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Chapter 1

Introduction

These lectures are intended as an introduction to path or functional integration techniques and
their applications in physics. It is assumed that the participants have a good knowledge in
quantum mechanics. No prior exposure to path integrals is assumed, however.

We are all familiar with the standard formulations of quantum mechanics, developed by
HEISENBERG, SCHRÖDINGER and others in the 1920s. In 1933, DIRAC speculated that in
quantum mechanic the classical action S might play a similarly important role as it does in
classical mechanics. He arrived at the conclusion that the amplitude for the propagation from
the initial position q′ at time 0 to the final position q at time t,

K(t, q, q′) = 〈q|e−iHt/h̄|q′〉, (1.1)

is given by

K(t, q, q′) ∼ eiS[wcl]/h̄, (1.2)

where wcl is the classical trajectory from q′ to q in time t. The exponent is dimensionless,
since the reduced Planck-constant h̄ has the dimension of an action. For a free particle with
Hamiltonian and Lagrangian

H0 =
1

2m
p2 and L0 =

m

2
q̇2 (1.3)

the above formula is easily checked: free particles move on straight lines such that the trajectory
w(s) of a particle moving from q′ to q and the corresponding action read

w(s) =
1

t
{sq + (t− s)q′} and S =

∫ t

0
dt L0(w, ẇ) =

m

2t
(q − q′)2. (1.4)

Following Diracs suggestion this leads to the amplitude

K0(t, q, q′) ∼ eim(q−q′)2/2h̄t. (1.5)
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CHAPTER 1. INTRODUCTION 5

The factor of proportionality can be inferred from the initial condition

e−iHt/h̄ t→0−→ 1⇐⇒ lim
t→0

K(t, q, q′) = δ(q, q′) (1.6)

or alternatively from the convolution property

e−iHt/h̄e−iHs/h̄ = e−iH(t+s)/h̄

which in position space takes the form∫
duK(t, q, u)K(s, u, q′) = K(t+ s, q, q′). (1.7)

Both ways one arrives at the propagator for a free particle,

K0(t, q, q′) =
( m

2πih̄t

)1/2
eiS[wcl]/h̄. (1.8)

As we shall see later, similar results hold true for motions in harmonic potentials, for which
〈V ′(q̂)〉 = V ′(〈q̂〉), such that 〈q̂〉 satisfies the classical equation of motion.

However, for nonlinear systems the formula (1.8) is modified. In 1948 FEYNMAN suc-
ceeded in extending Diracs result to interacting systems. He found an alternative formulation
of quantum mechanics, based on the fact that the propagator can be written as a sum over all
possible paths (and not just the classical paths) from the initial to the final point. One may say
that in quantum mechanics a particle may move along any path w(t) connecting the initial with
the final point in time t,

w(0) = q′ and w(t) = q. (1.9)

The amplitude for an individual path is ∼ exp (iS[path]/h̄) and the amplitudes for all paths are
added according to the usual rule for combining probability amplitudes,

K(t, q, q′) ∼
∑

paths q′→q

eiS[path]/h̄. (1.10)

Surprisingly enough, the same calculus (in the sense of a analytical continuation) was already
known to mathematicians due to the work of WIENER in the study of stochastic processes. This
calculus in functional space attracted the attention of other mathematicians, including KAC, and
was subsequently further developed. The standard reference concerning these achievements is
the review of GELFAND and YAGLOM [5], where the early work was first critically discussed.

The path integral method had its great, early successes in the 1950s and its implications
have been beautifully expounded in Feynmans original review paper [3] and in his book with
HIBBS [4]. This book contains many applications and still serves as a standard literature on
path integrals.

————————————
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Path integration provides a unified view of quantum mechanics, field theory and statistical
physics and is nowadays a irreplaceable tool in theoretical physics. It is an alternative to the
Hamiltonian method for quantizing classical systems and solving problems in quantum me-
chanics and quantum field theories.

These lectures should introduce you both into the formalism and the techniques of path
integration. We shall discuss applications that will convince you that path integrals are worth
studying not only for reasons of beauty but also for practical purposes.

Path integrals in quantum mechanics and quantum field theory are ideally suited to deal with
problems like

• Implementing symmetries of a theory

• Incorporating constraints

• Studying non-perturbative effects

• Deriving the semiclassical approximation

• Describing finite-temperature field theories

• Connecting quantum field theories to statistical systems

• Renormalization and renormalization group transformations

• Numerical simulations of field theories.

In the first part of these lecture we shall reformulate ordinary quantum mechanics in Feynmans
path integral language. We shall see how to manipulate path integrals and we shall apply the
results to simple physical systems: the harmonic oscillator with constant and time dependent
frequency and the driven oscillator. Then we consider the path integral for imaginary time
and give a precise meaning to the sum over all paths. Functional determinants show up in
many path integral manipulations and we devote a whole section to these objects. It follows a
chapter on the path integral approach to quantum systems in thermal equilibrium. We derive the
semiclassical and high-temperature expansions to the partition functions and conclude the part
on quantum mechanics with Monte Carlo simulations of discretized Quantum Mechanics.

In the second part these lectures a simple field-theoretical model, namely the Schwinger
model or QED in 2 dimensions, is introduced and solved. This model is interesting for vari-
ous reasons. Due to quantum correction the ’photon’ acquires a mass and the classical chiral
symmetry is broken like it is in QCD. These model allows us to introduce many relevant field
theoretical concepts like regularization, Berezin-integrals, gauge fixing and perturbation theory.
Then we deal with anomalies and effective actions. We shall see how to employ path integral
techniques to compute anomalies in gauge theories. We ’integrate’ certain anomalies and derive
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A. Wipf, Path Integrals



CHAPTER 1. INTRODUCTION 7

the Casimir effect in external fields. Finally we shall compute the particle production in external
electromagnetic and gravitational fields.

In the last part of these lectures we study the lattice version of field theories. In particular
we introduce and discuss the symmetry breaking by means of effective potentials. Then the nu-
merical simulations of scalar theories on a finite lattice is discussed. Finally I shall explain how
to formulate gauge field theories with fermions on a space-time lattice and the some problems
of these lattice gauge theories.

There are many good books and review articles on path integrals. I have listed some ref-
erences which I suggest for further readings. In particular the references [1]-[9] contain in-
troductory material. These references are only a very small and subjective selection from the
extensive literature on functional integrals. In the bibliography at the end of these lectures you
find further references on particular topics of path integrals.
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