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Problem 10: Lorentz-invariant measure
Show that the integral measure
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with wp = \/Im is Lorentz invariant on the mass shell p? = m? and for py > 0.
Problem 11: Commutation relations for creation and annihilation operators

Consider the decomposition of a real scalar field ¢(x) and its conjugate momentum 7(z)

into normal modes up(x) = L eP* introduced in the lecture:

(2m)

660 = [ du(w) (apun() + afuip(x))

wx) = ;[ du(e)ep (apup(x) - ahup(x))
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Compute the commutation relations for the creation and annihilation operators al, and

ap from the known relations for ¢(x) and 7(x).
Problem 12: Quantization of the complex scalar field

For problem 9 on exercise sheet 2 we considered a classical complex scalar field,
L= (0,0%)(0"9) — m2¢*qb )
and showed that its Hamiltonian density is given by
H=r*t+Vo* - Vo+m2p*p
In order to quantize the theory, first replace the canonical variables by operators, i.e.,

in particular, ¢*, 7* — ¢f, xt.

1. Quantize the field operators by introducing the representation of the real field
components ¢; and ¢o in ¢ = %@1 + i¢2) in terms of ladder operators. Define

a(p) = ;§<a1<p> +ias(p)), b(p) = %ml(p) ~ias(p)),

and show that these complex ladder operators obey two independent ladder op-
erator algebras (Note that we use the notation a(p) instead of ap here).

2. Express the complex field and momentum operators in terms of a,af, b and bf.



3. Show that the Hamiltonian of the theory can be written as

H= /du(p) Wp (aT(p)a(p) + pr)b(p)) + zero point energies.
4. Counsider the Noether charge
Q=i [ d’x(¢'d°% — ¢0°¢")

and show that the creation operators af and b generate field excitations whose
charges differ in sign.

Problem 13: Linear chain of coupled oscillators

Consider a system of N particles with equal masses m on a one-dimensional chain
with lattice constant (separation of equilibrium positions) a. Let each particle move
in a harmonic potential () and couple nearest neighbors harmonically (2) as well.
For the n-th particle of the chain, denote its displacement from equilibrium ¢, and its
momentum p,. Then, the Hamiltonian of the system reads
N-1
H =
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To diagonalize H, we introduce the normal coordinates and momenta Q) and Pg:
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which inherit the canonical commutation relations form ¢, and py, i.e., [Qk, Pw] = @5 1/,
while the other commutators vanish.

1. Choose periodic boundary conditions, i.e., g9 = gy and determine the possible
values that k can take (15 Brillouin zone (BZ)) for even or odd N respectively.

2. Prove the orthogonality relation

1 N-1 A
N > et =g
n=0

which holds as long as k and k' are both within the 15t BZ, use it to show that
the Hamiltonian can be written as

1 f 1 020.0!
H=2§<Pkpk+wkc2k@k> :

and determine wz. Plot wr > 0 as a function of k for Qg = 0 and for gy # 0
(choose the other parameters as you please). Interpret the result.

3. Now go back to the initial definition of H above and write down the Hamiltonian
equations of motion for each g, and p,. Then, after introducing

m

Q(ZC?t)ZQn(t) — p(x,t):pn(t)\/% )

a

perform the continuum limit a — 0, N — oo, keeping L = aN, p = ** and v = Qa
constant and show that in this limit the equations of motion assume the form of
a one-dimensional Klein-Gordon equation for the field g(x,t).



