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Notation And Conventions

In field theory it is common to use units where the speed of light and & are taken to be

unity.
The summation convention of Einstein is used, i.e. repeated indices are summed over.
The signature of the metric is (+, —, —, —).

Greek letters p, v, p, o refer to space-time and run from 0 to 3, with 2° being the time

coordinate.

Small Latin letters from the middle of the alphabet such as i, j, £ denote spatial coordi-

nates and usually run from 1 to 3.

Small Latin letters from the beginning of the alphabet such as a,b,c indicate group

indices and run from 1 to dimg.

A prime denotes differentiation with respect to the argument, whereas a dot over any

quantity denotes the time derivative of this quantity.

If not stated otherwise, the following notations are used within this thesis.

A, gauge-potential
Al components of non-Abelian

gauge-potential

A=A, dz" gauge connection
D, = 0, —1iA, covariant derivative
D, = 0, —ilA, | covariant derivative for non-Abelian

gauge theories, fields in adjoint

representation

F, = 0,A,—0,A, Abelian field-strength tensor

il



Notation And Conventions

iv

b

Fl, = 0,A% — 0,A% + fauc AL AL
G

x? y? Z

P, P, 2

0,0

1 ifa=05b
6ab =
0 otherwise

1 if (abe) = (123) or cycl.

€abe = § —1 if (abe) = (132) or cycl.
0 otherwise
¢
¢a
Oa

0a0p = 5ab]1 + i€abco.c
Ta

[Taa Tb] = ifabcTc y Tr(TaTb) = Kéab

(A B) = %Tr(AB)

components of the non-Abelian field
strength tensor

metric tensor

Cartesian coordinates

cylindrical coordinates

spherical coordinates

Kronecker-symbol

complete antisymmetric tensor

(complex) scalar field
components of scalar field in
adjoint representation

Pauli-matrices a = 1,2, 3

generators of gauge group ¢

scalar product in the Lie algebra
with A = A*T, and B = B°T,
generators for complex doublet

representation of SU(2)
generators for real triplet

representation of SU(2)

Besides Cartesian generators 7,, ‘spherical’ generators

T, = cos psinf 7 + sin psin 0 75 + cos 0 73

Ty = cospcosf T +sinpcosfm, —sinf s = Oy,

To=—SINQYT +CospTy = ——0,T,
sin 6

will be used as well.



1 Introduction

1.1 What Are Solitons?

The first description of a soliton was given by Russell [1]| in 1842 and 1843 at the British

Association for the Advancement of Science':

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped — not so the
mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on a horseback, and overtook it
still rolling on at a rate of some eight or nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height.
Its height gradually diminished, and after a chase of one or two miles I lost
it in the windings of the channel. Such, in the month of August 1834, was

my first chance interview with that singular and beautiful phenomenon ...

This description already gives some of the important features of solitons: they are lo-
calised objects, and their shape is preserved during propagation. The possibility of the
occurrence of such an object follows from the equations of motion and therefore from the
properties of the medium. Nevertheless, everyday experience with water waves is differ-
ent. If one observes the excitations of water, generated, for instance, by throwing a stone
into it, the spatial extension of the excitation is growing. The reason for this behaviour
is dispersion, different velocities for different wavelengths. Starting with a localised ex-
citation, which is a superposition of waves with different wavelengths, dispersion leads
to the well-known behaviour of growing spatial extension. A phenomenon like the one

observed by Russell can only be explained if non-linear effects are taken into account.

*this citation follows [2]
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The combined effects of dispersion and non-linearities then allow for stationary objects
[3]. Concerning theory, it took about 60 years until Korteweg and de Vries found the

equation
Up + Ugpy + 6Uzu =0 (1.1)

describing the propagation of waves in shallow water in 1895. Here u gives the height
of the water above the undisturbed surface. This equation can be derived from the
Newtonian equations of motion for continuous media. The Korteweg-de-Vries equation
describes the motion in the limit of long wavelengths, i.e. the wavelength is large com-
pared to the depth of the water. The one-soliton solution of (1.1) corresponding to the

wave phenomenon observed by Russell is [3]

«

~ 2cosh? (V5 (z—at —x9)]

The propagation of this wave can be seen in figure 1.1, which also shows the constant

(1.2)

u(z, t)

shape during propagation. Computer experiments have demonstrated that such waves

can penetrate each other and emerge undisturbed from this collision. This is illustrated




