
Chapter 13

Constrained systems

In this section the implementation of constraints within the path integral formalism is discussed.

The study of constraints is quantum mechanics is subtle and significant, since constraints are

closely related to symmetries. All gauge theories are systems with constraints and conversely:

all systems with first class constraints are gauge theories.

We shall see that, with some important adjustments to the measure, the path integral quan-

tization for constrained system is very similar to the previously discussed path integral for un-

constrained systems.

In a classical mechanical system whose phase space consists of 2n degrees of freedom

{q1, . . . , qn, p1, . . . , pn}, a constraint consists of some relation between the coordinates. To

illustrate what may happen in such cases, we first study a simple mechanical system for two

point-’particles’, confined to a line and governed by a Hamiltonian

H =
p21
2m1

+
p22
2m2

+ V (q1 − q2). (13.1)

Since the interaction depends only on the distance of the two particles the total momentum is

conserved

d

dt
P =

i

h̄
[H,P ] = 0. (13.2)

After a canonical transformation to the center of mass Q and the relative coordinate q,

Q =
m1

M
q1 +

m2

M
q2 , P = p1 + p2

q = q1 − q2 , p =
m2

M
p1 −

m1

M
p2 (13.3)

the inverse transformation of which reads

q1 = Q+
m2

M
q , p1 =

m1

M
P + p,

q2 = Q−
m1

M
q , p2 =

m2

M
P − p, (13.4)
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where M = m1 +m2 is the total mass of the system, the Hamiltonian takes the form

H =
P 2

2M
+
p2

2µ
+ V (q) =

P 2

2M
+HCM(p, q). (13.5)

We have introduced the reduced mass 1/µ = 1/m1+1/m2. H does not depend on the position

Q of the center of mass and that is why it commutes with the total momentum. Since P is

conserved it can be simultaneously diagonalized with the Hamiltonian

Pψ =
h̄

i
∂Qψ =⇒ ψ = eiPQ/h̄ψ(q). (13.6)

Let us assume we would like to describe a system with P = p1 + p2 = 0. We cannot demand

this as an operator identity, since this would imply

ih̄ = [q1, p1] = −[q1, p2] = 0,

or that the commutation relations are violated. However, we can enforce the constraint P = 0

on the physical states,

Pψphys = 0 =⇒ ψphys = ψphys(q). (13.7)

There is an apparent problem with this procedure, since then

‖ψphys‖
2 =

∫

dq1dq2|ψphys(q)|
2 =

∫

dQ
∫

dq |ψphys(q)|
2 = ∞

which is a consequence of demanding that physical states have a sharp value of P (which is

conjugate to Q). The solution to this problem is that we should not normalize with respect to Q.

However one should keep in mind that the physical states are not normalizable, else one could

run into formal contradictions as

0 = 〈ψphys|QP − PQ|ψphys〉 = ih̄〈ψphys|ψphys〉 6= 0.

Now we wish to implement the constraint into the path integral. For doing that it is convenient

to use the phase-space formulation of the path integral. This is similarly derived as the path

integral (2.29) in the coordinate space. One first introduces the eigenstates of the position and

momentum operators:

q̂|q〉 = q|q〉 and p̂|p〉 = p|p〉 (13.8)

obeying the orthogonality conditions

〈q|q′〉 = δ(q − q′) , 〈p|p′〉 = 2πh̄δ(p− p′) (13.9)
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and the completeness relations

∫

dq|q〉〈q| = 1 ,
∫

dp|p〉〈p| = 2πh̄. (13.10)

Then inner product of the position and momentum eigenstates are

〈p|q〉 = e−ipq/h̄. (13.11)

Now we proceed as in the coordinate space and write the evolution kernel as (with the same

conventions as in (2.27), e.g. τ = it/h̄)

K(t, q′, q) = 〈q′|e−itH |q〉 =
∫

dq1 . . . dqn−1

n−1
∏

j=0

〈qj+1|e
−itT/ne−itV/n|qj〉. (13.12)

Each of the factors can be rewritten as

〈qj+1|e
−itT/ne−itV/n|qj〉 =

∫

dpj
2πh̄

〈qj+1|pj〉〈pj|e
−itT/ne−itV/n|qj〉.

The integrand is just

〈qj+1|pj〉 e
−it/n(T (pj)+V (qj))〈pj|qj〉 = eipj(qj+1−qj)/h̄−it/nH(pj ,qj).

where T (pj) and V (qj) are the values of the kinetic and potential energy in the momentum and

position eigenstates, respectively. Hence their sum H(pj, qj) is just the classical energy of a

particle with momentum pj at position qj . If T also depends on the coordinate this is still true if

it is understood that the kinetic energy is normally ordered, that is the momentum on the left and

the coordinates on the right. When rewriting each factor this way and reinserting h̄ we finally

end up with

K(t, q′, q) = lim
n→∞

qn=q′
∫

q0=q

n−1
∏

1

dqidpi
2πh̄

exp
[ i

h̄

n−1
∑

1

{pj(qj+1 − qj)− ǫH(pj, qj)}
]

(13.13)

which formally can again be written as

K(t, q′, q) = const ·

q(t)=q′
∫

q(0)=q

DqDp exp
[ i

h̄

∫

(p(t)q̇(t)−H [p(t), q(t)])
]

. (13.14)

For a standard kinetic term T = p2/2m one has

∫

dpj
2πh̄

exp
[ i

h̄
(pj(qj+1 − qj)− ǫ

p2j
2m

)
]

=

√

m

2πih̄ǫ
exp

{ im

2h̄ǫ
(qj+1 − qj)

}
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and thus we recover the representation (2.29) for the path integral in coordinate space,

K(t, q′, q) = lim
n→∞

∫

dq1 · · · dqn−1

( m

2πih̄ǫ

)n/2

exp
{ iǫ

h̄

j=n−1
∑

j=0

[m

2
(
qj+1 − qj

ǫ
)2 − V (qj)

]}

. (13.15)

Now we would like to express the evolution kernel for the system (13.5) subject to the constraint

that the total momentum vanishes, in the full phase space. Clearly, on the physical subspace we

have

〈ψphys|e
itH |ψphys〉 = 〈ψphys|e

itHCM |ψphys〉

such that on this subspace

K(t, q′, q) =
∫

DqDp exp
[ i

h̄

∫

(p(t)q̇(t)−HCM [p(t), q(t)])
]

. (13.16)

We wish to integrate not only over the reduced variables but over the full phase space variables.

It is not enough to just insert a delta-function
∏

δ(Pj) to implement the constraint into the

functional integral since then the
∏

dQj integrations in

∫

DqDpDQDP
∏

δ(Pj)e
i
h̄

∑

(Pj(Qj+1−Qj)+pj(qj+1−qj)−ǫH(Pj , pj , qj))

diverges. This can be remedied by inserting another delta-function in the variablesQj conjugate

to the constraint, setting them to arbitrary constants Yj . Since the Jacobi Matrix of the canonical

transformation (13.3) has determinant one and since Pj(Qj+1−Qj) + pj(qj+1− qj) transforms

into the same expression with (P,Q, p, q) → (p1, q
1, p2, q

2) we find

K(t, q′, q) = const ·
∫

DqiDpi δ(P )δ(Q− Y ) exp
{ i

h̄

∫

(piq̇
i −H [pi, q

i])
}

,

where we have taken the continuum limit such that
∏

δ(Pj) → δ(P (t)) ≡ δ(P ) and similarly

for
∏

δ(Qj − Yj). If it is not clear how to identify the variable conjugate to the constraint we

may use a delta-function of an arbitrary function of Q and q, provided we recall

∏

δ(Qj − Yj) =
∏

δ(Fj(q
i)) det

( ∂Fj

∂Qk

)

, (qi) = (q1, q2). (13.17)

On the other hand the partial derivative is recognized as the Poisson brackets between the con-

straint and the function F ,

{Fj(q
i), Pk} =

∂Fj

∂Qk
(13.18)
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and thus we arrive at Faddeev’s formula for the functional integral on the full 2-body phase

space appropriate to a constrained quantum system [50]

K(t, q′, q) =
∫

DqiDpi δ(P )δ(F ) det
(δF (qi(t))

δQ(t′)

)

exp
{ i

h̄

∫

(piq̇
i −H(pi, q

i)
}

=
∫

DqiDpiδ(P )δ(F ) det{F, P} exp
{ i

h̄

∫

(piq̇
i −H(pi, q

i)
}

. (13.19)

The first delta function enforces the constraint. Since the second one involves an arbitrary

function it is called a choice of gauge. It follows from our derivation that the path integral is

unaffected by a different choice of the auxiliary condition F (qi) = 0. Note that the exponent is

just the classical action in terms of the canonical variables.

The expression has the following geometric interpretation: The constraint P = 0 defines a

3-dimensional sub-manifold C (in our simple example it is just a plane, since the constraint is

linear) of the 4-dimensional phase space. However, the constraint also generates a Hamiltonian

flow,

Ȯ = {O,P} or Ȯ = ∇XP
O = X i

P∂iO, where XP = J∇P, (13.20)

and J is the symplectic matrix, J = iσ2 ⊗ Id. Since Ṗ = {P, P} = 0, this is a flow on C.

Furthermore, from (13.2) we see that H is constant on the lines of flow in C. Now we can

identify two points if and only if they belong to the same trajectory of the flow (13.20). This

defines an equivalence relation which is independent of the choice of the constraint (we could

have taken an equivalent constraint a(p, q) · P = 0, where a(p, q) possesses no zeroes, instead

of P = 0) and is invariant under the time evolution. All observables commute (weakly) with

the constraint and thus are constant under the flow generated by the constraint. We see that

the constraint generates a (gauge) symmetry of the system. It is thus sufficient to choose a

representative in each equivalence class in a regular manner. The regularity condition means

that one chooses a submanifold of C by fixing a gauge F = 0 such that each flow trajectory

intersects this sub-manifold exactly once. Locally this is equivalent to demanding that the flow

generated by the constraint is never parallel to the gauge-fixing surface F = 0, or that the inner

product of the vector XP generating the flow and the gradient vector ∇F orthogonal to the

gauge fixing surface in C does not vanish

(XP ,∇F ) = ∇XP
F = {F, P} 6= 0. (13.21)

In particular, if one chooses for F the variable conjugate to the constraint, then these vectors

are parallel and the gauge fixing surface is orthogonal to the flow trajectories.

The described procedure can be generalized to a set of m independent first class constraints

in a 2n-dimensional phase space, that is a set of constraints

Cj(pi, q
i) = 0, j = 1, . . . , m, (13.22)
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which form a closed algebra and weakly commute with the Hamiltonian,

{Ci, Cj} = aijk(pi, q
i)Ck and {H,Ci} = aijCj, (13.23)

They define a 2n − m dimensional submanifold C of the phase space. The flows generated

by these constraints stay entirely in C and are symmetries of the system. Again one chooses a

regular gauge

Fi(pi, q
i) = 0, i = 1, .., m, det{Fi, Cj} 6= 0, (13.24)

which defines a 2(n − m) dimensional sub-space of the full phase space which may in turn

be considered as a phase space. Similar considerations as above lead to the same path integral

representation for K(t, q′, q) as given by (13.19), where now δ(P ) is replaced by
∏

δ(Ci) and

δ(F ) by
∏

δ(Fi).
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