Problem sheet "Advanced Quantum Mechanics"

winter term 2019/20

Sheet 11

Problem 26: Gamma Matrices

In the chiral representation the Dirac matrices have the form

$$\gamma^0 = \sigma_1 \otimes \sigma_0 = \begin{pmatrix} 0 & \sigma_0 \\ \sigma_0 & 0 \end{pmatrix}, \quad \gamma^k = -\mathrm{i}\sigma_2 \otimes \sigma_k = \begin{pmatrix} 0 & -\sigma_k \\ \sigma_k & 0 \end{pmatrix}$$

and in the Dirac representation

$$\gamma^0 = \sigma_3 \otimes \sigma_0 = \begin{pmatrix} \sigma_0 & 0 \\ 0 & -\sigma_0 \end{pmatrix}, \quad \gamma^k = \mathrm{i}\sigma_2 \otimes \sigma_k = \begin{pmatrix} 0 & \sigma_k \\ -\sigma_k & 0 \end{pmatrix}.$$

- 1. Show that these two sets of matrices obey the anti-commutation relations (ACR) $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$. Hint: You may use the rules for tensor products, e.g. $(A \otimes B)(C \otimes D) = AC \otimes BD$.
- 2. What are the hermiticity properties of the γ^{μ} ? Why can γ^1 not be hermitean?
- 3. Calculate $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$ for both representations.
- 4. Use (only) the ACR for the γ^{μ} to prove that γ_5 anti-commutes with the γ^{μ} , $\{\gamma_5, \gamma^{\mu}\} = 0$.
- 5. With the help of the ACR prove the identities

$$\begin{split} \gamma^{\mu}\gamma_{\mu} &= 4\mathbb{1} \\ \gamma^{\mu}\not\!\!\!\!p\gamma_{\mu} &= -2\not\!\!\!\!p \\ \gamma^{\mu}\not\!\!\!\!p\not\!\!\!q\gamma_{\mu} &= 4p\cdot q\,\mathbb{1}, \end{split}$$

with $p = p^{\mu} \gamma_{\mu}$ and $p \cdot q = p^{\mu} q_{\mu}$ (split here: 0.5+0.5+1 points).

Problem 27: Lagrangian of the free Dirac equation 1+1+2+1+1=6 points

The Lagrangian of the free Dirac field theory (describing a charged particle with spin 1/2) is given by

$$\mathcal{L}_D = \bar{\psi}(i\partial \!\!\!/ - m)\psi.$$

Given that the component fields ψ_a of ψ are complex valued it will be convenient to treat ψ_a and ψ_a as independent field variables (instead of considering real and imaginary parts of ψ_a as the independent).

- 1. Show, that \mathcal{L}_D is Lorentz-invariant, $\mathcal{L}_D(x') = \mathcal{L}_D(x)$.
- 2. Derive the field equations for ψ and $\overline{\psi}$ and show that they are related by complex conjugation and multiplication by γ^0 .
- 3. Consider the symmetry transformation $\psi(x) \mapsto e^{i\alpha}\psi(x)$ and the related transformation of $\bar{\psi}(x)$. Show that this U(1) transformation leaves the Lagrangian \mathcal{L}_D invariant and compute the associated Noether current density $j^{\mu}(x)$.
- 4. Show that j^{μ} is covariantly conserved, $\partial_{\mu}j^{\mu}(x) = 0$, given that ψ and $\bar{\psi}$ solve the Dirac equation.
- 5. What is the Lagrangian density for a charged spin-1/2 particle in an external electromagnetic field described by a 4-potential $A_{\mu}(x)$?

Submission date: Thursday, 23.01.2020, before the lecture

January 14, 2020

2+1+1+1+2 = 7 points