensionless coupling constant? g.
Most of the nontrivial properties of QCD result from the three- and four-gluon interaction in F
and the, compared to QED, big coupling constant.

In these lectures we shall not confine ourselves to the colour group SU(3) but allow for other
gauge groups as well. This way we may also include the electroweak theory or GUT-theories in
our discussion. For SU(2) we may choose T = ¢® and for SU(3) the 3 x 3 Gell-Mann matrices
A%, Also, the fermions may not necessarily be in the fundamental representation but transform
according to a arbitrary representation U(g),g € G of the gauge group G. The Lagrangian for a
general theory reads then

U i cowy o . 0  woBpa pa
Egauge: - @FMVF . +¢(lp_lm)¢+ﬁn” f nvt ap

+ Higgs and Yukawa terms,

(1.6)

where
D=~*D,, {¥*,4"}=2¢"" and D,y = (BM + iwy, — iU*(A“))dJ.

The #-Term in (1.1,1.6) is odd under time reversal and thus breaks C'P by the CPT-theorem.
The strong CP-problem in QCD is still a theoretically debated issue. Because of the very small
electric dipole moment of the neutron one concludes that the #-term is negligible, # < 10710, The
f-term is a total derivative and does not enter the field equations and in particular the Yang-Mills
equations. But it has consequences in the quantized theories. Its understanding will lead us to
study instantons. Since instantons are one of the main topics of these lectures we shall now discuss
this term in detail.

To prove, that the 6-term is a total differential, we use the exterior calculus. We shall use these
calculus in these lectures again and again and thus recall some important, formulas. More will come
later. Let

1

o= 17 Quy o, dt NN datP

be a p-form. The components ay, ..., of a p-form is an antisymmetric tensor-field. The exterior
differential of « is the p + 1-form

1
da = Ha,,aul___updm” Adz* A .. N dzHe

and the wedge-product of a p-form and a ¢-form is a p + ¢-form:

1
ahf= p!—q!am,,,upﬂ,,lm,,qu‘“ Ao Ndte Ade" AL A date

One easily proves, that d is nilpotent, d> = 0, and that
alApB=(-1)PIBAa, dla A B) =da A B+ (—1)Pa AdB.

2unfortunately the symbol g is used for the coupling constant, the determinant of the metric and for elements of

the gauge group. The local meaning should follow from the context



da is the generalization of the rotation of a vector field in 3 dimensions. A form « is called closed if
da = 0, it is called ezact if a = df5. Locally every closed form is exact. Also, there is a generalization
of the well-known Stoke-theorem, namely:

Theorem: Let M be a d-dimensional, orientable and differentiable manifold and let D C M be a
subset of M with smooth boundary D and compact closure D. For every d — 1-form a we have

[da=[a (1.7)
D

oD

An integral over an exact form can be converted into a surface integral. We shall need this important
result when we discuss the quantization of the instanton-number.

Actually there is a generalization of this theorem to p forms and this generalization is needed when
one studies the de Rham cohomology. Is a;,_1 a (p — 1)-form and C), a p-dimensional submanifold
(a p-simplex), then the generalization reads

/ Gt = /da”_l' (1.8)
o, ¢,

In particular the gauge-potential and field-strength are Lie algebra-valued 1- and 2-forms, respec-
tively:

1 1
A= AZTadac" =A,dz" and F = iFguTadac“ ANdz¥ = §FN,,dx“ A dx¥

Let us see, how the 2-form F' is related to the 1-form A. To see that, we calculate

1
dA = 0,A,dx" NdzH = 5(8‘“4,, — 0y A,)dz" A dx”
1 1
ANA = A A dz! ANdx¥ = §AZA,I’, [T, Tp)dz! A dx” = §[AM,A,,]dac" Adzx”
from which immediately follows, that
) 1 ) W
dA—iANA = (8MA,, — A, — z[Au,A,,])da: dz” = F, (1.9)

where F' is the field strength two-form.

The #-term is easily expressed in terms of F':

1
trFAF = ZFﬁngﬁ tr (T, Ty) de* A dz¥ A dz® A daP
1
= gsign(gn"" P FL, Fsm,
where n = edz® A ...dz? is the volume form and we used
det Ada” Ade® Adx® = sign(g)e" P da’® A dat A dz? A do?
= sign(g)n*’* n.



The f-term in the action

S=/n£,

belonging to the last term in (1.1), reads

9 v . 6
50 = 162 /7777u R Fa = Slgn(g)gﬁ/trF/\F.
Now we claim, that
23

or that Sp is a surface term. To prove that, we first note that tr (4*) vanishes®. This follows from
tr (AAAA) = —tr (AAAA),

where we used the cyclicity of the trace, and that A% A A® = — A" A A*. Now we calculate

.
dws tr {dAdA — gl(dAAQ — AdAA + A2dA)}

tr {dAdA — %(dAA2 + %A2dA + %dAA2 + A*dA)}.
We subtract tr A* = 0 and end up with
dws = tr (dAdA — idAA> — iA%dA — AY) = tr (dA —i4%)” = tr F?,

as was claimed.
To rewrite the action in terms of forms we introduce the dual *« of a p-form «, which is a (d — p)-
form, by

1
— * Hp+1 fd
a= Oppypr .o pia AT A...ANdzx"?,  where

(d—p)!
1

* —_—
Qppyropa = p,nmmud

*
Fe et Rl

The star-operation is, up to a sign, idempotent. For a p-form one shows, that
“(fa) = (=1 Psign(g)a,

where in Euclidean spacetimes sign(g) = 1 and in Lorentzian spacetimes —1. We shall need the
dual of the field strength, which is

1 1 1
F = §*Fa8 dz® A dz®, where *F,5= 3 Mopas F7r = 3 Napop 7P,

3we abbreviate AN AAAAAby AAAA = A%,



Note that *(*F') = F' in Euclidean spacetimes with signatures (+,+,+,+) and ultra-hyperbolic
spacetimes with signature (+, +, —, —, ), whereas *(*F') = —F in Lorentzian spacetimes. The (an-
ti)selfduality conditions

*F =aF = +F =* (*F) = o*F = o’F

requires, that o = %1 for sign(g) = 1 and « = =i for sign(g) = —1. There are no real (anti)selfdual
field strength on Lorentzian manifolds. But circular polarized light (which maybe described by
complex fields) is selfdual.

The product of *F' and F' is part of the Yang-Mills action:

1
I FAF = 2 ageptr (F°*F,,)dz*dx" dz" dz”

. 1 (67 14 g
= 51gn(g)§ NaBop€ B ntr (F "FH,,).

Using that 7agep = € €agop and that eagos, €274 = 2sign(g)(646) — 676 ), this yields

trF A F = gtr (F*™F,). (1.11)

Using this result, the action S = [ £ in a Riemannian spacetime acquires the following form, up
to Yukawa terms and terms containing a possible Higgs field:

1

Sp=—
E 292

*F/\F—/an(z'D—im)w—%/trF/\F, (1.12)

In Lorentzian manifolds it reads

1 . - . 0
SM__2_g2 F/\F—l—/ng[;(lD—zm)zﬁ—l—g?/trF/\F. (1.13)

We have seen, that the f-term is a surface term,

/tI‘F/\F:%O.Jg,

and does not affect the classical dynamics. We recall, that
F=dA—iANA, D=+"D,, {+#*~'}=2¢"", D, =0,+iw,—iU.(A,).

In Euclidean spacetime the v# are hermitian*. Next we discuss the various symmetries of this
action or pieces of this action.

4In Minkowskian spacetime not all y# can be hermitian. This would contradict the anti-commutation relations.



1.2 Symmetries

The action has several symmetries, namely local gauge symmetry, global chiral invariance if the
fermions are massless, local Lorentz-invariance, diffeomorphism-invariance and sometimes Weyl-
invariance. We shall now discuss these symmetries and some consequences, like the conformal
symmetry, in turn.

1.2.1 Gauge symmetry
Under the local gauge transformations
A— A9 =gAg~" +igdg™" and ¢ — 7 =Ul(g)p, ¢ — U (g)
is the action invariant. Indeed, the field strength and covariant derivative transform according to
F(A%) =gF(A)g™" and d+iw— iU (A9 =U(d+iw —iU.(4))U ",

where U = U(g) is the representation of the gauge group according to which the fermions transform.
For example, in QCD the quarks transform according to the fundamental representation and
U(g) = g. However, the right-handed quarks have vanishing weak isospin and thus do not transform
under the weak SU(2). Hence U(g) = e in this case.

The bits entering the action transform as

FAF = g(FAF)g! , *FAF = g(*FAF)g!
WP —im)y  — YI(iD —im)¢.

Because of the trace-operation the Lagrangian and the action are indeed invariant under local
gauge transformation.

1.2.2 Chiral symmetry

Since the hermitian 5 = ¢y°y'vy2y3% anti-commutes with the v* and commutes with the spin-

connection, and since
72 =1 = e = cosh(a) + 75 sinh(a) = "5 = e~ 5
the Dirac term in the Euclidean action transforms under a global chiral transformation

Y — e and f = fe®s, o reel, (1.14)

as

YH(i — im)p — T (i) — ime®*75) ).

5¢ =1 in Euclidean and ¢ = i in Minkowskian spacetime, the ¥’s here are the one in flat spacetime.




It follows, that (1.14) is a global classical symmetry if the fermions are massless. For this reason
the limit m — 0 is called the chiral limit. We expect that this classical symmetry is spontaneously
broken in QC'D. We shall come back to this breaking later on.

We remark, that in Minkowskian spacetime the chiral transformations are
¢ — e and - e, o reeland 5 =~

This is required by the anti-commutation relations for the Fermi fields or that ¢! in ¢ = t4? is
the adjoint of .

1.2.3 Local Lorentz-invariance

In the second part of the lectures we shall investigate quantum fields in external gravitational
fields. As a preparation we discuss the important conformal invariance of gauge theories, we now
investigate the coupling of matter fields to gravity. For bosons this is rather easy, at least if we
implement the equivalence principle by minimally coupling the bosons to gravity. Let us first recall
some important formulas from (pseudo)Riemannian geometry.

The metric tensor in the line-element
ds® = Juvdxtdz”
determines the geometry of a (pseudo)Riemannian manifold. The Levi-Civita connection is given

by

1
qu = igaﬁ (96u71/ +98vsu —9uviB )

and enters the covariant derivative of tensor fields

e
Tlﬁlll...uﬁsz;)a = Tlﬁlll...uﬁzz,)a + FZE:TzﬁL:Z +o- FgulTB.l..uq ’ =
The coordinate expression of the Riemann tensor is

Ry = Logon =g A1, T05 = Tos T

The ’diffeomorphism’-connection 1-form and the curvature 2-form by

1
b =Typdz" and Q% = ingdaz“ Adz”,

where
% =dl'G + T AT7%. (1.15)
The Ricci tensor and Ricci scalar are

Ruu = gaBRozuBu and R= g'uVRl“/.

10



For the various symmetry properties of the Riemann tensor I refer you to the extensive literature
on general relativity.

For the gauge bosons we have already accomplished the minimal coupling. Let us repeat: the
difference to flat space is, that in F'#F},, the indices are lowered and raised with the metric tensor
guv and its inverse g*”. The action is the integral over the Lagrangian density, where one integrates
with the invariant measure 1 which contains the determinant g of the metric.

For spin-zero fields the generally covariant derivative is just the ordinary derivative, so that

So=1 [ 1(9" DusDuo £ V(9) +€RG"), (1.16)

where D = d — iU.(A) and V(¢) is the Higgs-potential containing a possible mass term and
self-interaction for the scalar field. The last term containing the Ricci-scalar R violates the equiva-
lence principle. It is an additional renormalizable term which is sometimes added to improve the
conformal properties of the theory. Note, that after a partial integration this action reads

So=13 [ n( - oD% £V(®) + ¢re?),

where D? is the gauge-covariant d’Alambert operator
D% = ¢"D,Dyp=g" ([0, — iU.(4,)] Dy — T3, Dat)

(8, — 0.4, VIglg™ (3 — iU.(4))

Vgl

When proving the last identity, one needs that

gy, = —ﬁ&( Iglg“”)-

For uncharged particles

D* = Lau( |9|9W8u) =0y

Vil

is the d’Alambert operator in curved spacetime.

Coupling fermions to gravity is a bit more tricky, since in flat space those transform under the ’spin
representation’ of the Lorentz group. When the tangent space group to a curved spacetime manifold
is (pseudo-)orthogonal one can still introduce spinors by referring them to the local orthonormal
tangent frame. We assume that this is the case and introduce orthonormal tetrads or 4-beins. A
4-bein is a ’square-root’ of the metric:

_ a b v _ ab v av _ SV
Juv = Nab€ 1€ gll =" eaueb = €que = 5“ ;

where 1, is the flat metric, i.e. n,, = diag(1, —1, —1, —1) on manifolds with Lorentzian signature
and n,, = diag(1,1,1,1) on manifolds with Riemannian signature. Multiplying the last equation
with e?* and summing over u yields

bv

etey,e” = e = eey, =05, e, =1

11



The indices p, v are spacetime-indices which are lowered and raised with g,, and ¢*” and a,b are
Lorentz-indices which are lowered and raised with 1,, and n?*. The % = e, dz* form a orthonormal
basis of tetrads. The price one pays when one introduces 4-beins is an additional symmetry, the
local Lorentz invariance. Let A(z) be a spacetime dependent Lorentz transformation. Then

a ~a __ Aa b
e, and e = Afe,

lead to the same metric
~a ~b __ Aa _C b _d _ _a b _
€ uMab€y = A c€ ,u,nabA d€v = € uMab€y = Guuv

since AlpA = 7 for Lorentz-transformations. To this local SO(1,3) resp. SO(4) symmetry belongs
a covariant derivative. To determine the corresponding connection we observe that with the help of
the 4-bein we can convert vectors (tensors) into scalars and vice versa. Let A* be the components
of a vector field. Its covariant derivative is

VAV =0, A" + T, A"
We can convert A" into into a Lorentz vector and vice versa:
At =e, A" and A¥ = A%/
which are the entries of a vector under the local Lorentz transformations
A — A9 AP, A =A(x).

Since A is spacetime-dependent, the ordinary derivative of a Lorentz-tensor is not a Lorentz-tensor.
As usual we need to introduce a connection to define a covariant derivative which maps Lorentz-
tensors into Lorentz-tensors. In particular there must be a w, such that

VA" =0, A" + wi, A

is a Lorentz-vector. This requirement is fulfilled if it doesn’t matter whether we first take the
covariant derivative of a vector field and then convert the result into a Lorentz vector, or first
convert the spacetime vector into a Lorentz vector and then take the covariant derivative. Thus
we demand that

¢V, A” = V(e AY) = ¥, A%,

The first equation is equivalent to

opel, — T, ef% + w,fbeb,, =V,e% =0. (1.17)
Similarly one finds, that
oue, +T e, + wpare?” = Vel = 0. (1.18)

These equations allow us to calculate the connection w,, from the vierbein as follows: Let

a _ ,a " a _ ,.a "
§¢ = e dz" and w% =w;dz

12



be the tetrad and connection-one-form, respectively. Then

1
do® + wi A G° = 3 ([‘)uea,, — Oy, +wyp el —w ebu)d:v“ Adz” =0,

v =

since the term in the brackets is just the anti-symmetrized left hand side of (1.17). The important
formula

do® +w% AN6° =0 1.19
b

is the first structure equation of Cartan. To obtain the second structure equation we multiply (1.17)
with dz* which yields

de?, — e T +wie’ =0, where re, =ry,dz". (1.20)
The curvature tensor can be written as follows:
1
dT% +T% AT, = 5( o —T %50 4T, T — T2 T7 )dx“ Adz¥ = Q%

Iz vo- uB

where we introduced the curvature 2-form. Now we differentiate (1.20) which results in
—de®, AT% — e dT? + dw%e’, — w% A de’, = 0. (1.21)
Here we insert for de®, the result (1.20) and find the formula
dU% + T AT% = (dw‘z + o.;“cwcb)ebﬁeaa.

Comparison with (1.21) yields the second structure equation of Cartan:

dw’ + wi AwG =Q% where Qf = e“aebﬁﬂ% (1.22)

is the curvature 2-form with respect th the orthonormal frame. We now use the structure equation
to derive the Schwarzschild solution for a spherically symmetric body. We choose the manifold
M = R x R, x S2. In polar coordinates the metric has the form

g =e>d? — [e2b(r)dr2 + r2(df* + sin® 0dy?)|. (1.23)
We now must insert this ansatz into Einstein’s field equation

1
Guv =87GTw,  Guv =Ry = 59w R. (1.24)

This is done most quickly with the help of the Cartan calculus. We choose the following orthonormal
tetrad

00 = eodt, 0' =ebdr, 6% =rdf, 6> =rsinbde.

13



According to the first structure equation we need to calculate the derivative of the tetrad:

de® = d'edr A dt, det =0
de> = drAdb, df® = sin@dr A dp + rcos@ df A dp.

We express the right hand sides in terms of the basis 8% A %, obtaining

de® = d'e7P0' NG, dp' =0
a2 = letgina 6>, do® = l(e*”ol A6 +cotd 6% A 6*).
r T

When this is compared with the first structure equation one expects the following connection forms:

wy = ae Wwh=w% =0, w}=rte g’
wh o= e, Wi =r""coth6?
The other connection forms are determined by w,, = —wp,. This ansatz indeed satisfies the first

structure equation. The curvature forms Q9% can now be gotten from the second structure equation.
The result is

1,—2b
901 — 6—2b(albl —d' = a12) 00 A 91’ QO2 — _a € 90 A 92
alef2b blef2b
Q% = - 6° A 63, QY = 6t A >
r T
I —2b 1— —2b
L = 25 g ae? 0 =—— 205
r r2
The other components are gotten from Q,, = —4,. For the nonzero components of the Einstein
tensor G% (with Lorentz-indices) one obtains
1 1 20’ 1 1 2a’
a0 — ——e’%(———) at :__67217(_ _)
0 r2 r2  r)’ r2 r2 + r
a —b
G22 — G33 — _e~2 (a12 —ab +a" + )
r

If we demand asymptotic flatness, then the Einstein equation im vacuum imply a + b = 0 and
e”? =1-2m/r
so that we obtain the Schwarzschild solution

2 2
T VP B

2002 | 2 2
" 71—2m/r r*(df* + sin® 6dy?). (1.25)

9=

We shall need this result later, when we discuss quantum fields near black holes.

Let us now determine, how the connection transforms under frame-rotations 6 — 6 = AG: if (8, w)
obey the structure equations, then (6,w) must obey them. Since

0=A*1(d§+a}/\§) —AYAANO+dI+ A IOANG

14



this requirement implies the following transformation law for the connection under local frame
rotation:

wh — @ = A%w (AL — (dAATH)4. (1.26)
w, transforms inhomogeneously under local frame rotations, as expected for a connection.

How do we now couple fermions to gravity? For that we recall that the Lie-algebra of the Lorentz-
group consists of 6 matrices A% which are antisymmetric in the lower indices, Agp + Apo = 0. As
generators of a representation of the Lorentz-algebra we may choose operators J,; = —Jp, which
obey the commutation relations

[Jab: ch] = i(nachd + ndeac - nchad - ndeac) .

Examples are the generalizations of the orbital angular momentum, spin and total angular mo-
mentum (supplemented by the infinitesimal boosts)

. 1
Moy = i(2a0p — 230a), Tap = E[%u%] and  Jop = Mgp + Xgp-

Let
ab = (e/\)aba Aab = —pa
be a Lorentz-transformation. Spinors transform under Lorentz-transformations with the spin re-
presentation
) — @) = Sh(@) = BT = 571908 = A(S)3". (1.27)

The map S — A(S) is a representation of the spin group by Lorentz transformations

A(S1S5) = A(S1)A(Ss), A1) = 1. (1.28)

The covariant derivative D, = 0, + iw, acting on spinors must be compatible with the local
spin-rotation

Dyt = (8 + i) = S (O + iwp ). (1.29)

This implies, that

@p = Sw, S~ +i9,557! (1.30)

must hold. The spin connection must be in the Lie-algebra of the spin group, i.e. a linear combi-
nation of its generators,

1
Wy = iwwbzab. (1.31)

As indicated by the notation, we claim that the wyqp is the connection of the frame rotations. We

15



must show, that this spin-connection indeed transforms as in (1.30) under spin rotations. Using
the transformation (1.26) for the connection we find

~ 1 ~ c 1 a - - C
Wy = 5“’ucdE 4= 3 (Ac Whab(A 1)bd — (OuAA 1)011)E .. (1.32)

On the other hand, using the last identity in (1.27) and (A=")4 = A2 we find

1 1
Sw, S~ = gwmbsza”y1 = §A:wmb(A*1)bdzcd, (1.33)

that is, the homogeneous term in (1.32). To see that the inhomogeneous term in (1.30) coincides
with that in (1.32) we note, that the last identity in (1.27) implies

", dSS ] = (dAA)"
Now we multiply this equation with v, from the left and sum over a. Using that®
Yoy* =4 and ,dSST'y* =0
we end up with
4dSS™" = (dAA"" )y,

we find, that
1
idSS~"! = —§(dAA_1)abEab

which proves that also the inhomogeneous term in (1.30) coincides with that in (1.32).

So summarize: The covariant derivative of spinors is

1
Dy = 0y + iwyyp, where w, = §wua52ab.

D, transforms under frame-rotations the same way as 1 does.

Spinor fields are scalars with respect to general coordinate transformations or diffeomorphism. Is
the spinor field charged, then

Dyuth = 0,0 + iw, ) — iU (A0, (1.34)

One should keep in mind that the local spin rotation are implemented differently in Riemannian
and pseudo-Riemannian manifolds. In Riemannian manifolds

Y — S, = iSt =TS and w — SwST!+idSS! (1.35)

and in pseudo-Riemannian manifolds

6t0 get the second of the following identities, one uses that [Zap,Ye] = i(MacYs — MeYa)-
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= Sy, Pf - ¢ist = PSt and w— SwS Tt 4idSS! (1.36)

In the Riemannian case St = S~'. The corresponding relation in the pseudo-Riemannian case is
7°8t~0 = S=1. The reason for this difference is that the spin groups are the coverings of SO(4)
and SO(1, 3), respectively. Now we can show, that the fermionic part of the action is local Lorentz-
invariant. From our previous results it follows immediately, that

/ (%" Dy —im)ep = / ST (%" Dy, —im) Sy = / YT (iST4"SD,, —im) 1,
where we have used (1.29). It remains to be shown, that

Starg = 4H. (1.37)

The v* are spacetime-dependent gamma-matrices which must transform the spacetime-vector D,
into a Lorentz vector. Their anti-commutators are

{7 "} = 29",

One convinces one-selves, that they are related to the numerical gamma-matrices v on flat space-
time according to

v =Ale . (1.38)
Now we calculate
StqrS = STyrsel =AMyl =7

and see, that (1.37) indeed holds. Thus the action is local Lorentz-invariant.

1.2.4 Diffeomorphism and Lie derivative

The general coordinate invariance is built into our action since only spacetime scalars enter the
Lagrangian density. Now we interpret a coordinate transformation actively as a point transforma-
tion, rather than passively as one usually does. Consider a congruence of curves z*(u) and define
the tangent vector field dz#* /du along the curve. We do that for every curve in the congruence and
end up with a vector field X*. Conversely, given a non-vanishing vector field X#(z) defined over
the manifold, then this can be used to define a congruence of curves in the manifold called the
orbits or trajectories of X*. This curves are the integral curves on the vector field and are obtained
by solving

dz*

= X*(z(u))).
We suppose that X* has been given and the corresponding congruence of curves has been construc-
ted. We want to differentiate a tensor field T}!-. For that we drag the tensor field at some point
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p along the curve passing through p to some neighboring point ¢ and compare the dragged-along
tensor with the tensor already there. We subtract the two tensors at ¢ and define the derivative
by some limiting process as ¢ — p.

Consider the transformation
yt =zt + eXH(x),

where € is small. This point transformation sends a point p with coordinates x to a point ¢ which
lies on the curve of the congruence through p and has coordinates z + ¢X (in the same coordinate
system). Under a point transformation a tensor T*" is mapped according to

Oy* 0y as

T (z) — TH (y) = 6?aMT (). (1.39)
Since
I
Iy T
oz
we have
T (y) = (0% + €0aX") (8% + e0pX") T (x)

— TH(z) 4 e(aaXuTa"(m) + aBXVTuB(m)) +0(ed).
Applying Taylor’s theorem to first order, we also get
TH (y) =T* (x + eX (z)) = TH (z) + eX*0, T (z).
Now we are ready to define the Lie derivative of a tensor by

LT = lim W) =T W)

e—0 €

(1.40)
The Lie derivative compares the tensor T (y) at the point ¢ with T#(y), the dragged-along tensor
at ¢g. We find

LxTH = X*9,TH* — T 9, X* —TH*0,X".
The Lie derivative maps (p, ¢)-tensors into (p,q) tensors, is linear, fulfills the Leibniz rule and

commutes with contractions. For general tensor field is it

LxTh2 = X0, T2 — Tohr 0 X — o+ THN2 0, X* + ... (1.41)
In particular, the Lie-derivative of the metric is
LXg;u/ = Xaaozg;u/ + goquaau +guaXaw .

Using the metricity of the connection,

vﬂglﬂ/ - FﬁozugBV - Fﬁayguﬁ =0,
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this Lie-derivative can be rewritten as
LXg;“/ =X~ (FB ugﬁ" -+ T ozugllﬁ) —+ gﬁ,,Xﬁ,” +gM6X67V = VHXV + VVX”.

If there is a vector field such that Lxg,, = 0, such a field is called Killing vector field, then the
metric is dragged into itself by the flux generated by X. In other word, the flux is an isometry. A
Killing vector field generates an infinitesimal isometry and obeys the Killing equation

LXg;u/ = vuXV + vuXu = 0. (142)

Let us see more explicitly that the flux generated by a Killing field is an isometry. The diffeomor-
phism generated by X (z) maps the curve z(v) connecting the points A and B to the curve y(z(v))
connecting A" and B’.

y(x(v))

Abbildung 1.1: The isometry generated by a Killing field

Let us see, that the two curves have the same length:

6 o)
d(A',B') = /\/g,w y“y”dv—/\/gw aza 816 g iBdy

0x° Oxr v
_ " OV a8y = d(A, B
/Jay“ gy 9 (P0)) gy g #7740 = (A, B),

where in the second to last equation we used, that the metric at y coincides with the dragged along
metric if X (z) is a Killing field.
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The isometries of Minkowski spacetime are the d translations with constant Killing fields X#(z) =
c*, and the 1d(d — 1) Lorentz transformations with Killing fields X*(z) = w¥, 2, wp, + wyy, = 0.
There is another spacetime which admits the same maximal number of d(d + 1) Killing fields,
namely the (anti) de Sitter spacetimes.

A spacetime is stationary if there exists a special coordinate system in which the metric is time-
independent, i.e.

0w

T, )

920 (1.43)
where z° is a time-like coordinate. In an arbitrary coordinate system the metric will probably

depend explicitly on all the coordinates; so we need to make the statement (1.43) coordinate-
independent. If we define a vector field

X =44 (1.44)
in the special coordinate system, then
Oguv _
ox0
Since Lxg,, is a tensor it vanishes in all coordinate systems and hence X* is a Killing vector
field. Conversely, given a time-like Killing field X#, then there always exist coordinates adapted

to the Killing field, that is, in which (1.44) holds. In this coordinate system the metric is time
independent. Thus, a spacetime is stationary if and only if it admits a time-like Killing vector field.

Lxgu = X%0aGuv + 9av0uX* + 91000 X = 64009 =

A static spacetime admits a hypersurface-orthogonal time-like Killing field. To see what this means
let

flz) =p (1.45)

define a family of hypersurfaces. Different members of the family correspond to different values of
w. If two neighboring point with coordinates = and z + dz lie on the same surface, then

ﬂd b =n,dx" =0.

Ozt

Since dx* lies in a surface S defined by (1.45) it follows by construction that n* is orthogonal to
S. A vector field X*# is called hypersurface-orthogonal if it is everywhere orthogonal to the family
of hypersurfaces, in which case it must be proportional to n*,

XH* = Xz)n* = A0, f.
This conditions imply
X000 X0 = AMop Mo Fra A% fufva -
Taking the total antisymmetric part of this equation we find

X0, X =08 XAdX =0, X = X,da".
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This equation is unchanged, if we replace the ordinary derivative by a covariant derivative, namely

X,V Xo) = 0. (1.46)

Any hypersurface-orthogonal vector field satisfies this Frobenius condition. The converse is also
true: any non-null Killing vector field (X*X,, # 0) satisfying the Frobenius condition is necessarily
hypersurface-orthogonal. Indeed, one can show that then

X,,= X?f,, for some function f.

Given a hypersurface-orthogonal time-like Killing field one can introduce adapted coordinates along
the congruence and in one hypersurface (see figure (1.2)) such that the metric is time-independent

Abbildung 1.2: Adapted coordinates in a static spacetime

and no cross terms appear in the line element involving the time, i.e. the shift vector gg; vanishes.

1.2.5 Weyl-transformations
Under a local Weyl-transformation

ds® — e*7ds?
transform the metric and vielbein according to

-~ _ 20 a 5
Guv > Juv = € Guv, €L > €



The transformed tetrad 8% = e”#® must obey the first structure equation with transformed connec-
tion w:

df® + %0 = e7 (8 + 46" + dob?) = 0.
The right hand is zero, iff
040" = wie® — doh”

holds. Together with the antisymmetry of the connection forms this fixes the Weyl-transformed
connection as

0% = w4+ 000 — 0,0°0, where Oyo = e/'0y0.
The Christoffel-symbols transform as
e, =12 4 (5ga,u +6%0,, —gu,,wa).
Finally we need the transformation of the curvature: From
Qup = Qup — 0,0, (Vca,b —0° 0, ) + 6,0, (Vca,a —0°0,q ) —0,0,(Vo).

One derives, that

Ropea = €77 [Rabcd + Moe (0300 — 010 00d ) — Nac (Tipa — 6 00 ) — Nactha(Vo)®
2
—Thbd (U;ac — 0,a O0,¢ ) + Nad (U;bc — 0, 0,¢ ) + nadnbc(vg) :| -
Contractions yield the following transformation laws for the Ricci tensor and Ricci scalar:

Rab

e 2 [Rab +(2-4d) (U;ab — 0,0 0yh —l—nab(VJ)Q) - nabAa]
R = e [R —2(d—1)Ao — (d—1)(d— 2)(%)2].

The Weyl tensor, which is the traceless part of the curvature tensor,

1
Cabed = Rapea + -3 (ﬂadRcb + MpeRaa — NacRap — ﬂbdRca)
1

+m (ﬂacndb - ﬂadncb)R

is Weyl-invariant:

N

_ [e%
Buv — ¥ Buv:

Hence, if a spacetime can be related to flat spacetime by a Weyl-transformation (is conformally
flat) then the Weyl tensor vanishes. In d > 4 dimensions the converse is also true: a spacetime is
conformally flat

Juv = 62077,“,, up to coordinate transformations,
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if and only if the Weyl-tensor vanishes. In 3 dimensions the Weyl tensor vanishes identically and
another tensor (see Eisenhart) can be used to determine if a space is conformally flat. Every 1 and
2-dimensional spacetime is conformally flat (up to moduli parameter).

Transformation of wave-operators

The Laplacian or d’Alambertian
1
A= gau (eg""d,), e = det(e,)

transforms under Weyl transformations as

. -2 —2 _
A= e*¥0(a - dTAJ + (dTF(vU)?)e%”.
When rewriting the transformation of the Ricci scalar as

~ d+2 da
2

R=e "0 (R —2(d - 1) Ao — (d—1)(d - 2)(%)2)@%20

then one sees immediately, that the wave operator

d—2
AC—A—mR

transforms homogeneously under Weyl-transformations,

d—2

A, =e Fope’0. (1.47)

Using the transformation property of the connection,

N y v d—1
Wyab = Wyab + (eaueb — epue, )8,,0 and %E“b = Tfyb
one easily finds, that
A . d—1
D=e "y (0 +iw, + Taﬂo)
which is a homogeneous transformation
P=eFopetste, (1.48)

Now we turn to the Yang-Mills equations. From the very definition of the star-operator, one finds

eld—2p)o

*a = *a for a p-form a.

We see, that the Yang-Mills action and theta terms are both invariant under Weyl-transformations
in 4 dimensions if

F=F— A= A.
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Weyl-invariant actions

The term [ n¢A.¢ is Weyl-invariant, if the scalar field has Weyl-weight —(d—2)/2, i.e. transforms
according to

¢ =e"¢ with weight « = —%(d -2)
under Weyl transformations, since then
¢Bch=e 90
as it must be for the action to be invariant”. Also, an interaction term

2d

A / néde,  where d, = —

is Weyl invariant. The general Weyl-invariant action for a scalar field reads
1 d
Sy = /n(— 5 (6 806) +26".).

The action for massless spin—% particles,

So = [ motipu

is Weyl invariant in any dimensions if we assign the weight o = —(d — 1)/2 to a spinor field in d
dimensions. The Yang-Mills action is Weyl invariant in 4 dimensions and the gauge potential has
weight zero.

A Yukawa term transforms as
P = eC 7yl gy
and hence [ Yt ¢ is Weyl invariant in 4 dimensions.

Now we wish to combine the diffeomorphism- and Weyl transformations. For Weyl-invariant theo-
ries these are symmetry transformations. Give a vector field X and its corresponding flux, the
dragged along metric is

B dx® 9zP
Guv(y) = 8—y“8—y”ga6(x)'

Now we assume, that the §,,(y) coincides with the metric present at y, up to a conformal factor:

Guv (y) = 2 ) Guv (y)-

As above, we investigate the infinitesimal form of this condition. Setting y = z + X we find

(14 2e0(2)) (1 + €XY00) guv (T) = guv () — €(0,X*gar + 00X *gua) + O(€).

"Recall, that 7§ = e?7n.
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We see, that the vector field must obey the equation
209w + Lxgu = 0.

When using g"" 9a g, = 2T'%,, the contraction of this equation determines the leading contribution
to o as
1
d

Thus the field X must obey the conformal Killing equation

ag =

1
VuXH = o divX.

2

LXg;u/ = d

divX gu.. (1.49)
Minkowski spacetime allows for 1(d + 1)(d + 2) conformal Killing fields. Beside the Killing fields
belonging to the translations and Lorentz transformations these are the dilatations and d special
conformal transformations with conformal Killing fields

Xt =Xz# and X* =2(c-xz)z" — 2°c".

The dimension of the conformal group is 3(d + 1)(d + 2) and is just the group SO(d,2) (resp.
SO(d + 1,1) in Euclidean spacetime).

1.2.6 Conformal transformations in Minkowski spacetime

If a spacetime possesses Killing fields, then a diffeomorphism invariant theory possesses symmetries.
However, a diffeomorphism- and Weyl invariant theory has additional symmetries. They can be
combined such that the metric is invariant, as it is the case for isometries. In Minkowski spacetime
such a theory is not only invariant under translations and Lorentz boost but under all conformal
transformations.

So let us assume, that X is a conformal Killing field with corresponding flux # — y(z). The
metric and matter fields are dragged along according to

0x® 0z° N
p — — 20(y)
Gy () > Guw(y) = Ay By” gap(z) =" Wg,,(y)
_ Oy oxh

... Nul... aq...
T (x) — TPt (y) = PR ) (z).

Next, we perform a compensating Weyl transformation with conformal factor

1 .
e2) = = 0" W)Guv ().

which results in

6720(1")&7#1/ (y)

e~ WITY1(y)

G (Y)

—
T (y) —

25



The composition a diffeomorphism generated by a conformal Killing field and a compensating Weyl

transformation leaves the metric tensor invariant

G (T) — g (y)

and changes a matter field with Weyl-weight a according to

_ ayul OB
Tﬂl--- T‘““' = —om(y) —_— ...
v1... (z) — V... (y) =e rm dyv

The infinitesimal form of these transformations is

2
oxTh = (Lx - ga divX ) T

(1.50)

LT (). (1.51)

(1.52)

For a diffeomorphism- and Weyl invariant theory the transformation (1.51) or its infinitesimal form
(1.52) are symmetries. The important point is, that if z — y is a diffeomorphism generated by a
conformal Killing field, then the metric remains unchanged under this transformation.

Let us apply these general results to Euclidean and Minkowski® spacetime. In the following we shall
need these symmetry transformations for the conformal Killing field for scalar fields in arbitrary

dimensions and gauge potentials in 4 dimensions:

d—2
bx6 = Lx¢+ ——0.X"¢ and OxA, = LxA,.

Inserting the explicit expressions for the the conformal Killing fields we end up with the following

infinitesimal conformal symmetries:

X dx dx A,
a® X%0u0 X*0, Ay
wC’Bacﬁ X0 X0n A, -I-o.;%Aa
Az® (X“BQ +A(d - 2))¢> (X“@a + A) Ay
2c® — 2(c, 7)x® (X“@a —2(d—2)(e, x))zb (X“@a +2[(c, A)z,
—(z, A)ey — (c a:)Au])Au

For an arbitrary tensor field of weight «, the infinitesimal dilatations read

6XDT§§_::' = /\(a:“ +s5— Qa)ij:j,

where s is the number of covariant minus the number contravariant indices of Tﬁf . The number

A = s — 2« is the conformal weight of Tﬁ‘,ﬁ::'.

For completeness we recall the form of the conformal transformations:

8actually compactified Minkowski spacetime, see below
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Translations yt =t + a*
Lorentz transformations yt = A" Y A=e"
Dilatations Yyt = erat

Special conformal transformations | y* = (1 + 2(c,z) + 02:152)_1 (z# + ctz?)

Let us assume, that S[g,., ®] is Weyl-invariant, where ® denotes all matter fields of the theory.
Now we define the energy-momentum tensor according to

2 4
TIJ'V = Ews[gﬂy,é]
The Weyl-invariance implies
08 oS dghv  4S 6P S
Y 0= LA Tl —y o/ — .
bo VT Sgm 5o T omes - It % (1.53)

We see, that the TH" is traceless off-shell if the weights of all matter fields vanish. For example, using
de = —%e 9urdg*” the variation of the Yang-Mills action under a change of the metric becomes

1
6/ 919" 9" Fuy Fop = 2/ V1gl6g"*" (FuaFf - zguuFaﬁFQB)

and we can read off the traceless energy-momentum tensor in spaces with Minkowskian resp.
Euclidean signatures

1 1 1 1
T = 7 (FuaFf - ZguuFaBFaB) T = 7 (FuaFf - ZguuFaBFaB)' (1.54)

To write this in terms of the chromoelectric and chromomagnetic fields, we insert

0 E1 E2 E3
—-F 0 B -B

17172 1 3 2

Fxe=|_g, -B, 0 B (1.55)
—-FE; By, —-B 0

0 E  E I 0 -BE, —-E, -E

pp_ | —Er 0 By -B pv_ | Er 0 By B
u ~Ey -B; 0 B » P E, -B; 0 B
~E; By -B; 0 E; By —-B;y 0

It follows in particular, that

1 [y = 1 fmy s
T = (B2 + B2, 1= (B2 - 5.
0 = 552 + ) 00 = 52

For a scalar field in 4 dimensions the improved energy-momentum tensor, which is gotten by varying

d—
So= [ (3000000~ V(8) + 10—

=)
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is traceless only on shell, since o # 0.

Finally we note, that to each conformal Killing field there belongs a conserved current. Let TH¥
be the traceless energy-momentum tensor and X* a conformal Killing field. We define the Bessel-
Hagen current belonging to X by

Ji =T"X,.
Using the conservation of T"” we find

1 1
V,uju = THVV[LXV = T'uui (vuXu + VVXM) = EleX T‘wgl“/ = 0’

where we used the symmetry of T#, the conformal Killing equation Lxg,, ~ gu.div X and that

T = 0. These conserved currents lead to conserved charges. Since

1 1
gau(ngf) =0y J% + g(aue)Jg( =VuJy =0,

these charges read

Qx :/EéJO.

They are conserved if the fields fall off fast enough at spatial infinity. In this formula X is a
spacelike hypersurface and é denotes the induced volume form on this hypersurface. In particular, in
Minkowski spacetime there are £ (d+1)(d+2) conserved Bessel-Hagen currents. The corresponding
charges are the d momenta, the angular momenta, dilatonic charge and d additional charges.
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