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Problem 10: Lorentz-invariant measure

Show that the integral measure

dµ(p) =
d3p

2ωp
,

with ωp =
√
p2 +m2 is Lorentz invariant on the mass shell p2 = m2 and for p0 > 0.

Problem 11: Commutation relations for creation and annihilation operators

Consider the decomposition of a real scalar �eld φ(x) and its conjugate momentum π(x)
into normal modes up(x) = 1

(2π)3/2
eip·x introduced in the lecture:

φ(x) =

∫
dµ(p)

(
apup(x) + a†pu

∗
p(x)

)
,

π(x) =
1

i

∫
dµ(p)ωp

(
apup(x)− a†pu∗p(x)

)
.

Compute the commutation relations for the creation and annihilation operators a†p and

ap from the known relations for φ(x) and π(x).

Problem 12: Quantization of the complex scalar �eld

For problem 9 on exercise sheet 2 we considered a classical complex scalar �eld,

L = (∂µφ
∗)(∂µφ)−m2φ∗φ ,

and showed that its Hamiltonian density is given by

H = π∗π +∇φ∗ · ∇φ+m2φ∗φ .

In order to quantize the theory, �rst replace the canonical variables by operators, i.e.,

in particular, φ∗, π∗ → φ†, π†.

1. Quantize the �eld operators by introducing the representation of the real �eld

components φ1 and φ2 in φ = 1√
2
(φ1 + iφ2) in terms of ladder operators. De�ne

a(p) =
1√
2

(a1(p) + ia2(p)), b(p) =
1√
2

(a1(p)− ia2(p)),

and show that these complex ladder operators obey two independent ladder op-

erator algebras (Note that we use the notation a(p) instead of ap here).

2. Express the complex �eld and momentum operators in terms of a, a†, b and b†.



3. Show that the Hamiltonian of the theory can be written as

H =

∫
dµ(p)ωp

(
a†(p)a(p) + b†(p)b(p)

)
+ zero point energies.

4. Consider the Noether charge

Q = i

∫
d3x(φ†∂0φ− φ∂0φ†)

and show that the creation operators a† and b† generate �eld excitations whose

charges di�er in sign.

Problem 13: Linear chain of coupled oscillators

Consider a system of N particles with equal masses m on a one-dimensional chain

with lattice constant (separation of equilibrium positions) a. Let each particle move

in a harmonic potential (Ω0) and couple nearest neighbors harmonically (Ω) as well.
For the n-th particle of the chain, denote its displacement from equilibrium qn and its

momentum pn. Then, the Hamiltonian of the system reads

H =

N−1∑
n=0

p2n
2m

+
mΩ2

2
(qn − qn−1)2 +

mΩ2
0

2
q2n .

To diagonalize H, we introduce the normal coordinates and momenta Qk and Pk:

qn =
1√
mN

∑
k

eikanQk , pn =

√
m

n

∑
k

e−ikanPk ,

which inherit the canonical commutation relations form qn and pn, i.e., [Qk, Pk′ ] = iδk,k′ ,
while the other commutators vanish.

1. Choose periodic boundary conditions, i.e., q0 = qN and determine the possible

values that k can take (1st Brillouin zone (BZ)) for even or odd N respectively.

2. Prove the orthogonality relation

1

N

N−1∑
n=0

eian(k−k
′) = δk,k′ ,

which holds as long as k and k′ are both within the 1st BZ, use it to show that

the Hamiltonian can be written as

H =
1

2

∑
k

(PkP
†
k + ω2

kQkQ
†
k) ,

and determine ω2
k. Plot ωk > 0 as a function of k for Ω0 = 0 and for Ω0 6= 0

(choose the other parameters as you please). Interpret the result.

3. Now go back to the initial de�nition of H above and write down the Hamiltonian

equations of motion for each qn and pn. Then, after introducing

q(x, t) = qn(t)

√
m

a
, p(x, t) = pn(t)

√
ma ,

perform the continuum limit a→ 0, N →∞, keeping L = aN , ρ = m
a and v = Ωa

constant and show that in this limit the equations of motion assume the form of

a one-dimensional Klein-Gordon equation for the �eld q(x, t).


