
Chapter 5

Particles in electromagnetic fields

In this section study the dynamics of a charged particle in a given external electromagnetic field.

In reality the field is modified by a moving charge, for example by the radiation emitted by the

particle. But here we shall neglect this backreaction. This is a reasonable approximation for

strong or/and almost constant fields.

5.1 Charged scalar particle

In classical physics we use the concept of an idealized point particle with mass m and electric

charge e. Such a particle moves along a trajectory and its position at a given time is determined

by its initial conditions and the equation of motion. On a particle at a position x with velocity

ẋ acts the Lorenz force

F = e
(

E (t, x ) +
1

c
ẋ ∧B(t, x )

)

. (5.1)

To write down a Lagrangian or Hamiltonian function which lead to the corresponding equation

of motion one introduces the electromagnetic potentials ϕ and A in

E = −∇ϕ− 1

c

∂

∂t
A , B = ∇∧A. (5.2)

Two potentials related by a gauge transformation with gauge function λ(t, x ),

A(t, x ) → A(t, x )−∇λ(t, x )

ϕ(t, x ) → ϕ(t, x ) +
1

c

∂

∂t
λ(t, x ) (5.3)

give rise to the same electromagnetic field. The non-relativistic Lorentz equation mẍ = F is

the Euler-Lagrange equation for the Lagrangian

L =
m

2
ẋ 2 +

e

c
ẋ ·A(t, x )− eϕ(t, x ). (5.4)
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A Legendre transformation leads to the classical Hamiltonian function

H =
1

2m

(

p− e

c
A(t, x )

)2
+ eϕ(t, x ), (5.5)

and with the help of the correspondence principle we arrive at the Hamiltonian operator Ĥ and

time-dependent Schrödinger equation

i
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 , Ĥ =

1

2m

(

p̂− e

c
A(t, x̂ )

)2
+ eϕ(t, x̂ ). (5.6)

The operator-ordering is chosen such that Ĥ gives rise to a unitary time evolution. Under a

gauge transformation (5.3) the wave function transforms as

ψ(t, x ) −→ e−ieλ(t,x )/h̄cψ(t, x ). (5.7)

If ψ fulfills the time-dependent Schrödinger equation with potentials ϕ and A then the gauge-

transformed wave function fulfills the Schrödinger equation with gauge-transformed potentials.

According to the general rules we expect that the path integral representation for the propagation

of a charged particle from (t′, x ′) to (t, x ) in an electromagnetic field is given by

K(t, x , t′, x ′) =
∫

Dw eiS[w ,A]/h̄, S =
∫ t

t′
ds
(

m

2
ẇ 2 +

e

c
ẇ ·A− eϕ

)

, (5.8)

where the values of the potentials along the particle path enter, for example ϕ = ϕ(t,w (t)). To

prove that this propagator satisfies the time dependent Schrödinger equation we proceed simi-

larly as in section 2.3 and replace the time-integral (5.8) by a Riemann sum. In the discretisation

of the integral
∫

ds ẇ ·A we must choose the midpoint rule,

∫

ds ẇ(s) ·A(s,w (s)) −→
n−1
∑

j=0

ǫ
{

wj+1 − wj

ǫ
·A

(

sj+1 + sj
2

,
wj+1 +wj

2

)}

(5.9)

with wj = w (sj). This corresponds to the socalled Ito-calculus in the theory of stochastic

differential equations. If we would take the potential at wj instead of the midpoint between wj

and wj+1 then we would obtain a gauge non-invariant propagator.

Now we take a wave function at time t− ǫ and let it be propagated toward t. If u = x − y

denotes the difference between the final and initial position then we obtain up to terms ofO(ǫ2)

ψ(t, x ) ≈ lim
ǫ→0

A3
ǫ

∫

d3u exp
(

im

2h̄ǫ
u2
)

exp
(

iǫ

h̄
Lint

)

ψ(t− ǫ, x − u)

Lint =
e

c

u

ǫ
·A

(

t− ǫ

2
, x − u

2

)

− eϕ
(

t− ǫ

2
, x − u

2

)

, (5.10)

As earlier Aǫ = (m/2πih̄ǫ)1/2 enters as normalizing factor. Expanding the two last factors in

the first line up to terms linear in ǫ or quadratic in u . We obtain

ψ(t, x ) = lim
ǫ→0

A3
ǫ

∫

d3u exp
{

im

2h̄ǫ
u2
}{

ψ(t− ǫ) +
1

2
uiujDiDjψ − ieǫ

h̄
ϕψ + . . .

}

, (5.11)
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where we are lead to the covariant derivative

D = ∇− ie

h̄c
A. (5.12)

The potentials and wave function between the last curly brackets in (5.11) are taken at the

position x . With the help of the Gaussian integrals

∫

d3u exp
{

im

2h̄ǫ
u2
}

=
1

A3
ǫ

and

∫

d3u exp
{

im

2h̄ǫ
u2
}

uiuj =
1

A3
ǫ

ih̄ǫ

m
δij (5.13)

we obtain in the limit ǫ→ 0 the partial differential equation

ih̄
∂

∂t
ψ(t, x ) = − h̄2

2m
(D2ψ)(t, x ) + eϕ(t, x )ψ(t, x ), (5.14)

which is just the Schrödinger equation (5.6) in the position representation. It is a useful exercise

to show that if we do not take the midpoint rule in (5.9) then we would get a different result.

Actually for the scalar potential and for the time-integration no midpoint rule is needed. We

would still get the correct propagator in the continuum limit if we would take

Lint =
e

c

u

ǫ
·A

(

t, x − u

2

)

− eϕ (t, x ) , (5.15)

instead of Lint in (5.10). But with the choice (5.10) the convergence to the continuum limit is

faster. Under a gauge transformation (5.3) with gauge function λ(t, x ) the action changes by

path independent boundary terms,

∆S[w , A, ϕ] = −e
c

∫ t

t′
ds

(

ẇ · ∇λ+
∂

∂s
λ

)

= −e
c
{λ(t, x )− λ(t′, x ′)} (5.16)

such that the propagator transforms covariantly under gauge transformations,

K(t, x ; t′, x ′) −→ e−ieλ(t,x )/h̄cK(t, x , t′, x ′) eieλ(t
′,x ′)/h̄c. (5.17)

This agrees with the transformation rule (5.7) for the solutions of the Schrödinger equation

under gauge transformations.

5.1.1 The Aharonov-Bohm effect

The Aharonov-Bohm effect demonstrates that in quantum mechanics a charged particle passing

through a space region without electric and magnetic field can be influenced by electric and

magnetic fields outside of this region [16, 17]. In quantum mechanics the motion is described

by the Feynman path integral for the propagator (5.8) in which the potentials and not the field

strength enter. Even if E and B vanish in some region of space, A need not vanish there due to

the presence of a magnetic field outside of the region.
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Here we consider the Aharonov-Bohm effect due to a magnetic flux Φ confined to a solenoid.

We assume that the solenoid is straight and very long and choose the coordinate system such

that the z-axis is the symmetry axis of the solenoid. Outside the solenoid there in no magnetic

field and for an infinitely long solenoid the magnetic potential has the form

A · dx =
Φ

2π

xdy − ydx

ρ2
, ρ2 = x2 + y2. (5.18)

We assume that the particle can not penetrate into the solenoid. Let us consider a particle

trajectory w (s) defining a curve C. The term containing the magnetic vector potential in the

action (5.8) is proportional to
∫ t

t′
A(w (s)) · dw (s)

ds
ds =

∫

C
A(x ) · dx =

Φ

2π

∫

C

xdy − ydx

ρ2
. (5.19)

Transforming to cylinder coordinates (x, y, z) = (ρ cosϕ, ρ sinϕ, z) the line integral becomes
∫

C
A · dx =

Φ

2π

∫

C
dϕ. (5.20)

A path Cn : x ′ → x outside the solenoid is characterized by its winding number n ∈ Z. For its

definition one takes some standard contour C0 : x ′ → x and counts the number of times that

the closed curve Cn − C0 winds around the solenoid. In figure 5.1 we have depicted a reference

xb

C0

C1

x ′ b

∆ϕ

solenoid

Figure 5.1: A reference path C0 and a path C1 with relative winding 1.

path C0 and a path C1 with winding number one. For a path with winding n one has
∫

Cn
A · dx = nΦ +

∫

C0
A · dx = nΦ +

Φ

2π
∆φ, (5.21)

————————————
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where ∆Φ is the angle shown in figure 5.1. In the path integral one admits all paths connecting

x ′ with x . We do the integration in two steps: first we integrate over the set paths {Cn} with

winding number n and then sum over all winding numbers. This yields

K(t, x , x ′) =
∑

n

∫

{Cn}
Dw eiS[w ,A]/h̄ = eieΦ∆φ/hc

∑

n

eineΦ/h̄cKn(t, x , x
′), (5.22)

where Kn is the A-independent topologically constrained Feynman path integral

Kn(t, x , x
′) =

∫

{Cn}
Dw exp

{

i

h̄

∫ t

0
ds
(

m

2
ẇ 2 − eϕ(x )

)

ds
}

(5.23)

in which one integrates over trajectories which (when completed into a closed loop by continu-

ing them with −C0) wind n-times around the solenoid. We see that no Aharonov-Bohm effect

will occur if the magnetic flux in the solenoid obeys the quantization condition

eΦ

hc
= 0,±1,±2, . . . (5.24)

In this cases the phase factors containing n in (5.22) are unity and the summation over n gives

K(t, x , x ′) = exp
(

ieΦ

hc
∆φ

)

K0(t, x , x
′) (5.25)

where K0 denotes the full, unconstrained, propagator for a particle in the absence of the mag-

netic vector potential. If the magnetic flux does not fulfill the quantization condition (5.24) then

the contributions of the various toplogical sectors to the propagator will interfere, and when a

screen is placed behind the solenoid the interference pattern on the screen will change when Φ

is increased. This is the Aharonov-Bohm effect.

We have seen that the Aharonov-Bohm effect originates in the interaction between the elec-

tron and the external gauge potential A whose B-field vanishes locally. One can show that the

effect can equally well be regarded as originating in the interaction of the magnetic field of the

electron with the distant B-field inside the solenoid. From this point of view the effect is seen

to have a natural classical origin and loses much of its mystery [18].

5.2 Spinning particles

In the non-relativistic limit the wave function of a spin-1
2

particle has two components, it is a

spinor, and correspondingly is the Schrödinger operator, called Pauli-Hamiltonian after Wolf-

gang Pauli, a 2-dimensional matrix differential operator

H =
1

2m

{

σ ·
(

p− e

c
A(t, x )

)}2
+ eϕ(t, x )12. (5.26)
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Here σ = (σ1, σ2, σ3) is the 3-tuple of Pauli matrices. The Pauli-Hamiltonian contains a cou-

pling of the electron spin to a magnetic field with the correct g-factor of 2. Indeed, with the help

of σiσj = iǫikjσk + 12 the Pauli-Hamiltonian can be rewritten as

H =
1

2m

(

p− e

c
A(t, x )

)2
+ eϕ(t, x )− e

mc
B(t, x ) · s , s =

h̄

2
σ, (5.27)

where the two first terms act as identity operator in spin space. The corresponding matrix-valued

Lagrange function

L =
m

2
ẋ 2 +

e

c
ẋ ·A(t, x )− eϕ(t, x ) +

e

mc
B(t, x ) · s (5.28)

should enter the path integral for a non-relativistic spin-1/2 particle. Although L is matrix

valued we could proceed as in the previous section and would end up with the result (5.10) with

interaction Lagrangian

Lint(t, x ,u) =
(

e

c

u

ǫ
·A− eϕ+

e

mc
B · s

)

midpoint
. (5.29)

If the propagation is from (t−ǫ, x −u) → (t, x ) as it is in (5.10), then the midpoint rule means

evaluation of the potentials and magnetic field at time t − 1
2
ǫ and position x − 1

2
u . This way

one obtains for the propagator the representation

K(t, x , t′, x ′) = lim
n→∞

A3n
ǫ

∫

d3w1 · · · d3wn−1 e
iǫLn−1/h̄ · · · eiǫL0/h̄,

Lj =
m

2

u2
j

ǫ2
+
e

c

uj

ǫ
·A(s̄j, w̄j)− eϕ(s̄j, w̄j) +

e

mc
B(s̄j, w̄j) · s , (5.30)

where w0 = x ′, wn = x and we have used the abbreviations

uj = wj+1 − wj, w̄j =
wj+1 +wj

2
, s̄j =

sj+1 + sj
2

. (5.31)

As earlier the propagation time interval [t′, t] is divided into n intervals of length ǫ = (t− t′)/n

and sj = t′ + jǫ. For a time and/or space dependent magnetic field two Lj in (5.30) with

different j do not commute due to the B · s-term in the Lagrangian. In the (formal) continuum

limit we identify wj with the position w (sj) of the particle at time sj . Then Lj is the value of

the Lagrangian at time sj . We see that the factors in (5.30) are time ordered: on the right we

have the factor exp(iǫL0/h̄) at earliest time and on the left the factor exp(iǫLn−1/h̄) at latest

time. Thus we are lead to the path ordered integral

K(t, x , t′, x ′) =
∫

Dw P exp
(

i

h̄

∫ t

t′
dsL(s)

)

,

L(s) = L
(

w (s),A(s,w (s)), ϕ(s,w (s))
)

, (5.32)

————————————
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where the time is ordered along the path w (s). The path ordered integral satisfies the differential

equation

∂

∂t
P exp

(

i

h̄

∫ t

t′
dsL(s)

)

=
i

h̄
L(t)P exp

(

i

h̄

∫ t

t′
dsL(s)

)

, (5.33)

and this equation together with the initial condition

P exp

(

i

h̄

∫ t′

t′
dsL(s)

)

= 1 (5.34)

determines the path ordered integral.

5.2.1 Spinning particle in constant B-field

Let us consider a uniform magnetic field pointing in the direction of the z-axis,

A =
B

2
(xey − yex) ⇒ B = Bez. (5.35)

For a uniform magnetic field the action (5.28) for the spinning particle simplifies to

S =
m

2

∫ t

0
ẇ 2 +

ω

2

∫ t

0
B̂ · (L+ 2s), L = mw ∧ ẇ , (5.36)

with cyclotron frequency ω = eB/mc. The particle moves freely in the z-direction and only

the propagation in the xy-plane is affected by the external field. Thus we may assume that x ′

and x are both in the plane with z = 0 such that the whole tracetory w (s) lies in this plane.

Without loss of information we may study the two-dimensional dynamics in the xy-plane and

in the following we assume that all vectors lie in the plane, for example w = wxex + wyey.

For a uniform magnetic field the spin-term does not depend on the trajectory and hence does

not enter the equation of motion. With the help of the rotation matrix

R(ωt) =

(

cosωt sinωt

− sinωt cosωt

)

(5.37)

the solution of the classical equation of motion can be written as

wcl(s) = x ′ +
sin(ω̂s)

sin(ω̂t)
R (ω̂(s− t)) (x − x ′), ω̂ =

ω

2
, (5.38)

and its action is given by

S[wcl] =
mω̂

2
cot(ω̂t)(x − x ′)2 −mω̂(xy′ − yx′) + ωt s3. (5.39)

————————————
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The kinetic energy and the term containing the orbital angular momentum diverge if the propa-

gation time is a multiple of 2π/ω. Both contributions to the action contain a term proportional

to t/ sin2(ω̂t) and since they have different signs they cancel in the sum.

As earlier we decompose an arbitrary path as w (s) = wcl(s) + ξ(s), where the fluctuations

ξ vanish at initial and final time. With

S[w ] = S[wcl] +
m

2
(ξ,Mξ), M = − d2

ds2
+ iωσ2

d

ds
, (5.40)

the path integral yields

K(t, x , x ′) =
N√
detM

eiS[wcl]/h̄. (5.41)

We remain with calculating the determinant of the matrix differential operator M . This can be

achieved by a generalization of the Gelfand-Yaglom initial value problem. One defines a matrix

S, the columns of which are linearly independent solutions of Mξ = 0 vanishing at s = 0,

MS = 0 with S(0) = 0, Ṡ(0) = 1. (5.42)

Any solution of Mξ = 0, ξ(0) = 0 is a linear combination of the columns of S. Let us now

assume that

detS(t) = 0. (5.43)

Then there is a linear combination of the columns of S which vanish at the final time t. It

is an eigenfunction of the fluctuation operator with zero energy such that detM must vanish.

Since the converse statement is also true, it is not surprising that the ratio of two fluctuation

determinants is given by

detM

detM0
=

detS

detS0
=

1

t2
det S. (5.44)

Here S0 = t1 is the matrix of solutions of the fluctuation operator M0 with vanishing ω. In

particular for the fluctuation operator in (5.40) we have

S(t) = ω̂−1 sin ω̂t (cos ω̂t+ i sin ω̂t σ2) (5.45)

and this leads to the following ratio of determinants:

detM

detM0
=

(

sin ω̂t

ω̂t

)2

. (5.46)

Inserting this result into (5.41) yields the well known propagator for a spinning particle in a

uniform magnetic field

K(t, x , x ′) =
(

m

2πih̄t

)3/2 ω̂t

sin ω̂t
exp

(

im

2h̄t
(z − z′)2 + iω̂σ3

)

× exp

{

imω̂

h̄

(

cot ω̂t

2

[

(x− x′)2 + (y − y′)2
]

+ (x′y − xy′)

)}

. (5.47)
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To obtain the propagator in 3 dimensions we have multiplied with the propagator for the free

motion in the z-direction. Similarly as for the harmonic oscillator the propagator is singular

at times tn = 2πn/ω after which a classical particle returns to its starting point in the plane

orthogonal to the B-field. Note that the two spin-components acquire different phases in a non-

vanishing magnetic field. The above result (without spin-term) has been obtained by GLASSER

[20] and by FEYNMAN and HIBBS [4].
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