
Chapter 15

External field problems

There are many interesting physical effects induced by external fields, e.g. the Coulomb scat-

tering of a charged electron by a heavy nucleus, the electron-positron pair production in strong

electric fields, the Hawking radiation emitted by a black hole and the Casimir effect induced

by external gauge- and gravitational fields to mention only a few of them. One of the central

objects to describe such phenomena is the S-matrix. So we shall first derive its path integral rep-

resentation and apply the result to the calculation of the pair creation in strong electromagnetic

fields.

15.1 The S-matrix

Assume that the Hamiltonian of a quantum mechanical system decomposes as H = H0 + V ,

that is into a free part H0 and an interaction term V which may depend on time. For example

V could describe the coupling to a time-dependent external current. The transition from the

Schrödinger to the interaction picture is achieved by the following unitary transformation

ψw = eitH0/h̄ψs(t) = U0(−t)ψs(t).

extf1 The time dependence of ψw follows from the evolution of ψs (2.14) as

ih̄ψ̇w = U0(−t)V ψs(t) = U0(−t)V U0(t)ψw = Vw(t)ψw(t). (15.1)

Setting

ψw(t) = Uw(t, t
′)ψw(t

′) (15.2)

the 2-parametric unitary operators Uw obey

ih̄U̇w = VwUw and Uw(t
′, t′) = Id. (15.3)
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The solution of this evolution equation is known to be

Uw(t, t
′) = T exp

[

−
i

h̄

t
∫

t′

Vw(t
′)dt′

]

, (15.4)

where we used a short hand notation for the Dyson serie

Uw(t, t
′) =

∑

(−i)n
1

n!

∫

[t,t′]n

dt1 . . . dtnT
(

Vw(t1) · · ·Vw(tn)
)

, (15.5)

and the time ordering T is defined as

T
(

A(t1) · · ·A(tn)
)

=
∑

π∈σn

θ(tπ(1), . . . , tπ(n)) A(tπ(1)) · · ·A(tπ(n)). (15.6)

The generalized step function θ is 1 if its arguments are in decreasing order and else it is 0. In

other words, in the time ordered product of n operators the operator with the ’latest time’ stands

on the left, the one with the second-latest time follows and so on.

Between the asymptotic states there is the relation

ψw(∞) = Sψ(−∞) where S = Uw(∞,−∞), (15.7)

and this defines the scattering matrix transforming asymptotic in-states in asymptotic out-states.

The path integral representation is most easily obtained be rewriting (15.2) as

ψw(t) = U−1
0 (t)U(t, t′)U0(t

′)ψw(t
′), (15.8)

where U and U0 are the full and free evolution operators in the Schrödinger picture.

15.2 Scattering in Quantum Mechanics

For quantum mechanical system we have already derived the path integral representation for

the full and free evolution operators in (2.32) and (2.21). Inserting these results we obtain the

S-matrix elements

〈p|S|p′〉 =
1

2πh̄
ei(Et−E

′t′)/h̄
∫

dxdyei(p
′y−px)/h̄K(t, x, t′, y), (15.9)

where of course E = p2/m. Instead of developing the perturbations theory for the S-matrix by

using the perturbative expansion for the evolution operator, we shall calculate it exactly for a

time-dependent harmonic force. For a such a force the evolution kernel has been computed in

(3.21). The Gaussian integrals over x and y yield

〈...〉 =

√

1

2πimh̄

√

D

1 + ḊD′
exp

[ i

h̄

(

Et−E ′t′ +
D

ḊD′
(E ′Ḋ−ED′−pp′/m)

)]

, (15.10)
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where D = D(t, t′) is the solution defined in (3.18) and Ḋ and D′ denote the partial derivatives

with respect to t and t′ respectively. Let us take as an example a harmonic force which vanishes

exponentially for large times, e.g.

ω2(t) =
2a2

cosh2(at)
. (15.11)

For this interaction the D function reads

D(t, t′) = tanh(at′)
(

t tanh(at)− 1/a
)

−
(

t↔ t′
)

(15.12)

Assuming t′ = −t and letting t → ∞ one finds after expanding the D-function and its deriva-

tives to leading order in t and eat the result

〈. . .〉 =

√

1

2πimh̄

√

e2at

8a
exp

(

−
ie2at

16amh̄
(p+ p′)2

)

exp
( i

4amh̄
((p+ p′)2 + 2p2 + 2p′2)

)

.

Using the identity
√

α

iπ
eiαξ

2

−→ δ(ξ) for α→ ∞

we end up with

〈p|S|p′〉 = iδ(p+ p′)eip
2/mh̄. (15.13)

for the exact S-matrix. One easily checks that SS† = I as it must be. Note that a particle subject

to a harmonic force with time-dependent coupling strength as defined in (15.11) reflected with

probability one. This is a particular feature of the chosen coupling.

For systems which are not exactly soluble one has to retreat to some approximation, e.g.

the ordinary perturbation theory in the coupling constant or the semiclassical approximation.

To find the perturbative expansion of the S-matrix one inserts the perturbation serie (4.12) into

(15.9) and this yields the well-known rules for the diagrammatic expansion of S-matrix ele-

ments. Similarly, the semiclassical expansion is obtained by inserting (6.40) into (15.9)

15.3 Scattering in Field Theory

Let us now turn to the corresponding problem in field theory. Let Φ(t, x) denote an interacting

field. It could be a photon field in interaction with an external current, an electron-positron field

interacting with a gauge field or any other field interacting with a source, another field or with

itself. Further we denote the incoming free field by Φin which approximates Φ for t → −∞

in some weak limit. We now wish to construct the operator that realizes the time-dependent

canonical transformation relating the interacting to the incoming field

Φ(t, r) = U−1(t)Φin(t, r)U(t), (15.14)

————————————
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and fulfills

lim
t→−∞

U(t) = 1. (15.15)

The time evolutions of these fields are given by

Φ̇ = i[H(t),Φ] and Φ̇in = i[H0,Φin] (15.16)

and similarly for the corresponding momentum densities. Here H(t) = H(Φ(t), π(t), j(t))

may depend on an external current and H0 is the time-independent free Hamiltonian. It follows

from these formulae that

U(t)H(Φ(t), π(t), j(t))U−1(t) = H(Φin(t), ψin(t), j(t)). (15.17)

It also follows that

∂tΦin = ∂t
(

UΦU−1
)

= U̇U−1Φin + iU [H,Φ]U−1 − ΦinU̇U
−1. (15.18)

Now we may use (15.17) for the second term on the right hand side to find

∂tΦin = [iH(Φin, πin, j) + U̇U−1,Φin], (15.19)

and similarly for the time derivative of ψin. Comparing this result with the time evolution

determined by (15.16) we see that

U̇U−1 + i
(

H(Φin, ψin, j)−H0(Φin, πin)
)

≡ U̇U−1 + iHI(t)

commutes with all in-fields and hence must we a multiple of the identity operator. This central

operator will drop in normalized matrix elements and can be left out in the following. Thus the

time dependence of U is determined by the interacting Hamiltonian HI as follows

iU̇ = HI(Φin, πin, j)U, (15.20)

and its solution is given by

U(t) = T exp
(

− i

t
∫

−∞

dt′HI(t
′)
)

. (15.21)

The S-matrix is obtained by letting t→ ∞:

S = lim
t→∞

T exp
(

− i

t
∫

−∞

HI(t
′)
)

. (15.22)
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In a theory without derivative-couplings one has

HI(t) =
∫

d3xHI(t, r) = −
∫

d3xLI(t, r), (15.23)

so that (15.22) can be recast in a (formally) manifest covariant form

S = T ei
∫

d4xLI(x). (15.24)

This is a rather formal representation of the scattering matrix. When one tries to calculate S

(e.g. perturbatively) one encounters short-distance singularities which must be regularized. The

treatment of these singularities is the subject of renormalization theory.

Let us now consider the electron-positron field in interaction with an external gauge fields.

Its interaction Hamiltonian is given by (see (12.3) and below)

HI = −LI = −ψ̄in(x)γ
µψin(x)Aµ(x) (15.25)

and this results in the expression

S = T exp
[

ie
∫

d4xψ̄in(x)γ
µψin(x)Aµ(x)

]

(15.26)

for the S-matrix.

Let us now calculate the matrix element 〈0in|S|0in〉, which is to be interpreted as amplitude

for emitting no pair. We expand in (15.26) in powers of the the electric charge,

〈0in|S|0in〉 =
∞
∑

n=0

(ie)n

n!

∫

dx1 . . . dxn 〈0in|T [(ψ̄in /Aψin)(x1) · · · (ψ̄in /Aψin)(xn)]|0in〉

This should be compared with the perturbation expansion of the path integral,

∫

DψDψ̄eiS =
∫

DψDψ̄eiS0+ie
∫

ψ̄ /Aψ

=
∫

DψDψ̄eiS0

(

1 + ie
∫

ψ̄ /Aψ +
(ie)2

2!

∫

ψ̄ /Aψ
∫

ψ̄ /Aψ + · · ·
)

.(15.27)

According to (12.12) the moments are just the corresponding expectation values of the time-

ordered fields. Hence we obtain the following simple looking path integral representation for

the expectation value of the S-matrix in the in-vacuum (omitting the subscript ’in’):

〈0in|S|0in〉 =
1

Z[0]

∫

DψDψ̄eiS0

(

1 + ie
∫

ψ̄ /Aψ +
(ie)2

2!

∫

ψ̄ /Aψ
∫

ψ̄ /Aψ + · · ·
)

, (15.28)

which according to (15.27) is, up to a A-independent normalization constant, just the full path

integral. Hence we conclude, that

〈0in|S|0in〉 =
1

Z[0]

∫

DψDψ̄eiS = det
i /D −m+ iǫ

i/∂ −m+ iǫ
= exp (iSeff [A]). (15.29)
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This formula yields a direct physical interpretation of the fermionic determinant. Expanding

log
(

iSeff [A]
)

= log det
(

I + e /A
1

i/∂ −m+ iǫ

)

(15.30)

in powers of the electric charge reproduces the well-known perturbation expansion for the

vacuum-vacuum amplitude (External A-lines attached to a fermionic loop).

In the last section we have computed this determinant for massless two-dimensional fermions

exactly. Continuing the Euclidean result (12.50) back to Minkowski space-time (the inverse

transformation of (12.17) on finds

〈0in|S|0in〉 = det
i /D + iǫ

i/∂ + iǫ
= exp

[ ie2

2π

∫

F01
1

∂2
F01

]

(15.31)

for the vacuum to vacuum amplitude. Since this is a pure phase, no pairs are produced in the

Schwinger model. This is not true anymore for massive fields. Also, this conclusion only holds

for gauge-fields for which (12.50) is the correct formula for the fermionic path integral. We

have already seen that this formula is only correct for gauge fields for which the Dirac operator

has no zero modes, that is for gauge fields with flux less or equal to 1.

15.4 Schwinger-Effect

Let us now calculate the pair production rate of massive fermions in a constant electro-magnetic

field. To compute the determinant of i /D−mwe recall that the non-zero eigenvalues of i /D come

always in pairs {λ,−λ} so that in the determinant det(i /D−m) they contribute−λ2+m2. Hence

the determinant of i /D −m can be defined as the square root of the determinant of − /D
2
−m2

(for the zero-modes this is true anyway). To compute the logarithm of the determinant we use

the identity

log(a/b) =

∞
∫

0

ds

s

(

eis(b+iǫ) − eis(a+iǫ)
)

(15.32)

which yields

− log (2iSeff [A]) =
∫

ds

s
e−is(m

2−iǫ)
∫

d4x
(

〈x|e−is /D
2

|x〉 − 〈x|e−is/∂
2

|x〉
)

, (15.33)

where we have used the (formal) identity log det(A) = tr log(A) and have represented the trace

in the |x〉 basis. For a constant electric field in the 3-direction the only non-vanishing field

strength components are

F03 = −F30 = E. (15.34)

————————————
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As potential we choose Aµ = (0, 0, 0, Ex0) with constant E. In the present case the square of

/D (see (8.69)) simplifies to

/D
2
= D2 + 2Σ03F03 = ∂20 − ∂21 − ∂22 − (∂3 − iEx0)2 − iγ0γ3E. (15.35)

Since the Pauli term in /D
2

commutes with D2, its exponential can be computed separately.

Using (γ0γ3)2 = 1, one finds

exp (− γ0γ3E) = cosh(sE)− sinh(sE)γ0γ3 =⇒ tr (. . .) = 4 cosh(sE),

so that the Dirac-trace of the heat kernel in (15.33) yields

trD〈x|e
−is /D

2

|x〉 = 4 cosh(sE)〈x|e−isD
2

|x〉. (15.36)

Now we are left with computing the heat kernel of D2. For that purpose we observe that D2 can

be written as the sum of two 2-dimensional commuting operators

D2 = −
(

∂21 + ∂22
)

+
(

∂20 − (∂3 − iEx0)2
)

= −∆12 +D2
03 (15.37)

and thus its heat kernel is just the product of the two corresponding two-dimensional heat ker-

nels

〈x|e−isD
2

|x〉 = 〈x1, x2|eis∆12|x1, x2〉K(s, x0, x3) =
1

4iπs
K(s, x0, x3), (15.38)

where K the heat kernel belonging to D2
03. To calculate this remaining heat kernel we first note

that ∂3 commutes with D03. Thus they can be diagonalized simultaneously and the eigenfunc-

tions have the form

D2
03ψλ = λψλ =⇒ ψλ = eip3x

3

φλ, where
(

∂20 + E2(x0 −
p3
E
)2
)

φλ = λφλ. (15.39)

It follows that the diagonal-elements of K are independent of the x3. The remaining operator

on the right hand side in (15.39) is just a shifted harmonic oscillator with imaginary frequency

and thus has eigenvalues −i(2n+1)E (we assumeE to be positive, else we would have to write

everywhere |E|. The minus sign is due to time ordering). Since the eigenvalues are independent

of p3 they are degenerate and apriori we can determine the trace ofK only up to the multiplicity

C of the eigenmodes as

∫

dx0dx3K(s, x0, x3) = C
∞
∑

n=0

e−s(2n+1)E =
C

2 sinh(sE)
. (15.40)

However, recalling that for a vanishing electric field K is the free heat kernel,

< x0, x3|e−is∂
2

|x0, x3〉 =

√

i

4πs

−i

4πs
=

1

4πs
,

————————————
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(since phases relevant, we have emphasized that due to the (+,−)-signature inD03 the diagonal

elements of 〈. . .〉 are real), we can now easily determine C and find

∫

dx0dx3K(s, x0, x3) =
EV03

4π sinh(sE)
, (15.41)

where V03 denotes the volume of the (0, 3) plane. Inserting now (15.36,15.38) and (15.41) into

the general formula (15.33), we find for the real part
∫

d4xw(x) ≡ ℜ log(2iSeff) the formula

∫

d4xw(x) =
V

(2π)2

∞
∫

0

ℜ
(1

i
e−is(m

2−iǫ)
)[

E coth(sE)−
1

s

]ds

s2

= −
V

(2π)2

∫

e−ǫs sin(sm2)
[

E coth(sE)−
1

s

]ds

s2
, (15.42)

where V = V03V12 is the volume of the four-dimensional Minkowski space-time. Since

|〈0in|S|0in〉|
2 = |eiSeff [A]|2 = e2ℜ(iSeff ) = e−

∫

d4xw(x)

measures the probability of emitting no pair, and

e−
∫

d4xw(x) ∼ e−
∑

∆V w(xi) ∼
∏

(1−∆V w(xi)),

we interpret ∆V w(xi) as probability to create a pair in the volume element ∆V or w(x) as a

probability density for pair creation.

Note that the s-integral is convergent both in the ultraviolet (small s) and infrared (large s)

regions, even after setting ǫ to zero. The last integrand is an even function in s for ǫ = 0 and the

integral can be transformed into an integral over the real line (−∞,∞). Thus we obtain

w(x) = −
1

4(2π)2

∞
∫

−∞

1

i
eism

2
[

E coth(Es)−
1

s

]ds

s2
+ cc

=
i

16π2
2πi

∑

Residue
sn=inπ/E

[

eism
2

E coth(sE)
ds

s2

]

+ cc (15.43)

=
1

8π

∞
∑

1

E2

n2π2
e−nπm

2/E + cc .

Reinserting the electric charge we finally end up with

w(x) =
αE2

π2

∞
∑

1

1

n2
exp

(

−
nπm2

|eE|

)

, (15.44)

where α = e2/4π is the fine structure constant. The analog calculation in two dimensions yields

w(x) =
eE

2π

∞
∑

1

1

n
exp

(

−
nπm2

|eE|

)

. (15.45)
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In these exact formulae for the pair creation density in a constant electric field the essential

factor is non-perturbative ∼ exp(−πm2/eE) and can be interpreted as Gamov factor for the

tunneling of an electron in an external electric field through a potential barrier. Such a factor

cannot be gotten by ordinary perturbation theory, since exp(c/e) cannot be expanded in powers

of the coupling constant. Unfortunately, pair creation in a constant electric field has not been

observed since |E| ≪ m2 for realistic electric fields. Due to the exponential suppression factor

the creation density is then too small.
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