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Abstract

We review the duality between large N Gauge Theories in 4 dimensions and String back-
grounds of the form AdSs x K5. This review is essentially taken from Maldacena et.al und de
Veccia.

1 The various interactions

Gravity: described by Einstein’s theory of general relativity and its supersymmetric
extensions, gauge group is Poincare group, non-renormalizable.

Gauge theories: (Gauging of internal symmetry group. Strong interaction described
by QCD that does not contain gravity. 't Hooft limit for SU(IV)-gauge theories:
N — oo and A = ¢g2,,N fixed. In leading order described by planar diagrams,
gauge invariant variables are determined by a master field that satisfies a classical
equation of motion (Witten). Conjecture: large-N gauge theory described by a
string theory. Mesons are string excitations. Idea supported by observed Regge
behavior, explanation of U(1) problem and other successes.

Old idea of describing Wilson loops in strongly coupled QCD in terms of string
partition function dates back to early eighties. It was found [1], that the static
potential V,; between heavy probe quarks,

q L
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defined via
1 .
e all) = (W[C)),  WI[C]= i Peis A
has the form
Vig(L) ~ oL — % + const + O(L™1), (1)
with a universal (coupling-independent) positive constant ¢. The universal Liischer
term arises from zero-point fluctuation of the string. O. Alvarez derived an exact

expression for the partition function of the NG-action in the large d (=space-time
dimension) limit. It yields

~ o\ T e (2)



When expanding in 2co//L? one finds linear confinement as well as the Liischer
term. This is in accordance with the following exact results:

e V,;(L) cannot rise faster than linearly for large L (Seiler 1978)
e V(L) >const for large L (Yaffee 1982)

e V(L) is monotonically rising and concave: V' > 0 and V" < 0 (Bachas 1986
from reflection positivity).

The strong coupling Hamiltonian of lattice gauge theories,

H= g—ZEQ(l) +0(1/¢%)
(B (1), B (1)] = if**E*(1), [E*(),U()] = =T*U(1),
makes the chromo-electric flux between external charges explicit. The vacuum obeys
E‘()j0)=0 V links I

The eigenstates of the Hamiltonian are
e
LaB) =U? M),  Hll,af)=-C|l,ap),

where C is the second order Casimir. For the string tension one finds o = Cg?/2a?.
Although the strong coupling expansion converges for 1/¢ sufficiently small (Os-
terwalder, Seiler) it has a finite radius of convergence. In the continuum limit the
coupling becomes small and the strong coupling expansion breaks down. There
is some numerical evidence for a Liischer term in (QC D5 associated with a bosonic
string from lattice simulations [2]. The value of ¢ is not well determined numerically.

This QCD-strings should not contain gravity. Many attempts have been made to
construct string theories directly from QC'D. None can be considered sufficiently
satisfactory. This is a 30 year old problem.

String theories: Born from attempts of describing strong interaction (dual reso-
nance model). As such inconsistent (anomalies, no massless Pseudo scalar). Later
used as consistent way of unifying all interactions, containing quantum gravity. All
five consistent string theories in 10 dimensions unify gravity with gauge theories.

TyYPE I STRINGS: Open and closed non-oriented strings with anomaly-free gauge
group SO(32), Chan-Paton gauge degrees of freedom located at end points of open



strings: open strings contain usual gauge theories. Only open strings are not con-
sistent, since non-planar loops corrections generate closed strings. Hence, gravity
(zero-slope limit of closed string theory) is necessary consequence of gauge theories
(zero slope limit of open string theory).

HETEROTIC STRINGS: theory of only closed strings, contains supergravity and gauge
theories, gravity is fundamental theory and gauge theories are obtained from it
through a stringy KK-reduction.

Type ITA AND IIB STRINGS: perturbatively contain only closed strings and no
gauge degrees of freedom. They contain non-perturbative D-branes. Open strings
can end on branes and hence appear in type II strings. Thus, through branes one
gets gauge theories. The type II strings contain Ramond-Ramond (p + 1)-form
potentials A,.;. In type IIA (IIB) theory, p is even (odd). The theory contains also
magnetically charged (6 — p)-branes, which are electrically charged under the dual
dA7_, =" dA,;; potential.

>

D-brane 9 Q D-brane
-1-brane | instanton 0 4 0 -dimensional
0-brane | point particle 1+ 0 - dimensional
magnetic monopole
black hole
1-brane | string 1+ 1 - dimensional
3-brane | spacetime 1 + 3-dimensional

N coinciding branes: U(N)-gauge theory on brane
All string theories contain gravity and gauge theories.



2 D-branes and Maldacena’s conjecture

D-branes yield a connection between gauge theories and gravity. Branes come in
various dimensionalities. D-zero-branes have zero spatial dimensions and are like lo-
calized, particle like soliton solutions, analogous to the 't Hooft-Polyakov monopole.
D-one-branes are D-strings. They are much heavier than ordinary fundamental
strings when the string coupling g, is small. D-branes are defined in string pertur-
bation theory as surfaces where open strings can end. The zero modes of the open
strings describe oscillations of the branes. For N coinciding branes the open strings
can start and end on different branes, so they carry two indices that run from 1 to
N. This implies that the low energy dynamics is describes by U(/V) gauge theories.
D-p-branes are charged under p + 1-form gauge fields. The corresponding p + 2-
form field strength are part of the massless closed string modes, which belong to
the supergravity multiplet containing the massless fields in flat space string theory
before we put in any D-brane. The brane solutions of supergravity are very similar
to extremal black holes in ordinary gravity. Like black holes they contain event
horizons.

The near horizon geometry of N coincident D-3-branes turns out to be AdSs x S°.
The world volume dynamics is governed by a U(N) gauge theory with N' = 4
supersymmetry.

Perturbative field theory valid for g;N small. Low energy gravitational description
is valid when R <string scale. This is equivalent to large g;/N. Low-energy string
effective action for metric, dilaton, Ramond-Ramond (RR) (p + 1)-form potential
and other fields in the string frame is

1

5= e

_ 2
/ "0/ —9(6 ?(R+4(Ve)?) - WFﬁﬂ)’ (3)
where o/ = [2. defines the string length I, and F,.o = dA,.;. One looks for a

solution corresponding to a p-dimensional electric source of charge N for Ap., by
requiring the Euclidean symmetry 7.SO(p) in p-dimensions:

p
ds® = e® Z dz'dz’ + dsfofp,
1

where ds},_, is a Lorentzian-signature metric in 10 — p dimensions. We also assume
that the metric in 10 — p dimensions with the R-R-source at the origin,

/ *Fp+2 == N
S8-—p
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For example
3-brane: Ay, Fs =* F5 — S° |, 1-brane: Ay, Fy — S".
The resulting metric in the string frame is

1

P ~3-8 .
0 = — T ap 4 VIS dwide + = a4 2 Pack (4)
1

v 7.

with 8 = (5 —p)/(7 — p) and the dilaton field has the form

e = g2, (5)
The functions fi depend only on p,

falp)=1- (%)7 (6)

The parameters 7. are related to the mass M (per unit volume) and the RR chare
N of the solution by

1 1

M = R P
e AU

N = — 1 ()00 ®)
dpg TP T ’

where [, = gsl/ %1, is the 10-dimensional Planck length and d,, is a numerical factor
T—p
d. = 95— (5-p)/2 .
P ™ ( 2 )

Transforming to the Einstein frame,

9Bw = V gseﬂpguw

one finds the standard Einstein-Hilbert action plus terms for the dilaton fields plus

. The Einstein frame metric has a horizon at p = r,. For p < 6 there is also
a curvature singularity at p = r_. The singularity is shielded by the horizon if
Ty >Tr_.

The singularity structure in the critical case r, = r_ depends very much on p.
For p = 3 (and only for this case) is the dilaton constant and the p = r surface
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is regular even in the critical case. The absence of a naked singularity, r, > r_
transforms into the inequality

N
>
M= g™ ®)

This is the celebrated BPS-bound with respect to 10-dimensional supergravity. The
area of the black hole goes to zero in the extremal case r; = r_ in which case (8)
becomes an equality. In the extremal limit the metric simplifies to

p
ig i -3 3=
d32:\/](—dt2+2dx dac) + [ Pdp® + P f27Pd0y . (9)
1

To describe the geometry of the extremal solution outside the horizons, it is useful
to define the new coordinate

1
7P _ TP 3.brane: r* = p* — ri, B= 5 (10)

and introduce the isotropic coordinates
yi — 7,01'
Then, the classical solution for the 3-brane takes the simple form

ds* = H V2 (r\napdads® + HY?(r)6;;dydy’

11
e (9—¢0) — H(r)(p‘3)/4, Ao1...p = H—l(r), ( )

where
K,N 2mVa!)TP
H(r)=1 P K=——">"—yg,.
(r)=1+—=, P T ! (12)

In these formulae r measures the distance from the brane, r? = y;4* and Q, =
2wt /2T (g + 1)/2).

Scales:

e classical supergravity requires 7 > [,

e 10 string loop corrections requires e? < 1. For 3 branes g, = e = 1}/ is

8



constant and we need [, < l,. When g, > 1 we might need to do an S-duality,
gs — 1/gs.

To summarize, for 3-branes the supergravity approximation is valid when
<l <ry <= 1<K g,N <N.

For p # 3 the supergravity description is valid only in a limited region of spacetime.

It is believed that the extremal p-brane in supergravity and the D-p-brane in string
theory are two different descriptions of the same object. The D-brane uses the string
worldsheet and, therefore, is a good description in string perturbation theory. For
N coinciding D-branes, the effective loop expansion parameter for open strings is
gsN rather than g;. Thus, the D-brane description is good when g;,N < 1. This
is complementary to the regime 1 < g;/N < N when the supergravity description
is appropriate. The low energy effective theory of open strings on the D-p-brane is
the U(N) gauge theory in p + 1 dimensions with 16 supercharges. The theory has
9 — p adjoint scalar fields in the adjoint. The scalar potential is

Ve~ Ztr [@[, (DJ]2.

1,J

A system of N coincident D-branes is described by the non-Abelian Born-Infeld
action,

Spr = —TISO) /dp+1§e_¢ STr \/— det[Gop + 2ma! Fg). (13)
The brane tension is given by

Ty = ﬁ = 7(27(\/&)171) gs = €¢°°
P, 2ralgs ° '

Here G4 is the pullback of the metric G, and Fyp is a gauge field on the brane.
STr is the symmetrized trace over the group indices. Expanding the logarithm of
the determinant in o/ yields
logdet(G +2ma’F) = trlog (G[1+21d/G'F))
= logdet G + tr log (1 + 21a’G™'F)

(2ma)?

= logdetG — tr (GT'FG™'F),



so that

1/2
\/— det|Gup + 21/ Fop] ~ { —det G(1 - 220/ tr (G_IF)2)}
~ V—detG(1 — (rd/)*tr (G7'F)?).
Thus we find the second order term?!
1 a auv — —
Spr g2\, / Fo,F gy = 2g,(2m)P 2 (o) P70/,

One one hand the D-branes are classical solutions of the supergravity action, while
on the other hand they are described by a gauge theory whose action reduces at low
energy to the usual YM-action.

For r — oo curvature vanishes and spacetime becomes flat so that supergravity is a
good approximation of the D-brane. In the NEAR HORIZON LIMIT r — 0 for p = 3
2 2

! !
¢=const, H=1+ 47T95NF ~ 47?95Nr—4, g2y = 4Ty,

More precisely, the near horizon limit is
- =

r—0 o —0 and Uzg—ﬁxed []=L*=[U=L"

It follows, that

ds? U? N V4rNg,
F ~ \/Llf]ri]vgsna/jdx dxﬂ + lej2 + vV 4’/TNngQ§ (14)

This is the metric of the manifold AdSs; x S®, where the two radii are equal and
given by:

R124d55 == R§5 = b2 = CV,\/ 47TNg5. (15)

Measured in units of the string length,

b2
J =/ 47TNgs = \/NgYM

The classical solution (14) is a good approximation when the radii are big in string
units,
2
S>1= Ngiy > 1.

lhow does exp(—¢) becomes gs?
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MALDACENA CONJECTURE: strongly interacting (A > 1) N' =4 SYM with gauge
group U(N) is equivalent to ten-dimensional classical supergravity compactified on
AdSs x S°. SYM possesses the maximal number of 4 spinor supercharges. Besides
the gluons the theory contains four fermions and six scalar fields in the adjoint
representation of the gauge group. The Lagrangian of such a theory is completely
specified by supersymmetry. There is a global SU(4)R-symmetry that rotates the
six scalar fields and the four fermions.

Locally there is only one space with SO(4,2) isometries: five dimensional Anti-de-
Sitter space, or AdSs. It a maximally symmetric solution of Einstein’s equation
with a negative cosmological constant. AdS has a boundary at spatial infinity. The
boundary is at an infinite spatial distance, but a light ray can go to the boundary
and come back in finite time. Massive particles can never get to the boundary.
The curvature radius is proportional to N. Thus, for N — oo the curvature tends
to zero. The space S° has SO(6) ~ SU(4) as isometry group. This becomes the
R-symmetry of the SYM-theory on the boundary.

To extend the conjecture to any value of A one has to find a substitute for su-
pergravity, which is an inconsistent quantum theory. Extend conjecture: N = 4
SUPER YANG-MILLS IS EQUIVALENT TO TYPE IIB STRING THEORY COMPACTI-
FIED ON THE SPECIAL BACKGROUND AdSs x S°. The parameters of Yang-Mills
theory (gyar, N) are related to those of string theory (gs, o', Rgs) as

R§'5 — R124d55’ (16)

o le%

=4rg, and VA=

9 A
Iy m N
where

A= g2y N =4dmg,N.
The following picture emerges:

e (Classical supergravity is a good approximation for A > 1

e In the 't Hooft limit in which X is kept fixed and N — oo the string coupling
gs — 0 and string loop corrections are negligible. Hence classical string theory
is a good approximation.

e Yang-Mills perturbation theory is a good approximation when A\ <1

Strongest evidence: N = 4 SYM and type IIB string compactified on AdSs x S°
have same symmetries. Both are invariant under

e 32 supersymmetries

11



e the conformal group SO(4,2) ~ isometries of AdSs

e R-symmetry group SU(4) ~ SO(6) isometries of S°

e Montonen-Olive duality based on SL(2,Z).
Theory live on different spaces: A/ = 4 super Yang-Mills on boundary of AdS, ~ M,
and IIB string theory on AdSs x S°. Technically the main difference between the
‘old’ string calculations in QC'D and the modern ones is the fact, that the spacetime
background is no longer flat but rather AdSs x S5 New problem: N = 4 super

Yang Mills is conformally invariant and is in the Coulomb phase, not in the confining
phase.

3 The correspondence at work

If theories are equivalent, then it must be possible to specify for each field O(x) of the
boundary Minkowski theory the corresponding field ®(y) of the bulk string theory
such that the corresponding correlators in the two theories agree. One considers the
generating functional for boundary theory,

Z(®) = <efd4z<l>o(:c)0(:c)>, (17)

with source ®y. According to the recipe in (Gubser, Klebanov, Polyakov; Witten)
one needs to find the bulk field ®(y) such that

Do (z) = (I)(y)‘yea(Adss):Mz;’

that is the boundary value of the bulk field is the source in the boundary theory.
Then the generating functional is just obtained by performing in the bulk theory
the functional integral over ® whose boundary value is ®q:

Z((I)O):A) . D =519, (18)
—%o

3.1 F(x)F(z') for A > 1

In the conformally invariant super-YM theory the composite field F? has dimension
4 and hence

(P@FP @) ~ =g

12



Consider the dilaton kinetic term in IIB supergravity in D = 10 compactified on
AdS; x S5. The volume of S® is w2 x b3, and hence

3b3
S = d°z+/99"" 0,90, 9,
4/{10
where g, = b%6,,, /23 is the metric on AdSs in the Poincare-coordinates and p, v =
0...4. In the A > 1 limit classical supergravity is a good approximation, and we
just need to solve the dilaton equation of motions,

9, [V/39"0,9] = 0.

The solution that is equal to @ on the boundary (zo — 0) is given by

2
Ty

3+ @ - 27
Inserting this solution into the classical action we find that the contribution to the
classical action is entirely due to the boundary term

3b8
S:ﬂ-—2 8@80(I>|°o~—— d4_‘/d4—‘ O )
4K1y 4Kk,

ﬂm)—/ﬁma 5D, K(wo,7) ~

In the classical approximation we get

3b8 . . a—:* —'
Z(q>o)=eXp PN /d4 /d4 )}
10

Since b? ~ o/v/N and 2x2, = (27)7¢%(c/)* one ends up with

e 527(®, N?
(PP = S~ T 19)

3.2 Wilson loops for ) fixed

The form of the loop considered is that of a very long strip along a spatial direction
—L/2 <x=21"'< L/2 and a temporal length T with L < T — oo.

We assume time translation invariance and consider classical static string solutions.
These are spanned in the (z', u)-plane by the function u(z') and we set 22, ..., 2P =
0. We use the static gauge in which we set the world sheet time to be identical to
that of the target space, 7 = 2% = ¢. For the classical solution we take o = 27z?.

13



time

minimal surface

We restrict ourselves to diagonal background metrics with components that depend
only on the coordinate u. The metric G, for the coordinates

{t=a2"2=2"2%... 2", u, "}, I=p+2,...,9

is given by

Gu = a'diag{Gtt(u), Grz(u), Guizi(u), Gy(u), Gerer (u) } (20)

The Nambu-Goto action with a general background metric takes the form

S

/ dodr\/dethas,  hap = 0aX"95X" G (X). (21)

With our assumptions the non-vanishing components of the induced metric takes
the form

2ma!

h’TT = (aTt)QGtt :Gtt
1

_ 2 _ 2
hoo = (05x)° Gy + (Opu)Gyy = 2n)? (Gao + (0:u)*Gu)

Defining the two functions
f2(u) = Gu(u)Gee(u) and  ¢*(u) = Gy (u)Gyu(u)

we have
1

(27)?

det haﬂ = (GttG:m: + GGy (6wu)2)

14



and the NG-action becomes

, / dzy/T2(u) + 92(w) (Bpu)2. (22)

For finding the stationary strings of this action we use the methods of classical
mechanics. Then u(z) corresponds to the trajectory of the particle. The conjugate
‘momentum is

A

oL g*u
m(x) = =
au’ /f2 + g2u”
The energy is constant
g%u”
H=m/-L=—"——— — \/f2+g2u,2 = _‘f(u0)|a
/f2 + 92u12

where ug = 0, i.e. ug is the minimal value of the string amplitude. Solving for the
derivative of u yields

2 £2 _ £2 /¥2 _ 2

u12: f_2f 2fO or U/I:ii f fO’ fO:f(UO) (23)
9 fi g

The quark and antiquark are set at the coordinates z = £L/2. The relation between

L and wuy is given by

b= /L// o= [ Calggl =2 [ G T S

We have taken the boundary plane at some large but finite value v = u,, which later
is taken to infinity. The find the action we write dz = du/|v'| in (22) and insert the
expression (23) with the result

T g(U) f*(u)
2r2a! J,, flu \/f2 — f2 Uo)
The Maldacena conjecture of the string/gauge duality is that the natural candidate

for the expectation value of the Wilson loop is proportional to the partition function
of the corresponding string action,

S =

(24)
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W)N/DX“exp(—S), (25)

where the integral is over all surfaces whose boundary is the given loop. The static
potential is

1
Vg = — lim —(W) —2m,.

T—00

In the classical limit, where configurations with least action dominate, we would get

s _ 1 [ g(u) f2( )

Vg = lim — 2m,.
N 750 T 2720 o \/f2 — %(uo) 1
Unfortunately this expression diverges linearly as u; — oo. The mass of one single
quark translates in the string language into a straight line from u = 0 to the bound-
ary plane and is given by m, = fo u)du. It is natural to determine the static
potential as

Var = ﬁ/ ) <Q(Z) ) VP = )f2 o) )

4 Beyond conformal invariance and supersymmetry

One makes use of Wittens idea [3] of putting the Euclidean time direction on a circle
with anti-periodic boundary conditions for the fermions. This way the static poten-
tial for the A/ = 4 theory at finite temperature as well as 3d pure YM theory has
been determined. Similarly Wilson loops of 4d YM theory, 't Hooft loops and V; in
MQCD have been determined. Concerning the Liischer term: For a superstring in
flat spacetime with Ramond-boundary conditions there is an exact cancellation of
bosonic and fermionic contributions to the Casimir energy and the term vanishes.
For the Neveu-Schwartz boundary conditions, bosonic and fermionic zero-point en-
ergies contribute with the same sign, and that is what leads to a tachyonic state for a
free string. When the GSO projection is taken into account and the tachyonic state
is removed, we again have a massless ground state and a vanishing Liischer term.
Greensite and Oleson [4] calculated the bosonic determinants and conjectured that
there maybe a violation of concavity due to the fermionic determinants. Kinar et.al
[5] claim, that the fermions are massive and hence do not contribute to the Liischer
term. Hence the bosonic fluctuation determinants dominate and the static potential

16



is concave. Problems in the calculations: gauge fixing of world sheet diffeomor-
phisms and x-symmetry. Only for a particular class of k—symmetry fixing schemes
there are no divergent correction to the static potential. Using scaling arguments
Kinar et.al could write down the general L-dependence for a large class of models.
Models based on D, branes with 16 supersymmetries have a Liischer type behavior.
On AdSs x S® there is only a partial cancellation between bosonic and fermionic
determinants. The coefficient and sign of the Liischer term has not been determined
in this case. Unfortunately there is no Green-Schwartz action which corresponds to
the non flat background associated with confining gauge theories.

Finite temperature Finite 7" breaks both supersymmetry and conformal invariance.
To construct the gravity solution describing gauge theory at finite temperature one
starts with the general three-brane solution and takes the decoupling limit keeping
the energy density above extremality finite. The resulting metric can be written as

d 2
ds* = R? (u2(—hdt2 + dz? + dxs + dx3) + =y ng)
hu?
4 (27)
u
h = — u—g, Uy = .

On the supergravity side, the entropy of near-extremal D3-branes is just the usual
Bekenstein-Hawking result S = A/4Gx and this should yield the entropy of the
gauge theory at large N and large g2 ,,/N. This regime is not directly accessible in
gauge field theory. If one compares with the free gauge field theory then the free
energies almost agree

2
3
Fougra = —%NQVT4 = ~Fu.

The factor 3/4 is a long-standing puzzle. There is only a qualitative insight.

Background considered One would like to discuss compactifications of string theory
or M theory, which are believed to be consistent theories of quantum gravities, on
backgrounds involving AdSs.

e backgrounds which are related to AdSs x S° by deformations.

e backgrounds AdSs x X. Duality relates it to a conformal field theory. For most
X (e.g. CP? supersymmetry is not preserved. Non-supersymmetric back-
grounds require an understanding of the quantum corrections, which are not

17



well-understood either in M theory or in type IIB compactifications with RR
backgrounds.

e D3-branes in type IIB string theory, e.g. spaces with topology S x B? whose
boundary is S x S*, relevant for field theories on S? at finite temperature.

e Orbifolds on AdSs x S5 For example, AdSs x S°/Z3 has a SU(N)? gauge
theory as counterpart.

e Orientifolds on AdS; x S°

e Conifold theories

5 More severe tests

The stronger form of the duality conjecture which is advocated is that THE FIELD
THEORY IS EQUIVALENT TO THE STRING THEORY, AND THE ONLY ISSUE IS UN-
DERSTANDING THE MAPPING FROM ONE TO THE OTHER.

Natural to ask what in field theory corresponds to non-perturbative objects in string
theory (e.g. to D-branes). The idea is, that every object we can exhibit in gauge
theory has a stringy counterpart, and vice versa.

QCD; The starting point for studying QC Dj3 is the N' = 4 superconformal SU(N)
gauge theory in four dimensions which is realized as low energy effective theory of
N coinciding parallel D-3 branes. Then one compactifies this theory on R?® x S,
with antiperiodic boundary conditions for the fermions around the circle. For small
radius Ry the fermions decouple from the system and susy is broken. Also, the
scalars aquire masses at one loop, and these masses become infinite for By — oo. In
the infrared one is left with only gauge fields and the theory should be pure QCDs.
Upon compactification the AdSs x S geometry is replaced by the Euclidean black
hole geometry

d 2
ds® = a'\/47rgsN(u2(hdt2 + da? + dxs + dx3) + h—ZQ + dQ§>7 (28)

where h = 1 — uj/u* and 7 parametrizes the compactifying circle (with radius Ry
in field theory) and

1

U/O:Q—RO.
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The effective three dimensional coupling

2

N
2N = S
93 27TRO

should remain finite in the limit By — 0. Hence one has to take the limit gN — 0
as Ry — 0. The sugra description is valid for g;N > 1 in which case the typical
mass scale of QCDs, ¢g2N, in much larger than the cutoff scale 1/R,. Therefore,
with the present techniques, to suppress the unwanted massive Kaluza-Klein states,
on can only study large N QC D3 with a fixed UV cutoff 1/Ry in the strong coupling
regime (strong as compared with the cutoff scale).

One expects
Viyg(r — 0) ~ log(r), Vyg(r — 00) ~ or.

The confining property has been shown by lattice simulations. If one repeats the
AdS5xS° computation, but now for the AdS-black hole background. The calculation
yields confinement, and

_ (gsN)1/2
4/rRZ

Almost nothing has been done as concerning the Liischer term. The behavior of the
interquark potential on the background is shown in the following table, taken from

(6]
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| Model | Nambu-Goto Lagrangian Energy
AdSs x S° U, u=G§ —72@?;132 L!
non-conformal
D, brane u™? + (U2 _d' . [-2/6-p)

(16 supers.)

+O(172/6=p)=2(6-p)/-P)(7-P))

~ L7Y1 = ¢(LT)*) for L << L,
YM,,T>0 Vut(l = (Ur/U)*) +U? full screening L > L.
Dual Y M; Vit + U2 = (UrJUN T | 324, - L — 2k + O(logl e~°F)
3/2
Dual Y M, Vs +U2(1 = (U /U | 5& - L— 26+ O(log L e~°F)

Rotating D3 m\/%A + UIZI_CLL;/UUZW 4/3 CL + ..
D3+ D, Vut+q) +U2(1 + gRY/UY) ql+...
MQCD system | 2+/2(y/cosh(s/Ri1)v/1+ s2 E=22(-L -2k

+0(log L e~1/V2EnL)

't Hooft loop

)3) + U2

full screening
of monopole pair
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6 QCD,

The starting point for obtaining QC D, is the (2,0) superconformal theory in six
dimensions realized on N parallel coinciding M5-planes. Then one compactifies on
an S of radius R;. This yields a 5-dimensional theory whose low-energy limit is the
maximally supersymmetric SU(N) gauge theory, with gauge coupling constant g2 =
27 R;. Then one compactifies further on another S* of radius Ry. The dimensionless
coupling constant in 4 dimensions is

g2 = 95 _ &
4 27TRO R().

To break susy one imposes the anti-periodic boundary condition on the fermions
around the second S*. To get QC Dy one needs the condition

typical mass scale of QCD states < i, L

Ry Ry

Thus one has to go beyond sugra approximations. The large N limit of the six-
dimensional theory is M theory on AdS; x S*. Upon compactification on T?, we
get M theory on a black hole background. In the ’t Hooft limit R; < Ry. Using
the duality

M-theory on a circle <+ Typ ITA string theory

the large N limit of QQC'D then becomes type ITA string theory on the black hole
geometry given by the metric

4

27\ 4 ud
2 _ 2 2 2 0Y 7,2
ds® = —u(4u El dz; +—9u%u (1——u6)d7' +4

2

du
— - dO}
u?(1—u§/ub) + 4)

with a non-constant dilaton field. The horizon is at uy and one has

1
ro = 3R
The string tension is found to be
4\
o= TR(Q)'

7 Summary
Properties of the duality:
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e Yang-Mills string (made of gluons) = fundamental strings in higher dimensions

e When we can find a low curvature gravity description we can do numerous
calculation in the large NV limit.

e One can calculate: spectra, correlators of operators and Wilson loops, thermal
properties.

o If field theory is conformal the gravity solution will include a AdS;5 factor.

e Large N limit of a gauge theory should have a string theory description.
Whether there is a gravity description, depends on how large the curvature
is.

Open problems:

e Better understanding what is the class of field theories which have a gravity
approximation

e For non-supersymmetric QC D, or other theories which are weakly coupled, we
expect to have curvatures at least of the order of the string scale: a proper
understanding of string theories on highly curved spaces (RR-backgrounds)
seems crucial.
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8 Large N Gauge Theories

String theories were born from the attempt of describing the properties of strong
interaction through the construction of the dual resonance models. This was later
recognized to correspond to the quantization of a relativistic string. It contained
all sort of massless particles as gluons, gravitons and others except a massless pseu-
doscalar particle corresponding to the pion. Because of this and other unphysical
features it became clear that string theories could not provide a theory of strong
interactions. It was abandoned and replaced by QCD.

Since the middle of the seventies it has been known that SU(N) gauge theories in the
't Hooft limit N — oo with A = ¢2,,N fixed simplify in the sense that only planar
diagrams survive in leading order. It has been conjectured that in this limit QCD
is described by a string theory: the mesons are string excitations that are free when
N — oo. Although many attempts have been made to construct a QQCD-string,
none can be considered sufficiently satisfactory.

Main problem: in the ultraviolet (R < 0.25fm) QCD describes quarks and gluons
whereas in the infrared it should describe colorless hadron. At large energies the
coupling constant is small whereas it is large at low energies. This holds true as long
as the g-function which determines the dependency of the QCD coupling constant
on the dimensional cutoff (in lattice theories y ~ 1/a) through the Gell-Mann-Low
equation,

dlogg®

o 12 = B(g”)

is negative. At the one-loop level it reads

11 2 g2
2
(U2
blg) ( 3 3°/) 16m°
and QCD is asymptotically free for N, = 3, Ny < 16. In the IR the standard
PT inapplicable since for example the renormalization-invariant measurable scale
parameter following from the integration of the Gellmann-Low formula
9%(1?) Jo?
2 _ 2 g
Soen=rte [~ [ i)

has no expansion in powers of g. Here the the dimensionless gauge coupling has
been dimensionally transmuted into the QCD scale Agcp. All observable quantities
in QCD are proportional to the corresponding power of Agcp. For example, using
the one-loop result for the Spcp function yields the string tension
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1672
29
FN. = EN)g () (2)

UNA%)CD:,U'QGXP - (

which has now power series expansion at gocp = 0. Measurements yield 100 MeV <
Agep < 300 MeV and lattice simulation give o ~ 0.2 GeV?

Since its original formulation [7] the large N expansion has been the most concrete
possibility for reaching an analytical understanding of the non-perturbative aspects
of QCD including its confinement properties. One may hope that for large N the
SU(N) gauge theories simplify and there is a perturbation expansion in terms of
1/N (for a nice review see [8]). First we need to understand how to scale the
coupling gy in the large-N limit. In a asymptotically free theory like pure QCD
it is naturally to scale gy such that Ay, remains constant when N — oo and
comparing with (29) this implies

gouN =X fixed.

The limit N — oo with fixed A is known as ’T HOOFT LIMIT. The same limit would
be valid if we include also matter in the adjoint representation. For conformal gauge
theories, as N = 4 SYM theory, also the limit A — oo is possible.

Let us study the large N limit for a set of fields ®; = ®¢T}, in the adjoint represen-
tation of SU(N) with Lagrangian

L ~ Ltr (d®;d®;) + gy mc*tr (2:9;®%) + g3 1, d7Htr (9,805 Py),

where ®; = ®¢T, is in the Lie algebra and we assumed that the interaction is SU ()
invariant. We rescale the fields ® — ®/gy s such that

N g ~

Lo~ tr {1d®;d®; + ¢7*®;®;P; + d7HP;D;P,,D; } .
One may believe that one can perform the naive saddle point approximation in the
functional integral for N — oo and find the classical limit. This is wrong, since

the number of fields also increases with increasing N. Unfortunately for Yang-Mills
theory with action

1
S[A] = / dd:c2—gztr F.,, (30)
where

F, = 0,4, — 0,A, —i[A,, A (31)
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and A, is the N x N matrix

AZ] — gZAa ta]zg (32)

no change of variables is known (as for zero-, one- or some two-dimensional matrix
models) such that the number of dynamical fields is limited. So let us have a look
at the Feynman diagrams. For the free model

Zo(j) = /D@exp{/ Nird, AP, —i—/trj,@i}
= exp{ - tr]zA]z} = exp {547 (2) G (x, y)g; }
where the Green function reads
G () = (002 ~ 30L0) Gol, ),

where G is the propagator for spinless particles (the inverse of —A in coordinate
space) so that the two-point function reads (we suppress the index i from now on)

o= (2),  (B4(2)P%(y) = %(5&‘55 — §0507)Go(z, ).

With 't Hooft we use a double line notation, in which & is regarded as a direct
product of a fundamental and anti-fundamental field

N x N = adjoint + U(1), ¢ ~ Pt

In leading order there is no difference between SU(N) and U(N) theories so we
neglect this difference here. Using N x N ~ adjoint we may view a Feynman
diagram of adjoint fields as a network of double lines. This way one gets a U(N)
field with propagator

a Cc A a $c [N
(@GP%) ~ N(sd(sb Z—<—Ccl

Each line represents the Kronecker delta-symbol and has an orientation which is
indicated by the arrow. This notation is obviously consistent with the space-time
structure of the propagator which describes a propagation from x to y.

The arrows are due to the fact that the matrix ®9 is Hermitian and its off-diagonal
components are complex conjugate. The independent fields are, say, the complex
fields @9 for a > b and the diagonal real fields ®¢. The arrow represents the direction
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of the propagation of the indices of the complex field % for a > b while the complex-
conjugate one, ®® = ®¢* propagates in the opposite direction. For the real fields
®¢, the arrows are not essential.

The three-gluon vertex is depicted in the double-line notations as

b1 a1

NS JC R (33)

as

b2 as

where the subscripts 1, 2 or 3 refer to each of the three gluons. The four-gluon
vertex has the form

>|=

(34)

c b

The diagrams of perturbation theory can now be completely rewritten in the double-
line notation [7]. The simplest one, which describes the one-loop correction to the
gluon propagator, is shown in Figure 1. It has 4 propagators, 2 vertices and one

N\
—{(_)—

Figure 1: Double-line representation of a one-loop diagram for the gluon propagator. The sum
over the N indices is associated with the closed index line. The contribution of this diagram is
A2/N.

loop so that it is multiplied by the factor
A N2 2
AN NN
N% )2 N
Note that our counting applied to (®4®¢,) with fixed a,b,c and d. This should

be compared with the tree diagram, with is goes with a factor A/N. Hence this
one-loop diagram contributes in the same order in /V as the tree-diagram.
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A typical 4-loop diagram is depicted in (2). It has eight three-gluon vertices, 13

Figure 2: Double-line representation of a four-loop diagram for the gluon propagator. The sum
over the N indices is associated with each of the four closed index lines whose number is equal to
the number of loops. The contribution of this diagram is \>/N.

propagators and four closed index lines which coincides with the number of loops.
Therefore, the order of this diagram is

NS /\13 4 )‘5
)L (LNt =
(5 (5) ~

It is of the same order in N as the tree-diagram. The diagrams of the type in
Figure 2, which can be drawn on a sheet of a paper without crossing any lines,
are called the planar diagrams. The following figure shows some vacuum planar
diagrams and their dependency on A and N. Let us now consider a non-planar

N? N> NZA®
Figure 3: Planar diagrams

diagram of the type depicted in Figure 4. This diagram is a three-loop one and has

R
—(X)—

Figure 4: Double-line representation of a three-loop non-planar diagram for the gluon propagator.
The diagram has siz three-gluon vertices but only one closed index line (while three loops!). The
order of this diagram is \*/N3.

6 three-vertices and 10 propagators. The crossing of the two lines in the middle does
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not correspond to a four-gluon vertex and is merely due to the fact that the diagram
cannot be drawn on a sheet of a paper without crossing the lines. The diagram has
only one closed index line. Hence its order is

)L (N0 = 2

(1 () N =15

It of order 1/N? relative to the planar diagrams.

Let us analyze the dependency of general vacuum diagrams on A and N. We may
view the double lines as forming the edges in a simplicial decomposition of a surface,
if we view each single-loop as edge of a face in the decomposition. The surface will
be oriented, since the lines have an orientation. Adding the point at infinity each
diagram corresponds to a compact, closed and oriented surface. Let us count the
powers of N and A associated to such a diagram: Each vertex contributes a factor
N/A, each propagator a factor A/N and each loop a factor N. (for SU(N) each
index has N possible values).

For a diagram with V' vertices, E propagators (= edges in the simplicial decompo-
sition) and F loops (= faces) has a factor

NV*E—FF)\E*V — )\E*VNX
where x = V — E + F' is the Euler character of the surface corresponding to the

diagram. For closed oriented surfaces is x = 2 — 2¢ where ¢ is the genus (number of
handles) of the surface. For example, consider the following two vacuum diagrams:

the one on the left goes as AN? the one on the right as A\2. One can see that the
dependence on )\ varies with the order of the diagram, while the dependence on N is
only sensitive to its topological properties. We see that the perturbative expansion
may be written as

log Z ~ Z NZ—2 Z Cg,i/\i = Z NQ_ngg(/\)- (35)
g=0 =0 g=0

The leading contributions come from surfaces with maximal Euler character, that is
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surfaces with the topology of a sphere. These socalled planar diagrams will give a
contribution of order N?. The non-planar diagrams are down by a factor N~2 with
respect to the planar ones. This large N expansion selects the topology of Feynman
diagrams rather than their order and can pick up, at lowest order, important non-
perturbative effects. It is often referred to as the topological expansion or the genus
eTpPansion.

Let us finally see how the expansion looks like for correlators of gauge invariant fields,
(ITG;), such that each G; cannot be written as a product of two gauge-invariant
fields. To find the N-dependency we couple the field to sources

S—)S—NijiGin
i=1

and compute the connected correlators by the wellknown formula

n Y 57L )
(E Gi)e =N Wlogz(])|j:0-
The above counting of powers of NV still holds since the additional vertices come also

with a factor N. Thus

n

(JIGi)e~ N> (36)

=1

This is not true if one G; would be the product of two gauge invariant fields since
it would lead to two vertices. Because of

1
<G1G2> ~ NO and <G1G2G3> ~ N

we are again lead to interpret 1/N as coupling constant. For more general gauge
theories similar results hold. For the gauge groups SO(N) and USp(N) the adjoint
isin N x N and the surfaces are non-oriented.

The formula (35) is the same as one finds in a perturbative theory with closed
oriented strings (type II), if we identify 1/N with g,;. In string theory the analog
of the fields G in (36) would be the vertex operators inserted on the string world
sheet.

Virtual quark loops can be easily incorporated in the 1/N-expansion One distin-
guishes between the 't Hooft limit when the number of quark flavors Ny is fixed as
N — oo and the Veneziano limit [9] when

Ny

N g%MN, 912/MNf fixed.

N — 0o, Ny — 0o with
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NN 2

a) b)

Figure 5: Diagrams for the gluon propagator with a quark loop which is represented by the single
lines. The diagram a) involves one quark loop and has no closed index lines so that its order is
A2/N2. The diagram b) involves three loops one of which is a quark loop and two closed index
lines. Its order is A*/N2.

The Veneziano model provides a better explanantion of certain aspects of low energy
phenomenology. The ’t Hooft limit is, however, much simpler and has been studied
in much more detail.

Virtual quark loops are suppressed in the 't Hooft limit as 1/N and lead in the
Veneziano limit to the same topological expansion as dual-resonance models of strong
interaction.

If one includes fermion in the fundamental representation, then diagrams with quark
loops are down by a factor 1/N with respect to those without quark loops. Hence
the diagrams that dominate the large /V limit are the planar ones with the minimum
of quark loops. Let us see, how the suppression of fermion loops comes about. It
is easy to incorporate quarks in the topological expansion. A quark field belongs
to the fundamental representation of the gauge group SU(V) and its propagator is
represented by a single line

(Vi) < 63 = i——13 . (37)

The arrow indicates, as usual, the direction of propagation of a (complex) field ).
We shall omit these arrows for simplicity.

The diagram for the gluon propagator which involves one quark loop is depicted
in Figure 5a. It has two Ay? vertices and no closed index lines so that its order
is 1, Analogously, the relative order of a more complicated tree-loop diagram in
Figure 5b, which involves one quark loop and two closed index lines, is

A6 N4

_\2

Figure 5b N -
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More generally, if we replace a gluon propagator by the diagram 5a, then

A X
N N2
and the new graph containing one more quark loop is down by a factor A\/N. There-

fore diagrams with L quark loops are suppressed at large N by

L quark loops ~ M\E-VHENX—L (38)

8.1 Large-N factorization

The vacuum expectation values of several colorless operators, which are singlets with
respect to the gauge group, factorize in the large-N limit of QCD (or other matrix
models). The simplest gauge-invariant operator in a pure SU(N) gauge theory is
the square of the non-Abelian field strength:

0(x) =y tr 2 (@), (39)

The natural normalization has been chosen, such that

<%tr Fy, (fc)> ~1 (40)

exists for N — oo. The contribution of all planar graphs to the average on the LHS
of (40) is of order 1 in accord with the general formula.

In order to verify the factorization in the large-/N limit, let us consider the diagrams
for the average of the product of two colorless operators O (z1) and O (z3) given
by (39). It involves a factorized part when gluons are emitted and absorbed by the
same operators. The contribution of the factorized part is of order 1 as above.

Let us assume, that

(O(z1)0(x2)) = (O(21)) (O(x2)) # 0.

For this connected correlator not to vanish at least one gluon line is emitted and
absorbed by different operators O (x;) and O (z3). If one remove a connecting gluon
propagator one removes one vertex and one propagator from each subdiagram and
also the connecting propagator. Independently to which two lines in the subdiagrams
the connecting propagator has been attached, one alway gains a factor N/A when
removing this propagator.
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Alternatively, the connected correlator of the two operators is associated with the
general formula

1\ x*+L+2B
> . (41)

eneric graph ~ | —
g grap ( N
It does not depend on its order in the coupling constant and is completely expressed

via the Euler number y, the number of virtual quark loops L and external boundaries
B.

This example illustrates the general property that only (planar) diagrams with gluon
lines emitted and absorbed by the same operators survive as N — oo. Since cor-
relations between the colorless operators O (x;) and O (x3) are of order 1/N?, the
factorization property holds as N — oc:

<%trF2 (z1) %trF2 ($2)>

- <%trF2 (:1:1)> <%trF2 (x2)> L0 (%) (42)

For a general set of gauge-invariant operators Oy, ..., O,, the factorization property
can be represented by

1
(O1---0,)=(01)--- (O, )+ O <m) .
The factorization in large-N QCD was first discovered by A.A. Migdal in the late
seventies. An important observation that the factorization implies a semiclassical
nature of the large-N limit of QCD was done by Witten [10]. The factorization
property also holds for gauge-invariant operators constructed from quarks.

The large-N factorization has been shown to all orders of perturbation theory. It
can be also verified at all orders of the strong coupling expansion in the SU(XN)
lattice gauge theory.

Phenomenology: The phenomenology of the N = oo model is remarkably sim-
ilar to that of the real world. The dominant Feynman graphs contributing to the
connected part of a n-point function of fermionic current, e.g. 11 or 1)ys1, are all
O(N'™") and have the following properties

e They are planar

e There are no internal fermion loops
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e All current insertion are on a single fermion loop which forms the boundary of
the graph

Similary the graphs contributing to Greens functions of gauge-invariant operators
constructed out of gauge fields alone are O(N?~") and

e are planar

e contain no fermion loops.

As we have seen, each fermion loop costs a factor of 1/N, while each non-planar
crossing is suppressed by 1/N?. Assuming that the N = co theory confines so that
propagating states are color singlets, it is possible to study properties of hadrons.
This is done by applying the above rules and analyzing the intermediate states that
contribute to the various n-point functions [11]. I simply quote the relevant results:

(a) Mesons:
e Mesons are stable: their decay amplitude are O(1/N)
e Mesons are non-interacting: scattering amplitudes are O(1/N)
e Meson masses are finite; i.e. they are O(1)
e The number of mesons is infinite

e Zweigs rule holds
(b) Glueballs:

e Glueballs are stable

e Glueballs are non-interacting: a vertex involving [ Glueballs is suppressed by
O(1/N™1)

e There are infinitely many glueballs
e Glueballs do not mix with mesons: a vertex involving £ mesons and [/ glueballs

is of O(1/Nk/2-1),

(c) Baryons:

Baryons pose a problem at N = oo, since a baryon in a SU(N) theory must be
made out of N quarks while a meson is always made out of a quark-antiquark pair,
irrespective of N. This make baryons behave differently from mesons
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e Baryon masses are O(N)
e The splitting of various excited baryonis states is O(1)

e Baryons interact strongly amongst themselves: the typical baryon-baryon ver-
tex is O(N)

e Baryons interact with mesons with O(1) couplings

Baryons behave similar to solitons in weakly coupled theories. For example, a
monopole mass is O(1/g?), but the energies of excitations around the monopole
background are O(1). The MM scattering amplitude is O(1/g?), while monopole-
electron scattering amplitudes are O(1). This lead Witten to suggest that baryons
are in some sense solitons of large-N QC D, with N playing the role of 1/¢%,, [12].
A further bonus of the large N expansion is, that the U(1)-anomly

2
o gYMNf * v A
a“]g = 1671'2 tr( FNVFM ) ~ N

vanishes for N — co. Then the 7' becomes a Goldstone boson of the chiral symmetry
breaking similarly as 7, K and 7. For finite NV the 7’ is a pseudo-Goldstone boson,
with a (mass)? proportional to the symmetry breaking term which is of order 1/N.

Factorization once more: Let J; denote fermionic curent operators and G; denote
gauge invariant operators made out of gluon fields only. Then, according to the
previous rules

(Ji-J)e=O(N"™), (G- Gp)e=O(N*™
(Jy-Jpy-Gi--Gp)e = O(Nl—n—m)
From these equations it immediately follows:

<J1 .. Jn>c <Gl s Gm)c 2MN—2

w1 Tm/e = =0(1/N"™
(7 () GGy W)
(Ji-- - JnG1- - G)e 2m—1

= O(1/N"+=m
) Gy -Gy = N

The leading diagram for the scattering of n mesons is of the order N=1=". The tree
diagrams for the scattering of n mesons in string theory is of order g"~2. Again this
suggests that g should be identified with 1/N. In the limit N — oo the mesons
have vanishing width precisely as it is the case in tree-level string theory.

=O(1/N" 1)

From discussion at the Combo:
How can the eigenvalues of the hermitean operator D be purely imaginary?
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9 N =4 super Yang-Mills

Before discussing the supersymmetry extension of conformal conformal field theory
let recall some facts about conformal field theories. The representation theory for

the superconformal case is rather complicated and I refer to [14] for detail.

9.1 Conformal algebra

Conformal transformations leave the light cone invariant. The consists of transla-
tions, Lorentz transformations, scale transformations (dilatations) and special con-
formal transformation. In d > 2 dimensions the form a (d + 1)(d + 2)-dimensional
group SO(2,d). In 4 spacetime dimensions the conformal group has dimensions 15.

An infinitesimal conformal transformations
y* ~ ot + XH(z)
is generated by a conformal Killing fields
1
Xypw + Xy = 3 N0, X 7.
In 4 dimensions there are 15 conformal Killing fields. These are
Xt =gl Xt=wha" XM=t XF=2c z)z"— 2z’

The corresponding hermitian generators are

iX*9, = {a"P,, 2" M

iz

AD, ¢*K,,}.

They fulfill the conformal algebra

[PN,P,,] = [KMaKu]:[DaD]:O ) [PM’D]:iPM

[P, K, = 2iM,, + 2in, D , (M, D] =0
[Py, M) = —i(np“P,, - anPu) ) [Ky, D] = —iK,
(M, Myo] = i(nupr + Mo Myp — Muo My — anMuU)
[Kp, M) = _i(npuKu - nPVKH)'

These are just the SO(2,4) commutation relations

(M, Mpg] = i(nmpan + NngMmp — TimgMnp — nanmq)
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with the identifications

0o P, D 0 K, D
IMpp = —2Mp = | =P, M,, P, |+ | -K, M, -K,
-D -P, 0 -D K, 0

Note that the generators of the Lorentzgroup commute with the Dilatation operator
D.

9.2 Transformation of fields and scaling dimensions

Conformal transformations are very particular coordinate transformations and ten-
sor fields transform under small transformations as

¢uu... — ¢u1/... + LXQSUV...;
The infinitesimal transformations of a matter field is given by the Lie derivative Ly.
For example, for a vector field V,, it is
LxV, = X?0,V,+ X" V,. (46)
Inserting the corresponding Killing fields one finds
transl. L.V, = a”P,V,
Lorentztrf. 1L, V), = %w”"MpaVu +w”,V,

dilatation  iL\V, = ADV,, + AV,
spez. Trf.  iL.V, =c’K,V, + 2i(cuxp—xucp+c-x 5Z)Vp,

and similarly for tensor fields of higher rank. The algebra of infinitesimal transfor-
mations of the fields is the same as that of the generators of the symmetry since

[Lx,Ly] = Lixy)-
The transformations
2t — e+ X* and ¢ — ¢+ Lxo

are symmetries of any diffeomorphism invariant theory if one also maps the metric
Nuw to (1 — %8,,X ?). For conformally invariant theories the change of the metric can
be un-done by a compensating Weyl transformations such that
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5X¢;w... = (LX + %aoXp) ¢uu...- (48)

The real constant « is the Weyl-weight of ¢,,... It can be determined by the following
recipe: If the metric transforms as g,, — €¥g,, then the field must transforms as
¢ — e~ *¢ in order for action to stay invariant. In particular, for dilatations

¢[JJJ... — )\(l'pap + s+ 2a)¢;w..., (49)

where s is the number of covariant minus the number of contravariant indices of ¢.
The number A = s + 2« is called scaling dimension of ¢. One finds

scalar field: A(¢) = 3(d—2)  Dirac field: A(y) = 3(d—1)
energy-momentum: A(7),,) =d  gauge potential (d=4) : A(A4,) =1.

9.3 Hilbert space

We assign to a classical field ¢(z) the operator ¢(z) on a Hilbert space 2. We assume
that the conformal transformations are represented by unitary representation on .
For the Lorentz group

UA)S@)U(A) = SH(A™'2) = e3“Dd(@),  Ju = Ly + Sy (50)
and for the the scale transformation

UN)d(z)U (N = e*d(e*z) = e P, D =i(rd, + A).
For the Lorentz transformation
UA) = exp (4w, J)) = [, 8] = Ju o
and for the scale transformations
U(\) = exp (iAD) = [D, ¢] = —Dg.

The same relations hold for the translations and special conformal transformations.
Let us see what we can say about the two-point function of a scalar field in a
conformally invariant theory. We assume, that the vacuum state is invariant under
conformal transformations. Then

G(lz=yl) = (0[g1(x)¢2(y)|0)
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eMA1T22) (0| U p(r2)UU~ o (ery) U |0)
e)\(A1+A2)G(€)‘|$ —1q|)
= G(z,y) = clz —y| 2.

Using the invariance of |0) under special conformal transformation implies then, that
¢ vanishes unless Ay = A,

9.4 Representations

The irreducible representation of the conformal group are classified by the Lorentz-
group representation and the eigenvalues of D which is proportional to the so-called
scaling dimension A,

Dlyp) = —iAl).

The conformally invariant vacuum |0) has scaling dimension zero. The state

$(0)]0)

has scaling dimension —¢A:

e 30)0) = €*Ph(0)e10) = 40(0) [0)
= D(0)[0) = —iA $(0)[0),

One can argue, that A must be bounded below (for scalar fields A > (d — 2)/2
must hold) and in each representation there must be at least one state with smallest
scaling dimensions. Let |¢)) be a state with scale dimension A, Then P, increases
the scaling dimension by one and K, decreases it by one:

D(Pu|¢)) = —i(A+1)|¢) and  D(K,[¢)) = i(A = 1)[).

An operator of lowest dimension A in a multiplet is called primary field. Since D
commutes with the Lorentz transformations one can classify the representations of
the conformal group corresponding to primary operators by the Lorentz representa-
tion and the scaling dimension A (these determine the Casimirs of SO(2,4)). These
representations include the primary field and all the descendent fields which are
obtained by acting on it with the generators of the conformal group. All fields have
a definite scaling dimension. The operators can in general not be eigenfunctions of
Py or P? since [D, P,] # 0.
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9.5 Correlation functions

Since the conformal group is much larger than the Poincare group, it severely re-
stricts the correlation functions of primary fields, which must be invariant under con-
formal transformations. It has been shown by Liischer and Mack that the Euclidean
Green’s function of a CFT maybe analytically continued to Minkowski spacetime,
and that the resulting Hilbert space carries a unitary representation of the Lorentzian
conformal group.

Under conformal transformations
o
6¢;w... = (LX + 5 apo) ¢uu...-

In the absence of anomalies this implies the conformal Ward identities. For example,
the 2-point functions of two tensor fields

< 0[¢) (21)0 (22)|0 >= G 5 (21, 12)
fulfills the Ward identity

204
Z [LX(wZ) - %&yXa(xi) G(Q) (371,.{132) =0.
It is the infinitesimal form of the following conformal transformation of the two-point
functions:

—aap(y2) 536‘17 536{) 8xg (93:2 2)
Oyt ByY Dy 9yl P’

G(Q)

pv,0f (w1, 22) = e 19(y1) o

(y1: y2)7

where o; and oy are the Weyl-weights of () and ¢(®. This differential equation
determines the 2-point function uniquely. For two scalar fields ¢() and ¢®, the
conformal Ward-identity simplifies to

i

Translations- and Lorentz invariant imply that G = G(£), where & = |25 — z1|. The
dilatation Ward identity then simplifies to

(585 4 (A + AQ)) G® =0
and has the solution

G(Q) = 012|$2 — T — i€|_A1_A2.
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With a linear transformation of the ¢(® one can transform the symmetric matrix
Cap t0 0gp. If we use the Ward-identities belonging to the special conformal trans-
formations then it follows that

(Al - AQ) G(Q) = 0
Hence, the conformal Ward identities finally yield

0 if Ay # Ay;
< 0[¢M (@1)¢ (22) 0 >= { |zg — 21 — €[22 if Ai i Az =A.

If one does a similar calculation for the 3-point function, then one obtains
< 0]¢M (21) 9 (22) ) (23)]|0 >= Chag £137 22751 £yt 027 B3 gy~ R,

As expected for a conformal field theory, the correlation function show a power
like behavior and show that the theory has no mass-gap. The higher correlation
functions are restricted but not determined by conformal invariance.

9.6 N =4 conformal field theory.

An interesting generalization of the conformal algebra is the super conformal alge-
bra. Superconformal algebras exist only in d < 6 dimensions. The fundamental
representations are a generalization of the remarkable representations of the AdS,
group SO(3,2) discovered by Dirac [13] some time ago, which were later named
singleton (indicating that the representations of Dirac corresponding to fields on the
boundary of AdS, are singular when the Poincare limit is taken). The singleton
representation require a single set of oscillators transforming in the fundamental
representation of the maximal compact subgroup of the covering group Sp(4,R)
of SO(2,3). The fundamental representations in for the AdSs-group or conformal
group in four dimensions require two sets of oscillators transforming in the funda-
mental representations of SU(2,2).

The superalgebra of type IIB supergravitation on AdSs x S° is the supergroup
SU(4]2,2) with the bosonic subgroup SU(4) x SU(2,2) x U(1) 7, where SU(4) is the
double cover of SO(6), the isometry group of the five sphere and SU(2,2) ~ SO(2,4)
is the cover of the conformal group in 4 dimensions or the anti-de Sitter group
in 5 dimensions. The Abelian U(1); generator Z commutes with all the other
generators and acts like a central charge. Therefore, SU(4|2,2) is not simple. One
may factor out this Abelian ideal and obtains a simple Lie superalgebra, denoted by
PSU(4/2,2), whose bosonic subalgebra is SU(4) x SU(2,2). The representations of
PSU(4]2,2) correspond to representations of SU(4|2,2) with Z = 0. SU(4|2,2) can
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be interpreted as N’ = 8 extended AdS superalgebra symmetry of 1B supergravity
in d =5 or as the N/ = 4 extended conformal superalgebra in d = 4.

The superconformal algebra is generated by My, Aij, Bij, Z and Q. The range of
indices is

myn: 0,...,5;, 4,7:1,2,3,4; «a:0,...,6.

The M,,, generates the conformal SO(2,4) algebra, the A + iB the SU(4) R-
symmetry, Z generates a U(1) and Q°, are the 4 X 8 = 32 supercharges. These
supercharges can be grouped into chiral components of Lorentz spinors ) and S,
the generators of Poincare and S type supersymmetry. The SU(4) generators com-
mute with the spacetime symmetry generators M,,, and the generator Z commutes
with both the SU(4) and the SO(2,4) ~ SU(2,2) generators. The part of the con-
formal superalgebra (in the SO(2,4) notation) which contains the 32 supercharges
L a=1,...,8 reads as follows

{QL, @} = —(CapAij + (C'7.)asBy
+ 2(C7')ap0i5Z + 505(CTH Y™ ) ap Minn

The generators A + iB generate the SU(4) part of the bosonic superalgebra. C is
the charge conjugation matrix of SO(2,4). The commutators of the bosonic charges
with the supercharges read

[Ajkan:a] = (ak)nQa: [Bjk, Qu) = = (5j8)pi (1) oa@®
[anana] = %(rymn)ﬁaQ,ZB-

The U(1) charge Z commutes with all other generators and the anti de-Sitter su-
peralgebra becomes non-simple.

The unique irreducible CPT self-conjugate doubleton supermultiplet of SU(4/2,2)
is the supermultiplet of N' = 4 supersymmetric Yang-Mills theory in d = 4. This
theory is uniquely determined by specifying the gauge group, and its field content is
a vector multiplet in the adjoint representation. The easiest way to construct N = 4
super Yang-Mills theory is by dimensional reduction of N’ = 1 super Yang-Mills in
10 dimensions to 4 dimensions. By construction it is invariant under an internal
SU(4) R-symmetry. On shell it contains

1 gluon field 4 Majorana spinors 6 real scalars

all in the adjoint representation of the gauge group. Since SU(4) ~ SO(6) the 6
scalars ¢! will transform according to the vector representation of SO(6). Each &’
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transforms according to the adjoint representation of SU(NN). The interaction of
the theory contains a scalar potential proportional to

vV~ (67, ¢7)°

The moduli space of the theory is the space of commuting matrices ®/ and hence is
Moduli space ~ RS™V-1 /5N,

In the SU(4) representation they form a (quasi) antisymmetric selfdual tensor
— 3 . . - .
@AB ~ (Z(n;BQﬁZ _7734B¢Z+3)’ AaB = 1a253a4
i=1

i.e. a antisymmetric tensor which, up to complex conjugation, is selfual

1
PAB — ZABCDE

CDAB

The Weyl spinors transform according th the 4 representation of SU(4). The La-
grangian L = Lg + Ly has the following form

LB — 1Fa F;w (DNCT)AB)a(D“(I)AB)a . 92fabc(I)ABq)CDfade(i)d (i)eCD

ur— a

Lp = —ipptons(Dui)a — gV2fe [0 @ pie” + 95423 0]
It is manifestly invariant under R-symmetry,

vy — U'gpl Yar — (U*) L ban
48— Uy “PU")  dup — (U") S ®cn(UN)%

Spectrum: It consists of all gauge invariant quantities that can be formed from
the basic fields of the vector multiplet. We focus on local operators which involve
fields taken at the same point in spacetime. These are product of traces of products
of fields. In the ’t Hooft large N limit the correlation functions involving multiple-
trace operators are down by powers of N compared to those of single-trace operators
involving the fields. Thus we concentrate on single-trace operators. To continue we
recall the structure of the commutation relations of the superconformal algebra

[DaK]NZKa [DaP]N_ZPa [DaQ]N_%Qa [D,S]N%S
[KaQ]N‘Sa [P’S]NQa {QaQ}NPa {S’S}NK
{Q, S} ~M+D+R.
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As in the bosonic case one groups the operators into primary and secondary op-
erators. 'To construct representations one starts with some state of lowest scale
dimension which annihilated by the lowering operators S and K,. Now one acts
on this state with the raising operators @, and P,. One distinguishes chiral primary
operators and non-chiral primaries. The representations of the chiral primaries sit in
short representations of SU(4|2,2) and are annihilated by some of the supercharges.
It is not hard to see, that if the primary operator has helicity A then in a long
supermultiplett the helicity will have range A — 4 to A 4+ 4. There is one ultrashort
representation of the N' = 4 algebra whose range of helicities is from —1 to 1. This
is the vector multiplet of the theory itself.

So what are the known chiral primaries of N' =4 SU(N) SYM theory? The lowest
component O of a superconformal-primary multiplet is characterized by the fact
that

0 # Q0.
Since
[Q2,9'] ~ Aas {Q4: AsB} ~ 0hsFu + casld’, ¢7]
{Qa: A5} ~ (0")a3 Dt Qi Aul ~ (0)aaje™

one would believe that operators built from the fermions and gauge fields are no
good candidates. We expect the lowest chiral primaries to be constructed only from
the scalar fields. Indeed, one can prove that the operators

Olt-In _ ¢y ((I,(Il .. _(I)In)),

which are traceless with respect to all indices, exactly correspond to the short chiral
primary representations. The scale dimension of these operators is n, the same as
in the free theory. The symmetry must be imposed, since {@Q,\} ~ .. + [®], ®7].
One can further argue, that if n > N then O can be expressed in terms of operators
with n < N and descendents. Hence a list of chiral primaries (giving rise to short
multiplets) is

0, = Oh-In = ¢ ((I)“T1 . -<I>I“)) with n < N, traceless.

This operators transform according to the representations [0, n,0] of SU(4) which
has the dimension

dim([0,n,0]) = +(n+1)*- (n+2) - (n + 3).

The representations are obtained by acting with the generators of the superalgebra

(@, P) on O,. The algebra built on O,, contains a total of
2% x £n*(n* - 1)
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primary states. Out of the O, one can construct bosonic primaries by acting on O,
with a even number of super charges (recall, that A(Q) = 3). This way one gets
operators of the form

tr (J“VFWqﬁIZ . qﬁI") or tr ()\aA)\/ngﬁI3 . ¢I“)

9.7 Montonen-Olive duality

There is strong evidence that A/ =4 SYM is invariant under SL(2,Z) transforma-
tions:

ar +b 0 . Ar

T—7 = T=--+i—5—, where ad—bc=1.

cT+d 2T 9y um
For vanishing #-parameter this transformation relates weak with strong coupling.
This duality implies, that the theory can be equivalently formulated as a theory
of fundamental gluons having magnetic monopoles as solitons or as a theory of
fundamental magnetic monopoles with gluons appearing as solitons.
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10 Testing the Maldacena conjecture

What could be the test of the duality conjecture that string theory on AdSs x S°
is dual to N' = 4 superconformal Yang-Mills theory in the 't Hooft limit? Possible
checks shoud compare

e symmetries

correlation functions

spectrum of operators

moduli space

thermal properties

beyond conformal theories: masses, confinement, ...

10.1 Symmetries

The N = 0 conformal SYM possesses a SO(2,4) spacetime symmetry. These is
the group of isometries AdSs. The AdS group preserves the boundary, which is
compactified Minkowski spacetime, 0(AdSs) = CM,, and acts on CM, like the
conformal group. The global R symmetry on the field theory side is SU(4) ~ SO(6)
which is the group of isometries of S°. Both theory very probably have an SL(2,7)
selfduality symmetry. The Yang-Mills coupling is related to the string coupling
through

4mi n 0 1 n X
= T o 1
gy 2m  gs 27 (51)

T =

where x is the expectation value of the RR-scalar. In both theories the duality
transformation is

ar +b
ct+d’

ad — bc = 1.

The SL(2,7Z) is a conjectured strong-weak duality symmetry of I7B string theory
in flat space. But since the AdS x S° background is invariant under SL(2,Z), this
symmetry should survive on this symmetric background. For the gauge theory the
symmetry under (51) is just the Olive-Montonen duality.
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11 Spectra

Unfortunately the full spectrum of type IIB string theory on AdSs x S® in not
known. The only known states are those who arise from the dimensional reduction
of 10d I1B supergravity multiplet. These fields have helicity form —2 to 2, so they
are in small multipletts of the superconformal algebra. They match to the small
multiplets of the field theory. Take the dilaton field of supergravity. During the
dimensional reduction is it expanded as

X(@,y) =) xn(@)YM(y), x€ AdSs, y € S°.

The scalar spherical harmonics Y™ are symmetric, homogeneous and traceless
poloynoms of degree n (in the imbedding coordinates) and hence transform ac-
cording to the (0,n,0) of SU(4) ~ SO(6). In each representation (0,7,0) we find a
field x,, and the mass of this field is

m, = n(n+4)/R>.

A similar expansion maybe performed for the other field in the supergravity mul-
tiplett. This way we match the states of type IIB supergravity compactified on
AdSs x S® with the representations of the superconformal algebra on M. One finds
the representations described above which are built on the superconformal primaries
O,, which are scalars in the (0,n,0) representation of SU(4)g for n = 2,3,..., cc.
Later we shall see that the scaling dimension of an operator correponding to field

modes of mass m is
A =2+ /44 (mR)2
In particular, the modes Y, correponds to a conformal primary of scaling dimension
A=4+n,

Besides this constraint the operator and field must transform according to the same
representaions of SU(4) g ~ SO(6)gs. For example the field x,Y(?), which is constant
on S° must correspond to a scalar operator with scaling dimension 4 and which
transforms trivially under SU(4)g. This is just tr F,.

Similarly, the dilaton field x,Y ™ corresponds to a complex scalar field of scale
dimension n + 4 and we find the correspondence

XaY ™ — tr (F2,0" - @), n>2 (52)

The operator on the right is in the multiplet built from O,,; 5. The lowest dimensional
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scalar fields corresponding to the chiral primaries O, are linear combination of the
graviton and the 4-form field Agpeq-

Te massless graviton field which transforms trivially under the SO(6) corresponds
to an operator which is a singlet under SU(4)g and has scaling dimension A = 4.
This way we are lead to relate

G < Ty

More generally, the n = 2 supergravity representation includes the field content of
d = 5, N = 8 gauged supergravity. On the field theory side it corresponds to the
representation containing the superconformal current.

The massless SO(6) gauge fields correpond to the global SU(4)g currents,
I I
A, — J,.

If one goes through the list of field modes, one finds that one has the same spectrum
of chiral primary operators for n = 2,..., N. There seem to be no matching for
n > N. However we can only trust the supergravity results for masses m below the
string scale. With

4

ENQSN>>1,

this means

n? 1 VgN
miNﬁ<<l_2N RSQ , orfor n?< /g,N.

S

If =4 SYM in the t’Hooft limit is dual to the IIIB string on AdSs x S°, then
we would expect that string spectrum matches the supergravity spectrum up to a
mass scale

N2 N3/2
m’ < Tz~ Vi > m), since R®=d'\/4rNg, = V4N,

which is much bigger than the string- and Planck scale, and that there are no chiral
fields above this scale. This matches with model calculation of string propagation
on AdS3 x X which we considered some time ago [15]. There one also needs to cut
the spectrum at some conformal weight to get a consistent string propagation on
SU(1,1) x X ~ AdSs x X.
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11.1 Fields in supergravity <> operators in N =4 SYM

As motivation let us remind that changing the coupling constant
gym = 47ngs, gs = el? = l;/li

is to be interpreted as deformation of the corresponding marginal operator F2. The
expectation value of the dilaton field is determined by the boundary conditions on ¢.
Changing gy s amount to changing the boundary field ¢y. More generally, consider
adding the term

/ 260 (2)O(x)

to L. It is natural to assume that that this will change the boundary condition of
the dilation at the boundary of AdS to

d(z,2)|,=0 = ¢o(x), with AdS metric
R

ds’ = (;)2(dz2 Fdad 4.+ di2).
In [16] it was proposed, that
< exp / d4$ ¢0($)O($)>CFT = Zstring I:(b(x? Z)‘ZZO = d)()(x)] : (53)

The left hand side is the generating functional of correlation functions in the field
theory. The right hand side is the full partition function of string theory with the
boundary condition that the field ¢ has the value ¢y on the boundary of AdS. There
is a little problem whose solution yields the above mentioned m <> A relation.
Consider a bulk field with mass parameter m. We study its behaviour near the
boundary z = 0 of AdS. We use the Poincare coordinates on AdSy,1:

2
ds® = 2—2(dz2 +dzi +...dz7) so that
1 1
A = ﬁam (v/99™"9,) = ﬁ(zd“az(zl_d(?z) + 2°1,)

The wave equation (—A +m?)¢ = 0 for a function ¢ = f(z)g(z) yields
Pf'g+ (1= d)zf'g+ 2 fDg — (mR)*fg = 0.

For f = z® and z — 0 this yieds the algebraic relation a(a — d) — (mR)? = 0 with
the two solutions
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2% and 274 A= d +1/ @ + (mR)? (54)
’ 2 4 '

To get a finite value for the boundary field belonging to a massive field the correct
boundary condition on the bulk field on the right hand side of (53) should be changed
to

¢z, €) = 272 o (). (55)
Since ¢ is dimensionless (?) the boundary field has length dimension
] = [length]*~.

This in turn requires that the operator O in (53) had scaling dimension A. In
particular, a field of mass m in AdSs couples to an operator O of scaling dimension

A(0) =2+ /4 + (mR)2.

A massless field must couple to an operator of scaling dimensions A = 4 (more
generally A = d). These results square with the correpondences listed above. For
example, the mass of x,, is n(n + 4)/R? and hence it must couple to an operator
with scaling dimensions

A, =n+4.

This agrees with (52). The graviton is massless and must couple to an operator
of scaling dimension 4 which is the scaling dimension of the energy-momentum
operator.

11.2 N, g&,;N — oco: Matching of correlation function
We assume
N large , gy N large

which amounts to neglect all stringy o corrections that cure the divergences of
supergravity and also all string loop corrections. In this regime classical supergravity
is a good approximation and the basic relation (53) reads

0

Wy m¢o] = —log < exp / d4$¢50($)0($)>0FT ~ SSUGRA[¢01]‘¢(Z:€):¢ ; (56)
where ¢.; is the solution of the classical supergravity equations with the boundary
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condition indicated. We performed the classical limit for supergravity on the right
hand side and assumed that there is only one saddle point. Hence the generator of
the connected Greenfunctions in the gauge theory, in the large N, g% ,,N limit, is
the on-shell supergravity action. We have not made explicit the rescaling of ¢ when
e — 0. This can be accounted for by a wave function renormalization on O or ¢,
such that the final answer is independent of the cutoff e.

Two-point functions: We consider only the part of the sugra action which is
quadratic in the relevant field perturbation which is needed. For massive scalar
fields this action has the generic form

S = n/dzd4x\/§[gm" n®0p + sm*¢?| = (—A +m?)¢ = 0.
Again we choose Poincare coordinates
» R, 2 2 54 1 2 2 p2
ds:—Z(dz + dx?), RAz(zﬁz—38z+zAz—mR) z > €.
z z

The general solution is a superposition of modes with fixed 4-momentum, ¢ =
Z(u)exp(ipz). The resulting equation for Z(u) = Z(pz) reads

1
u5(EZ')' —u*Z — (mR)*Z =0, Z=Z(u). (57)
The two solutions are
Z(u) = u?Ia_o(u) and Z(u) = v Ka_o(u),
where

A =2+ 4+ (mR).

Since the Bessel functions have the following asymptotic behavior,
u

I,(u) ~ (g)y, K, (u) ~ (5)_1/ for uw—0

1
I,(u) ~ Noro e,  K,(u)~ ”2%_,2 e for u — oo,

we must discard the solution containing I, since it explodes in the bulk the corre-
sponding solution has infinite action. Imposing the boundary condition ¢(z,€) =
exp(ipz), we find

_ (pZ)QKAJ(pZ) eiPT
Pz, x) = (pe)*Ka-2(pe)

50



To calculate the two point function we note, that for the particular boundary field
¢0 — )\leipz + )\2eiq;c
the perturbation of the action reads

/ d2o()O(z) = MO(p) + 10(q),

so that the second variation of the Schwinger functional becomes

Sl =—(0()0W),

To calculate the action of ¢ on AdSs we observe, that

A1=A2

Sloa) = 3 [ ded'e 5 V" (6udiba
+ 3 [ dxata v (= dadsa-+ mia).

The last bulk terms vanishes since ¢ fulfils the equation of motion so that

R3 0o,
S[d)cl] = g/d4$ hnu¢clau¢cl = _ge_3/d4x¢cl(eax)%(eax)'

Z=€

Now we must calculate this surface integral for

22 Ka_o(pz) Ka_2(g2)
= o (WA e, T A28 pige),
ba=a( KA (pe) 2 Kn > (qe) )

We find for those terms which contribute to the z integral (for example e** does
not contribute)

4 Kj_,(pe) Kh_(qe) ;
ale Qe:(‘+ A2l Ly e Ay )y PO
¢ l( )¢ l( ) € KA—Z(pe) KA_Q(QG) 1
4 A-2 A—-2 Ka_i(pe) KA—I(q€)> ;
24 i . . A\, elpta)z
(e €p €q Ka-a(pe)  Ka—s(ge)) """

We use the expansion of K, for small arguments,

ii[ z/2)2k+” (z/2)2k—u }

MR +k+1) T(k+1-v)

K,(z)=

2 sm
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from which can derive, that

K, 2v z 28
~Y

K, "7 Tw_2 8u—12w—2

Now the classical action becomes

_ne 1 482 @
S 2¢3 Ada(2m)°6(p + q)(e €p 2A —6
pP
S araon TP 9)

After some algebra one ends up with

~ _ '3 —A) P\2A—4
. 2A-8 _ 4 p
(O(p)O(q)) = —ne*>~°(2A 4)71“@ ) o+a) (5
or after a Fourier transformatin with
g2A—4T(3-A) 1
. 2A-8

Correlation functions of non-scalar operators have also been studies. It should be
enough to study the correlators corresponding to the chiral primary fields. The
others can by applying supersymmetry. For a calculation of 3 and 4 point function
I refer to the literature. All in accordance with the conjectured duality.

11.3 Wilson loop

As in large N QCD we expect the Wilson loop to be related to the string running
from the quark to the antiquark. Result of correspondence

Ar? (23 N)*2

Vaall) = == jyiz

It goes as 1/L as expected by conformal invariance. In Y M perturbation theory
V would proportional to gZ,, N and not to the square root of it as it is here. This
indicates a screening of the charges at strong coupling.
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