
Chapter 4

Perturbation Theory

In conventional perturbation theory one assumes that the coupling constant λ in

H = H0 + λV (4.1)

is small and expands the eigenvalues and eigenfunctions of H in a power series in λ. Here we

perform an expansion of the evolution kernel in powers of the coupling constant. For H0 one

usually takes the Hamiltonian of the free particle or the harmonic oscillator such that for λ = 0

the problem is soluble. This way one obtains a non-convergent series which (at least in quantum

mechanics) has a good chance of being asymptotic.

4.1 Perturbation expansion for the propagator

We consider a particle with mass m in a given external potential V . We decompose the action

into a term S0 belonging to the free particle with mass m and a term SI describing the interaction

of the particle with the potential,

S = S0 + SI =
m

2

∫ t

0
ẇ 2ds− λ

∫ t

0
V (w(s))ds. (4.2)

The coupling constant λ measures the strength of the interaction. It is introduced for an easy

identification of terms contributing to a given order in the perturbative expansion. In order to

find this expansion for the propagator we use its path integral representation

K(t, q, q′) =

w(t)=q
∫

w(0)=q′

Dw eiS[w]/h̄, (4.3)

where one integrates over all paths with fixed endpoints q′ and q. Inserting the decomposition

(4.2) one immediately obtains a power series expansion for K in powers of λ. We assume a
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small coupling and expand exp(iSI/h̄) in powers of λ with the result

K(t, q, q′) =
∫

Dw eiS0/h̄ eiSI/h̄

=
∫

Dw eiS0/h̄
∞
∑

n=0

1

n!

(

λ

ih̄

)n (
∫

V (w(s))ds
)n

. (4.4)

The leading term is just the propagator of the free particle (2.22). The sub-leading term of order

O(λ) is given by by the path integral

K1(t, q, q
′) =

λ

ih̄

∫ t

0
ds

w(t)=q
∫

w(0)=q′

Dw eiS0[w]/h̄ V (w(s)), (4.5)

where we have interchanged the order of integrations and first did the path integral and then

the time-integration. To calculate the path integral at hand (prior to the s-integration) we first

integrate over all path from the initial position q′ at time 0 to an intermediate event s, u and

then over all path from (s, u) to the final position q at time t. Finally we integrate over all

intermediate position u,

∫

Dw eiS0[w]/h̄ V (w(s)) =
∫

du

w(t)=q
∫

w(s)=u

Dw eiS0[w]/h̄ V (u)

w(s)=u
∫

w(0)=q′

Dw eiS0[w]/h̄. (4.6)

The two path integrals are given by the propagator K0 of the free particle (2.22). Hence we

arrive at the following expression for the first order perturbation K1,

K1(t, q, q
′) =

λ

ih̄

∫ t

0
ds
∫

∞

−∞

du K0(t− s, q, u)V (u)K0(s, u, q
′). (4.7)

Since K0(s, u, v) is a Gaussian function of u and v the integral over the intermediate position u

can be calculated explicitly for a polynomial potential. This expression for K1 can be interpreted

as follows: first the particle propagates freely from q′ to u, where at time s it is ’hit’ by the

potential. Then it again propagates freely to q during the time interval t− s. The total traveling

time being t. Then the amplitudes for all intermediate positions u and times s of possible hits are

summed. One of Feynman’s big achievements was to provide a pictorial representation of the

amplitude by a so-called Feynman diagram. The contribution of order O(λ2) to the propagator

reads

K2(t, q, q
′) =

1

2

(

λ

ih̄

)2
∫

Dw eiS0[w]/h̄
∫ t

0
dsds′ V (w(s))V (w(s′)) (4.8)

=

(

λ

ih̄

)2 t
∫

0

ds

s
∫

0

ds′
∫

dudv K0(t−s, q, u)V (u)K0(s−s′, u, v)V (v)K0(s
′, v, q′),

————————————
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Figure 4.1: The Feynman graphs associated to first and second order perturbation theory.

which can be visualized as a particle propagating freely from q′ to v, where at time s′ it is hit

by V , then moving freely to u, where it is hit by V at time s and finally propagates freely to q.

It arrives at the final position at time t. Then the amplitudes for all intermediate positions u and

v and intermediate times s′ and s are superimposed.

The perturbative expansion can easily be calculated with the help of the generating func-

tional for the Greenfunctions of the free particle. According to our result (3.45) this functional

reads

K0(t, q, q
′; j) =

∫

Dw eiS0j [w]/h̄ = K0(t, q, q
′) eiW0[j]/h̄, (4.9)

where K0(t, q, q
′) denotes the propagator without source and the Schwinger functional W0[j]

depends quadratically on the source. Because of
(

h̄

i

δ

δj(s)

)n
∫

Dw eiS0j/h̄ =
∫

Dw eiS0j/h̄ wn(s) (4.10)

we may calculate the path integrals appearing in the perturbative expansion (4.4) as follows,

V

(

h̄

i

δ

δj(s)

)

∫

Dw eiS0j/h̄ =
∫

Dw eiS0j/h̄ V (w(s)). (4.11)

The final expansion for the kernel can be written in the concise form

K(t, q, q′) = K0(t, q, q
′) exp

[

λ

ih̄

∫

ds V

(

h̄

i

δ

δj(s)

)]

eiW0[j]/h̄|j=0. (4.12)

To calculate the moments in (4.10) we define the ’normalized’ n-point correlation functions of

the free theory with action S0,

G
(n)
0 (q, q′; t1, . . . tn) =

∫

Dw eiS0/h̄w(t1) · · ·w(tn)
∫

Dw eiS0/h̄
. (4.13)

————————————
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In our notation we made the dependence on the end points for the path over which one integrates

explicit. Inserting the result (4.9) for the generating functional the normalized correlation func-

tions take the simple form

G
(n)
0 (q, q′; t1, . . . , tn) =

(

h̄

i

δ

δj(t1)
· · ·

h̄

i

δ

δj(tn)

)

∣

∣

∣

j=0
eiW0[j]/h̄. (4.14)

Using the explicit form of W0[j] in (3.44) the G
(n)
0 can be calculated explicitly. Actually, since

W0 is a quadratic functional of j they can be expressed in terms of the 1 and 2-point correlation

functions. The formulas expressing the higher n-point functions in terms of the 1 and 2-point

functions is the celebrated Theorem of Wick.

In case q′ = q = 0 the homogeneous solution wh vanishes for all times and the theorem

takes a much simpler form, since the generating functional simplifies to

eiW0[j]/h̄ =
∞
∑

n=0

1

n!

(

i

2h̄

∫ t

0
j(s)GD(s, s

′) j(s′)
)n

. (4.15)

To simplify our notation we denote the Greenfunctions with q′ = q = 0 by G
(n)
0 (0, t1, . . . , tn).

Since the functional contains even powers of j only, the G
(n)
0 vanish for odd n. The first non-

vanishing correlation function is

G
(2)
0 (0, t1, t2) =

h̄

i
GD(t1, t2). (4.16)

For general even n the Greenfunction is given by a sum of products of the two-point function,

G
(2n)
0 (0, t1, . . . , tn) =

∑

pairs (i1i2)···(i2n−1i2n)

G
(2)
0 (0, ti1, ti2) · · ·G

(2)
0 (0, ti2n−1

, ti2n), (4.17)

where two indices in the sum are unequal and the pairs are ordered. This is the Wick theorem

found in most text books and it holds for all theories with quadratic actions. For example, the

4-point function contains 3 terms

G
(4)
0 (0, t1, . . . , t4) = G

(2)
0 (0, t1, t2)G

(2)
0 (0, t3, t4)

+ G
(2)
0 (0, t1, t3)G

(2)
0 (0, t2, t4) (4.18)

+ G
(2)
0 (0, t1, t4)G

(2)
0 (0, t2, t3).

For all theories with quadratic action the generating functional W [j] is quadratic in j and the

truncated or connected correlation functions

G(n)
c (q, q′; t1, . . . , tn) =

i

h̄

n
∏

k=1

(

h̄

i

δ

δj(tk)

)

W [j]|j=0 (4.19)

vanish for n > 2. This simple observation then just proves the theorem of Wick.

————————————
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4.2 Quartic potentials

In order to calculate the corrections to the evolution kernel in first order perturbation theory

(4.5) for a quartic potential V = q4 we must determine

K1(t, q, q
′) =

λ

ih̄

∫

ds
∫

Dw eiS0[w]/h̄w4(s), (4.20)

where one integrates over paths with q(0) = q′ and q(t) = q. The last path integral is generated

by K0(t, q, q
′, j) in (3.45) such that

∫

Dw eiS0/h̄ w4(s) =

(

h̄

i

δ

δj(s)

)4

eiW0[j]/h̄
∣

∣

∣

j=0
K0(t, q, q

′). (4.21)

Here we apply Wick’s theorem and obtain

(

h̄

i

δ

δj(s)

)4

eiW0[j]/h̄
∣

∣

∣

j=0
= 3G(2)(s, s)G(2)(s, s) + 6G(2)(s, s)w2

h(s) + w4
h(s), (4.22)

where the 2-point function G(2) = h̄
i
GD and the homogeneous solution wh for the free particle

have been calculated earlier in (3.43),

G(2)(s, s) =
h̄

imt
(s− t)s and wh(s) =

1

t
[sq′ + (t− s)q]. (4.23)

To compute K1 we just need to integrate the fourth order polynomial in (4.22) which results in

K1(t, q, q
′) = λK0(t, q, q

′)

{

ih̄

m2

t3

10
+

3

m

t2

10
(q2 + q′

2
+

4

3
qq′)

−
i

h̄

t

5
(q4 + q3q′ + q2q′

2
+ qq′

3
+ q′

4
)
}

. (4.24)

We can trust the perturbative expansion if K1 ≪ K0, which is the case if

λ ≪ max
{m2

h̄t3
,
m

t2q2
,
h̄

tq4

}

.

The expansions becomes reliable for short propagation times t and small q′ and q. It breaks

down for small particle masses. According to Wicks theorem the higher order contributions in

the perturbative series (4.4) reduce to integrals of products of 1 and 2-point functions of the free

particle. Hence they can be calculated in closed form. However, the number of terms one must

include grows rapidly with increasing order n.

The perturbative expansion for the Greenfunction 〈q, t|Tq̂(t1) · · · q̂(tn)|q〉 is obtained sim-

ilarly as for the evolution kernel. Again we assume that S is the sum of a free part S0 and an

————————————
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interaction term SI , see (4.2). Now we expand the right hand side of (2.48) in powers of the

coupling constant λ. This leads to the expansion

〈q, t|T q̂(t1) · · · q̂(tn)|q
′〉

=
∑ 1

n!

(

λ

ih̄

)n
∫

ds1 . . . dsn 〈q, t| q(t1) · · · q(tn)V (q(s1)) · · ·V (q(sn))|q
′〉0 .

The matrix elements on the right hand side are to be evaluated for the system without interaction

which means for the system with action S0. Formally this series can be summarized as follows

〈q, t|T q̂(t1) · · · q̂(tn)|q
′〉 = K0(t, q, q

′) ·
n
∏

k=1

(

h̄

i

δ

δj(tk)

)

exp

[

λ

ih̄

∫

ds V

(

h̄

i

δ

δj(s)

)]

eiW0[j]/h̄
∣

∣

∣

j=0
, (4.25)

with Schwinger function W0[j] for the non-interacting system, see (3.44). Since W0 is quadratic

in the source j we may use Wick’s theorem to calculate the perturbative expansion on the right

hand side.
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