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11 Link variables

Typically, the degrees of freedom of lattice gauge theories are matrices Uxµ (link variables) at lattice
point x in direction µ and have a group structure. For the gauge group SU(n) the link variables obey

∀x, µ : detUxµ = 1, U †
xµ = U−1

xµ ⇔ UxµU
†
xµ = 1xµ. (1)

In principle, every group element Uxµ ∈ SU(n) could be parametrized in terms of the generators
Ta ∈ su(n):

Uxµ = exp
(
iωa

xµT
a
)

with ωa
xµ ∈ R. (2)

However, in numerical calculations the Us are often represented by complex matrices Cn×n such that
round-off errors will drive them away from the group.

1. Describe a method how a complex 3 × 3 matrix A can be “unitarized” by the Gram-Schmidt
method.

2. In the special case of SU(2) one can alternatively use quaternions

Uxµ = a0xµ1+ akxµσ
k ∈ SU(2) (3)

where σk are the Pauli matrices.

(a) Find the condition 0 = f(a0, . . . , a3) such that Uxµ ∈ SU(2).

(b) Compute the product of two link variables in this parametrization, i.e. compute c(a, b) in
U(c) = U(a)U(b).

(c) Compute the trace of a plaquette as a function of the parametrizing vectors, i.e.

tr(Px,µν) = p(axµ, ax+µ̂,ν , ax+ν̂,µ, axν) (4)

12 Continuum limit of the plaquette

Show that in the classical continuum limit

tr(Px,µν) = −a4

2
tr(Fx,µνFx,µν)−

a5

2
tr(Fx,µν [Dµ +Dν ]Fx,µν) (5)

where a is the lattice separation and Dµ = ∂µ +Aµ.



13 Gauge covariance of parallel transport

Consider the parallel transport along an open path from x(0) to x(s)

PC = P exp

(
ig

∫ s

0
ds′ ẋµAµ(x)

)
(6)

with non-abelian gauge fields Aµ ∈ su(n). Show that under a gauge transformation on Aµ

A′
µ = Ω(x)Aµ(x)Ω

−1(x)− i

g
∂µΩ(x)Ω

−1(x) (7)

PC transforms as P ′
C = Ω(x(s))PCΩ

−1(x(0)).

14 (Bonus) More On The Ising Model

(Note: This problem will not be discussed in the exercise class unless explicit questions or the need for
discussions arises during your preparations.)
The given code template for the Ising model from Problem 10 was written in a modular fashion where
all the parts are interchangeable. It can be easily generalized to other scenarios. If you want to explore
the Ising model and its relatives further, here are some suggestions:

• Without any changes the code should run in arbitrary dimensions (Caution: Not thoroughly tested!).

1. In 1D, there is no phase transition at finite temperature. This is what Ising originally found.
2. In 2D, you could look in more detail at the critical behavior. Extract, for example, the critical

temperature and critical exponents via the various methods described in W. JANKEs Monte
Carlo Methods in Classical Statistical Physics (see moodle for a link) and compare with the
analytical results.

3. In 3D, there are no analytical results. However, it is of course well-studied by now. See if
you can get reasonable accuracy here.

4. From 4D on, mean-field theory applies. Research the mean-field results (or do the calcula-
tions yourself) and compare.

• Implement further observables, e.g. the correlation length or correlation functions. Take a look into
improved estimators and compare the expectation value of the cluster size in the WOLFF algorithm
with the susceptibility.

• Implement a next-to-nearest neighbor (NNN) coupling term. To do so, implement a getNNN(x)
method in the Geometry and change the expS method of the Updater class. The most inter-
esting case here is a competing setup between NN and NNN coupling.

• Implement another geometry, e.g. the triangular one from Problem 6, and look at the curious
behavior of geometric frustration. It might be necessary here to implement further observables,
too.

• The Ising model is actually the O(1) model and in that sense the simplest of the large class of
O(N) models. Change the Field class to an O(N) field (or another special case of this). By
smart use of operator overloading the other parts of the code should not need many changes.


