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1 Introduction

Since the discovery of the principles of quantummechanics in the first half of the twentieth century [1–3],

it is widely believed that elementary particles are not only the fundamental building blocks of matter, but

also the carrier of all fundamental interactions observed in nature [4]. The most prominent example of

such an elementary force particle is the photon, the mediator of the electromagnetic force. The common

framework of describing particle physics is relativistic quantum field theory, the unification of quantum

mechanics, classical field theory and special relativity [5–7]. Since there has never been a confirmed

experimental observation, violating either the laws of quantummechanics or the laws of special relativity,

the principles of quantum mechanics and relativistic spacetime symmetries are common to all serious

fundamental models of nature.

But quantum field theory by itself is only a tool, providing methods to obtain information out of a

given system. During the last century it turned out that not only spacetime symmetries, i.e. Poincare

invariance, are an at least approximate symmetry realized in nature, but also internal symmetries play

an important role. Moreover, these internal symmetries, often indirectly found in experiments, are the

guideline for building mathematical descriptions of the phenomena observed. Through a long process

of development, the internal symmetries led to the standard model of particle physics, today the most

successful theory describing physics below an energy scale of one TeV, in excellent agreement with the

measurements [8–13].

The standard model incorporates the electromagnetic interaction with local gauge symmetry U(1), the

weak interaction with gauge group SU(2) [9,10,13] and the strong interaction based on the gauge group

SU(3) [11]. Thus, three of the four fundamental interactions in nature are unified in the local gauge

group SU(3) × SU(2) × U(1). Only the unification with gravity is an outstanding task and may lead to

new physics beyond the standard model.

Although the standard model was invented more than forty years ago, many features, as for example

confinement [14, 15] or the generation of mass [16], are not fully understood and subject of intensive

research, in experiments as well as theoretical investigations. An important discovery in experiments

is the scale dependence of the strength of the interaction [17]. In the underlying quantum field theory

this manifests in the scale dependence of the coupling constants, i.e. the free parameters of the proposed

model, and can be described within the renormalization group [18–21]. But, at the end of the day, a finite

number of free parameters have to be fixed by experiments to get a predictive theory of nature, known as

renormalization. These scale dependence of coupling constants already indicates that perturbation the-

ory, i.e. an expansion in terms of the coupling constants, will not hold on all scales and therefore different

approaches are necessary. For instance, quantum electrodynamics (QED) is very weakly coupled in the

infrared, while the scale dependent coupling, i.e. the observed charge of the electron, increases at smaller

distances or higher energies. QED is not an asymptotically free theory, and at some scale, perturbation

theory will miserably fail [22]. Contrary, quantum chromodynamics (QCD) is an asymptotically free

theory that is strongly-coupled in the infrared and weakly coupled in the ultraviolet [23–26]. Therefore,
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perturbation theory is only valid for small distances or high energies.

QCD is the theory describing the interaction of the 8 gluons, the force particles of the strong interac-

tion, with the fundamental constituents of matter, coming in three families: the up and down, the charm

and strange, and the top and bottom quark. In contrast to the photons of the abelian gauge theory QED,

the gluons interact directly with each other, and this non-abelian property leads to the observed phe-

nomena of confinement and colour-charge screening [15]. At low energy scales quarks and gluons are

confined in mesons and baryons and are not seen as asymptotic states of the strong interaction. Under-

standing the dynamics of this confinement mechanism is one of the challenging problems in strongly-

coupled gauge theories. Confinement is lost under extreme conditions: when temperature reaches the

QCD energy scale or the density rises to the point, where the average inter-quark separation is less than

1 fm, then hadrons are melted into their constituent quarks. Confinement is a highly non-perturbative

effect that cannot be understood within the framework of perturbation theory. So far the most successful

approach to the non-perturbative aspects of QCD and Yang-Mills theories are Monte-Carlo simulations

on discrete spacetime lattices [14, 27]. Employing this method, the finite temperature phase transition

was studied with much effort in [28–35], and for physical quark masses a crossover from the confined

to the unconfined phase between 150 and 200 MeV was found, in quite good agreement with the exper-

imental value of 160 to 170 MeV [36, 37].

Another important aspect of QCD is its phase diagram at finite net baryon density [38]. It is also

subject of many large-scale experiments, as for instance at the Large Hadron Collider (LHC) at Cern,

the Relativistic Heavy Ion Collider (RHIC) at Brookhaven or the future Facility for Antiproton and Ion

Research (FAIR) at the GSI in Darmstadt, where especially the nature of the deconfinement and chiral

phase transition is probed and the proposed existence of a critical point in the QCD phase diagram is

examined. At low temperatures and high baryon densities experiments are still not feasible nowadays,

but the result for the thermodynamic equations of state are extremely important in many research areas,

as for instance in nuclear-matter physics or astrophysics, such as for the formation of compact stellar ob-

jects. At very large densities, where the fermionic nature of baryons becomes important, exotic phases

like quarkionic phases or colour superconductivity are expected [39–41]. Unfortunately, current lattice

algorithms are not applicable at this point due to the fermion sign problem [42], and the only reliable

results so far are obtained from functional methods or model calculations, that crucially rely on trun-

cations or model building [43–45]. Therefore, first principle calculations are still unavoidable to verify

the obtained results. Although there are different promising approaches to circumvent the fermion sign

problem, they still all suffer from various shortcomings [46–50].

A different strategy is to investigate QCD-like theories without a sign problem, having as many fea-

tures in common with QCD as possible. An example for such a theory is two-colour QCD, where its

phase diagram as a function of temperature and net baryon density has recently extensively been inves-

tigated [51–56]. Although it contains many aspects that are interesting by itself, this theory does not

contain fermionic bound states, and might therefore behave qualitatively differently compared to QCD,

especially at high baryon density where the fermionic nature of baryons becomes important.

In this work a different theory, that does not suffer from this drawback, is proposed and investigated.

Based on recent works of the group in Bern [57, 58], the gauge group SU(3) of the strong interaction is
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replaced by the exceptional Lie group G2. In many aspects, G2 is very similar to SU(3); in particular,

pureG2 gauge theory coupled to fundamental fermions (G2-QCD) contains fermionic baryons. However,

it turns out that this QCD-like theory does not suffer from a fermion sign problem. Here, G2 gauge

theories are investigated in detail with and without fundamental scalars and fermions, employing lattice

Monte-Carlo methods. It is shown that already SU(3) and G2 pure gauge theories have indeed inspiring

connections and behave in many aspects very similar to each other. In this context, first simulations of

a QCD-like theory with fermionic baryons and quarks in the fundamental representation of the gauge

group are performed, and the resulting phase diagram is discussed as a function of temperature and net

baryon density.

Although the standard model is extremely successful in describing physics below an energy scale

of one TeV, it is expected to be replaced by a more fundamental theory on higher energy scales. The

most often discussed extensions are supersymmetric theories, which also play an important role in string

theory. In a mathematical context, supersymmetry is the only possible (spacetime) extension of the

Poincare algebra [59,60]. Roughly speaking, every particle of the standard model gets a supersymmetric

partner particle with the same properties, except for a difference in spin of one half. These theories

allow to solve, or at least weaken, various shortcomings of the standard model, for instance the hierarchy

problem and the strong CP problem, and provide possible candidates for dark matter [61–63]. Another

argument for supersymmetry is the unification of interactions. Employing supersymmetry, at a certain

energy scale, all interactions are of equal strength and can be described within a single gauge group.

The most trivial unification leads to the minimal supersymmetric standard model (MSSM) [64, 65].

Ongoing experiments, in particular at the Large Hadron Collider (LHC), aim at the direct or indirect

discovery of supersymmetry. In any case, so far no supersymmetric particles have been observed. If

supersymmetry exists, is must be spontaneously broken at low energy scales. An important ingredient

of the MSSM are supersymmetric Yang-Mills (SYM) theories and especially its simplest version with a

single supersymmetry, N = 1 SYM in four spacetime dimensions [66]. It describes the interaction of

gluons with its fermionic superpartners, the gluinos. Since supersymmetry is a spacetime symmetry, it

is explicitly broken by the lattice regularization, due to the failure of the Leibniz rule on the lattice [67].

In [68] it has been shown that the only SUSY breaking operator is the gluino condensate, making chiral

Ginsparg-Wilson fermions [69] the optimum choice, but alsoWilson fermions together with a fine-tuning

of the gluino mass are feasible, in particular since they are much cheaper in computation time. N = 1

SYM theory has recently been investigated on the lattice, considering different formulations, but so far

the results are not conclusive [70–75].

In the present work the lattice formulation ofN = 1 SYM theory and its dimensional reduced theories

to three and one spacetime dimensions are investigated, employing Wilson fermions. The main aspect

here focuses on the possibility to restore supersymmetry in the continuum limit, to pave the way for

future work on the mass spectrum of N = 1 SYM theory in four dimensions, as suggested from low

energy effective actions [68].

In detail, the work is organized as follows: In chapter 2 the relevant properties of the exceptional

Lie group G2 are reviewed. To simulate G2 Yang-Mills theory on the lattice, in chapter 3 a Monte-

Carlo update algorithm based on a local HMC algorithm is developed for arbitrary Lie groups and a
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new and highly efficient implementation for G2 is presented. Also algorithms to simulate QCD and

supersymmetric Yang-Mills theories are reviewed. In chapter 4 properties associated to confinement for

arbitrary gauge groups are discussed, and pure G2 gluodynamics at finite temperature is investigated. It

is shown that, similar to SU(3) gauge theory, a first order phase transition separates the confined from

the deconfined phase. Additionally, for the first time the deconfinement phase transition in F4 and E6

gluodynamics is explored and compared to other gauge groups. Especially the gauge group E6 is an

interesting candidate in various grand unified theory (GUT) scenarios [76, 77]. The assumptions made

about exceptional confinement are then confirmed in chapter 5, where the dynamics of the flux tube

between a quark and an anti-quark at zero temperature in different representations of the gauge group

G2 is studied. Casimir scaling of the confining string can be verified for different representations of the

gauge group to a high precision, and for the first time string breaking in G2 gauge theory is observed.

The results are compared to results from bosonic string theory and different approaches to Yang-Mills

theory in three and four dimensions, where for instance Casimir scaling and string breaking are predicted.

In [57] it turned out that G2-Yang-Mills theory coupled to a fundamental scalar field has an intriguing

connection to SU(3)-Yang-Mills theory. By tuning the mass of the scalar field it is possible to interpolate

between both theories. Therefore, in chapter 6 the phase diagram of the G2 gauge Higgs theory as a

function of the scalar field mass and the gauge coupling is investigated with high-precision simulations.

It is shown, that the former first-order phase transition of G2 gauge theory turns into a crossover, if the

scalar field mass is fine-tuned to a small window in parameter space. This feature by itself is very similar

to ordinary QCD, where the transition is weakened by fundamental quarks. Having shown that G2 and

SU(3) pure gauge theory share many features, G2 gauge theory coupled to fundamental fermions is

studied in chapter 7. It is shown that the fermion determinant is non-negative for any value of the gauge

coupling and chemical potential, making Monte-Carlo simulations feasible. Furthermore, the chiral

properties are explored and finally first results of Monte-Carlo simulations are presented, opening an

interesting playground for future investigations. In chapter 8,N = 1 supersymmetric Yang-Mills theory

on the lattice is investigated in the Wilson formulation. In one dimension the spectrum of the Dirac

operator is studied and the continuum limit is performed, showing that supersymmetry can be restored

on the lattice. Additionally, first results of simulations in three spacetime dimensions are presented.

Finally, in chapter 9 the obtained results are summarized and various interesting problems for future

investigations are addressed. Parts of this work have already been published [78–80] and presented at

international conferences [81, 82].

The compilation of this work is solely due to the author. However, parts of this work have been done in

collaboration with colleagues from the research groups on quantum field theory in Jena and Darmstadt.

The investigations ofG2 gauge theories in chapter 5 and 6 have been done together with Christian Wozar

and the investigations on G2-QCD in chapter 7 have been performed in collaboration with Axel Maas,

Andreas Wipf and Lorenz von Smekal.
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2 The exceptional gauge group G2

The main part of this thesis deals with gauge theories, where the gauge group is the exceptional Lie group

G2. To understand the dynamics, it is necessary to know about the structure of the Lie group, especially

its construction and representation theory. In the present chapter some of the relevant properties of the

exceptional Lie group G2 are reviewed.

General properties and construction

G2 is the smallest of the five exceptional simple Lie groups and it is also the smallest simple and simply

connected Lie group which has a trivial centre. As SU(3), the gauge group of strong interaction, it

has rank 2 and the fundamental representations are the 7-dimensional and the 14-dimensional adjoint

representation with Dynkin labels

(7) = [1, 0], (14) = [0, 1]. (2.1)

It is also the automorphism group of the octonion algebra or, equivalently, the subgroup of SO(7)

that preserves any vector in its 8-dimensional real spinor representation [83]. This means that the 8-

dimensional real spinor representation of Spin(7) branches into the trivial representation and the 7-

dimensional fundamental representation of G2. The 14-dimensional fundamental representation of G2

arises in the branching of the adjoint of SO(7) according to (21) → (7)⊕ (14). The elements of G2 can

be viewed as elements of SO(7) subject to seven independent cubic constraints for the 7-dimensional

matrices g representing SO(7) [57, 84]:

Tabc = Tdef gda geb gfc. (2.2)

Here, T is a total antisymmetric tensor given by

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1. (2.3)

The constraints (2.2) for the group elements reduce the 21 generators of SO(7) to 14 generators of the

group G2. Its Weyl group is the dihedral group D6 of order 12. Additionally, G2 is connected to SU(3)

through the embedding of SU(3) as a subgroup of G2 according to [85, 86]

G2/SU(3) ∼ SO(7)/SO(6) ∼ S6. (2.4)

This means that every element U of G2 can be written as

U = S · V with S ∈ G2/SU(3) and V ∈ SU(3), (2.5)

and this decomposition is used to speed up the numerical simulations. With respect to the subgroup

SU(3) the fundamental representations (7) and (14) branch into the following irreducible SU(3) repre-

sentations:

(7) −→ (3) ⊕ (3̄) ⊕ (1) and (14) −→ (8) ⊕ (3) ⊕ (3̄). (2.6)
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representationR [0, 0] [1, 0] [0, 1] [2, 0] [1, 1] [3, 0] [0, 2] [4, 0] [2, 1]

dimension dR 1 7 14 27 64 77 77′ 182 189

Casimir eigenvalue CR 0 12 24 28 42 48 60 72 64

Casimir ratio C′
R 0 1 2 7/3 3.5 4 5 6 16/3

Table 2.1 Representations of G2 with corresponding dimensions and Casimir values.

Any irreducible representation of G2 is characterized by its highest weight vector µ, which is a linear

combination of the fundamental weights, µ = pµ(1) + qµ(2), with non-negative integer coefficients

p, q called Dynkin labels. The dimension of an arbitrary irreducible representation R = [p, q] can be

calculated with the help of Weyl’s dimension formula and is given by

dR ≡ dimp,q =
1

120
(1 + p)(1 + q)(2 + p+ q)(3 + p+ 2q)(4 + p+ 3q)(5 + 2p+ 3q). (2.7)

In what follows, mainly the ‘physics-convention’ is used, where a representation is denoted by its di-

mension. For example, the fundamental representations are denoted by [1, 0] = (7) and [0, 1] = (14).

However, this notation is ambiguous, since there exist different representations with the same dimen-

sion. For example [3, 0] = (77) and [0, 2] = (77′) have the same dimension. The Dynkin labels of the

lowest-dimensional representations are given by

(1) = [0, 0], (7) = [1, 0], (14) = [0, 1], (27) = [2, 0], (64) = [1, 1],

(77) = [3, 0], (77′) = [0, 2], (182) = [4, 0], (189) = [2, 1].
(2.8)

An irreducible representation of G2 can also be characterized by the values of the two Casimir operators

of degree 2 and 6. In chapter 5 the eigenvalues of the quadratic Casimir operator in a representation [p, q]

are needed. They are given by

CR ≡ Cp,q = 2p2 + 6q2 + 6pq + 10p+ 18q. (2.9)

For an easy comparison these ‘raw’ Casimir values can be normalized with respect to the defining repre-

sentation by C′
p,q = Cp,q/C1,0. The normalized Casimir values for the lowest-dimensional representations

are given in Tab. 2.1. Since G2 is a subgroup of SO(7), all representations are real and one can always

choose a real basis for the Lie algebra. A possible real representation for the 14 generators is given in

the appendix B, cf. also [87].

Fundamental region and Haar measure

In effective theories for the gauge invariant (traced) Polyakov loops in the fundamental representations,

only the reduced Haar measure is needed. Based on [87, 88], this measure can be given for a parametri-

sation of the conjugacy classes either by angular variables or alternatively by the fundamental characters,

dµ ∝ J2d ϕ1 dϕ2 = J dχ7 dχ14. (2.10)
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The density J2 can be expressed in terms of the fundamental characters,

J2 =
(

4χ3
7 − χ2

7 − 2χ7 − 10χ7χ14 + 7 − 10χ14 − χ2
14

)

×
(

7 − χ2
7 − 2χ7 + 4χ14

)

, (2.11)

where the characters are given in terms of (particularly chosen) angular variables ϕ1,2 as

χ7 = 1 + 2 cos(ϕ1) + 2 cos(ϕ2) + 2 cos(ϕ1 + ϕ2),

χ14 = 2
(

1 + cos(ϕ1) + cos(ϕ1 − ϕ2) + cos(ϕ2)

+ cos(ϕ1 + ϕ2) + cos(2ϕ1 + ϕ2) + cos(ϕ1 + 2ϕ2)
)

.

(2.12)

The boundary of the fundamental domain is determined by J = 0 and thus is parametrised by the three

curves (see Fig. 2.1)

χ14 =
1

4
(χ7 + 1)2 − 2, χ14 = −5(χ7 + 1) ± 2(χ7 + 2)3/2. (2.13)

Note that the reduced G2 Haar measure is maximal not at the origin but for (χ7, χ14) = (−1/5,−2/5).

The fundamental domain has no symmetries at all and this expresses the fact that the centre of G2 is

trivial. In Fig. 2.1, the Haar measure of G2 is compared to the Haar measure of SU(3) with centre Z(3),

where the centre symmetry is clearly visible.

-2 -1 0 1 2 3 4 5 6 7

χ7

-2

0

2

4

6

8

10

12

14

χ14

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Re(χ3)

-3

-2

-1

0

1

2

3

Im(χ3)

Figure 2.1 Haar measure and fundamental domain of G2 (left panel), compared to Haar measure and fun-

damental domain of SU(3) (right panel). Lighter regions indicate a larger value of the Haar measure.

Representation theory

Tensor products of irreducible representations are important to understand the formation of possible

colourless bound states (singlets under the action of the gauge group) inG2 gluodynamics. Quarks inG2

transform under the 7-dimensional fundamental representation, gluons under the 14-dimensional funda-

mental representation. The decomposition of tensor products of the lowest-dimensional representations
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into irreducible representations is given by

(7) ⊗ (7) = (1) ⊕ (7) ⊕ (14) ⊕ (27),

(7) ⊗ (7) ⊗ (7) = (1) ⊕ 4 · (7) ⊕ 2 · (14) ⊕ 3 · (27) ⊕ 2 · (64) ⊕ (77′),

(14) ⊗ (14) = (1) ⊕ (14) ⊕ (27) ⊕ (77) ⊕ (77′),

(14) ⊗ (14) ⊗ (14) = (1) ⊕ (7) ⊕ 5 · (14) ⊕ 3 · (27) ⊕ · · · ,
(7) ⊗ (14) ⊗ (14) ⊗ (14) = (1) ⊕ · · · .

(2.14)

The character χR(U) = trR(U) of any irreducible representationR is a polynomial of the characters χ7

and χ14 of the two fundamental representations 7 and 14. For example, the first two decompositions in

(2.14) imply

χ27 = χ7 · χ7 − χ1 − χ7 − χ14,

χ64 = χ7 · χ14 − χ7 − χ27 = χ7χ14 − χ2
7 + χ1 + χ14,

(2.15)

and yield the characters of the representations (27) and (64) as polynomials of χ7 and χ14. From further

tensor products of irreducible representations one can calculate the polynomial in χR = PolR(χ7, χ14)

for any irreducible representation R. For a fast implementation of some of the used algorithms it is

also useful to consider the ‘branchings’ of SO(7) representations to G2. The 27 dimensional representa-

tions of SO(7) acting on symmetric traceless 2-tensors remains irreducible under G2. Additionally, the

following relations will be needed:

(7) → (7), (21) → (14) ⊕ (7), (27) → (27), (35) → (27) ⊕ (7) ⊕ (1), (77) → (77). (2.16)

In particular the reducible representations

(7 ⊗ 7)s, (7 ⊗ 7 ⊗ 7)s, (7 ⊗ 7 ⊗ 7 ⊗ 7)s, (7 ⊗ 7)s ⊗ 14, (2.17)

are useful, where the subscript ‘s’ denotes the symmetrized part of the respective tensor product. Com-

paring the reduction of representations for SO(7) and G2 and mapping representations from SO(7) to

G2 the following characters of reducible representations can be computed

χ(7⊗7)s = χ27 + χ1, χ(7⊗7⊗7)s
= χ77 + χ7, χ(7⊗7⊗7⊗7)s

= χ182 + χ27 + χ1,

χ(7⊗7)s⊗14 = χ189 + χ77 + χ27 + χ64 + 2χ14 + χ7.
(2.18)

Altogether the following relations are used to compute the characters of the 8 lowest-dimensional repre-

sentations

χ7 , χ14 , χ27 = χ(7⊗7)s − χ1 , χ64 = χ7⊗14 − χ(7⊗7)s − χ7 + χ1 ,

χ77 = χ(7⊗7⊗7)s
− χ7 , χ77′ = χ14⊗14 − χ(7⊗7⊗7)s − χ(7⊗7)s − χ14 + χ7 ,

χ182 = χ(7⊗7⊗7⊗7)s
− χ(7⊗7)s , χ189 = χ(7⊗7)s⊗14 − χ(7⊗7⊗7)s

− χ7⊗14 + χ7 − 2χ14.

(2.19)

For the algorithms used in this work, it is important that the relations are linear in the (reducible) repre-

sentations on the right hand side of the equations. In this case the representation trace commutes with

the ensemble average of Polyakov or Wilson lines, which is necessary for an efficient computation of

sublattice expectation values in chapter 5. Additional information on G2 and on the construction of the

exceptional Lie groups F4 and E6 can be found in the appendix B.
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3 Algorithmic considerations

In the present work, purely bosonic theories as well as theories containing fermions are investigated.

Since many features of these strongly-coupled theories are perturbatively not accessible, non-pertur-

bative tools are needed, and the method of choice here areMonte-Carlo simulations on discrete spacetime

lattices. In the following, the lattice formulation of theories, investigated below, is briefly reviewed and

the Monte-Carlo algorithms are discussed in a general way. Details depending on the implementation

and special features of the model will be discussed later in the corresponding chapter. Mainly two

algorithms are presented, the (local) HybridMonte-Carlo algorithm ((l)HMC) for purely bosonic theories

on arbitrary semi-simple and simply connected Lie groups, and the rational HybridMonte-Carlo (rHMC)

extension for fermionic degrees of freedom.

The Euclidean path integral or the partition function of a system is given by

Z =

∫

M

Dφ e−SE[φ], (3.1)

where SE is the Euclidean action on the discrete spacetime lattice Λ. The fields φ(x) are mappings

from Λ to some manifold M. For details on the lattice regularization of path integrals see [27, 89, 90].

Observables O are calculated as an ensemble average

〈O〉p =

∫

M

p[φ]O[φ] , p[φ] =
Dφ e−SE[φ]

Z . (3.2)

The goal of the Markov chain Monte-Carlo method (MCMC) is now to generate a Markov chain for the

probability function p such that field configurations C[φ] are distributed with respect to p[φ]. Then the

expectation value can be written as a sum over field configurations,

〈O〉p ≈
1

N

N
∑

n=1

O[Cn]. (3.3)

For details on Markov chain Monte-Carlo methods and statistical error estimation of observables see

[91]. In the present work statistical errors are calculated with the Jackknife method and in some cases a

bias correction for derived quantities and non-Gaussian distributions [91–94], as for instance the expec-

tation values of masses, is applied.

3.1 The lHMC algorithm for semi-simple Lie algebras

A common algorithm for generating such a Markov chain is the Hybrid Monte-Carlo algorithm (HMC),

introduced in [95]. The first class of models investigated here are purely bosonic theories, where the dy-

namic fields are Lie algebra valued, e.g. pure gauge theories or non-linear sigma models. In simulations

of pure gauge field theories different algorithms are in use. For SU(Nc) gluodynamics heat-bath algo-

rithms based on the Cabibbo-Marinari SU(2) subgroup updates [96], often improved by over-relaxation
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steps, have proven to be fast and reliable. For the exceptional gauge groupG2 there exists a modification

of the heat-bath update [58], which combines the heat-bath update for a SU(3) subgroup with randomly

distributed G2 gauge transformations to rotate the SU(3) subgroup through G2. In the present work

instead a local version of the HMC algorithm, based on [97], where single links are evolved in a HMC

style, is used for several good reasons: The formulation is given entirely in terms of Lie group and Lie

algebra elements and there is no need to back-project onto the group G. The autocorrelation time can

be controlled (in certain ranges) by the integration time in the molecular dynamics part of the HMC

algorithm. The inclusion of a (normalized) Higgs field is straightforward and does not suffer from a low

Metropolis acceptance rate (even for large hopping parameters) and finally the extension to a HMC al-

gorithm coupled to fundamental or adjoint fermions is obvious. The lHMC algorithm has been essential

for obtaining the results in the present work. Here and in the accompanying (journal) publication [80],

the first implementation forG2 is developed. It is therefore useful to explain the technical details for this

exceptional group. However, the algorithm is applicable to any semi-simple and simply connected Lie

group, since it depends only on a choice for the generators T of the corresponding Lie algebra. In the

following it is assumed that the generators of the Lie algebra are normalized according to

(T a, Tb) = tr (T aTb) = δa
b . (3.4)

Additionally, they are chosen to be Hermitian, T †
a = Ta. Now consider a field configuration C({U}) on

the lattice with Ui ∈ G. Then, as for any HMC algorithm, the transition to a new configuration C′({U ′})
is based on a fictitious dynamics for the variables on the group manifold. The ‘free evolution’ on a

semi-simple group G is the Riemannian geodesic motion with respect to the Cartan-Killing metric

ds2
G ∼ tr

(

dU U−1 ⊗ dU U−1
)

, U ∈ G. (3.5)

In the fictitious dynamics the interaction term is given by the action S[U ] of the lattice theory and hence

it suggests itself to derive the dynamics from the Lagrangian

L =
1

2

∑

i

tr
(

i U̇i Ui
−1
)2

− S[U ], (3.6)

where ‘dot’ denotes the derivative with respect to the fictitious time parameter τ . The Lie algebra valued

fictitious ‘conjugated momentum’ P ∈ g is given by

Pi = i
∂L

∂
(

U̇i Ui
−1
) = iUi

∂L

∂U̇i

= −i U̇i Ui
−1 , (3.7)

and via a Legendre transform yields the pseudo-Hamiltonian

H =
1

2

∑

i

tr P2
i + S[U ]. (3.8)

Since P is Hermitian, the kinetic term is always positive. For real Ui the momenta are antisymmetric

and therefore purely imaginary. The equations of motion for the momenta are obtained by varying the

Hamiltonian with respect to the fictitious time parameter τ . Hence one obtains

δH =
∑

i

tr {Pi δPi} + δS[U ] =
∑

i

trPi

{

Ṗi − Fi

}

δτ = 0, (3.9)
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where the HMC ‘force’ F is defined as a solution to the equation

δS[U ] = − tr (PF ) δτ. (3.10)

Here one already notices that the solution is not unique and the remaining freedom can always be used

to assure that P ∈ g. Then the variational principle implies that the projection of the term between curly

brackets in (3.9) onto the Lie algebra g vanishes,

Ṗi = Fi

∣

∣

g
. (3.11)

Choosing a trace-orthonormal basis {Ta} of g, the equations for the (l)HMC dynamics can be written as

follows,

Ṗi =
∑

a

tr (Fi Ta)Ta and U̇i = i Pi Ui, (3.12)

with the ‘force’ Fi defined in (3.10). Now it is possible to consider two different algorithms to obtain a

new configuration C′ in the Markov chain, starting from a configuration C. The original HMC algorithm

is given by a Gaussian draw of all momenta, followed by a (numerical) integration of the equations of

motion from HMC ‘time’ τ = 0 to τ = tHMC. To ensure detailed balance, a final Metropolis acceptance

step is performed. The pseudocode is shown in Alg. 1. Due to the numerical integration of the equations

of motion, the energy is not exactly conserved and δH is proportional to the number of degrees of

freedom N . Therefore, with increasing N , the integration step size δτ has to be adjusted to ensure a

constant acceptance rate in the Metropolis step. The second possibility is the lHMC algorithm (Alg. 2).

Here, every single variable is evolved in a HMC-style. This local version of the HMC does not suffer

from an extensive δH ∝ N problem, such that in many cases already a second-order symplectic (leap

frog) integrator allows for sufficiently large time-steps δτ . A test for the algorithm is its ability to

reproduce the Haar measure of the group. In Fig. 3.1 the Haar measure in the fundamental domain for

SU(3), G2, F4 and E6 is shown as a scatter plot, where the Z(3) centre symmetry of SU(3) and E6 is

seen, while the fundamental domains for G2 and F4 do not possess any symmetry at all.

Algorithm 1 HMC algorithm

Require: Configuration C({U}), N degrees of freedom, symplectic integrator I(τ)

1: for i = 1 to N do

2: Draw momentum Pi Gaussian distributed

3: end for

4: for τ = 0 to tHMC step δτ do

5: Integrate the equations of motion (3.12) for {P} and {U} with integrator I(τ).

6: end for

7: Accept the new configuration with probability p = min (1, exp{H(C) −H(C′)})
8: return Configuration C′({U ′})
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Algorithm 2 lHMC algorithm

Require: Configuration C({U}), N degrees of freedom, symplectic integrator I(τ)

1: for i = 1 to N do

2: Draw momentum Pi Gaussian distributed

3: for τ = 0 to tHMC step δτ do

4: Integrate the equations of motion (3.12) for Pi and Ui with integrator I(τ).

5: end for

6: Accept the time evolution with probability p = min (1, exp{H(C) −H(C′)})
7: end for

8: return Configuration C′({U ′})
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Figure 3.1 Fundamental domains for SU(3) and G2 and its projection to the lowest-dimensional represen-

tations for F4 and E6, as obtained with the local HMC algorithm.

3.1.1 Symplectic integration and multiple time scales

In order to assure the detailed balance condition, the integrator used in the HMC algorithm has to be time

reversible. To get a large acceptance rate, the energy should be conserved (at least to some order in the

time step δτ ). For these purposes a large class of integrators (so called symplectic integrators) exist. The

simplest possible integration scheme is the leap-frog scheme [98]. With a definition of time evolution

operators TU and TS according to

Pi(τ + δτ) = TS(δτ) Pi(τ) = Pi(τ) + δτ Ṗi(τ)

Ui(τ + δτ) = TU(δτ)Ui(τ) = exp
{

i δτ Pi(τ + 1
2
δτ)
}

Ui(τ),
(3.13)

the time evolution from τ = 0 to τ = tHMC with the leap-frog time evolution operator TLF can be written

as

T (tHMC, δτ) = TLF(δτ)
n , TLF(δτ) = TS(

1

2
δτ)TU(δτ)TS(

1

2
δτ) , n =

tHMC

δτ
. (3.14)

It is proven that this integration scheme is of order 2 in δτ , i.e. it conserves the energy up to δH ∝ δτ 2.

Although in the (l)HMC algorithm the discretization errors within the leap-frog scheme are often already

small enough, especially for theories containing fermions, a significant improvement can be achieved

by using so called minimized norm integrators. An improved second-order integrator is given by the

Sexton-Weingarten scheme [99],

TSW(δτ) = TS(
δτ

6
)TU(

δτ

2
)TS(

2δτ

3
)TU(

δτ

2
)TS(

δτ

6
). (3.15)
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A fourth order integrator is given by [100]

T4(δτ) =TS(ρδτ)TU(λδτ)TS(θδτ)TU((1 − 2λ)
δτ

2
)TS((1 − 2(θ + ρ))δτ)×

× TU((1 − 2λ)
δτ

2
)TS(θδτ)TU(λδτ)TS(ρδτ),

(3.16)

with ρ = 0.1786178958448091, θ = 0.06626458266981843 and λ = 0.7123418310626056. Higher or-

der integrators are constructed in [101]. Further improvement can be achieved by integration on multiple

time scales [102]. For this purpose an arbitrary integrator Ts (here s stands for the integration scheme)

is written as a function of the basic time evolution operators TS and TU and the integration step size δτ ,

Ts = Ts(TS, TU , δτ). If the action can be written as a sum of contributions Sj, i.e. S =
∑

j

Sj, then

multiple time scale integration can be defined by the recursion relation

T j
sj
(TSj

, TU , δτj) = T j
sj
(TSj

, [T j−1
sj−1

(TSj−1
, TU , δτj/nj) ]nj , δτj), (3.17)

where Sj denotes the subset of the action that should be taken into account in the computation of the

‘force’ on the j-th time scale with step size δτj. An example of a two time scale integration often used

in this work is the combination of the Sexton-Weingarten scheme with the leap-frog scheme,

T (δτ) =TS0(
δτ

2
)TSW(TS1 , TU , δτ)TS0(

δτ

2
)

=TS0(
δτ

2
)TS1(

δτ

6
)TU(

δτ

2
)TS1(

2δτ

3
)TU(

δτ

2
)TS1(

δτ

6
)TS0(

δτ

2
).

(3.18)

Here, the ‘force’ according to S1 has to be calculated twice as often as the ‘force’ belonging to S0.

Another scheme often used is the combination of a fourth order integrator with the Sexton-Weingarten

scheme or with the simple leap-frog scheme. Usually, multiple-time-scale integration is efficient if parts

of the action with large contribution to the HMC ‘force’ are cheap in computation time.

3.1.2 Computation of the exponential map

In pure gauge theories, the most time-consuming step in the lHMC algorithm is the computation of

the exponential map g 7→ G. Although there is no need to calculate the exponential map exactly, the

approximation used in the symplectic integrator has to respect time reversibility. For the different Lie

groups discussed in this work, different strategies to obtain the most efficient algorithm are used.

The exponential map for SU(2) and SU(3) can be computed exactly with the Cayley-Hamilton

theorem and exact expressions for the needed eigenvalues in the Lie algebra. For SU(2), for instance,

the exponential map is given by

exp (iP) = exp (ipaT
a) = cos(r)1+ i

sin(r)

r
P , r =

√
papa. (3.19)
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The exponential map of G2 For an efficient and fast computation of the exponential map of G2 the

real embedding of the SU(3) representation 3 ⊕ 3̄ into G2, given by

V(W) = Ω†







1 0 0

0 W 0

0 0 W∗






Ω ∈ G2 with W ∈ SU(3), (3.20)

is used. One can choose the unitary matrix Ω to have block diagonal form with Ω11 = 1. A possible

choice for Ω is

Ω =

(

1 0

0 V Q

)

with Q =























0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0























, V =
1√
2

(

1 i

i 1

)

⊗ 13. (3.21)

Every element U of G2 can, according to (2.4) and (2.5), be factorized as

U = S · V(W) with S ∈ G2/SU(3). (3.22)

For a given time-step δτ in the molecular dynamics this factorization will be expressed in terms of the

Lie algebra elements with the help of the exponential maps,

exp {δτ u} = exp {δτ s} · exp {δτ v} with generators u ∈ g2, v ∈ V∗(su(3)), (3.23)

fulfilling the commutation relations

[ v, v′ ] = v′′, [ v, s ] = s′, and [ s, s′ ] = v′ + s′′. (3.24)

The generators s are orthogonal to the generators of the really embedded SU(3) subgroup. To simplify

the notation, the time step δτ is absorbed in the Lie algebra elements. The last exponential map in

(3.23) can be calculated with the help of the embedding (3.20) and the exponential map for SU(3),

W = exp(w), which follows from the Cayley-Hamilton theorem for SU(3) generators, see [103]. The

result can be expressed in terms of the imaginary eigenvalues w1, w2, w3 of w and the differences δ1 =

w2 − w3, δ2 = w3 − w1 and δ3 = w1 − w2 by

W = exp(w) = − 1

δ1δ2δ3

(

α11+ αww + αw2w2,
)

(3.25)

with expansion coefficients

α1 =

3
∑

i=1

δiwi+1wi+2e
wi, αw =

3
∑

i=1

δiwie
wi, αw2 =

3
∑

i=1

δie
wi , (3.26)

wherein one identifies w3+i and wi. For the generators {u1, . . . , u14} of G2 the real representation,

given in [104], is used. The su(3) subalgebra formed by the elements {u1, . . . , u8} generates the really
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embedded 3 ⊕ 3̄ of SU(3) and the remaining generators {u9, . . . , u14} generate the coset elements S in

the factorization (3.22). With this choice for the generators the real embedding (3.20) reads

V(W) =

(

1 0

0 V⊥

)

, V⊥ =























a33 −b33 a32 −b32 −b31 a31

b33 a33 b32 a32 a31 b31

a23 −b23 a22 −b22 −b21 a21

b23 a23 b22 a22 a21 b21

b13 a13 b12 a12 a11 b11

a13 −b13 a12 −b12 −b11 a11























, (3.27)

where the entries are the real and imaginary parts of the elements of the SU(3) matrix,Wij = aij + i bij.

Finally, to parametrize the elements of the coset space the remaining exponential map,

S = exp {s} with s =
6
∑

i=1

siu8+i , (3.28)

is calculated. The result depends on the real parameter σ = ‖~s ‖ and the 6-dimensional unit-vector

ŝ = ~s/‖~s ‖. In a 1 × 6-block notation the map takes the form

S =

(

cos 2σ − sin 2σ ŝT

sin 2σ ŝ S⊥

)

(3.29)

with 6-dimensional matrix

S⊥ = cosσ 1+ sin σ ŝ⊥ + (cos 2σ − cosσ) ŝŝT + (1 − cosσ)v̂v̂T . (3.30)

The matrix ŝ⊥ is the 6×6 right-lower block of s in (3.28). The unit-vector v̂T = (ŝ2,−ŝ1, ŝ4,−ŝ3,−ŝ6, ŝ5)

defining the last projector in (3.30) is orthogonal to the unit-vector ŝ defining the projector ŝŝT. In the nu-

merical integration the exponential map for elements u in g2 is needed. They are related to the generators

used in the factorization by the Baker-Campbell-Hausdorff formula,

δτ u = δτ (s + v) +
1

2
δτ 2 [ s, v ] + · · · (3.31)

Depending on the order of the symplectic integrator, this relation for s and v must be solved up to

the corresponding order in δτ . For a second-order integrator, mostly used in this work, this can be

done analytically [105], since the commutator [s, v] does not contain any contribution of the subalgebra

su(3). The integrator used in the (l)HMC algorithm must be time reversible. It can be verified that

time reversibility holds to every order in this expansion. To summarize, for a second-order integrator

the approximation (3.31) is used in the exponentiation needed to calculate V and S. This approximation

leads to a violation of energy conservation, which is of the same order as the violation one finds with

a second-order integrator. In comparison to the exponentiation via the usual spectral decomposition,

the method based on the factorization (3.22) is more than ten times faster. It is also much faster than

computing the exponential map for SO(7) (and therefore the exponential map for G2) via the Cayley-

Hamilton theorem.
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The exponential map of SO(N) is calculated with the Caley-Hamilton theorem. The needed eigen-

values are obtained numerically.

The exponential map of F (4), E(6) and other Lie groups In the case of larger matrices, a

series expansion of the exponential map is more efficient, since for small δτ it converges rather fast to

machine precision. Fig. 3.2 shows the convergence for a randomly chosen Lie algebra element (Gaussian

distributed), where r(n) =

∣

∣

∣

∣

∣

∣

∣

∣

exp (iδτP) −
n
∑

k=0

(iδτP)k

k!

∣

∣

∣

∣

∣

∣

∣

∣

. In the simulations of F (4) and E(6) gauge

theory, the first 15 terms (δτ = 0.1) in the expansion of the exponential map are used.
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Figure 3.2 Convergence of the exponential map for δτ = 0.10 (left panel) and δτ = 0.25 (right panel).

3.1.3 Non-linear O(N) sigma models

The lattice action of the O(N) symmetric non-linear sigma model in d dimensions is given by

S[Φ] = κ
∑

〈xy〉

ΦT
x · Φy, ΦT

x · Φx = 1, Φx ∈ SN−1 ⊂ RN , (3.32)

where the sum is over all nearest neighbour pairs 〈xy〉 on the lattice andΦ is anN-component normalized

real scalar field. To update the normalized field Φ one has to get rid of the explicit non-linear constraint

equation. Therefore, Φ is written as

Φx = OxΦ0 with Ox ∈ SO(N) (3.33)

with constant Φ0. The change of variables Φx → Ox converts the induced measure on SN−1 ⊂ RN into

the Haar measure of SO(N). Then the ‘force’ is given by

Fx = κΦx

(

∑

y:x

Φy

)T

, (3.34)

where the sum extends over all nearest neighbours y of x. This expression is later used in the simulations

of the G2 gauge Higgs model at infinitely large lattice gauge coupling where all gauge fields are frozen

out. For O(N) non-linear sigma models also a cluster algorithm exists [106].
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3.1.4 Pure gauge theories

In the case of pure Yang-Mills theory the standard Wilson lattice action [14],

S[U ] =
β

2Nc

∑

�

(

2Nc − tr(U� − U †
�
)
)

, β =
2Nc

ag2
, (3.35)

is used. The sum extends over all plaquette variables U�, the path ordered product of the fundamental

link variables Ux,µ around a plaquette on the lattice. The ‘force’ is then given by

Fx,µ =
β

2Nc

(

Ux,µRx,µ − R†
x,µU †

x,µ

)

, (3.36)

where the staple variable Rx,µ is the sum of triple products of elementary link variables closing to a

plaquette with the chosen link variable. According to [107], the cost for the local hybrid Monte-Carlo

(lHMC) is about three times more than for a combined heat-bath and overrelaxation (HOR) scheme

for the case of SU(Nc) gluodynamics. For a large range of Wilson couplings β in the simulations, an

integration length of T = 0.75 with a step size of δτ = 0.25 is optimal for minimal autocorrelation

times and a small number of thermalization sweeps. Acceptance rates of more than 90% are reached. In

the case of gauge theories coupled to fundamental or adjoint fermions the tree-level improved Symanzik

gauge action [108,109] is used, given as a special choice of constants ci in the more general gauge action

S[U ] =
β

Nc

{

c0
∑

�

tr (1 − ReU�) + c1
∑

��

tr (1 − ReU��) + c2
∑

���

tr (1 − ReU���)

}

. (3.37)

Here, U� stands for the plaquette variable, U�� for a rectangular path around two plaquettes and U���

for a shape around three plaquettes. Possible choices for the coefficients are c0 = 1 and c1 = c2 = 0 for

the Wilson action or c0 = 1 − 8c1, c1 = −1/2, and c2 = 0 for the tree-level improved Symanzik gauge

action [110,111]. The HMC ‘force’ is then given by (3.36), but with a different staple variable, obtained

from (3.37) and (3.10).

3.1.5 The G2 gauge Higgs model

The lattice action of the G2 gauge Higgs model is given by

S[U ,Φ] = β
∑

�

(

1 − 1

7
trReU�

)

− κ
∑

x,µ

ΦT
x+µ̂ Ux,µΦx, ΦT

x · Φx = 1, (3.38)

where Φ is a 7-component real scalar field. The HMC ‘force’ reads

Fx,µ =
β

14

(

Ux,µRx,µ −R†
x,µU †

x,µ

)

+ κ (Ux,µΦx)Φ
T
x+µ, Gx = κΦx

(

∑

y:x

Uxy Φy

)T

, (3.39)

where the last sum extends over all nearest neighbours y of x. This leads to the equations of motion for

the gauge and Higgs sector,

Ṗx,µ = Fx,µ

∣

∣

g2
, Q̇x = Gx

∣

∣

so(7)
. (3.40)

where P are the conjugate momenta to the link variables U and Q are conjugate momenta to the SO(7)

rotations O.
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3.2 The rHMC algorithm for fermions

For QCD and supersymmetric gauge theories the global version of the HMC algorithm is used together

with a rational approximation for the inverse of the fermion matrix (rHMC) [112]. In the case of Dirac

fermions the path integral is given by a

ZD =

∫

DΨDΨ̄DU exp{−S[U ] − tr Ψ̄D[U ]Ψ} = N
∫

DU det (D[U ]) exp{−S[U ]}, (3.41)

where D is the fermion operator. For Majorana fermions the integration over the fermionic variables

yields the Pfaffian instead of the determinant of D (here tr λ̄D[U ]λ = tr λT (−C−1D[U ])λ is used)

ZM =

∫

DλDU exp{−S[U ] − tr λ̄D[U ]λ} = N
∫

DU Pf (CD[U ]) exp{−S[U ]}. (3.42)

Up to a phase the Pfaffian is the square root of the determinant and C is the charge conjugation matrix.

Therefore, in both cases the partition function can be written as

Z = N
∫

DU sign(D)
∣

∣

∣
(detM)

1
n

∣

∣

∣
exp{−S[U ]}, (3.43)

where M = D†D is a Hermitian and positive operator. For Dirac fermions one has n = 2 while for

Majorana fermions n = 4. The sign-function can in general be a complex phase, leading to the fermion

sign problem [113]. Standard Monte-Carlo techniques are only applicable if the probability measure is

positive. Therefore, in the following discussion of the rHMC algorithm, it is assumed that signD = 1.

Introducing NPF complex-valued pseudofermions φ [114], one can write the partition function as

Z =

∫

DUDφ exp{−SB[U , φ]} with SB[U , φ] = S[U ] + tr

NPF
∑

p=1

φ†
pM

−qφp, (3.44)

where SB is the bosonic action and q is given by q = 1
nNPF

. In the rHMC dynamicsM−q is replaced by

a rational approximation according to

r(x) = x−q ≈ α0 +

NR
∑

r=1

αr

x+ βr
. (3.45)

For any rational number q the coefficients α and β can be calculated with the Remez algorithm [115].

The numerical accuracy of the approximation in the interval x ∈ {xMin, xMax} = I depends on the order

NR of the used polynomial and the numerical accuracy of the coefficients α and β. In the following

rS(x), S = {I, ǫ, q} denotes a rational approximation of the function x−q with ǫ = sup
x∈I

||r(x) − x−q||.
In order to obtain an exact update algorithm, the bosonic action is written in the form

SB[U , φ] =S[U ] + Smd(M) + Sacc(M) + Srw(M), (3.46)

where the different contributions are given by

Smd(M) = tr

NPF
∑

p=1

φ†
prSmd

(M)φp , Sacc(M) = tr

NPF
∑

p=1

φ†
p (rSacc

(M) − rSmd
(M))φp,

and Srw(M) = tr

NPF
∑

p=1

φ†
p

(

M−q − rSacc
(M)

)

φp .

(3.47)

aBelow, tr denotes the integral over d-dimensional spacetime and the trace over all internal degrees of freedom.
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Algorithm 3 rHMC algorithm

Require: Configuration C({U}), N degrees of freedom, symplectic integrator I(τ), rational approxi-

mations rSpf
, rSacc

, rSmd
, NPF pseudofermion fields φi

1: for i = 1 to N do

2: Draw momentum Pi Gaussian distributed

3: end for

4: for i = 1 to NPF do

5: Draw complex vector ηi Gaussian distributed

6: Calculate φi = rSpf
ηi

7: end for

8: for τ = 0 to tHMC step δτ do

9: Integrate the equations of motion for {P} and {U} with integrator I(τ) and use the rational

approximation rSmd
for the inversion of the fermion matrixM .

10: end for

11: Accept the new configuration with probability p = min (1, exp{H(C) −H(C′)}) and use rSacc
for

the inversion of the fermion matrixM .

12: return Configuration C′({U ′})

The sum S[U ] + Smd(M) is used in the calculation of the HMC molecular dynamics, the sum S[U ] +

Smd(M)+Sacc(M) in the Metropolis acceptance step of the HMC algorithm and the last term Srw(M) in

a reweighting step to assure an exact update algorithm. In practice, the reweighting step is not necessary

since it is more efficient to choose rSacc
such that it approximates M−q up to machine precision. For

the generation of the pseudofermion fields from a Gaussian distributed vector the square root of M q

is needed, too. This is achieved by an approximation rSpf
(M) ≈ M q/2. To obtain an exact update

algorithm, in this work the following choices are made,

rSpf
(M) = {I ⊇ Σ(M), 10−16,−q/2} and rSacc

(M) = {I ⊇ Σ(M), 10−16, q}, (3.48)

where Σ(M) = {λmin, λmax} is the spectral range of the Hermitian operatorM . In most of the simula-

tions, an approximation for the pseudofermion and acceptance step approximation of degree NR = 25 is

used in an interval I = {10−7, 10}. The rHMC algorithm is shown as pseudocode in Alg. 3. The free

parameters left to optimize the algorithm are the integration scheme used in the molecular dynamics and

the degree and approximation range of the molecular dynamics rational approximation rSmd
(M). The

inversions of the matrixM in the rational approximations are calculated with a multiple-mass conjugate

gradient solver (MMCG) [116] which is able to compute all terms of (3.45) within a single inversion of

the fermion matrixM .

3.2.1 Optimization of the rHMC algorithm

The efficiency of the rHMC algorithm depends crucially on the lowest eigenvalues, i.e. the condition

number κ ≈ λmax/λmin, of the Hermitian operator used in the rational approximation. In the left panel
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Figure 3.3 Left panel: Histogram (absolute frequency, logarithmic) of the lowest eigenvalues of the Hermi-

tian operator M for three different ensembles in the later discussed supersymmetric Yang-Mills theory. Right

panel: Corresponding average force contribution from the r-th term in the rational approximation, sorted by

increasing βr.

of Fig 3.3 a histogram of the lowest eigenvalues of the operatorM = D†D for three different ensembles

is shown. The number of total inversion steps for a given precision δmax (the inversion precision for the

lowest mass, i.e. the lowest value of βr) in the MMCG solver increases significantly with decreasing

values of the constants βr in the rational approximation. Fortunately, the force contribution in the rHMC

algorithm is for small constants also significantly lower than for larger constants (the reason is that αr

decreases also with decreasing βr). Only in the case of very small eigenvalues, the force from these low-

est eigenmodes becomes more important, see right panel of Fig. 3.3. This feature of the rHMC algorithm

can now be used to optimize the algorithm with respect to computation time. Two different strategies are

useful: The first is to integrate the terms with smaller βr on a coarser time scale than the terms with larger

βr, i.e. larger force. The second is to increase the lower bound of the approximation interval, resulting

in larger values of βr and a possibly smaller degree of the rational function used for the molecular dy-

namics. This reduces the number of CG-steps for a given inversion precision δmax significantly. Further

optimization can be achieved by increasing the precision δmax used for the inversion, leading also to a

significantly reduced number of CG-steps. The best choice of course depends on the given problem and

is in general a mixture of both strategies. Table 3.1 shows the used parameters for the three ensembles

in Fig 3.3 and the resulting computation time and CG-steps. These parameters are a common choice

used for most simulation results presented in this work. In the fourth column an example from a realistic

simulation ofG2-QCD is shown. For all test ensembles, the force contribution from the bosonic action is

much larger than the contribution from the fermion determinant. Therefore a two-time-scale integrator

was used with a fourth order integrator for the bosonic action and a second-order integrator for the ra-

tional approximation ofM . This setup, or the improved second-order integrator, is used for most of the

simulations involving fermions. Further optimization used in this work involves even-odd precondition-

ing [117] as well as an exact computation of a few lowest eigenvalues in the MMCG solver. According

to [118], the optimal number of pseudofermions is roughly given by the condition number of the fermion

22



Ensemble 1 Ensemble 2 Ensemble 3 G2-QCD

Matrix dimension 1536 1536 1536 1835008

Degree NR rSpf
, rSacc

/ rSmd
25 / 10 25 / 10 25 / 10 25 / 10

Power q rSpf
/ rSacc

/ rSmd
−1

8
/ 1

4
/ 1

4
−1

8
/ 1

4
/ 1

4
−1

8
/ 1

4
/ 1

4
−1

4
/ 1

2
/ 1

2

Interval I rSpf
, rSacc

{10−6, 10} {10−6, 10} {10−6, 10} {10−5, 2000}
Interval I rSmd

{10−3, 10} {10−3, 10} {10−3, 10} {10−4, 2000}
Av. CG-steps / δmax rSpf

102 / 10−16 126 / 10−16 146 / 10−16 17270 / 10−16

Av. CG-steps / δmax rSacc
101 / 10−16 125 / 10−16 145 / 10−16 17020 / 10−16

Av. CG-steps / δmax rSmd
46 / 10−2 61 / 10−2 82 / 10−2 2060 / 10−2

Total CG-steps / config 663 861 1111 116690

HMC acceptance 0.99 0.98 0.98 0.33

Table 3.1 rHMC simulation parameters for three different test ensembles and a realistic ensemble (G2-

QCD, lattice 164, β = 1.00, µ = 1.00). For the test ensembles the HMC parameters are tHMC = 0.6 and

NHMC = 10 and a leap-frog integrator. For the G2-QCD ensemble is tHMC = 0.6 and NHMC = 20 and an

improved second-order integrator (2 force calculations per time step) is used. This ensemble represents the

worst case considered in this work.

matrix, Nopt

PF ≈ 1
n

lnκ(M). In the G2-QCD simulations only one pseudofermion is used, while in the

case of the investigated supersymmetric Yang-Mills theories more pseudofermions are favourable.

3.2.2 Fermionic correlation functions

The generating functional for n-point correlation functions of Majorana fermions λ is given by

Z[J ] =

∫

DUDλ exp
(

−SB − SF − tr JTλ
)

with SF = −1

2
trλTC−1Dλ = −1

2
trλTD̃λ. (3.49)

With Seff = SB − log Pf[D̃] the n-point correlation function is computed as

〈T λα1 . . . λαn
〉 =

(

δn

δJα1 . . . δJαn

Z[J ]

Z[0]

)

J=0

=

〈

δn

δJα1 . . . δJαn

exp

(

1

2
tr JT∆̃J

)〉

eff,J=0

, (3.50)

where the indices α and β are a short notation for spacetime, spinor, colour and flavour indices, i. e.

α = (x, i, a, n), and ∆̃ = D̃−1 is the inverse fermion matrix, i.e. the propagator. Here, 〈. . .〉eff denotes
averaging with respect to e−Seff . The two-point function reads

〈Tλα1λα2〉 =
〈

∆̃α1α2

〉

eff
, (3.51)

while the four-point function is given by

〈Tλα1λα2λα3λα4〉 =

〈

λα1λα2λα3λα4 + λα1λα2λα3λα4 + λα1λα2λα3λα4

〉

=
〈

∆̃α1α2∆̃α3α4 + ∆̃α1α4∆̃α2α3 − ∆̃α1α3∆̃α2α4

〉

eff
.

(3.52)
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To compute masses of particles, correlation functions of operators like Oα,β(x) = λα,xλβ,x are needed.

According to (3.52), they are given by

Cα,β,γ,δ(x, y) = 〈Oα,β(x)Oγ,δ(y)〉 =
〈

∆̃xx
αβ∆̃yy

γδ + ∆̃xy
αδ∆̃

xy
βγ − ∆̃xy

αγ∆̃
xy
βδ

〉

eff
(3.53)

A graphical representation of the four-point correlation function is shown in Fig. 3.4. For the com-

− +Cα,β,γ,δ(x, y)

〈

x= αβ
αγ

δβ

αδ

γβ

γδ x y

〉

eff

x yy

Figure 3.4 The fermionic four-point correlation function consists of a disconnected part (first diagram) and

a connected contribution (last two diagrams).

putation of the connected part of the correlation function, the fermion matrix is inverted on a point-like

source in space and time at a randomly chosen lattice point y, leading to the point-to-all propagator. Here,

Nc × Ns (number of colours times dimension of the representation of the Clifford algebra) inversions

of the fermion matrix with the CG solver have to be made. To improve the overlap with the vacuum

state, Jacobi smearing for the source and sink can be applied [119, 120]. The disconnected diagrams,

and for instance observables like the chiral condensate or the quark number density, are calculated with

the stochastic estimator technique (SET) [121, 122]. Here every element of the fermion propagator is

calculated as an ensemble average over a noisy estimator η,

∆̃ij = lim
Nest→∞

〈

η†jχi

〉

with χ = ∆̃η and lim
Nest→∞

〈

η†i ηj

〉

= δij . (3.54)

In practice, the ensemble average is built over a finite number of Nest noisy estimators, where the source

η is given by Gaussian or Z(2) noise, satisfying the last equation in (3.54). The sink is again calculated

with a CG solver, making a total ofNest matrix inversions to obtain an estimator for every matrix element

of the propagator. In the case of local lattice averaged observables like condensates, a number of Nest ≈
10 estimators is sufficient to get a reliable result. For the disconnected part of four-point correlation

functions more estimators are necessary.

3.3 Conclusions

In the present chapter Monte-Carlo algorithms used to simulate pure gauge theories, as well as gauge

theories coupled to fundamental and adjoint fermions, have been discussed. The simulations, presented

in the next chapters, have been carried out on the clusters Doppler and Omega at the TPI in Jena as

well as on the LOEWE cluster at the Center for Scientific Computing in Frankfurt. To obtain the re-

sults, in total more than 20 million CPU hours were needed, mostly for the simulations of G2-QCD and

supersymmetric gauge theories at the LOEWE cluster.
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4 Exceptional confinement

Although known for more than 30 years, the confinement problem is one of the most challenging and

still unsolved problems in particle physics [123]. In experiments quarks and gluons do not show up

as asymptotic states of strong interaction. Only colourless states, colour singlets, can be observed at

low temperatures. The theory of strong interaction is quantumchromodynamics (QCD), given by the

continuum action in Minkowski spacetime,

S[A,ψ] =

∫

d4x

(

−1

4
trFµνF

µν + ψ̄
(

i /D +m
)

ψ

)

. (4.1)

The microscopic degrees of freedom are the 8 massless gluonsAµ in the adjoint representation of SU(3)

and 6 flavours of massive quarks Ψ in the fundamental representation of SU(3). At low temperatures

and densities these constituents are confined in mesons, baryons and glueballs. It is believed that the

confining mechanism is already a property of pure gluodynamics, described by the Yang-Mills action

SYM[A] = −1

4

∫

d4x trFµνF
µν . (4.2)

In the following not only Yang-Mills theories with gauge group SU(3) are discussed, but also with

different gauge groups G at finite temperature. For the Euclidean theory, temperature T is introduced via

periodic boundary conditions for the gauge fields in temporal direction. The Yang-Mills action is then

invariant under local gauge transformations

Aµ 7→ ΩAµΩ−1 − 1

g
(∂µΩ) Ω−1 , Ω ∈ G, (4.3)

as well as under global centre transformations arising from the twisted boundary conditions of the gauge

fields on a torus [124]. For a gauge group with non-trivial centre the trace of the Polyakov loop in

representation R

PR(~x) = trR P(~x), P(~x) =
1

Nc

(

exp i

∫ βT

0

A0(τ, ~x) dτ

)

, βT =
1

T
, (4.4)

transforms under centre transformations like PR(~x) 7→ zk PR(~x), where z ∈ Z(G) is an element of

the centre of the gauge group and k is the N-ality of the representation R. In a pure gauge theory the

only dynamical degrees of freedom are gluons in the adjoint centre-blind representation. Therefore, the

Polyakov loop in any representation with non-zero N-ality is an order parameter for the spontaneous

breaking of centre symmetry. On the other hand the vacuum expectation value of the Polyakov loop is

related to the difference in free energy FR due to an infinitely heavy test quark in the gluonic bath,

〈PR〉 ∝ e−βT FR . (4.5)

In a confined phase the free energy of a test quark is infinite, while it takes a finite value in the decon-

fined phase. Consequently, in the confined phase centre symmetry is unbroken, while it is spontaneously
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group G Ar Br Cr Dr, r even Dr, r odd E6 E7 E8 F4 G2

centre Z Z(r + 1) Z(2) Z(2) Z(2) × Z(2) Z(4) Z(3) Z(2) 1 1 1
Table 4.1 Centres Z of simple Lie groups.

broken in the deconfined phase. The Polyakov loop in every representation with non-zero N-ality is an

order parameter for the transition from the confined to the unconfined phase, such that 〈PR〉 6= 0 in the

unconfined high-temperature phase and 〈PR〉 = 0 in the confined low-temperature phase. Below the

critical temperature P(~x) is uniformly distributed over the group manifold. Above the critical tempera-

ture it lies in the neighborhood of a centre element. On a microscopic scale confinement means that the

charges of test quarks in representations with non-zero N-ality cannot be screened and the inter-quark

potential is linearly rising up to arbitrary long distances. In representations with zero N-ality, as for

example the colour singlet or adjoint representation, the charges can be screened by gluons. At some

distance, when the energy stored in the flux tube between the test charges is large enough to pop gluons

out of the vacuum, the potential will become flat.

With matter in the fundamental representation, as for example QCD, the centre symmetry is explic-

itly broken. For all temperatures PR has a non-zero expectation value and points in the direction of a

particular centre element. Thus in the strict sense the Polyakov loop ceases to be an order parameter for

the centre symmetry. On a microscopic scale this is attributed to the breaking of the string, connecting

a static ‘quark anti-quark pair’, when trying to separate the static charges [123]. It breaks via the spon-

taneous creation of dynamical quark anti-quark pairs which in turn screen the individual static charges.

In every representation R of the gauge group the potential becomes flat at larger asymptotic distances.

But it is still expected that QCD confines colour in the sense that charges of test quarks are screened by

dynamical light quarks. This also means that below the string breaking distance the inter-quark potential

is still linearly rising.

Although in pure gauge theories confinement and deconfinement are related to the spontaneous break-

ing of centre symmetry, colour confinement survives if the centre symmetry is explicitly broken. Thus,

to clarify the relevance of the centre symmetry for confinement, it suggests itself to compare confinement

in gauge groups with different centres. From Tab. 4.1, taken from [125], one reads off the centres of all

simple Lie groups. For gauge groups with trivial centres like G2, F4 or E8, the Polyakov loop ceases

to be an order parameter even in the absence of dynamical matter, since the strings connecting external

charges can break via the spontaneous creation of dynamical gluons [58]. Again, on a microscopic scale

confinement is seen as a linearly rising inter-quark potential at intermediate distances and string breaking

in every representation at larger distances. Similar to QCD, one characterizes confinement as the absence

of free colour charges in the physical spectrum [104, 126]. In this sense pure gauge theories with a triv-

ial centre share an important feature with QCD and may give interesting insights into the confinement

mechanism.

In this chapter it is confirmed that G2 Yang-Mills theory deconfines at a first order phase transition

and confinement for different exceptional gauge groups in three spacetime dimensions is investigated.
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G2 SU(3)

quark / antiquark (7) / (7) (3) / (3̄) fermion

gluon (14) (8) boson

meson / diquark (7) ⊗ (7) / (7) ⊗ (7) (3) ⊗ (3̄) / - boson

(fermionic) baryon (7) ⊗ (7) ⊗ (7) (3) ⊗ (3) ⊗ (3) fermion

glueballs (14) ⊗ (14), (14) ⊗ (14) ⊗ (14) (8) ⊗ (8), (8) ⊗ (8) ⊗ (8) boson

hybrid (7) ⊗ (14) ⊗ (14) ⊗ (14) - fermion

Table 4.2 Fundamental particles and colour singlet bound states in G2 compared to SU(3).

4.1 The deconfinement transition in G2 Yang-Mills

The smallest simple and simply connected Lie group with a trivial centre is the 14 dimensional excep-

tional Lie group G2. This is one reason why G2 gauge theory has been investigated by the group in

Bern in a series of papers [57, 58, 127]. Quarks and anti-quarks transform under the fundamental 7-

dimensional representation. All representations of G2 are real, and therefore it cannot be distinguished

between infinitely heavy test quarks or anti-quarks by their transformation behaviour under the gauge

group. Both have the same colour charge. This is in contrast to SU(Nc) gauge theories where quarks

and anti-quarks transform under the fundamental and anti-fundamental representation. ForNc > 2 these

representations are inequivalent, which has important consequences for the lattice formulation of QCD

based on an arbitrary gauge group. This important difference between G2 and SU(3) gauge theories

will be discussed later in chapter 7. Since the centre of G2 is trivial, these fundamental charges can be

screened by at least three gluons in the adjoint 14-dimensional representation,

(7) ⊗ (14) ⊗ (14) ⊗ (14) = (1) ⊕ · · · . (4.6)

From the reduction of tensor products (2.14) into irreducible representations the colour singlet bound

states that are the possibly dominant degrees of freedom in the confined phase can be taken. Tab. 4.2

compares fundamental particles and possible colour singlet bound states of G2 and SU(3) gauge theory.

In both cases the spectrum should contain fermionic baryons, bosonic mesons and glueballs. Addition-

ally, G2 gauge theory has diquarks and various bound states of gluons and quarks which are not present

in SU(3).

A very common argument for the order of a phase transition is the size of the broken subgroup of the

underlying symmetry. According to Elitzur’s theorem [128], a local symmetry cannot spontaneously be

broken and therefore the size of the global symmetry group is important. For SU(2) gluodynamics with

centre Z(2) one finds a second-order phase transition, while SU(3) with centre Z(3) possesses a first

order deconfinement phase transition. Although there is no symmetry reason for a deconfinement phase

transition inG2 gluodynamics, it has been conjectured that a first order deconfinement transition without

order parameter exists [58,129]. Arguments for a first order transition are the large mismatch of degrees

of freedom between the confinement phase and the deconfinement phase. In this sense the size of the

underlying Lie algebra matters. In the following the deconfinement phase transition is investigated on

27



0.0

0.1

0.2

0.3

0.4

0.5

9.70 9.75 9.80 9.85 9.90

〈P7〉

β

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

P7

50
55
60
65
70
75
80

β = 9.50

Figure 4.1 Left panel: Polyakov loop expectation values at the finite temperature confinement-

deconfinement transition on a 163 × 6 lattice. Right panel: Histograms of the Polyakov loop in the vicinity of

the phase transition point βcrit = 9.765, pointing to a first order deconfinement transition.
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Figure 4.2 Scatter plots of the Polyakov loop in the fundamental region of G2 at β = 9.750, β = 9.765 and

β = 9.785.

the lattice.

The simulations have been performed with the described lHMC algorithm and the standard Wilson

gauge action (3.35). The Polyakov loop serves as approximate order parameter, separating the confined

from the unconfined phase with a rapid change at the transition or crossover. This rapid change is

depicted in Fig. 4.1 (left panel), which shows the expectation value of P for G2 gluodynamics as a

function of the inverse gauge coupling β = 7/g2. Fig. 4.1 (right panel) shows histograms of the Polyakov

loop in the vicinity of the critical coupling βc. The double peak structure points to a first order transition,

which is in agreement with earlier results in [58, 129]. In chapter 6 also a finite size scaling analysis

is performed, which confirms the result. Fig. 4.2 shows the distribution of the Polyakov loop for three

different temperatures in the fundamental region of G2. For a temperature below the phase transition

temperature, the Polyakov loop is almost distributed uniformly according to the Haar measure ofG2 (left

panel). At the phase transition temperature the double peak structure is clearly visible (centre panel) and

above the phase transition the Polyakov loop tends towards the unit element of the gauge group (right

panel).
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group SU(2) SU(3) SU(4) G2 F4 E6 E7 Sp(2) Sp(3)

Cartan name A(1) A(2) A(3) G2 F4 E6 E7 C(2) C(3)

rank 1 2 3 2 4 6 7 2 3

dimension algebra 3 8 15 14 52 78 133 10 21

dimension def. rep. 2 3 4 7 26 27 56 4 6

centre Z(2) Z(3) Z(4) 1 1 Z(3) Z(2) Z(2) Z(2)

order phase transition 3d 2 2 ? ? 1 1 ? 2 1

order phase transition 4d 2 1 1 1 1 1 1 1 1

Table 4.3 The rank, dimension of the algebra, dimension of the defining representation, the centre group

and the order of the deconfinement phase transition for different Lie groups are shown.

4.2 The deconfinement transition in three dimensions

Since in chapter 5 gluodynamics in three dimensions at zero temperature is studied, the finite temperature

phase transition in three dimensions is also investigated and compared to various other gauge groups.

Table 4.3 compares the rank, the dimension of the defining and adjoint representation as well as the

centre of the gauge groups SU(2), SU(3), SU(4), G2, F4, E6, Sp(2) and Sp(3). In the last two lines the

order of the phase transition in three and four spacetime dimensions is shown, see also [127,130]. While

in four dimensions all gauge theories except SU(2) Yang-Mills possess a first order phase transition, the

situation in three dimensions is quite different. The transition for SU(2), SU(3) and Sp(2) gauge theory

is of second order. In the case of SU(4) the transition is of second order or a very weak first order phase

transition while for larger groups the transition is first order. Although the centre of G2 is much smaller

than the centre of SU(4), the groups are of comparable size, i.e. dimension 14 for G2 and dimension 15

for SU(4). If the phase transition for G2 would be first order, this may be a hint that the transition of

SU(4) is also first order. In Fig. 4.3 (left panel) the plaquette density 〈OP 〉 for the gauge groups SU(2),

SU(3), G2, SU(4), F4 and E6 on a 242 × 6 lattice are compared as a function of β/β∗, where β∗ is the

critical coupling at the phase transition point. Although the plaquette density is not a renormalization

group invariant quantity and therefore the values between different groups are not directly comparable,

an ordering of the plaquette value with the size of the algebra at the phase transition point is seen. From

the plaquette variable it is hard to distinguish between G2 and SU(4) gauge theory. In Fig. 4.3 (right

panel) the Polyakov loop in the defining representation is shown as a function of β normalized with the

critical coupling. For SU(2) and SU(3) the transition is second order. In the case of F4 and E6 gauge

theory a jump of the Polyakov loop points to a first order phase transition. Again, G2 and SU(4) gauge

theory are comparable. Finally, in Fig. 4.4 the Polyakov loop distribution in the vicinity of the phase

transition point is shown for the gauge group G2, F4 and E6 in the fundamental region. In the case of F4

and E6 the coexistence of confined and deconfined phase clearly point to a first order phase transition.

For E6 also the Z(3) centre symmetry in the chosen projection into the fundamental region is visible. In

the case ofG2 the situation is less clear. In order to decide whether the transition is first or second order,

simulations on larger lattices as well as a finite size scaling analysis have to be performed.
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Figure 4.3 Plaquette and Polyakov loop for different gauge groups in three dimensions on a 242 × 6 lattice.
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Figure 4.4 Scatter plot of the Polyakov loop in the fundamental domain near the phase transition point.

4.3 Conclusions

In the present chapter the deconfinement phase transition of G2 Yang-Mills theory has been studied.

In agreement with earlier results, a first order phase transition without order parameter from the low

temperature confined to the high temperature deconfined phase has been found. Compared to SU(3)

gauge theory, where the deconfinement phase transition coincides with the breaking of a global Z(3)

centre symmetry, G2 gauge theory possesses a strong first order phase transition, although there is no

global symmetry that is broken. This suggests, that indeed not the size of the centre but the dimension

of the algebra, and therefore the mismatch of degrees of freedom between both phases, is important

for the order of the phase transition. This suggestion is also confirmed by results in three spacetime

dimensions, where SU(3) gauge theory possesses clearly a second order phase transition, while the

order of the phase transition for G2 is still unclear. This is very similar to the situation in SU(4) gauge

theory with algebra dimension 15 (compared to 14 for G2), where there is still an ongoing dispute

whether the transition is of first or second order [131,132]. To answer this question, it may be helpful to

further investigate G2 gauge theory in three dimensions and it’s relation to generalized continuous and

discrete spin models [78,133–135]. In the next chapterG2 Yang-Mills theory in three and four spacetime

dimensions at zero temperature is explored, to confirm the picture of exceptional confinement given here.
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5 Exceptional gluodynamics at zero

temperature

As already pointed out, confinement in G2 gauge theory refers to a linearly rising inter-quark potential

at intermediate scales and string breaking at larger asymptotic scales. In this chapter G2 gauge theory

in three and four spacetime dimensions at zero temperature is investigated. First, Casimir scaling and

string breaking in SU(Nc) gauge theories are reviewed as well as predictions from bosonic string theory.

Then algorithmic details and the computation of the inter-quark potential on the lattice are explained. In

three and four spacetime dimensions the inter-quark potential in different representations of the gauge

group is computed, to confirm the assumptions made about exceptional confinement. Finally, the results

are compared to analytical results, obtained from the dynamic of bosonic strings [136–139] as well as to

calculations in three-dimensional Yang-Mills theory based on a Hamiltonian approach [140]. The results

presented in this chapter have been published in [81].

In QCD quarks and anti-quarks can only be screened by particles with non-vanishing 3-ality, espe-

cially not by gluons. Thus, in zero-temperature gluodynamics the potential energy for two static colour

charges is linearly rising up to arbitrary large separations of the charges. The potentials for charges in a

representation R can be extracted from the two-point correlator of Polyakov loops

〈PR(0)PR(R)〉 = e−βT VR(R), (5.1)

or the expectation values of Wilson loops with temporal extent T according to

〈WR(R, T )〉 = eκR−TVR(R). (5.2)

With dynamical quarks the string should break at a characteristic length rb, due to the spontaneous

creation of quark anti-quark pairs from the energy stored in the flux tube connecting the static charges.

However, for intermediate separations r < rb, the string cannot break since there is not enough energy

stored in the flux tube.

For pure gauge theories the following qualitative behaviour of the static potential is expected: At

short distances perturbation theory applies and the interaction is dominated by gluon exchange, giving

rise to a Coulomb-like potential V ∼ −α/r, with the strength α being proportional to the value CR
of the quadratic Casimir operator in the given representation R of the charges [141]. At intermediate

distances, from the onset of confinement to the onset of colour screening at rb, the potential is expected to

be linearly rising, as V ∼ σr, and the corresponding string tension is again proportional to the quadratic

Casimir [123]. At asymptotic distance scales (partial) screening sets in, such that the string tension

typically decreases and only depends on the N-ality of the representation. In particular, for centre-blind

colour charges or gauge groups without centre, the potential flattens. The characteristic length rb where

the intermediate confinement regime turns into the asymptotic screening regime is determined by the

masses of the debris left after string breaking. The Casimir scaling hypothesis, according to which the
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string tension at intermediate scales is proportional to the quadratic Casimir of the representation [142],

is exact for two dimensional continuum and lattice gauge theories, and dimensional reduction arguments

support that it also holds in higher dimensions. Within the Hamiltonian approach to Yang-Mills theories

in 2 + 1 dimensions, the following prediction for the string tensions has been derived [143],

σR =
g4

4π

C14CR
122

, (5.3)

with a recent refinement in [140].a These analytical results directly predict Casimir scaling in three di-

mensions. In four dimensions Casimir scaling can be explained via Gaussian field correlators [144]. For

pure SU(2) and SU(3) gauge theories in three and four dimensions there is now conclusive numerical

evidence for Casimir scaling from Monte-Carlo simulations, for SU(2) in three dimensions [142, 145]

and in four dimensions [146–149] as well as for SU(3) in four dimensions at finite temperature [150]

and zero temperature [151–154]. In particular, the simulations for SU(3) gluodynamics in [153] confirm

Casimir scaling within 5% for separations up to 1 fm of static charges in representations with Casimirs

(normalized by the Casimir of (3)) up to 7. String breaking for charges in the adjoint representation has

been found in several simulations: In three dimensional SU(2) gluodynamics with improved action and

different operators in [155, 156] and in four dimensional SU(2) gluodynamics in [157] with the help of

a variational approach involving string and glueball operators. For a critical discussion of the various

approaches see [158], where string breaking in a simple setting but with an improved version of the

Lüscher-Weisz algorithm has been analyzed and compared with less sophisticated approaches. There is

a number of works in which a violation of Casimir scaling on intermediate scales have been reported.

For example, it has been claimed that in four dimensional SU(Nc) gluodynamics with largerN ∈ {4, 6},
the numerical data favor the sin-formula, as suggested by supersymmetry, in place of the Casimir scaling

formula [159]. The differences between the Casimir scaling law and sin-formula are tiny, and it is very

difficult to discriminate between the two predictions in numerical simulations. Indeed, in [160] agree-

ment with Casimir scaling and sin-formula in four dimensions and disagreement in three dimensions

has been claimed. In addition, the high precision simulations based on the Lüscher-Weisz algorithm

in [158, 161] point to a violation of the Casimir scaling law in three dimensional SU(2) gluodynamics.

In a very recent paper Pepe and Wiese [162] reanalyzed the static potential for SU(2) gluodynamics

in three dimensions with the help of the Lüscher-Weisz algorithm and substantiated Casimir scaling

violation at intermediate scales, while confirming 2-ality scaling at asymptotic scales.

For gauge theories with matter a similar qualitative behavior is expected: A Coulomb-like potential at

short distances, Casimir scaling at intermediate distances and (partial) screening at asymptotic distances.

The string tension at asymptotic scales depends both on the N-alities of the static colour charges and

of the dynamical matter. In particular, if dynamical quarks or scalars can form centre blind composites

with the static charges, then the potential is expected to flatten at large separations. To see any kind

of screening between fundamental charges requires a full QCD simulation with sea quarks, which is

demanding. Thus the earlier works dealt with gauge theories with scalars in the fundamental representa-

tion. For example, in [163] clear numerical evidence for string breaking in the three dimensional SU(2)

aThe factor 1/122 in the formula given here arises from a different normalization of the quadratic Casimir operator.
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Yang-Mills-Higgs model via a mixing analysis of string and two-meson operators has been presented.

Probably the first observation of hadronic string breaking in simulations of QCD3 with two flavours of

dynamical staggered fermions using only Wilson loops has been reported in [164, 165]. Despite ex-

tensive searches for colour screening in four dimensional gauge theories with dynamical fermions, the

results are still preliminary at best. First indications for string breaking in two-flavour QCD, albeit only

at temperatures close to or above the critical deconfinement temperature, have been reported in [166].

More recently Bali et al. used sophisticated methods (e.g. optimized smearing, improved action, stochas-

tic estimator techniques, hopping parameter acceleration) to resolve string breaking in two-flavour QCD

at a value of the lattice spacing a−1 ≈ 2.37 GeV and of the sea quark mass slightly below ms [167].

By extrapolation they estimate that in real QCD with light quarks the string breaking should happen at

rb ≈ 1.13 fm.

To measure the static potential and study string breaking three approaches have been used: correla-

tions of Polyakov loops at finite temperature, variational ansaetze using two types of operators (for the

string-like states and for the broken string state) and Wilson loops. Most results on Casimir scaling and

string breaking have been obtained with the first two methods. This is attributed to the small overlap

of the Wilson loops with the broken-string state. To measure Polyakov or Wilson loop correlators for

charges in higher representations or to see screening at asymptotic scales, dealing with extremely small

signals down to 10−40 is required. In order to measure such small signals, existing algorithms have to be

improved considerably or/and improved versions of the Lüscher-Weisz multistep algorithm are needed.

5.1 Exponential error reduction for Wilson loops

In the confining phase the rectangular Wilson loop scales as

W (L, T ) ∝ exp(−σL · T ). (5.4)

In order to estimate the string tension σ, areas LT ranging from 0 up to 100 are probed and thus W

will vary by approximately 40 orders of magnitude. A brute force approach, where statistical errors for

the expectation value of Wilson or Polyakov loops decrease with the inverse square root of the number

of statistically independent configurations by just increasing the number of generated configurations,

will miserably fail. Nevertheless, convincing results on G2 Casimir scaling on intermediate scales for

representations with relative Casimirs C′
R ≤ 5 have been obtained in [126] with a variant of the smearing

procedure. When reproducing these results, it was found that the calculated string tensions depend

sensitively on the smearing parameter [105]b. Thus, to obtain accurate and reliable numbers for the

static potential and to detect string breaking, the multi-step Lüscher-Weisz algorithm with exponential

error reduction for the time transporters of the Wilson loops was implemented [168]. With this method

the absolute errors of Wilson lines decrease exponentially with the temporal extent T of the line. Since

details of the implementation for different representations depend on the gauge group, the algorithm has

to be reviewed in detail. The expectation value WR of a Wilson loop W in a representation R is the

bThis is not the case for the ratios of string tensions.
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Figure 5.1 Iterative slicing (from left to right) of lattice and Wilson loop during the multi-level algorithm.

trace of the expectation value of a product of parallel transporters Ti in sublattices Vi in the appropriate

representation,

WR = tr 〈WR〉 = 〈trR W〉 = 〈trR (T1 T2 · · · Tn−1Tn)〉 , (5.5)

where trR stands for the polynomial in the characters of the fundamental representations (2.15). This

can also be written as a tensor product

WR = 〈trR C′ (T1 ⊗ T2 ⊗ . . .⊗ Tn−1 ⊗ Tn)〉 =
〈

C
(

T R
1 ⊗ T R

2 ⊗ . . .⊗ T R
n−1 ⊗ T R

n

)〉

, (5.6)

where C′ and C are the particular contractions of indices that lead to the Wilson loop WR and T R is the

transporter in representation R. With the definition of a sublattice expectation value

[Tn]n =
1

Zn

∫

sublattice n

DU Tn e
−S, (5.7)

where all link variables on the boundary of the sublattice are fixed, the Wilson loop can be written as

WR =
〈

C
(

[

T R
1,1 ⊗ . . .⊗ T R

1,m1

]

1
⊗ . . .⊗

[

T R
n,1 ⊗ . . .⊗ T R

n,mn

]

n

)〉

boundaries
, (5.8)

where in the outer expectation value only the link variables on the boundaries of the sublattices are

updated. The indicesmn denote all {mn} disconnected contributions in the n-th sublattice. This method

of calculating a Wilson loop is possible, because in the Wilson action only links on a single plaquette

interact with each other. Now a multi-level scheme can be defined by the recursion relation

[Tn]n =
[

Cn

(

[Tn1 ]n1
⊗ . . .⊗ [Tnm

]nm

)]

n
, (5.9)

where Cn is again the contraction that leads to the transporter Tn. An example of a two-level algorithm

is given in Fig. 5.1. At the first level, the lattice is divided into nt sublattices V1, . . . , Vnt
(containing the

Wilson loop) and separated by time slices plus the remaining sublattice, denoted by V̄ . The time extent
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of each sublattice Vn is 4, such that nt is the smallest natural number with 4nt ≥ T + 2. In Fig. 5.1 (left

panel) T = 14 and the lattice is split into four sublattices V1, V2, V3, V4, containing the Wilson loop plus

the complement V̄ . In this particular example, the Wilson loop is the product of parallel transporters

W = T ′
2 · · · T ′

nt−1Tnt
Tnt−1 · · · T2T1 = T ′

2T ′
3T4T3T2T1. (5.10)

If a sublattice Vn contains only one connected piece of the Wilson loop (as V1 and V4 do), then for the

calculation only the sublattice expectation value [Tn]n is needed. If Vn contains two disconnected pieces

(as V2 and V3) then the tensor product [Tn ⊗ T ′
n]n has to be calculated in order to recover in the end the

correct sum over configurations. The updates in each sublattice are done with fixed link variables on the

time-slices bounding the sublattice. Calculating the expectation value of the full Wilson loop reduces to

averaging over the links in the nt + 1 time slices,

WR =

〈

C
(

[

T R
1

]

1

[

T R
2 ⊗ T ′R

2

]

2
· · ·
[

T R
nt−1 ⊗ T ′R

nt−1

]

nt−1

[

T R
nt

]

nt

)

〉

boundaries

. (5.11)

Here C is that particular contraction of indices that leads to the trace of the product (5.10). In a two-level

algorithm each sublattice Vn is further divided into two sublattices Vn,1 and Vn,2, see Fig. 5.1 (middle

panel), and the sublattice updates are done on the small sublattices Vn,k with fixed link variables on

the time slices separating the sublattices Vn,k. In this way one finds two levels of nested averages.

Iterating this procedure gives the multi-level algorithm. Since the dimensions dR grow rapidly with the

Dynkin labels [p, q] – for example, in the following Casimir scaling for charges in the 189 dimensional

representation [2, 1] is verified – it is difficult to store the many expectation values of tensor products

of parallel transporters. Thus a slight modification of the Lüscher-Weisz algorithm was implemented,

where the lattice is further split by spatially slicing along a hyperplane orthogonal to the plane defined

by the Wilson loop, see Fig. 5.1 (right panel). The sublattice updates are done with fixed link variables

on the same time slices as before and in addition on the newly introduced space slice. Instead of nt

sublattices containing the Wilson loop, there are now 2nt − 2 sublattices. But now every sublattice

contains only one connected part of the Wilson loop and (5.11) is replaced by

WR =

〈

tr

2nt−2
∏

n=1

[

T R
n

]

n

〉

boundaries

. (5.12)

An iteration of this procedure by additional splittings of the time slices leads again to a multi-level

algorithm. In the simulations two and three level algorithms with time-slicings (4 / 2), (8 / 4 / 2) and (12

/ 4 / 2) are used, depending on the size of the Wilson loop and the size of the lattice. The expectation

value for Wilson loops (and hence transporters Tn) of varying sizes and in different representations is

calculated. In (5.6) it is possible to calculate the traced Wilson loop tr(WR) in an arbitrary representation

R as a polynomial in the fundamental characters tr(W7) and tr(W14). In (5.8) this is no longer possible,

since the sublattice expectation value is not a group element anymore. Therefore it is necessary to

compute the matrix representation R for each sublattice transporter Tn. The construction for the 8

lowest matrix representations for G2 is given in (2.19). To avoid the storage of tensor products of

large representations, the modified algorithm as explained above was implemented. The Lüscher-Weisz
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algorithm is also applied to calculate the correlators of two Polyakov loops 〈PR(0)PR(R)〉 on larger

lattices. In this case the complete lattice is divided into sublattices separated by time slices, hence there

is no complement V̄ . Since the Polyakov loops are only used for lower-dimensional representations, the

lattice has not to be split by a spatial slicing. Actually, for the calculations of Polyakov loop correlators

mostly a three level Lüscher-Weisz algorithm is used,

〈PR(0)PR(R)〉 =

〈

C
βT /4
∏

n=1

[

[

T R
n1

(0) ⊗ T R
n1

(R)
]

n1

[

T R
n2

(0) ⊗ T R
n2

(R)
]

n2

]

n

〉

boundaries

. (5.13)

Here C is the contraction that leads to the product of traces and the size of the lowest level is two (each

transporter T is a product of two links in temporal direction). In their work Lüscher and Weisz showed

that the statistical errors are exponentially suppressed with the temporal extent of the loop. Assuming

that in each sublattice the transporters are statistically independent (which is a rather good assumption

in the confined phase, but not in the deconfined phase), the number of independent configurations is

roughly given by

ntotal ≈ nnT

0 , (5.14)

where nT is the number of time slices on the lowest level and n0 the number of configurations in each

sublattice expectation value on the lowest level. For nT = T/2 the statistical error δ is then approxi-

mately given by

δ ≈ ωn
− 1

2
total ≈ ωn

−T
4

0 . (5.15)

The constant ω depends, for instance, on the size of the boundary and the number of configurations on

the other levels as well as on the autocorrelation time. The relative error of an exponentially decreasing

correlation function C(T ),

δ

C(T )
≈ ω n

−T/4
0

exp (−σRT )
= ω exp

(

T (σR− lnn0

4
)

)

, (5.16)

can then be tuned such that it is nearly constant. The advantage of Polyakov loops is that, on a fixed lattice

size, more time slices are involved. Also the boundary is smaller than for Wilson loops, especially if in

addition the spatial slicing for Wilson loops is used. In most simulations the number of configurations

on each level is chosen such that it increases by a factor of ten on each level, for example n2 = 10,

n1 = 100 and n0 = 1000. In this case the statistical error arising from the fixed boundary is sufficiently

small.

5.2 Casimir scaling and string breaking in G2 gluodynamics

The static inter-quark potential is linearly rising on intermediate distances and the corresponding string

tension will depend on the representation of the static charges. Similar to the known results for SU(N)

gauge theories, it is expected to find Casimir scaling where the string tensions for different representa-

tionsR and R′ scale according to
σR
cR

=
σR′

cR′
(5.17)

36



with quadratic Casimir cR. Although all string tensions will vanish at asymptotic scales, it is still possible

to check for Casimir scaling at intermediate scales where the linearity of the inter-quark potential is

nearly fulfilled.

To extract the static quark anti-quark potential two different methods are available. The first makes

use of the behavior of rectangular Wilson loops in representationR for large T ,

〈WR(R, T )〉 = exp
(

κR(R) − VR(R)T
)

. (5.18)

Here VR(R) is the Cornell potential [169, 170]

VR(R) = γR − αR

R
+ σRR, (5.19)

with self energy contribution γR, Coulomb interaction αR and string tension σR. If the confining string

has already formed, the term α
R

shows a universal behaviour with α = (d − 2)π/24 for the lowest

representation (Lüscher term). The potential can be extracted from the ratio of two Wilson loops with

different time extent according to

VR(R) =
1

τ
ln

〈WR(R, T )〉
〈WR(R, T + τ)〉 . (5.20)

With the Lüscher-Weisz algorithm the expectation values of Wilson loops are calculated and fitted to

the right hand side of (5.20) with the potential VR(R) in (5.19). The fitting has been done for external

charges, separated by one lattice unit up to separationsR with acceptable signal to noise ratios. From the

fits the constants γR, αR and σR, entering the static potential, are extracted. For an easier comparison of

the numerical results on lattices of different size and for different values of β, the constant contribution

to the potentials is subtracted in the figures, according to

ṼR(R) = VR(R) − γR. (5.21)

The statistical errors are determined with the Jackknife method. In addition, the local string tension

σloc,R

(

R +
ρ

2

)

=
VR(R + ρ) − VR(R)

ρ
, (5.22)

given by the Creutz ratio [171]

σloc,R

(

R +
ρ

2

)

=
αR

R(R + ρ)
+ σR =

1

τρ
ln

〈WR(R + ρ, T )〉 〈WR(R, T + τ)〉
〈WR(R + ρ, T + τ)〉 〈WR(R, T )〉 , (5.23)

is determined. The second method to calculate the string tensions uses correlators of two Polyakov loops,

VR(R) = − 1

βT
ln 〈PR(0)PR(R)〉 . (5.24)

The correlators are calculated with the three-level Lüscher-Weisz algorithm and are fitted with the static

potential VR(R) with fit parameters γR, αR and σR. Now the local string tension takes the form

σloc,R

(

R +
ρ

2

)

= − 1

βTρ
ln

〈PR(0)PR(R + ρ)〉
〈PR(0)PR(R)〉 . (5.25)
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Figure 5.2 Left panel: Continuum scaling of the fundamental potential. Right panel: Linear continuum

extrapolation of the string tension. The shaded region indicates the corresponding error bound. The dotted

lines are the theoretical predictions.

5.2.1 Continuum scaling

Most lHMC simulations are performed on a 283 lattice with Wilson loops of time extent T = 12. To

extract the static potentials from the ratio of Wilson loops in (5.20), τ = 2 is chosen. The fits to the static

potential (5.19) for charges in the fundamental (7) representation and for values β = 30, 35 and 40 yield

the lattice parameters α, γ and σ given in Tab. C.1 in the appendix.

Since for G2 there exists no natural mass scale µ from experiments, the string tension in the (7)

representation is chosen as a reference scale,

µ =
√
σ7. (5.26)

Nevertheless, using the Sommer scale [172]

R2∂V7(R)

∂R

∣

∣

∣

R=R(c)
= R2σloc,7

∣

∣

∣

R=R(c)
= c = 1.65, r(c) = R(c) a ≈ 0.5 fm, (5.27)

it is possible to assign a physical value to µ. In these units the lattice spacing is ranging from 0.06 fm to

0.138 fm, corresponding to physical volumes of (3.84 fm)3 to (4.42 fm)3, see Tab. C.2 (appendix). The

mass scale is then given by

µ =
√
σ7 ≈ 490MeV. (5.28)

To check for scaling, the potentials in ‘physical’ units, V/µ, are plotted as a function of µR in Fig. 5.2.

Now it is observed that the potentials for the three values of β are the same within error bars. In addition,

they agree with the potential (in physical units) extracted from the Polyakov loop on much larger 323, 483

and 643 lattices. Formula (5.3) gives the string tension in the continuum as a function of the coupling

β ∝ 1/g2 [143]. To compare this continuum result with the obtained lattice data, the corresponding

value g−2√σ7 is extrapolated linearly in β−1 ∝ a to the continuum limit by using the couplings and

lattice sizes in Tab. C.2 (appendix). This procedure is motivated by the (in leading order) linear behavior
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that has been found in a similar study for gauge groups SU(2) up to SU(5) [173]. For increasing β the

scaling window with a linearly rising potential shrinks and it becomes more difficult to extract reliable

values for the intermediate string tension. Thus a linear fit to all points in table C.2 (appendix) leads

to g−2√σ7 = 0.381(5) (see Fig. 5.2), with a rather large reduced χ2 = 8.56, whereas a linear fit to

the reliable data points with the 3 smallest β-values yields g−2√σ7 = 0.376(2), with a small reduced

χ2 = 0.51. Both fit-values are in good agreement with the prediction of Eq. (5.3), g−2√σ7 = 0.39894.

Corrections to this theoretical value have been derived in a systematic expansion in [140],

g−2√σ7 =

√

1

2π
(1 − 0.02799 + · · · ) ≈ 0.38778, (5.29)

but they are still subject to ambiguities in defining a low momentum cutoff that may change this value by

up to 3%. With keeping possible systematic uncertainties in the extrapolation procedure in mind, which

are not reflected in the given statistical error, a complete agreement between analytical and numerical

results is apparent.

5.2.2 Casimir scaling in three dimensions

Now higher representations are investigated to check for Casimir scaling. The fitted constants αR, γR
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Figure 5.3 Unscaled (left panel) and scaled (right panel) potential with β = 40 on a 283 lattice.

and σR of the potential (5.19) for the eight smallest representations are given in Tab. C.3 in the appendix.

The Casimir scaling of coefficients becomes apparent when divided by the corresponding coefficients of

the static potential in the (7) representation. The local string tensions extracted from the Creutz ratio

can be determined much more accurately than the global string tensions extracted from fits to the static

potentials. Tab. C.4 in the appendix contains the local string tensions for static charges in the eight

smallest representations for ρ = 1 and different R in (5.23), divided by the corresponding local string

tensions in the 7 representation. The results are insensitive to the distance R in the Creutz ratio. They

agree within 1 percent with the values for the Casimir ratios C′
R = CR/C7 given in the last row of that

table. In Fig. 5.3 (left panel) the values for the eight potentials V7, . . . , V189 (with statistical errors),
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measured in ‘physical units’ µ defined in (5.26), are plotted. The distance of the charges is measured

in the same system of units. The linear rise at intermediate scales is clearly visible, even for charges in

the 189-dimensional representation. Fig. 5.3 (right panel) contains the same data points rescaled with

the quadratic Casimirs of the corresponding representations. The eight rescaled potentials fall on top of

each other within error bars. This implies that the full potentials for short and intermediate separations

of the static charges show Casimir scaling. To further check for Casimir scaling, the local string tensions
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Figure 5.4 Left panel: Ratio of the local string tension with β = 40 scaled on a 283 lattice for the eight

smallest representations. Right panel: Local Lüscher term at two different couplings and for two different

representations.

with ρ = 1 are calculated, this time for all R between 1 and 10 and not only for R = 0, 1, 2 as in

Tab. C.4 (appendix). The horizontal lines in Fig. 5.4 (left panel) are the values predicted by the Casimir

scaling hypothesis. Clearly, there is no sign of Casimir scaling violation visible on a 283 lattice near the

continuum at β = 40. Of course, for widely separated charges in higher dimensional representations the

error bars are not negligible even for an algorithm with exponential error reduction.

5.2.3 Lüscher term

In Tab. C.3 in the appendix it can be seen that the dimensionless coefficient αR in the static potential

scales with the quadratic Casimir, similarly to the string tension. The corresponding term, if measured

at distances where the flux tube is fully developed, is referred to as Lüscher term. Its value has been

calculated by Lüscher for charges in the fundamental representation, in d dimensions α = (d− 2)π/24,

and it is believed to be universal [174]. The value α = π/24 in 3 dimensions is off the results in Tab. C.1

(appendix). However, since the coefficients in this table are fitted to the static potential from R = 1

to values of R with acceptable signal to noise ratio, they contain contributions from the short range

Coulombic tail. To calculate αR at intermediate distances, it is better to use the (local) Lüscher term

αloc,R (R) =
αRR

2

R2 − ρ2
=

R3

2βTρ2
ln

〈PR(0)PR(R + ρ)〉 〈PR(0)PR(R− ρ)〉
〈PR(0)PR(R)〉 〈PR(0)PR(R)〉 , (5.30)
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with ρ = 1. In Fig. 5.4 (right panel) the local Lüscher term is plotted for charges in the (7) and (14)

representation at couplings β ∈ {30, 40}. The data for the defining 7-dimensional representation at

intermediate distances are in agreement with the theoretical prediction α7 = π/24 ≈ 0.131. The local

Lüscher term for the adjoint representation approaches a value close to α14 ≈ π/12. Although this

exceeds the universal prediction of [174] by a factor 2, this behavior is in close analogy to the situation

in 3 dimensional SU(5) Yang-Mills theory, where Casimir scaling of the local Lüscher term at short

distances has been reported for the 10-dimensional representation [175]. Since the Lüscher term is

expected to show up at asymptotic large distances, this term can only be extracted if the flux tube has

fully developed before string breaking sets in. Whether this is the case for G2 gauge theory is not clear.

The results suggest that this happens for charges in the 7-dimensional representation.

5.2.4 String breaking and glue-lumps in three dimensions

To observe the breaking of strings connecting static charges at intermediate scales, when further increas-

ing the separation of the charges, high statistics lHMC simulations on a 483 lattice with β = 30 have

been performed. For charges in the two fundamental representations ofG2, expectation values of Wilson

loops and products of Polyakov loops have been calculated. When a string breaks, each static charge in

the representation R at the end of the string is screened by N(R) gluons to form a colour blind glue-

lump. It is expected, that the dominant decay channel for an over-stretched string is given by: string →
glue-lump + glue-lump. For a string to decay, the energy stored in the string must be sufficient to pro-

duce two glue-lumps. According to (2.14) it requires at least 3 gluons to screen a static charge in the (7)

representation, one gluon to screen a charge in the (14) representation and two gluons to screen a charge

in the (27) representation. The separations of the charges where string breaking sets in are calculated

as well as the masses of the produced glue-lumps. The mass of such a quark-gluon bound state can be

obtained from the correlation function according to

exp (−mRT ) ∝ CR(T ) =

〈

(N(R)
⊗

n=1

Fµν(y)

)∣

∣

∣

∣

R,a

R(Uyx)ab

(N(R)
⊗

n=1

Fµν(x)

)∣

∣

∣

∣

R,b

〉

, (5.31)

where R(Uyx) is the temporal parallel transporter in the representation R from x to y of length T . It

represents the static sources in the representation R. N(R) is the number of gluons necessary to screen

the charge. The vertical line means projection of the tensor product onto that linear subspace on which

the irreducible representationR acts,

(14) ⊗ (14) ⊗ · · · ⊗ (14) = R⊕ · · · . (5.32)

For example, for charges in the (14) representation the projection is simply

Fµν(x)
∣

∣

∣

14,a
= F a

µν(x), where F a
µνT

a = Fµν . (5.33)

For charges in the (7) representation projection of the reducible representation (14) ⊗ (14) ⊗ (14) onto

the irreducible representation (7) is necessary. Using the embedding of G2 into SO(7) representations,
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it can be shown that this projection can be done with the help of the totally antisymmetric ε-tensor with

7 indices,

Fµν(x) ⊗ Fµν(x) ⊗ Fµν(x)
∣

∣

∣

7,a
∝ F p

µν(x)F
q
µν(x)F

r
µν(x)εabcdefgT

p
bcT

q
deT

r
fg. (5.34)

Fig. 5.5 (left panel) shows the logarithm of the glue-lump correlator (5.31) as a function of the separation

of the two lumps for static charges in the fundamental representations (7) and (14). The linear fits to

the data yield the glue-lump masses m7 a = 0.46(4), m14 a = 0.761(3), corresponding to a physical

mass of m7 ≈ 1066 MeV and m14 ≈ 1764 MeV. Thus it is expected that the subtracted static potentials

approach the asymptotic values ṼR −→ 2mR − γR. With the fit-values γ7a = 0.197(1) and γ14a =

0.381(2) one finds

Ṽ7/µ −→ 3.47 , Ṽ14/µ −→ 5.47. (5.35)

Fig. 5.5 (right panel) shows the rescaled potentials for charges in the fundamental representations to-

gether with the asymptotic values (5.35) extracted from the glue-lump correlators. At fixed coupling

β = 30 both potentials flatten exactly at separations of the charges where the energy stored in the flux

tube is twice the glue-lump energy. However, the direct comparison of the potentials for two different

couplings, i.e. different lattice spacings, reveals that the potential for adjoint charges is nearly free of

lattice artifacts, while the string breaking distance for charges in the defining representation is strongly

coupling dependent and the continuum limit is not reached yet. A good approximation for the string

breaking distance is then given by VR(Rb) ≈ 2mR. Assuming Casimir scaling for the coefficients

αR, γR and σR in the static potential one obtains

µRb
R =





√

α7 +
1

4

(

γ7

µ
−MR

)2

− 1

2

(

γ7

µ
−MR

)



 , MR =
2mR

µC′
R

. (5.36)

Inserting the result from the last row in Tab. C.1 in the appendix and the glue-lump masses one finds

µRb
7 = 3.49 and µRb

14 = 2.77. In dimensionful units, the string breaking distance is given by

Rb
7 ≈ 1.40 fm and Rb

14 ≈ 1.11 fm. (5.37)
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Figure 5.6 Left panel: Local string tension (483 lattice, β = 30). Centre panel: Casimir scaling of local

string tension (483 lattice, β = 30). Right panel: Deviations from Casimir scaling at two different couplings.

These values agree well with the separations µR in Fig. 5.5 (right panel), where the static potentials

flatten such that string breaking sets in at scales predicted by formula (5.36). Fig. 5.6 (left panel) shows

the local string tensions in the two fundamental representations and Fig. 5.6 (centre panel) their ratio.

Especially the last plot makes clear, that the string connecting charges in the adjoint representation

breaks earlier than the string connecting charges in the (7) representation. Just at the critical separation

predicted by formula (5.36), the ratio of local string tensions σ14(R)/σ7(R) shows indeed a pronounced

knee.

5.2.5 Signs of Casimir scaling violations

Although the coarse grained view onto the ratio of local string tensions up to the string breaking distance

(Fig. 5.6, centre panel) shows an approximate Casimir scaling, a closer look uncovers deviations from the

expected Casimir ratio of the adjoint and defining representation (see Fig. 5.6 right panel). The results

for two different lattice spacings indicate, that for short distances, in the Coulombic part of the poten-

tial, Casimir scaling is fulfilled, in agreement with the predictions of perturbation theory, valid at short

distances. For larger distances the measured ratio drops by about 2.5% near the string breaking distance.

Similar deviations have already been reported in [158, 161] for three-dimensional SU(2) gauge theory.

In either case the scale dependence identifies Casimir scaling violations as a purely non-perturbative long

range effect. Of course, the given error bounds in Fig. 5.6 may be taken with care, as they include only

statistical uncertainties. Lattice artifacts are still visible and further work will be necessary to confirm

that this violation persists in the continuum limit.

5.2.6 Casimir scaling in four dimensions

In this last section results for the static potential in four dimensions are presented. The lHMC simulations

have been performed on a small 144 and a larger 204 lattice for different values of β. The static potentials

and local string tensions have been extracted from (5.20) and (5.23), where the expectation values have

been calculated with a two-step Lüscher-Weisz algorithm. Tab. C.5 (appendix) contains the fits to the

parameters in the potential for static charges in the (7) representation for these lattices and values for β.
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Figure 5.7 Unscaled (left panel) and scaled (right panel) potential at β = 9.7 on a 144 lattice.

Applying again the Sommer scale, the data yield a mass scale of approximately

µ =
√
σ7 ≈ 450MeV, (5.38)

corresponding to a = 0.14 fm on the larger 204 lattice and a(β = 9.7) = 0.12 fm and a(β = 10) =

0.089 fm on the smaller lattice. The physical volumes are then between (1.25 fm)4 and (2.80 fm)4.

Fig. 5.7 (left panel) shows the static potentials in ‘physical units’ µ =
√
σ7, for charges in the 7, 14, 27

and 64 dimensional representations and coupling β = 9.7, as function of the distance between the

charges (in physical units). The corresponding value for σ7 is taken from Tab. C.5 (appendix). The same

coupling has been used in [126] on an asymmetric 143 × 28 lattice. After normalizing the potentials

with the quadratic Casimirs, they are identical within error bars, as can be seen in Fig. 5.7 (right panel).

The findings are in complete agreement with the results in [126] on Casimir scaling in four-dimensional

G2 gluodynamics at β = 9.7 and with the accurate results on Casimir scaling on intermediate scales in

three-dimensional G2 gluodynamics. Figs. 5.8 shows the corresponding results for a weaker coupling

β = 10 closer to the continuum limit. For this small coupling the potential can only be measured

up to separations µR ≈ 1.5 of the charges. However, this can be done with high precision and for

higher-dimensional representations. Similar as for β = 9.7 the potentials normalized with the second

order Casimirs fall on top of each other. This confirms Casimir scaling for G2 gluodynamics in four

dimensions for charges in representations with dimensions 7, 14, 27, 64, 77, 77′, 182 and 189. Finally,

simulations on a much larger 204 lattice at β = 9.7 are done in order to calculate the static potential for

larger separations of the static quarks. Unfortunately, the distance µR ≈ 3 is still not sufficient to detect

string breaking, see Fig. 5.9 (left panel). However, again the potentials normalized with the quadratic

Casimirs shown in Fig. 5.9 (right panel) are equal within error bars. In Tab. C.6 in the appendix the

fit-values for the parameters of the potentials on the larger 204 lattice are listed for static charges in

the representations with dimensions 7, 14 and 27. For all representations Casimir scaling of all three

parameters in the potential is found. Unfortunately, the fit-parameters cannot be determined reliably

in the (64) representation with the present data. This is attributed to larger errors for the potentials at

intermediate scales, see Fig. 5.9 (right panel). Therefore, the parameters can only be determined from
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Figure 5.8 Unscaled (left panel) and scaled (right panel) potential at β = 10 on a 144 lattice.
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Figure 5.9 Unscaled (left panel) and scaled (right panel) potential at β = 9.7 on a 204 lattice.

the ultraviolet part of the potential for this representation (R < 3), which is rather Coulomb-like than

linearly rising. Much more conclusive are the local string tensions calculated on the larger lattice (now

up to the (64) representation). Tab. C.7 (appendix) contains the local string tensions divided by the

local string tensions in the (7) representation. These normalized values are constant up to separations

of the charges where the statistical errors are under control. Compared to the corresponding numbers

in three dimensions, see Tab. C.4 in the appendix, it is now possible to see a slight dependence of the

local string tensions (from Eq. (5.22)) on the distance R. Despite the lower precision of the results in

four dimensions compared to the corresponding results in three dimensions, again Casimir scaling is

confirmed on short to intermediate scales within 5 percent. All simulation results for the local string

tensions σR(R), normalized by σ7(R) on a 144 lattice with β ∈ {9.7, 10} and on a 204 lattice with

β = 9.7 and for µR ≤ 1.5, are collected in Fig. 5.10. The horizontal lines in this figure show the

prediction of the Casimir scaling hypothesis. The normalized data points are compatible with each other

and with the hypothesis.
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5.3 Conclusions

A slightlymodified Lüscher-Weisz multi-step algorithmwith exponential error reduction has been imple-

mented to measure the static potentials for charges in various G2 representations. The accurate results

in three dimensions show, that all parameters of the fitted static potentials show Casimir scaling, see

Tab. C.1 in the appendix. The global string tensions extracted from these fits show, that possible devia-

tions from Casimir scaling must be less than 4 percent. Additionally, the local string tensions have been

extracted from the Creutz ratios to obtain even more precise data. In this way, Casimir scaling at short

distances
√
σ7R < 1 has been confirmed with 1 percent accuracy. Thus it can be concluded, that in

three dimensionalG2 gluodynamics the Casimir scaling violations of the string tensions are small for all

charges in the representations with dimensions 7, 14, 27, 64, 77, 77′, 182 and 189. For charges in the two

fundamental representations lHMC simulations on larger lattices have been performed to detect string

breaking at asymptotic scales.

In three dimensions it has been observed,
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Figure 5.10 Scaled local string Tension with β ∈
{9.7, 10} on 144 and 204 lattices.

that string breaking indeed sets in at the ex-

pected scale where the energy stored in the

flux tube is sufficient to create two glue-lumps.

To confirm this expectation, masses of glue-

lumps associated with static charges in the

fundamental representations have been calcu-

lated. Here, close to the string breaking dis-

tance, systematic Casimir scaling violations

show up at the 2.5 percent level, and they

have been identified as a non-perturbative ef-

fect arising only at large distances. Finally,

the prediction for the numerical value of the

string tension in three dimensions has been

confirmed by a continuum extrapolation of the

precise data. In four-dimensional G2 gluodynamics, Casimir scaling has been found for charges in the

representations (7), (14), (27) and (64), similar as in three dimensions, although the uncertainties are of

course larger. But within error bars no violation of Casimir scaling has been seen, and this confirms the

corresponding results in [126], obtained with a variant of the smearing procedure. To see the expected

string breaking in four dimensions, larger lattices than those used in the present work are needed. The in-

vestigations on Casimir scaling and string breaking confirm the picture of exceptional confinement given

in chapter 4. Although it is often believed that confinement is related to centre symmetry, it has been

shown here thatG2 gauge theory is a confining theory in the sense, that static charges are screened and an

intermediate non-vanishing string tension exists. Therefore G2 Yang-Mills shares an interesting feature

with QCD. In the next chapter it will indeed be shown that G2 gluodynamics coupled to fundamental

scalars can be used as a toy model for QCD.

46



6 The G2 Yang-Mills Higgs model

In the present chapter G2-Yang-Mills theory coupled to a fundamental scalar field is investigated. The

obtained results have been published in [80]. It will be shown that this theory has interesting connections

to QCD with fundamental quarks and can in some sense be seen as a toy model for QCD. The gauge

group SU(3) of strong interaction is a subgroup ofG2, and this observation has interesting consequences,

as pointed out in [57]. A Higgs field in the fundamental 7 dimensional representation can break the G2

gauge symmetry to the SU(3) symmetry via the Higgs mechanism. The corresponding continuum action

is given by

SYMH[A, φ] =

∫

d4x

(

1

4g2
trFµνF

µν +
1

2
(Dµφ,Dµφ) + V (φ)

)

. (6.1)

where V (φ) = λ (φ2 − ν2)
2
is a quartic potential for the Higgs field. Taking the limit λ → ∞ and

rescaling φ→ νφ fixes the length of the scalar field, i.e. φ2 = 1. In the limit g−1 → ∞ the gauge bosons

decouple and the theory reduces to an O(7) invariant non-linear sigma model,

SNLSM[φ] = κ

∫

d4x ∂µφ∂
µφ , φ2 = 1 , κ =

1

2
ν2, (6.2)

which is expected the have a second order (mean field) symmetry breaking transition down to O(6).

The mean field prediction for the critical coupling is κc,mf = n
2d

= 7
8
, and this value bounds κc from

below [176]. For finite values of the gauge coupling g,

SYMH[A, φ] =

∫

d4x

(

1

4g2
trFµνF

µν + κ (Dµφ,Dµφ)

)

, (6.3)

the gauge bosons take part in the dynamics. The global SO(7) symmetry is broken to a local G2 gauge

symmetry. Making use of the coset space relation [85]

G2/SU(3) ∼ SO(7)/SO(6) ∼ S6, (6.4)

a sketch of the expected phase diagram is obtained. For small values of κ the theory is expected to stay

in the Higgs symmetric phase (vanishing vacuum expectation value of the Higgs field), and qualitatively

the theory behaves similar to pure G2 gluodynamics. With respect to the SU(3) subgroup of G2, the

fundamental representations (7) and (14) branch into the following irreducible SU(3)-representations:

(7) −→ (3) ⊕ (3̄) ⊕ (1) , (14) −→ (8) ⊕ (3) ⊕ (3̄). (6.5)

The Higgs field branches into a fundamental and an anti-fundamental scalar and into a colour singlet

with respect to SU(3). Similarly, a G2-gluon branches into a massless SU(3)-gluon and additional

gauge bosons with respect to SU(3). If the Higgs field picks up a vacuum expectation value ν, the 6

gauge bosons belonging to the coset space (6.4) eat up the non-singlet scalar fields and acquire a mass

proportional to ν. The other 8 gluons belonging to SU(3) remain massless, such that the spectrum in

the broken phase consists of 8 massless gluons (confined in glueballs), 6 massive gauge bosons and one
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massive Higgs particle. In the limit of ν → ∞ the 6 massive gauge bosons become infinitely heavy

and are removed from the spectrum. In this limit the G2 Higgs model reduces to SU(3) Yang-Mills

theory. The Z(3) centre symmetry of SU(3) gluodynamics will be restored, the Polyakov loop is an

order parameter for confinement and string breaking in the fundamental representation will not occur.

Even more interesting, for intermediate and
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Figure 6.1 Expected phase diagram in the parameter

space (7/g2, κ).

large values of ν, the G2 Yang-Mills-Higgs

theory mimics SU(3) gauge theory with dy-

namical vector quarks. Similar as dynami-

cal quarks and anti-quarks, they transform in

the representations (3) and (3̄) of SU(3) and

thus explicitly break theZ(3) centre symme-

try. As in QCD they are expected to weaken

the deconfinement phase transition. Thus it

has been conjectured in [58] that there may

exist a critical endpoint where the first order

transition disappears. The masses of these

quarks and the length scale at which string

breaking occurs increase with increasing v.

The known transitions in the limiting cases

ν → 0, ν → ∞ or β → ∞ are depicted in Fig. 6.1. In the limit ν = 0, G2 gluodynamics with a first

order deconfinement phase transition is recovered, in agreement with the findings in [129]. In the other

extreme case ν → ∞ one ends up with SU(3) gluodynamics with a weak first order deconfinement

transition. For large values of β a second order phase transition is expected, with increasing vacuum

expectation value ν of the Higgs field. Here the natural question arises, whether the first order decon-

finement transition connects G2 and SU(3) gluodynamics. Then a single tri-critical point may exist,

where the first order transition line meets the second order transition line. In this point, all three phases,

the confinement phase and the symmetric and broken deconfinement phases, meet. In another possible

scenario the first order transition line ends and turns into a crossover, such that the confinement phase is

analytically connected to both deconfinement phases.

6.1 The phase diagram of the G2 Higgs model: overview

To investigate this model on the lattice, the lHMC algorithm described in chapter 3 is used. The corre-

sponding lattice action to (6.3) for the G2 valued link variables and a normalized Higgs field with 7 real

components reads as

SYMH[U ,Φ] = β
∑

�

(

1 − 1

7
trReU�

)

− κ
∑

x,µ

Φx+µ̂ Ux,µΦx, Φx · Φx = 1. (6.6)

It depends on the inverse gauge coupling β and the hopping parameter κ ∼ ν2. In the following the

phases and transition lines of Fig. 6.1 are localized and analysed with high statistics simulations of the
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Polyakov loop distribution and susceptibility, plaquette and Higgs action susceptibilities, and finally

with derivatives of the mean action with respect to the hopping parameter κ. Besides the transition lines

indicated in Fig. 6.1, it is expected that there exists another line of monopole driven bulk transitions. This

line emanates from the bulk crossover in pure G2 gluodynamics at β = 9.45 [129]. This bulk crossover

does not scale with the volume and temperature. On small lattices it interferes with the deconfinement

phase transition, but for lattices with temporal extent Nt ≥ 6 the transitions in pure G2 gluodynamics

are well separated. This bulk crossover is also investigated at finite ν to ensure that it stays far below

the deconfinement transition for all values of ν. With the help of the local HMC algorithm sketched

previously, several relevant observables are calculated to probe the phases and phase transition lines in

the (β, κ) plane.

First, the phase diagram obtained on small
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Figure 6.2 Expectation values of P in the coupling con-

stant plane and on a small 123 × 2 lattice

lattices is presented. For vanishing κ, G2

gluodynamics is recovered, which shows a

first order finite temperature deconfinement

phase transition. The transition is discontin-

uous since there is a large mismatch of de-

grees of freedom in the confined and uncon-

fined phases. At the other extreme value κ =

∞, six of the fourteen gauge bosons decou-

ple from the dynamics and SU(3) gluody-

namics is recovered, which shows a first or-

der deconfinement phase transition as well.

The question arises, whether the first order

transitions in G2 and SU(3) gluodynamics

are connected by an unbroken line of first or-

der transitions or whether there are two criti-

cal endpoints. In the latter case the confined

and unconfined phases could be connected continuously. On the other hand, for arbitrary κ but β → ∞,

the gauge degrees of freedom decouple from the dynamics and a non-linear O(7) sigma model remains.

It is expected that the O(7) symmetry is spontaneously broken to O(6) for sufficiently large values of

the hopping parameter and that this transition is of second order.

In order to localize the confinement-deconfinement transition line(s), first the Polyakov loop expecta-

tion value is measured as (approximate) order parameter for confinement on a small 123 × 2 lattice in

a large region of parameter space (β = 5 . . . 10, κ = 0 . . . 104). For κ ≫ 1 the Polyakov loop takes its

values in the reducible representation (3) ⊕ (3̄) ⊕ (1) of SU(3) and approximately satisfies

〈P 〉 ≈ 1 + 〈P + P̄ 〉SU(3). (6.7)

Thus, for large κ, 〈P 〉 ≈ 1 in the confining phase and 〈P 〉 ≈ 7 or 〈P 〉 ≈ −2 in the unconfined phase,

where P is near one of the three centre elements of SU(3), should be found. This ambiguity of assigning

a value to the Polyakov loop in the unconfined phase is eliminated by mapping values with 〈P 〉 < 1 to
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3 − 2 〈P 〉. The result for 〈P 〉 is depicted in Fig. 6.2. It is observed, that in the confining phase the

expectation value varies from 0 to 1 when the hopping parameter increases. For large values of β in

the unconfined phase, the Polyakov loop is near the identity or (for large κ) near one of the three centre

elements of SU(3). On the small lattice the Polyakov loop jumps along a continuous curve connecting

the confinement-deconfinement transitions of pureG2 and pure SU(3) gluodynamics. This suggests that

there exists a connected first order transition curve all the way from κ = 0 to κ = ∞. To see whether

this is indeed the case, high-precision simulations on larger lattices are performed. A careful analysis of

histograms and susceptibilities for Polyakov loops and the Higgs action shows, that the first order lines

starting at κ = 0 and at κ = ∞ do not meet. This happens in a rather small region in parameter space in a

way that the two first order lines almost meet. They may be connected by a line of continuous transitions

or in-between there may exist a window connecting the confined and unconfined phases smoothly.

For β → ∞ one is left with a non-linear O(7) sigma model with action

Sσ = −κ
∑

x,µ

Φx+µ̂Φx , (6.8)

and this model shows a second order transition at a critical coupling κc from aO(7) symmetric to aO(6)

symmetric phase. To see how this transition continues to finite values of β, the expectation values 〈OP 〉
and 〈OH〉 of the (averaged) plaquette variable and Higgs action

OP =
1

7 · 6 · V
∑

�

Re trU� and OH =
1

V

∑

xµ

Φx+µ̂ Ux,µΦx . (6.9)

are measured together with the corresponding susceptibilities

χ(O) = V
(

〈O2〉 − 〈O〉2
)

. (6.10)

The finite size scaling theory predicts, that near the transition point the maximum of the susceptibilities

scales with the volume to the power of the corresponding critical exponent γ

χ(O) ∼ aLγ/ν + b , (6.11)

where ν is the critical exponent related to the divergence of the correlation length. For a first order phase

transition it is expected, that the susceptibility peak scales linearly with the spatial volume (since Nt is

fixed). More precisely, for a first order transition γ = 1 and ν = 1/3 are expected, while for a second

order transition γ 6= 1 is valid [177].

The expectation values and logarithms of susceptibilities on a small 63 × 2-lattice are depicted in

Fig. 6.3. The expectation value of a plaquette variable jumps at the deconfinement transition line and

the corresponding susceptibility is peaked. This is in full agreement with the jump of the Polyakov loop

across this transition line. The expectation value of the Higgs action and the corresponding susceptibility

both spot the deconfinement transition well. However, they also discriminate between theO(7) unbroken

and broken phases. The data on the small lattice point to a second order Higgs transition line in the

YMH model for all β > βdeconf (κ). This could imply that the second order line ends at the first order
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Figure 6.3 Average plaquette, Higgs action, and susceptibilities near the critical point on 63 × 2 lattice.

deconfinement transition line. To determine the order of the Higgs transition line, the finite size scaling

of

χ(OH) =
∂

∂κ
〈OH〉 and χ(2)(OH) =

∂2

∂2κ
〈OH〉 (6.12)

is considered for lattices up to 203 × 6. The results presented below show that the Higgs transitions are

second order transitions. Unfortunately it cannot be excluded, that the second order line turns into a

crossover near the deconfinement transition line.

The results for the complete phase diagram in the (β, κ) plane, as calculated on a larger 163×6 lattice,

are summarized in Fig. 6.4. Histograms and susceptibilities near the marked points on the transition lines

in this figure are calculated. If the triple point exists, an extrapolation to the point where the confined

phase meets both unconfined phases leads to the couplings βtrip = 9.62(1) and κtrip = 1.455(5). Near this

point the deconfinement transition is very weak, continuous, or absent and thus high-statistics simula-

tions on larger lattices have been performed to investigate this region in parameter space more carefully.

Some of the results are presented in the following sections. Up to a rather small region surrounding

(βtrip, κtrip) it turned out, that the deconfinement transition is first order and the Higgs transition is second

order. However, in this small region around the would-be triple point, the deconfinement transition is
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Figure 6.4 Phase transition lines on a 163 × 6 lattice. The solid line corresponds to the first order decon-

finement transitions, the dashed line to the second order Higgs transitions and the dotted line to the left of the

first order line to the bulk transitions. The plot on the right panel shows the details inside the small box in

the plot on the left panel, where the transition lines almost meet. The dotted line between the first order lines

corresponds to a window, where the transition is a crossover or a continuous one. The points 1-7 are discussed

in the text and the points 2, 3 and 7 have been investigated previously by Pepe and Wiese [58].

either second order or absent. For a comparison with the results of Pepe and Wiese, their work [58] is

included at points 2 (κ = 1.3), 7 (κ = 1.5) and 3 (κ = 4). A qualitative agreement between the results,

obtained in this work and their results is found, although they performed simulations on different lattices.

6.1.1 The bulk transition

The existence of a bulk transition in lattice gauge theories at zero temperature can influence its finite

temperature behaviour. Such transitions are almost independent of the size of the lattice and are driven

by lattice artifacts [178]. Bulk transitions between the unphysical strong coupling and the physical weak

coupling regimes in lattice gauge theories are the rule rather than the exception. The strong coupling bulk

phase contains vortices and monopoles, which disorder Wilson loops down to the ultraviolet length scale

given by a2σ ∼ O(1) [179, 180]. In the weak coupling phase the short distance physics is determined

by asymptotic freedom and a2σ ≪ 1. Both SU(2) and SU(3) lattice theories exhibit a rapid crossover

between the two phases, which becomes more pronounced for SU(4) [179]. For SU(N) withN ≥ 5 the

bulk transition is first order [179]. SU(3) lattice gauge theory with mixed fundamental (f ) and adjoint

(a) actions shows a first order bulk transition for large βa and small βf . For decreasing βa the transition

line terminates at a critical point and turns into a crossover touching the line βa = 0. On lattices with

Nt = 2 the deconfinement transition line joins the bulk transition line smoothly from below and for

Nt ≥ 4 from above [181, 182]. More relevant is the finding in [129], that the bulk transition in pure G2

gauge theory at β = 9.45 is a crossover [129].

The values for the plaquette variables and Polyakov loops from the strong to the weak coupling regime
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are scanned, to find a bulk transition that might interfere with the finite temperature deconfinement

transition. For various values between κ = 0 and κ = ∞ on a 123×6 and 163×6 lattice the position and

nature of the bulk transitions is determined. In full agreement with [129] a crossover at (β, κ) ≈ (9.44, 0)

is seen, which is visible as a broad peak in the plaquette susceptibility depicted in the right panel of

Fig. 6.5. The Polyakov loop does not detect this crossover. Note that for small κ the position of the bulk
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Figure 6.5 Plaquette (left panel) and susceptibility (right panel) for small values of κ near the bulk transition

on a 123 × 6 lattice.

transition does not depend on the hopping parameter, which means that the bulk transition line hits the

line κ = 0 vertically. Despite the broad peak in the susceptibility of the plaquette density, the bulk and

deconfinement transition are clearly separated, and this agrees with the results in [183]. In the region

1.3 ≤ κ ≤ 1.6 the critical coupling βc decreases with increasing κc, but the nature of the transition does

not change much, as can bee seen in Fig. 6.6 (top row). The plaquette density seems to be a continuous

function of β and κ, and we conclude that the transition is still a crossover.

Between κ = 1.6 and κ = 1.65 the peak in the bulk transition becomes pronounced. In this region

the distance between the bulk and deconfinement transitions becomes very small. Nevertheless, it is

expected that the extremely localized bulk transition still does not interfere with the weak deconfinement

transition. For values of κ between 1.65 and approximately 2.5 the position of the bulk transition gets

more sensitive to the hopping parameter, and the distance to the deconfinement transition line increases

again. The nature of the transition changes at the same time. A large gap in the action density separates

the strong coupling from the weak coupling region. This is depicted in Fig. 6.6 (bottom row). The many

data points taken at κ = 1.8 show, that the size of the gap does not depend on the volume, and this points

to a first order transition. For κ & 2.5 the situation changes again. The gap in the plaquette density

closes and the position of the bulk transition tends to that of the bulk transition in SU(3) gluodynamics,

which again is a crossover. There is ample evidence that bulk transitions are driven by monopoles on the

lattice [178]. Consequently, the density of monopoles [181] as a function of β for κ = 0 and κ = 1.8 is

calculated. The densityM together with the plaquette variable are plotted in Fig. 6.7. For κ = 0 they

vary smoothly with β, as expected for a crossover, but for κ = 1.8 they jump at the same β ≈ 9.25. The
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Figure 6.6 Plaquette (left panel) and susceptibility (right panel) for intermediate values of κ near the bulk

transition on a 123 × 6 lattice.

height of the jump does not depend on the lattice size, see Fig. 6.7 (right panel). Thus one finds strong

evidence that the bulk transition is intimately related to the condensation of monopoles in the strong

coupling G2 Higgs model.

Finally, it is necessary to comment on the behaviour near κ = 1.6. Here the G2 Higgs model behaves

similar to SU(3) gluodynamics with mixed fundamental and adjoint actions. The latter shows a first

order bulk transition which turns into a crossover for small βa. It seems that for κ & 1.6 the massiveG2

gluons are heavy enough, such that the approximate centre symmetry of the unbroken SU(3) is at work.

This may explain why a first order transition for κ & 1.6 is found.

6.2 The transition lines away from the triple point

In this section again the confinement-deconfinement transition is investigated. Sufficiently far away from

the suspected triple point at βtrip = 9.62(1) and κtrip = 1.455(5), the signals for first and second order

phase transitions are unambiguous and are presented in this section. The measurements taken near the

would-be triple point are less conclusive and will be presented and analysed in the following section.
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6.2.1 The confinement-deconfinement transition line

Already the histograms for the Polyakov loop show, that the deconfinement transition is first order for

values of the hopping parameter κ in the intervals [0, 1.4] and [1.7,∞]. Two typical distributions for
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Figure 6.8 Distributions of the Polyakov loop on a 163 × 6 lattice. Left panel: (β, κ) = (9.76, 1) and

(9.725, 1.3); Right panel: β = 9 and various values of the hopping parameter.

κ = 1.0 and κ = 1.3, corresponding to the points 1 and 2 in the phase diagram in Fig. 6.4, are depicted

in Fig. 6.8 (left panel). These and other histograms with κ . 1.4 show a clear double peak structure near

the transition line and are almost identical to the histogram for κ = 0. Similar results are obtained for

larger hopping parameters κ & 1.7.

In Fig. 6.8 (right panel), histograms of the Polyakov loops for β = 9 and hopping parameters in the

vicinity of κ ≈ 2.6 are plotted, corresponding to point 3 in Fig. 6.4. The histograms with κ ≤ 2.6525

show peaks at almost the same positions. The systems with these small values of κ are in the confined

phase. For larger κ values the peak moves towards the ‘would-be’ centre elements of the subgroup

SU(3) and a second peak appears. Again the double-peak structure of the distribution points to a first
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order transition. The spatial sizes of the lattices are varied and no finite size effects in the distributions

for Ns ≥ 16 are observed.

6.2.2 The Higgs transition line

For β → ∞ the gauge degrees of freedom are frozen and a non-linear O(7) sigma model is recovered,

which shows a second order transition from an O(7) symmetric massive phase to an O(6) symmetric

massless phase. With the help of a cluster algorithm [106] the constrained scalar field is updated and the

susceptibility of

Oσ =
1

V

∑

x,µ

Φx+µ̂Φx , χ(Oσ) = − 1

κV
∂κ〈Sσ〉, (6.13)

is calculated, which is proportional to the sigma model action Sσ in (6.8). The results of the simulations

on lattices with varying spatial sizes are depicted in Fig. 6.9. The susceptibility of the action becomes
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Figure 6.9 The first and second derivative of the average sigma model action for different spatial lattice

sizes.

steeper as the spatial volume increases, while the peak of the (normalized) second derivative also in-

creases. This means that the system undergoes a second order transition at κc = 1.075(5) (corresponding

to point 4 in Fig. 6.4) from a massiveO(7) symmetric phase with vanishing vacuum expectation value to

a masslessO(6) symmetric phase with non-vanishing expectation value. Actually, the mean field theory

for O(n) models in d dimensions predicts a second order transition at the critical coupling κc,mf = n/2d.

For the model in 4 dimensions the mean-field prediction is κc,mf = 7/8 ≈ 0.875, which is not far from

the numerical value.

For smaller values of β the gauge degrees of freedom participate in the dynamics and ∂κ〈S〉 is now
proportional to the susceptibility ofOH in (6.9). The plots in Figs. 6.10 and 6.11 show a similar behavior

of the first and second derivatives of the average Higgs action for β = 30 and 12, corresponding to the

points 5 and 6 in the phase diagram in Fig. 6.4. Even for the smaller value β = 12, it can be seen that

the susceptibility becomes steeper with increasing lattice size, while the second derivative of the average
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Figure 6.11 First and second derivative of the average action with respect to the hopping parameter for

different spatial lattice sizes at β = 12.

action increases. This already demonstrates that the second order transition at the asymptotic region

β → ∞ extends to smaller values of β.

6.3 The transition lines near the triple point

When the first order transition gets weaker, it becomes increasingly difficult to distinguish it from a

second order transition or a crossover. For example, the four histograms in Fig. 6.12 (left panel) show

distributions of the Polyakov loop at point 7 in the phase diagram depicted in Fig. 6.4, corresponding

to κ = 1.5 and β varying between 9.5525 and 9.5550. All histograms are computed from 400 000

configurations on a medium size 163 × 6 lattice. The histogram on top left shows a pronounced peak

at P ≈ 0.1, corresponding to the value in the confined phase. With increasing β a second peak builds

up at P ≈ 0.25, corresponding to a value in the unconfined phase. A lot more histograms have been
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Figure 6.12 Left panel: Distributions of the Polyakov loop at κ = 1.5, where the transition is weakly

first order on a 163 × 6 lattice with 400 000 configurations for each histogram. Right panel: Distribution

of the Polyakov loop at (β, κ) = (9.6190, 1.455) − (9.6220, 1.455) near the supposed triple point; 400 000

configurations on 163 × 6 lattice.

calculated and will allow to conclude that the well separated peaks in the distribution are of equal heights

for βc ≈ 9.5535. At this point the Polyakov loop jumps from the smaller to the larger value. For even

larger values of β the second peak at larger P takes over and the system is in the unconfined phase.

Although the histograms point to a weakly first order transition, at this point is is not possible to rule

out that the transition at κ = 1.5 and β ≈ 9.5535 is of second order. Later it is found to be a first

order transition. When slightly decreasing the value of κ, the signal for a first order transition is more

pronounced. This is illustrated in the Polyakov loop histograms depicted in Fig. 6.12 (right panel). If

further increasing the value from κ = 1.5 to κ = 1.55, the peak of the Polyakov loop does not jump at the

transition point at β ≈ 9.4885. Instead, it increases smoothly from P ≈ 0.12 in the confinement phase to

P ≈ 0.24 in the deconfinement phase, as seen in Fig. 6.13. Therefore it can be conjectured, that in this

region of parameter space the first order transition turns into a continuous transition or a crossover, which

is later confirmed by an even more careful analysis. Next, the size-dependence of the average Polyakov

loop, plaquette variable, and Higgs action per lattice site are studied together with their susceptibilities.

The following results are obtained on lattices with Nt = 6 and spatial extents Ns ∈ {12, 16, 20, 24}
and for β = 9.5535. This corresponds to points in the neighborhood of point 7 in the phase diagram

in Fig. 6.4. Fig. 6.14 shows the κ-dependence of the Polyakov loop and its susceptibility for the four

different lattices. The measurements have been taken at 20 different values of the hopping parameter in

the vicinity of κ = 1.5. In this way the phase transition line is crossed almost vertically in the κ-direction

at the transition point 7 in the phase diagram in Fig. 6.4. The κ-dependence has been calculated with

the reweighting method. Later it turned out that the peak of the susceptibility at κc ≈ 1.501 scales

linearly with the volume. This linear dependence is characteristic for a first order transition. The plots in

Fig. 6.15 show the κ dependence of the average plaquette variable and the corresponding susceptibility

for the four lattices. Again it is observed that the susceptibility peak at κc ≈ 1.501 increases linearly
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Figure 6.13 Distributions of the Polyakov loop at κ = 1.55 where the transition is probably not first order on

a 163 × 6 lattice with 800 000 configurations for each histogram. Top left β = 9.4875, top right β = 9.4885,

bottom left β = 9.4895 and bottom right β = 9.4905 (βc ≈ 9.4885).

with the volume of the lattice. Also note that on the small 123 × 6 lattice the peak in the susceptibility

can hardly be seen. The two plots in Fig. 6.16 show the κ dependence of the average Higgs action per

lattice point and corresponding susceptibility. Similarly as for the Polyakov loop and the plaquette, a

peak of the susceptibility is observed at the same value κc ≈ 1.501. To check for finite size scaling,

the susceptibilities, corresponding to the Polyakov loop, plaquette variable, and Higgs action per site

as a function of the volume are investigated. The results are plotted in Fig. 6.17 (left panel). For an

easier comparison, the data points are normalized by the peak value for the largest lattice with lattice

size Ns = 24. The linear dependence of the peak of the susceptibilities on the volume is clearly visible

for the larger three lattices, and this linear dependence is predicted by a first order transition [177]. In

recent studies of the lattice SU(2) Higgs model in [183] it turned out, that forNs = Nt . 18 the maxima

of the susceptibilities are well described by a function of the form aL4 + b, so that they seem to scale

linearly with the volume, as expected for a first order transition at zero temperature. Simulations on

larger lattices revealed however, that the susceptibility peaks all saturate at larger values of L and no

singularities seems to develop in the thermodynamic limit. For the lattice G2 Higgs model considered
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Figure 6.14 Finite size scaling of Polyakov loop and Polyakov loop susceptibility at β = 9.5535.

0.5225

0.5230

0.5235

0.5240

0.5245

0.5250

0.5255

1.496 1.497 1.498 1.499 1.500 1.501 1.502 1.503 1.504

〈OP 〉

κ

123 × 6
163 × 6
203 × 6
243 × 6

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

1.496 1.497 1.498 1.499 1.500 1.501 1.502 1.503 1.504

χ(OP )

κ

123 × 6
163 × 6
203 × 6
243 × 6

Figure 6.15 Finite size scaling of the plaquette variable and its susceptibility for β = 9.5535.

in the present work, no flattening of the peaks is seen for larger lattices with Ns up to 24, and this is

interpreted as a signal for a true first order transition. The table in the right panel of Fig. 6.17 shows the

extrapolation of the critical hopping parameter to infinite volumes. Finally, for each lattice size the value

κc(V ) is calculated at which the Polyakov loop, plaquette, and Higgs action susceptibilities take their

maxima. Note, that on the larger lattices with Ns = 20 and 24, the three critical hopping parameters are

the same within statistical errors and the resolution of the reweighting grid (∆κ = 0.0004). The infinite

volume extrapolation yields the critical value κc = 1.5008.

6.3.1 The first order lines do not meet

The previous results on the 163×6 lattice leave a small region in parameter space near (β, κ) ≈ (9.4, 1.6),

where the transition may be continuous or where it is possible to cross smoothly between the confined

and unconfined phases. Since a jump of the Polyakov loop expectation values in the infinite volume limit
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Figure 6.16 Finite size scaling of Higgs action and its susceptibility for β = 9.5535.
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Figure 6.17 Left panel: Finite size scaling of the three susceptibilities at the transition point with β =

9.5535. The lines are fits to the peak values, χmax(V ) = aV + b. Right panel: Critical coupling κc obtained

from the maximum of the susceptibility peaks of Polyakov loop, plaquette and Higgs action for different

spatial volumes at β = 9.5535. The errors are given by the density of the reweighting grid (∆κ = 0.0004).

points to a first order transition, the quantity

∆P = 〈P 〉deconfined − 〈P 〉confined (6.14)

is investigated more carefully. In the small parameter region the critical curve (βc, κc) is localized with

the histogram method. At the critical point the height of the confinement peak is equal to the height of

the deconfinement peak. For fixed κc the transition line is crossed when increasing the inverse gauge

coupling. Then the maximal jump is measured as a function of the step size ∆β for one step size below

and one above βc. For a first order transition the jump should not depend much on ∆β, whereas for a

continuous transition or a crossover ∆P should decrease with decreasing ∆β. The results on a 163 × 6

lattice are depicted in Fig. 6.18. For 9.35 . βc . 9.52 corresponding to 1.52 . κc . 1.72, it is

observed, that the jump approaches zero with shrinking step size, and this clearly points to second order

confinement-deconfinement transitions or crossovers in these small parameter regions. Simulations on

a larger 203 × 6 lattice confirm these results. Fig. 6.19 shows histograms of the Polyakov loop for κ

values between 1.5 and 1.7. At κ = 1.5 a weak first order transition is still observed, which turns into
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Figure 6.18 Difference of Polyakov loop in confined and unconfined phase at the phase transition point for

various critical couplings βc, κc and various intervals around the critical coupling βc, red: ∆β = 0.0005,

green: ∆β = 0.0015, blue: ∆β = 0.0025, pink: ∆β = 0.0035, κ is fixed (∆κ = 0). The region in which

∆P → 0 indicates a crossover or continuous transition.

a continuous transition or crossover for 1.5 < κ ≤ 1.7. Within the given resolution in parameter space,

the window is the same as on the 163 × 6 lattice. Since the critical couplings for spatial volumes beyond

203 do not change, it is concluded that the gap will not close in the infinite volume limit. This shows

that the two first order lines emanating from κ = 0 and κ = ∞ do not meet. Here the question arises,

whether such a gap in the first order line between the confined and unconfined phases is expected. The

celebrated Fradkin-Shenker-Osterwalder-Seiler theorem [184, 185], originally proven for the SU(N)

Higgs model with scalars in the fundamental representation, says, that there is no complete separation

between the Higgs and the confinement regions. Any point deep in the confinement regime and any

point deep in the Higgs regime are related by a path, such that Green’s functions of local, gauge invariant

operators vary analytically along the path. Thus, there is no abrupt change from a colourless to a colour-

charged spectrum. This is consistent with the fact that there are only colour singlet asymptotic states in

both ’phases’. The proof of the theorem relies crucially on using a completely fixed unitary gauge. A

complete gauge fixing is not possible with scalars in the adjoint representation of SU(N), since these

scalars are centre blind. Thus, the theorem does not hold for adjoint scalars. Indeed, with adjoint scalars

there exits a phase boundary separating the Higgs and confined phases. It is not completely obvious

whether these results are relevant for the phase diagram of the G2 Higgs model. The centre of G2 is

trivial and the 14 dimensional adjoint representation is just one of the two fundamental representations.

Since there is no need to break the centre one may conclude, that the confinement-like regime and the

Higgs-like regimes are analytically connected. In addition, for large values of the hopping parameter the

centre of the corresponding SU(3) gauge theory is explicitly broken by the scalar fields, similar as for the

SU(3) Higgs model with scalars in the fundamental representation. These arguments suggest that there

exists a smooth crossover between the confining and Higgs phases. However, one important assumption

of the Fradkin-Shenker theorem is not fulfilled for the G2 Higgs model. The theorem assumes that there

exists no transition for large κ. Consequently, at large κ it is possible to move from large to small β
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Figure 6.19 Distribution of the Polyakov loop near the phase transition point for κ = 1.5 (top left), κ = 1.55

(top right), κ = 1.65 (bottom left) and κ = 1.7 (bottom right) on a 203 × 6 lattice.

and then at small β further on to small values of κ without hitting a phase transition. Clearly this is not

possible for the G2 Higgs model, which means, that not all assumption of the theorem hold true.

6.4 Conclusions

In this chapter, the proposed and earlier seen [58, 129] first order transition for pure G2 gluodynamics

has been confirmed, which corresponds to the line κ = 0 in the phase diagram of the Higgs model. A

first analysis on smaller lattices indicates, that this first order transition is connected to the first order

deconfinement transition in SU(3) gluodynamics, corresponding to the limit κ→ ∞, by a smooth curve

of first order transitions. The same analysis spots another curve of second order transitions emanating

from β → ∞ and meeting the first order line at a triple point.

For this first analysis histograms for the Polyakov loop, Higgs action, and plaquette action have been

calculated. To identify the second order transition line, the finite size scaling of various susceptibilities

and of the second derivative of the action with respect to the hopping parameter have been studied. The

final result of the performed analysis on a 163 × 6 lattice is depicted in Fig. 6.20.

Note that the tiny region in the vicinity of the would-be triple point is very much enlarged in this figure.
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In this tiny region in the (β, κ) plane, where the order of the transition can not be decided, the slope of

〈P 〉 in the vicinity of the suspected transition has been studied. The simulations show, that the two first

order curves emanating from the lines with κ = 0 and κ = ∞ end before they meet. The two curves may

be connected by a line of second order transitions or they may end at two (critical) endpoints, in which

case the confined and unconfined phases are smoothly connected. If indeed there exists a crossover in the

G2 Higgs model at a finite value of the hopping parameter, then the gauge model behaves very similar to

QCD with massive quarks.

To finally answer the question about the behav-
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Figure 6.20 Complete phase diagram in the

(β, κ)-plane on a 163 × 6 lattice. The neighbour-
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enlarged and the variable scale in the diagram is

responsible for the cusps in the transition lines.
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dashed line (blue) a second order transition, and
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ior of the G2 Higgs model theory in the vicinity of

the ‘would-be triple point’ at (β, κ) ≈ (9.4, 1.6),

further simulations with an even higher statistics

and a more sophisticated analysis of the action sus-

ceptibilities may be necessary. However, this will

not be an easy task, since already an efficient (and

parallelized) lHMC algorithm and much CPU time

has been used to arrive at the results presented in

the work. Earlier studies of the susceptibility peaks

in the simpler SU(2) Higgs model on smaller lat-

tices pointed to a first order transition at β . 2.5.

Recent simulations on larger lattices in [183] showed,

that the susceptibility peaks do not scale with the

volume, which means, that there is actually no first

order transition for these small values of β. No

flattening of the peaks with increasing volumes for

Ns ≤ 24 has been seen and it has been concluded,

that the solid line in Fig. 6.20 is a first order line.

However, of course, it cannot be excluded, that the

correlation length is larger than expected and that

simulations on even larger lattices are necessary, to finally settle the question about the position and size

of the window connecting the confined with the unconfined phase. However, this will be difficult, and

therefore it would be very helpful to actually prove (if possible and under weaker assumptions), whether

the confining and Higgs phases of G2 can be connected analytically, perhaps with similar arguments as

applied to SU(N) Higgs models with matter in the fundamental representations [184, 185].

Concluding, it has been shown that fundamental matter is able to weaken the deconfinement phase

transition. This is very similar to QCD, where for light quarks in the fundamental representation a

crossover from the confined to the deconfined phase has been found. However so far, only scalar matter

fields have been considered in the present work. In the next chapter, the influence of dynamical quarks

in the 7-dimensional fundamental representation of G2 is studied. It is expected that these fundamental

matter fields are also able to weaken the deconfinement phase transition and may provide an interesting

opportunity to gain new insides into the QCD phase diagram.
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7 A QCD-like theory with fermionic

baryons

As it was already pointed out in the introduction, one of the main challenges of QCD is to gain new

insight into its phase diagram. Due to the fermion sign problem of QCD at real quark chemical potential,

Monte-Carlo techniques are not directly applicable to investigate the QCD phase diagram, especially

at low temperatures and high densities [186, 187]. Understanding the theory in this region of the QCD

parameter space is, for instance, very important for dense quark systems and the formation of compact

stellar objects as well as heavy-ion collision experiments.

Currently, the only reliable information is obtained from continuum methods and model calculations

[45, 188–190]. These methods usually require approximations and therefore their validity in all regions

of the QCD parameter space is still unclear. Nevertheless, Fig. 7.1 shows a sketch of the QCD phase

diagram, inspired by the different approaches.

For vanishing baryon chemical potential µB and

Figure 7.1 Schematic phase diagram of QCD,

taken from Wikipedia

physical values of the quark masses, the low tem-

perature confinement phase is separated by a cross-

over from the high temperature deconfined quark

gluon plasma in the early universe [28,188,191]. At

small values of the chemical potential, results can

be obtained from reweighting techniques [192–194]

or Taylor expansion around vanishing chemical po-

tential [195–200]. With these methods it was possi-

ble to investigate the QCD phase diagram for small

densities and high temperatures, i.e. µB/T . 1.

Nevertheless, the existence of a critical point as de-

duced frommodel calculations, where the crossover

from a confined to a deconfined phase at zero and

small values of baryon chemical potential (net baryon density) turns into a real phase transition, is still

unclear [193, 199, 201]. Another possibility is to simulate QCD at imaginary chemical potential, where

the sign problem is absent. The obtained results can then be continued analytically to real values of the

quark chemical potential [202–206]. At small temperatures and large values of the quark chemical po-

tential, so far all lattice techniques miserably fail due to the severeness of the sign problem. The obtained

results are based on model calculations [38, 188], which mostly agree on a first order phase transition

between nuclear matter and quark matter. At asymptotic high net baryon densities colour superconduc-

tivity is expected. In between and at finite temperature more exotic phases, as for instance a quarkionic

phase, i.e. deconfined but chiraly broken matter or crystalline phases, are proposed [39–41].

A theory that is accessible to Monte-Carlo techniques is two-flavour QCD with isospin chemical
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potential µI. Phenomenological arguments suggest, that two-flavour QCD at zero temperature remains

in the vacuum state until the chemical potential reaches the energy of the lowest hadronic bound state, i.e.

the pion mass [207]. Consequently, all observables should not depend on µI for µI < mπ/2. However,

on the other hand the grand canonical potential, i.e. the logarithm of the partition function, naively

depends on µI. This obstacle is known as the isospin silver blaze problem. It was solved in [208],

showing that the complex phase factor exactly cancels the dependence on µI for µI < mπ/2. In the case

of baryon chemical potential µB the situation is much more complicated. It is believed that the system

remains in the vacuum, until µB reaches the energy of the lightest state carrying non-vanishing baryon

number [209, 210].

Another approach to the QCD phase diagram is to investigate QCD-like theories having as many fea-

tures as possible in common with QCD. One example of those theories is two-colour QCD. Its phase

diagram was explored very recently and with much effort in a series of papers [51–56, 211–213]. Al-

though the results reveal many interesting aspects, the main drawback of two-colour QCD is the absence

of fermionic degrees of freedom in the hadron spectrum. The baryons are bosons instead of fermions

and this leads to profound differences to QCD, such as Bose-Einstein condensation with a BEC-BCS

crossover at high densities instead of the usual liquid-gas transition of nuclear matter. However, at high

densities the fermionic nature of baryons is expected to become important. Another example for a QCD-

like theory is adjoint QCD, where matter transforms under the adjoint (real) representation of the gauge

group [51, 52, 214].

Here, a QCD-like theory based on the exceptional gauge group G2 is proposed. It has already been

shown that G2-Yang-Mills theory undergoes a first order phase transition from the low-temperature con-

fined phase to the high-temperature deconfined phase [58, 129] and therefore behaves very similar to

SU(3). Additionally, in chapter 6 it has been shown that already scalar quarks can weaken the de-

confinement phase transition until it becomes a crossover. Now fundamental fermions are coupled to

G2-Yang-Mills in order to study the phase diagram of G2-QCD at finite density. The quenched theory

has already been explored in [215], showing that chiral symmetry is broken at low temperatures and

restored at high temperatures.

In this work, it will be shown that even at finite quark chemical potential µ the fermion determinant is

non-negative. This, in principle, allows to investigate the phase diagram at zero temperature and finite

chemical potential. Moreover, the spectrum contains fermionic baryons and the theory is expected to

behave in many aspects very similar to QCD. Below, the continuum formulation of G2-QCD is devel-

oped, simulations on different lattices are performed and the obtained phase diagram is presented. The

results will be published in a series of forthcoming papers [216, 217]. First results on smaller lattices

have already been published in [82].

7.1 Continuum formulation of G2-QCD

To understand QCD with gauge group G2, it is important to work out the symmetries of the continuum

theory. In principle, this has been done for an arbitrary gauge group (and in more detail for SU(2))

in [51]. In the following the details for G2 are explained. The action of Nf flavour QCD with arbitrary

66



gauge group G in Minkowski spacetime is given by

S =

∫

d4x tr

{

−1

4
FµνF

µν +

Nf
∑

n=1

Ψ̄n (i γµ(∂µ − gAµ) −m) Ψn

}

, (7.1)

Under charge conjugation the matter part of the Lagrange density transforms up to boundary terms, as

L[ΨC, A,m] =Ψ̄C (i γµ(∂µ − gAµ) −m) ΨC

=Ψ̄
(

i γµ(∂µ + gAµ
T) −m

)

Ψ = L[Ψ,−AT , m],
(7.2)

with Ψ = (Ψ1, . . . ,ΨNf
). Therefore, the charge conjugated spinor ΨC fulfills the same equation of

motions if the gauge field obeys the condition

AT
µ = −Aµ = −Aa

µTa. (7.3)

Since every representation of G2 is real, the generators Ta of the algebra g2 can be chosen as anti-

symmetric real-valued 7 × 7 matrices and equation (7.3) holds. Then it is possible to write the matter

part of the action (7.1) as a sum over 2Nf Majorana spinors λn

S[Ψ, A] =

∫

d4x Ψ̄ (i γµ(∂µ − gAµ) −m) Ψ =

∫

d4x λ̄ (i γµ(∂µ − gAµ) −m)λ (7.4)

with λ = (χ , η) = (λ1, . . . , λ2Nf
). Here λ obeys the Majorana condition λC = Cλ̄T = λ, λ̄C =

−λTC−1 = λ̄ and is related to the Dirac spinor as

Ψ = χ+ i η , Ψ̄ = χ̄− i η̄ , ΨC = χ− i η , Ψ̄C = χ̄+ i η̄. (7.5)

Now the (baryon) chemical potential µ enters the partition function as a Lagrange multiplier, similar to

temperature. It violates the Majorana decomposition, because in the microscopic Lagrangian it enters as

an off-diagonal term in flavour space,

L = Ψ̄
(

i /D −m+ i γ0 µ
)

Ψ =

(

χ̄

η̄

)(

i /D −m i γ0 µ

−i γ0 µ i /D −m

)(

χ

η

)

. (7.6)

In the following the spectrum and the chiral properties of (7.6) are investigated.

7.1.1 The spectrum of the Dirac operator

For Monte-Carlo methods to be applicable, the determinant of the Euclidean Dirac operator has to be

non-negative. The Euclidean gamma matrices are Hermitian. The continuum Dirac operator is then

given by

D[A,m, µ] = γE
µ(∂µ − gAµ) −m+ γE0µ. (7.7)

According to [51, 52], if a unitary operator T exists such that the Dirac operator obeys the relation

D∗ T = T D, (7.8)

with T ∗ T = −1 and T † = T−1, the eigenvalues of the Dirac operator come in complex conjugate pairs

and all real eigenvalues are doubly degenerate.
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Proof Let λ be an eigenvalue of D with eigenvector ψ, T a unitary operator with D∗ T = T D and

χ = T−1ψ∗, then it follows

Dχ = DT−1ψ∗ = T−1TDT−1ψ∗ = T−1D∗ψ∗ = T−1λ∗ψ∗ = λ∗χ, (7.9)

and λ∗ is also an eigenvalue of D. Suppose now T ∗T = −1, then
ψ†χ =

(

χ†ψ
)∗

=
(

ψTT−1†ψ
)∗

=
(

ψTTψ
)∗

= ψ†T ∗ψ∗ = −ψ†
(

T−1ψ∗
)

= −ψ†χ, (7.10)

concluding that ψ†χ = 0. Every real eigenvalue is therefore doubly degenerate and together with (7.9)

this shows that the determinant of D is non-negative. In order to prove this feature for G2-QCD, T is

applied to the Dirac operator,

T D T † = TγE
µT †∂µ − gTγE

µAµT
† −m+ TγE0T

†µ, (7.11)

and with the decomposition of T into a spinor (Γ) and colour (F ) part (T = Γ ⊗ F ),

T D T † = ΓγE
µΓ†∂µ − gΓγE

µΓ†FAµF
† −m+ ΓγE0Γ

†µ (7.12)

is obtained. To fulfill (7.8), Γ and F have to satisfy the following relations

ΓγEµΓ† = γE
∗
µ , ΓγE0Γ

†µ = γE
∗
0µ

∗ and FAµF
† = A∗

µ. (7.13)

For real chemical potential and Hermitian gamma matrices, the first two equations are satisfied by Γ =

Cγ5. Since all representations of G2 are real (Aµ = A∗
µ), F is the identity and therefore

T = Cγ5 ⊗ 1 (7.14)

is obtained. Indeed, this choice satisfies T−1 = T † and T ∗T = −1, and therefore the fermion deter-

minant is real and non-negative for any gauge field configuration and any real value of quark chemical

potential,

detD[A,m, µ] ≥ 0. (7.15)

This feature of the fermion determinant makes Markov chain Monte-Carlo techniques applicable, be-

cause the path integral measureDAµ detD[A,m, µ] e−SB is real and non-negative and can be interpreted

as a probability distribution to generate a Markov chain.

7.1.2 Chiral symmetry

Because of the Majorana constraint, the chiral symmetry in G2-QCD will be different from that of

SU(3)-QCD. First of all the chiral transformation associated to the vector current jµ = q̄γµq,

λ 7→ eβ⊗1λ. (7.16)

is investigated. Here, β is a 2Nf × 2Nf matrix in flavour space. The Majorana constraint then requires

β = β∗ or β = i π diag (n1, . . . , n2Nf
). The conjugated spinor transforms as

λ̄ = −λTC−1 7→ −(eβ⊗1λ)TC−1 = λ̄eβT⊗1. (7.17)
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The action (7.4) is invariant if β fulfills the equation β + βT = i 2 πm and altogether

β ∈ so(2Nf) or
β

iπ
∈ {0 , 1}2Nf (7.18)

is obtained.

The second symmetry under investigation is the axial vector chiral symmetry with classically con-

served current j5
µ = q̄γµγ5q,

λ 7→ eiα⊗γ5λ, λ̄ = −λTC−1 7→ λ̄eiα
T⊗γ5 . (7.19)

Here the Majorana constraint requires α = α∗. The action is invariant if α = αT. Therefore, iα

corresponds to a complex embedding of symmetric and anti-Hermitian matrices in so(2Nf) and each of

the diagonal parts to a U(1) factor,

α ∈ so(2Nf) or α = θ ∈ u(1)2Nf . (7.20)

To find the combined symmetry group it has to be taken into account that left- and right-handed spinors

can, due to

λL/R =PL/Rλ = PL/Rλ
C = PL/RCγ

T
0 λ

∗ = CP ∗
L/Rγ

T
0 λ

∗ = CγT
0 P

∗
R/Lλ

∗ = CγT
0 λ

∗
R/L, (7.21)

not be rotated independently. For instance, in a Majorana representation with C = −γ0 the left-handed

spinor is the complex conjugate of the right-handed one, λL/R = λ∗R/L. Moreover, the axial so(2Nf) and

the vector so(2Nf) do not commute and the corresponding symmetry group does not factorize. To find

the most general chiral transformation, it is possible to write the matrices α, β and θ in terms of the

N(2N − 1) su(2N) ladder operators Eij ,

Eij = |i〉 〈j| for 1 ≤ i < j ≤ 2N, (7.22)

and algebra generators (hi are the generators of the Cartan subalgebra)

T R
ij =

1

2

(

Eij + ET
ij

)

, T I
ij =

1

2i

(

Eij − ET
ij

)

, T C
i =hi, (7.23)

where the superscripts R and I stand for the real and imaginary embedding of so(2N) generators and C

denotes the Cartan subalgebra. Then

α = αa T R
a , β = i βa T I

a and θtraceless = θa T C
a , (7.24)

and the trace-part of θ corresponds to an additional U(1) factor. With these definitions, a general chiral

transformation can be written as

U(α, β, θ) = exp
{

i
(

αa T R
a + θa T C

a + tr θ
)

⊗ γ5 + i βa T I
a ⊗ 1}. (7.25)

In terms of left- and right-handed projection operators, the chiral symmetry transformation is given by

U(α, β, θ) = exp
{

i(αa T R
a + θa T C

a + tr θ) ⊗ (PR − PL) + i βa T I
a ⊗ (PR + PL)

}

= exp
{

i
(

αa T R
a + βa T I

a + θa T C
a + tr θ

)}

⊗ PR

+ exp
{

−i
(

αa T R
a − βa T I

a + θa T C
a + tr θ

)}

⊗ PL

=UR(α, β, θ) ⊗ PR + UL(α, β, θ) ⊗ PL,

(7.26)
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where αa T R
a + βa T I

a + θa T C
a = taT

a is a general element of SU(2N). Indeed, UL = U∗
R = UL=R∗ is a

unitary matrix withNα +Nβ +Nθ=Nf(2Nf − 1) +Nf(2Nf − 1) + 2Nf = 4N2
f degrees of freedom and

therefore a general element of U(2Nf). The discrete part of the vector symmetry is already contained in

the U(2Nf), and thus the chiral symmetry of G2-QCD reads

U(2Nf)L=R∗ = SU(2Nf)L=R∗ ⊗ U(1)A/Z(2Nf), (7.27)

in agreement with the results in [57]. Together with the local gauge symmetry, this is the symmetry group

of the classical action. As in QCD it is expected that the axial U(1) is broken by the axial anomaly. The

change in the Lagrangian due to the anomaly is given by [218],

∆L =2i tr (α⊗ γ5γµγνγργσ ⊗ F µνF ρσ) = 2i tr (α) tr
(

F µνF̃µν

)

. (7.28)

Therefore the U(1) is broken to the discrete subgroup Z(2), being part of the vector transformations.

Indeed, it is the trivial part of the U(1)B associated to baryon number conservation. Thus, the chiral

symmetry of the quantum theory is

SU(2Nf)L=R∗ ⊗ Z(2)B. (7.29)

In the following, explicit or spontaneous chiral symmetry breaking triggered by a Dirac mass term or a

non-vanishing chiral condensate is investigated.

7.1.3 Chiral symmetry breaking, Goldstone bosons and baryon charge

In the presence of a non-vanishing Dirac mass term or a non-vanishing chiral condensate, the theory is no

longer invariant under the axial SO(2Nf)A transformations. Therefore the chiral symmetry is expected

to be broken partially (explicit or spontaneous) to its maximal vector subgroup,

SU(2Nf)L=R∗ ⊗ Z(2)B 7→ SO(2Nf)V ⊗ Z(2)B, (7.30)

leading to 4N2
f − 1 − Nf(2Nf − 1) = Nf(2Nf + 1) − 1 (would-be) Goldstone bosons in the symmetry

broken phase. Contrary, in the presence of a non-vanishing chemical potential, the Dirac operator is no

longer diagonal w.r.t. the decomposition into Majorana flavours. In this case and for vanishing Dirac

massm = 0, the chiral symmetry is the same as in QCD,

SU(2Nf)L=R∗ ⊗ Z(2)B 7→ U(Nf)A ⊗ U(Nf)V = SU(Nf)A ⊗ SU(Nf)V ⊗ U(1)B/Z(Nf). (7.31)

Then form 6= 0, chiral symmetry is broken as

SU(Nf)A ⊗ SU(Nf)V ⊗ U(1)B/Z(Nf) 7→ SU(Nf)V ⊗ U(1)B/Z(Nf). (7.32)

Now it is only necessary to show that m 6= 0, and after that switching on chemical potential leads to

the same group as the other way around. Since the part of the Lagrangian belonging to the chemical

potential is not diagonal in the Majorana decomposition, it is not possible to transform the Majorana

components of a Dirac spinor independently. Therefore, the vector group SO(2Nf)V is broken down to
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U(2Nf)L=R∗

SU(2Nf)L=R∗ ⊗ Z(2)B SO(2Nf)V ⊗ Z(2)B

SU(Nf)A ⊗ SU(Nf)V ⊗ U(1)B/Z(Nf) SU(Nf)V ⊗ U(1)B/Z(Nf)

anomaly

m,
〈

Ψ̄Ψ
〉

µ

m,
〈

Ψ̄Ψ
〉

µ

Figure 7.2 Chiral symmetry breaking in G2-QCD

transformations that do not interchange the Majorana spinors building a single Dirac flavour. But then

also complex transformations are allowed, leading to the residual SU(Nf)V symmetry group. Altogether

the chiral symmetry breaking of G2-QCD is shown in Fig. 7.2. Finally, the conserved charges, i.e.

physical particles, corresponding to the conserved axial and vector currents,

jµa
A = λ̄γµγ5 ⊗ T a

R/Cλ and jµa
V = λ̄γµ ⊗ T a

I λ (7.33)

have to be identified. The content of the axial chiral multiplet consists of (Nf + 1)(2Nf − 1) operators

1

2

(

λ̄iγ5λj + λ̄jγ5λi

)

= λ̄iγ5λj for 1 ≤ i < j ≤ 2N and

1

2

(

λ̄iγ5λi − λ̄i+1γ5λi+1

)

for 1 ≤ i < 2Nf .
(7.34)

The vector charge vanishes identically and the operators associated to the trace part of the axial symmetry

(broken by the anomaly) and to the trace part of the vector symmetry (U(1)B associated to baryon number

conservation) are given by

λ̄iγ5λi and λ̄iλi. (7.35)

If chiral symmetry is spontaneously broken, the axial chiral multiplet becomes massless, according to

the Goldstone theorem. In analogy to QCD, the associated particles are called pions (π). The ones

corresponding to the trace part of the anomaly and the trace part of the vector symmetry are called η′ and

f ′, respectively.

Similar to QCD, mesons consist of a quark and an anti-quark. With respect to the U(1)B subgroup of

the chiral vector symmetry they are invariant, i.e. they do not carry baryon charge. Baryons are fermionic

bound states, for instance three quarks or a single quark and three gluons, that are not invariant under the

U(1)B subgroup. Consequently, they carry baryon number. Additionally, also baryonic diquarks (bound

states of two quarks) exist, for instance the pion is a diquark with baryon charge two. This is in contrast

to QCD, where diquarks cannot exist and the pions are pseudoscalar mesons instead.

7.1.4 Towards QCD at finite chemical potential

Again, with a Higgs field in the fundamental representation of the gauge group, the gauge symmetry can

be broken down to the SU(3) subgroup of G2. In the limit of an infinitely heavy scalar field, the matter
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part of the microscopic Lagrangian (7.6) in the colour decomposition is given by (here for simplicity the

complex representation of G2 is used)

L =







Ψ̄3

Ψ̄3̄

Ψ̄1













i /D3 −m+ i γ0 µ 0 0

0 i /D3̄ −m+ i γ0 µ 0

0 0 i /D1 −m+ i γ0 µ













Ψ3

Ψ3̄

Ψ1






, (7.36)

where /D3, /D3̄ and /D1 are the gauge covariant derivatives in the fundamental (3), anti-fundamental (3̄)

and colour-singlet (1) representation of SU(3), respectively. Using the relation
∫

d4xΨ̄3̄

(

i /D3̄ −m+ i γ0 µ
)

Ψ3̄ =

∫

d4x Ψ̄C
3̄

(

i /D3 −m− i γ0 µ
)

ΨC
3̄ , (7.37)

and the change in the integration variables

(Ψ3, Ψ3̄, Ψ1) 7→
(

Ψ3, ΨC
3̄ , Ψ1

)

= (Ψu, Ψd, Ψ1) ,
(

Ψ̄3, Ψ̄3̄, Ψ̄1

)

7→
(

Ψ̄3, Ψ̄C
3̄ , Ψ̄1

)

=
(

Ψ̄u, Ψ̄d, Ψ̄1

)

,
(7.38)

the Lagrangian in the limit of an infinitely heavy scalar field is equivalent to the Lagrangian of two-

flavour QCD with isospin chemical potential and equal mass for the up- and down-quarks,

L = Ψ̄u

(

i /D −m+ i γ0 µ
)

Ψu + Ψ̄d

(

i /D −m− i γ0 µ
)

Ψd + Ψ̄1

(

i /∂ −m+ i γ0 µ
)

Ψ1, (7.39)

where /D is now the covariant derivative with respect to the gauge group SU(3). Additionally, a colour-

singlet quark is present. In this decomposition the absence of the sign problem is evident. In order

to recover QCD with baryon chemical potential, a more involved breaking mechanism, employing also

Yukawa-type interactions for the scalar field and the quarks, is necessary. Maybe it would be possible to

gradually switch on the sign problem, allowing for an extrapolation to QCD.

7.1.5 One-flavour G2-QCD

In contrast to QCD, already in the case of a single Dirac flavour a non-trivial chiral symmetry is present,

and chiral symmetry breaking can be observed. This is the reason why in the following only G2-QCD

with a single Dirac flavour Nf = 1 is investigated. The chiral symmetry is then given by

SU(2)L=R∗ ⊗ Z(2)B. (7.40)

The Dirac spinor can be decomposed into two Majorana spinors, Ψ = χ + i η. The axial and vector

chiral transformations can explicitly be worked out. They read

OA(α)

(

χ

η

)

= cos(α)

(

χ

η

)

+ i sin(α)γ5

(

η

χ

)

OV(β)

(

χ

η

)

= cos(β)

(

χ

η

)

+ sin(β)

(

−η
χ

)

UA(θ)

(

χ

η

)

=

(

cos(θ1)χ

cos(θ2)η

)

+ iγ5

(

sin(θ1)χ

sin(θ2)η

)

and ZB(z)

(

χ

η

)

=

(

z1χ

z2η

)

,

(7.41)
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with α, β and θ ∈ R and z ∈ {−1, 1}. In the case m = 0 and µ = 0 and with the identity −C−1γµγ5 =

γT
5 C

−1γµ, it is evident that (7.6) is indeed invariant. A Dirac mass term breaks the axial symmetry but

is invariant under SO(2)V = U(1)B and Z(2)B. If the symmetry is spontaneously broken by a non-

vanishing chiral condensate, 2 massless Goldstone bosons occur, which become massive in the case of

an explicit Dirac mass term. The corresponding creation operators are given by

π+ = π− = π± = χ̄γ5η and π0 =
1√
2

(χ̄γ5χ− η̄γ5η) . (7.42)

The operators corresponding to the anomaly and baryon number conservation are given by χ̄γ5χ, η̄γ5η,

χ̄χ and η̄η. Linear combinations lead to

η′ =
1√
2

(χ̄γ5χ+ η̄γ5η) and f ′ =
1√
2

(χ̄χ+ η̄η) . (7.43)

The chiral symmetry can also be expressed in terms of the Dirac spinor. The vector symmetry reads

Ψ 7→ eiαΨ and is identified as U(1)B associated to baryon number conservation. Written in terms of the

Dirac spinor, the pions and the η′ and f ′ are given by

π± = Ψ̄Cγ5Ψ − Ψ̄γ5Ψ
C, π0 = Ψ̄Cγ5Ψ + Ψ̄γ5Ψ

C, η′ = Ψ̄γ5Ψ and f ′ = Ψ̄Ψ, (7.44)

indeed showing that the pions are diquarks instead of mesons. The corresponding correlation functions,

used in the lattice simulations to extract the mass, read

Cπ(x, y) =
〈

π0(x) π
†
0(y)

〉

=
〈

π±(x) π†
±(y))

〉

=

〈

χ̄(x)γ5χ(x) χ̄(y)γ5χ(y)

〉

,

Cη′(x, y) =
〈

η′(x) η′
†
(y)
〉

=2

〈

χ̄(x)γ5χ(x) χ̄(y)γ5χ(y)

〉

+

〈

χ̄(x)γ5χ(x) χ̄(y)γ5χ(y)

〉

,

Cf ′(x, y) =
〈

f ′(x) f ′†(y)
〉

=2

〈

χ̄(x)χ(x) χ̄(y)χ(y)

〉

+

〈

χ̄(x)χ(x) χ̄(y)χ(y)

〉

,

(7.45)

showing that the pion masses are degenerate and its correlation functions contain only connected con-

tributions. The difference between the η′ and the pion correlation function is only the disconnected

contribution. Additionally, the mass of the σ-meson is obtained from the connected part of the f ′ corre-

lation function,

Cσ(x, y) =
〈

σ(x) σ†(y)
〉

=

〈

χ̄(x)χ(x) χ̄(y)χ(y)

〉

. (7.46)

In the following the lattice formulation and observables are discussed and results of one-flavour lattice

simulations are presented.

7.2 Lattice formulation and thermodynamic observables

The lattice action for G2-QCD (4.1) reads

SQCD[U ,Ψ] = SSym[U , β] −
∑

xy

Ψ̄xDxy[U , m, µ]Ψy, (7.47)
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where SSym is the Symanzik-improved gauge action and D[U , m, µ] the Wilson-Dirac operator at bare

fermion massm and real baryon chemical potential µ,

Dxy = (m+ 4)δxy −
1

2

4
∑

ν=1

(γν − 1) eµ δν,0 Ux,ν δx,y−ν + (γν + 1) e−µ δν,0 U †
x−ν,ν δx,y+ν . (7.48)

In the following, also the hopping parameter κ = (2m + 8)−1 is used. The simulations are carried

out with the described rHMC algorithm for Dirac fermions. In these first simulations, only a single

Dirac flavour Nf = 1 is considered, since this is the simplest case and, in difference to QCD, already a

continuous non-trivial chiral symmetry and possible pseudo-Goldstone bosons exist. In addition to the

Polyakov loop, the plaquette variable and its susceptibilities, the following thermodynamic observables

are considered to investigate the phase diagram: The chiral condensate Σ(T, µ,m) is given by

Σ(T, µ,m) =
1

V

∂ lnZ

∂m
=

1

V

∑

x

〈

Ψ̄Ψ
〉

=
1

V

〈

trQ−1
〉

eff
. (7.49)

If data are available, its value is renormalized with the chiral condensate at zero temperature and vanish-

ing chemical potential, Σren(T, µ,m) = Σ(T, µ,m)/Σ(0, 0, m). Its derivative with respect to the bare

quark massm defines the chiral susceptibility (here only the disconnected part is taken into account)

χ(Σ) =

(

∂Σ

∂m

)

disc

= V





〈

1

V 2

∑

x,y

Ψ̄(x)Ψ(x)Ψ̄(y)Ψ(y)

〉

−
〈

1

V

∑

x

Ψ̄(x)Ψ(x)

〉2




disc

=
1

V

(〈

(

trQ−1
)2
〉

eff
−
〈

trQ−1
〉2

eff

)

.

(7.50)

The quark number density is the derivative of the partition function with respect to the chemical potential

µ and therefore a monotonically increasing function in µ,

nq(T, µ,m) =
1

V

∂ lnZ

∂µ
= − 1

2V

∑

xy

〈

Ψ̄x
∂Dxy

∂µ
Ψy

〉

= − 1

V

〈

trQ−1∂Q

∂µ

〉

eff

= − 1

2V

∑

x

〈

Ψ̄x (γ0 − 1) eµ Ux,0 Ψx+0 − Ψ̄x (γ0 + 1) e−µ U †
x−0,0 Ψx−0

〉

.

(7.51)

The second derivative, χ(nq) = 1
V

∂2 lnZ
∂µ2 , defines the quark number susceptibility. And finally the quark

energy density is given by

eq(T, µ,m) = − 1

2V

∑

x

〈

Ψ̄x (γ0 − 1) eµ Ux,0 Ψx+0̂ + Ψ̄x (γ0 + 1) e−µ U †

x−0̂,0
Ψx−0̂

〉

. (7.52)

The quark energy density and the plaquette density are renormalized by their values at zero temperature

and vanishing chemical potential according to

eq,ren(T, µ,m) = eq(T, µ,m) − eq(0, 0, m),

〈OP 〉ren (T, µ,m) = 〈OP 〉 (T, µ,m) − 〈OP 〉 (0, 0, m).
(7.53)

The simulations are performed with the described rHMC algorithm and Monte-Carlo statistics between

1000 configurations for the larger 163 × 6 to 164 lattices and up to 10000 configurations for the smaller

83 × 2 to 83 × 16 lattices.
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7.3 The phase diagram of G2-QCD

In the present section one-flavour G2-QCD is investigated on small lattices with a spatial volume of 83

lattice points and different temporal extents of the lattice. First, the finite temperature phase transition at

zero chemical potential is compared to the phase transition in pure (quenched) gauge theory. The results

for the Polyakov loop and its susceptibility on a 83 × 2 lattice are shown in Fig. 7.3. For κ = 0 the
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Figure 7.3 Left panel: Polyakov loop at finite temperature and zero chemical potential for κ =

0, 0.096, 0.131 and 0.147. Right panel: Susceptibility of the Polyakov loop.

first order transition of the quenched theory is clearly visible. When increasing the hopping parameter

from κ = 0 to κ = 0.147, the transition shifts to smaller values of β and becomes weaker. This

is also expected from QCD, where at the line md = mu = ms the phase transition changes from a

first order transition for large up and down quark masses to a crossover in the vicinity of the physical

point [219]. The second interesting observable at finite temperature and zero chemical potential is the

chiral condensate. In Fig. 7.4 it is shown together with its susceptibility. Although chiral symmetry is

explicitly broken by the Wilson mass, a transition is seen in the chiral condensate, roughly at the same

position as for the Polyakov loop. With smaller quark masses the peak in the susceptibility becomes

broader, also pointing to a crossover at finite temperature and zero chemical potential. This is similar to

QCD and in difference to adjoint QCD (which also does not suffer from a fermion sign problem), where

the chiral and deconfinement phase transition are clearly separated [51]. To set a physical scale, the pion

mass mπ (would-be Goldstone boson) is calculated in lattice units as a function of β, and the result is

shown in Fig. 7.5 (left panel). For β = 0.6 to β ≈ 0.9 the pion mass is nearly constant, while for β & 0.9

it decreases with increasing β, as expected in the continuum limit (scaling window). The mass of the

sigma meson, the connected part of the f ′, is for small values of β larger than the pion mass, but for

larger values of β both masses coincide. In Fig. 7.5 (right panel) the masses of the first excited states of

the pion and sigma meson are also shown. Now it is possible to set a physical scale for the temperature

T (using the dependence of the lattice pion ground state mass on the inverse lattice gauge coupling β,
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Figure 7.4 Left panel: Chiral condensate (rescaled) at finite temperature and zero chemical potential for

κ = 0.096, 0.131 and 0.147. Right panel: Susceptibility of the chiral condensate.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.60 0.70 0.80 0.90 1.00 1.10

m

β

mπ

mσ

1.5

2.0

2.5

3.0

3.5

0.90 0.95 1.00 1.05 1.10

m

β

mπ∗

mσ∗

Figure 7.5 Left panel: Pion and Sigma ground state masses on a 83 × 16 lattice. Right panel: Masses of

excited Pion and Sigma.

i.e. the lattice spacing a) according to

ã ≡ mπ(β) = mπ,phys a(β) and T (β) =
1

Nta(β)
=

mπ,phys.

Ntmπ(β)
. (7.54)

In the following the phase diagram is calculated as a function of the dimensionless parameters

T̃ =
T

mπ,phys

=
1

Ntmπ(β)
and µ̃ =

µ

mπ

=
µphys

mπ,phys

or µ̃/T̃ = µNt. (7.55)

By fixing the scale in this way for β = 0.6 up to β ≈ 0.9, the temperature is almost constant. This is

clearly a lattice artifact and coincides with the condensation of monopoles in the bulk phase, investigated

below. Fig. 7.6 shows the finite temperature phase transition in physical units on a 83×2 lattice compared

to a 83 × 4 lattice. Assuming Tc ≈ 160 MeV as the physical phase transition temperature yields a pion

mass of mπ,phys ≈ 662 MeV for the smaller lattice and mπ,phys ≈ 1024 MeV for the larger lattice,
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Figure 7.6 Polyakov loop (left panel) and chiral condensate (right panel) as a function of temperature for

the 83 × 2 and 83 × 4 lattice at κ = 0.147.

indicating strong discretization and finite size errors. The lattice spacing is then ranging from a(Nt =

2, β = 0.6) ≈ 0.64 fm to a(Nt = 2, β = 1.1) ≈ 0.11 fm on the smaller lattice and a(Nt = 4, β =

0.6) ≈ 0.41 fm to a(Nt = 4, β = 1.1) ≈ 0.07 fm on the larger lattice, corresponding to physical

volumes between V ≈ (5.12 fm)3 and V ≈ (0.56 fm)3.

7.3.1 The bulk transition

In chapter 6 it was shown, that on these small lattices (without quarks and with the Wilson gauge action)

the finite temperature deconfinement transition happens in an unphysical bulk phase. This bulk phase is

also present in G2-QCD, where the Wilson gauge action is replaced by the Symanzik-improved gauge

action. The monopole density 〈M〉 and the plaquette variable 〈OP 〉 at finite temperature and zero chem-

ical potential (on a 83 × 2 lattice for different values of κ) are shown in Fig. 7.7. The transition, visible
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Figure 7.7 Plaquette (left panel) and monopole density (right panel) at finite temperature and zero chemical

potential for κ = 0, 0.096, 0.131, 0.147 on a 83 × 2 lattice.
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in the plaquette variable, coincides with the condensation of monopoles and therefore is not a physical

transition. As expected, the bulk transition shifts also to smaller values of β with increasing hopping

parameter, but for all values of κ it overshadows the physical deconfinement transition. In the following,

a bare quark mass of m = −0.6 is chosen, corresponding to κ = 0.147. At this value of κ the transition

is already substantially weaker than the transition in the quenched ensemble. The corresponding critical

gauge coupling on the Nt = 2 lattice is given by βc ≈ 0.75(2). In Fig. 7.8 the plaquette and monopole

density for κ = 0.147 are shown for different temporal extents of the lattice. For Nt = 2, the bulk
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Figure 7.8 Plaquette (left panel) and monopole density (right panel) at zero chemical potential for κ = 0.147

and various temporal extents of the lattice, i.e. Nt = 2, Nt = 4 and Nt = 16.
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Figure 7.9 Left panel: Monopole density on a 83 × 2 lattice. Right panel: Monopole density on a 83 × 4

lattice.

transition occurs at smaller values of β than for Nt = 4 and Nt = 16. In the pure gauge theory the

bulk transition does not depend on the spatial or temporal extent of the lattice. It depends only on the

mass of the scalar field, as studied previously, or on the quark mass, as it is in the present case. The
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mismatch, observed in Fig. 7.8, indicates an effectively higher mass (due to strong finite size effects

or discretization errors) for the smallest lattice with temporal extent of two lattice points. Finally, the

bulk transition in the (β, µ) plane is investigated, and the results for Nt = 2 and Nt = 4 are shown

in Fig. 7.9. At intermediate values of the chemical potential the bulk transition shifts to smaller values

of β, while for larger values of the chemical potential it occurs at the β value for the quenched theory.

The obtained results for the monopole density show, that at finite temperature the continuum physics is

overshadowed by an unphysical bulk phase. Nevertheless, it is interesting to study these small lattices,

since, as already seen in the previous chapter, some observables, e.g. the Polyakov loop, are insensible

to the condensation of monopoles and therefore may provide relevant information. But of course the

obtained results have to be verified on larger lattices. At zero temperature it is possible to choose β such

that the monopole density is already small enough, and therefore the results should be reliable.

7.3.2 The phase diagram at zero temperature: overview

At zero temperatureG2-QCD is investigated on a 83×16 lattice in the parameter region β = 0.90 . . . 1.10

and µ = 0 . . . 2. The monopole density is already sufficiently small, such that the system is outside the

bulk phase for all values of β and µ. The phase diagram at zero temperature is plotted as a function

of the chemical potential and the dimensionless lattice spacing ã, in order to identify finite size effects

and lattice artifacts. The scale is again set by the ground state pion mass mπ. In Fig. 7.10 (left panel)

the quark number density is shown. It is observed, that for small values of the chemical potential the
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Figure 7.10 Quark number density (left panel) and renormalized plaquette (right panel) on a 83 ×16 lattice.

system remains in the vacuum, i.e. the quark number density vanishes, which is expected due to the

silver blaze property of QCD. While increasing the chemical potential the quark number density is

rising, indicating that baryonic matter is present and the system is no longer in the vacuum state. At

even larger µ̃ > µ̃sat(ã) the quark number density saturates. A possible explanation is that each lattice

site is occupied by bound states carrying non-vanishing baryon number. The saturation threshold µ̃sat(ã)
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depends on the lattice spacing and shifts to larger values of the chemical potential µ̃ with decreasing

ã, indicating that the saturation is only a lattice artifact that might vanish in the continuum limit. The

value of the saturation, nq,sat = 4.12(1), does not depend on the lattice spacing and stays far below

its maximum value of nq,max = 2Nc = 14. So far it is still an open question why the quark number

density takes this particular value at the saturation density. One possibility is a filling of the lattice with

a mixture of two and three quark bound states, i.e. diquarks and protons (neutrons), but also a filling

with quark-gluon hybrids or heavier bound states is supposable. Whether a complete filling of nq = 14

is achieved in the continuum limit (due to saturation at larger values of the chemical potential) remains

an open question for future investigations. In the right panel of Fig. 7.10 the renormalized plaquette

variable is shown. For smaller values of the lattice spacing, only a very weak signal at the deconfinement

transition is observed. At larger values of the chemical potential the plaquette takes its value as in

the quenched ensemble. Fig. 7.11 shows the Polyakov loop and the renormalized chiral condensate.

For small values of the chemical potential the system stays in a confined and chiraly broken phase, as
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ã

µ̃

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.10 1 2 3 4 5

0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

1
1.05

ã
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Figure 7.11 Polyakov loop (left panel) and renormalized chiral condensate (right panel) on a 83×16 lattice.

expected. When increasing the chemical potential, the theory undergoes a deconfining phase transition.

Nearly at the same point the chiral condensate drops down, indicating chiral restoration. With decreasing

lattice spacing ã, the transition shifts to larger values of µ̃. Thus, for these large values of µ̃ and on this

rather small lattice, the system is far away from the continuum limit. For µ̃ > µ̃sat the theory confines

again a. A possible reason is that due to the saturation the theory behaves similar as pure Yang-Mills

theory.

In conclusion, if the quark number density is saturated, then many observables, e.g. the Polyakov loop

and the plaquette, behave as in the quenched ensemble at vanishing chemical potential. This has also

been observed in 2-colour QCD in [53]. Although at this point the saturation is only a lattice artifact, a

aAlthough the Polyakov loop is not an order parameter for confinement, it is expected that a small Polyakov loop coincides

with a confinement phase.
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similar saturation effect is expected in the continuum limit due to the Pauli blocking, but at a much larger

value of the chemical potential as observed here.

7.3.3 The phase diagram at zero temperature: the onset transition to

nuclear matter

The onset transition from the vacuum to nuclear matter is studied in Fig. 7.12. At µ̃0 ≈ 0.5, a transition
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Figure 7.12 Quark number density (left panel) and onset transition to nuclear matter (shaded region), com-

pared to half of the pion mass (right panel).

in the quark number density (left panel) is observed. The value of the onset does almost not depend on

the lattice spacing, indicating that at smaller values of µ̃ finite size effects are less important than for

larger values of the chemical potential. In the right panel, the transition (shaded region) is compared to

half of the pion mass, and a clear coincidence is visible. This indeed verifies that G2-QCD possesses

the silver blaze property for baryon chemical potential, i.e. half of the mass of the lightest bound state

carrying baryon number is a lower bound for the onset transition to nuclear matter. With decreasing

lattice spacing ã, a plateau develops for µ̃0(ã) < µ̃ < µ̃1(ã), where the quark number density is almost

constant. For µ̃ > µ̃1(ã) it starts again to increase until it saturates at µ̃sat. In the left panel of Fig. 7.13,

the renormalized quark energy density is plotted. It shows qualitatively the same behaviour as the quark

number density, i.e. for µ̃ < µ̃0 it does not depend on the chemical potential, verifying again the silver

blaze property. In the right panel, the energy per quark eq,ren/nq is shown for µ̃ > µ̃0. At intermediate

values of the chemical potential, a minimum at µ̃ ≈ 1.1 ∼ 1126 MeV is observed, while the ratio

approaches its saturation value from below for large values of µ̃. This observable is of great interest in

the formation of neutron or quark stars, as pointed out in [220]. The minimum would correspond to the

bulk of a neutron or quark star, depending on whether it is located in the confined or deconfined phase. In

the present simulations it is located in the confined phase but, due to saturation and finite volume effects

and a strong dependence on the quark mass, this might change on larger lattices.
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Figure 7.13 Left panel: Renormalized quark energy density. Right panel: Energy per quark eq,ren/nq.

7.3.4 The phase diagram at zero temperature: separation of scales

As observed above, different transitions show up in the quark number density. For β = 1.05 simulations

with a higher resolution in µ-direction and an improved statistics have been performed. In Fig. 7.14 the

Polyakov loop, the chiral condensate and the quark number density are shown. Although the lattices
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Figure 7.14 Normalized quark number density nq/nq,sat, renormalized chiral condensate Σ and Polyakov

loop P on a 83 × 16 lattice at β = 1.05.

are very small and finite size and volume effects may change the picture, in the following a possible

explanation is given. For µ < µ0 the system remains in the vacuum state. As observed, the scale of µ0

is related to the diquark mass, i.e. µ0 ≈ mπ/2 ∼ 512MeV. For µ > µ0 the diquarks condense, forming

a Bose-Einstein condensate (BEC), in the same way as observed in two-color QCD [220]. Therefore,

the chiral condensate should be rotated into a diquark condensate. So far the diquark condensate has not

been calculated but a drop in the chiral condensate is observed.

The next onset at µ = µ1 ∼ 870MeVmay correspond to a transition from the BEC phase to ‘ordinary’
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fermionic nuclear matter, in contrast to QCD where the transition is expected to be from the vacuum to

fermionic nuclear matter. The scale for µ1 is then set by the lightest fermionic baryon, e.g. the quark-

gluon hybrid or the neutron (proton).

The third scale corresponds to the onset of deconfinement at µ = µ2 = µd ∼ 1.5 to 2.0GeV. The

Polyakov loop is not an order parameter for confinement and therefore is not absolutely clear where

the transition in the bare chemical potential is located. Also saturation effects set in and the Monte-

Carlo statistics is not sufficient to compute the Polyakov loop susceptibility which might give a better

value of µd than the very rough estimate here. In the deconfined phase the quark number density and

quark energy density are roughly given by the Stefan-Boltzmann expressions for a degenerate system

of weakly-interacting massless quarks, populating a Fermi sphere up to some maximum momentum

kF = µ,

nSB
q =

NfNc

3π2
µ3 and eSB

q =
NfNc

3π2
µ4. (7.56)

Therefore, in Fig. 7.15 the quark number density and the quark energy density are plotted normalized to

their Stefan-Boltzmann expressions. In order to decide whether indeed a confined phase with ‘ordinary’
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Figure 7.15 Quark number density and renormalized quark energy density normalized to their Stefan-

Boltzmann expressions.

fermionic nuclear matter exist, further simulations and a more precise determination of the deconfine-

ment phase transition at zero temperature are necessary. In the next section, the phase diagram at finite

temperature is investigated.

7.3.5 The phase diagram at finite temperature

At finite temperature the phase diagram is investigated on a 83×2 and on a 83×4 lattice in the parameter

region β = 0.6 . . . 1.1 and µ = 0 . . . 4. In physical units (T̃ , µ̃), the bulk phase is nearly shrinked to a

single point due to the almost constant pion mass. Therefore the ratio µ̃/T̃ is chosen, which is propor-

tional to the lattice chemical potential for a fixed temporal extent of the lattice. Fig. 7.16 (left panel)
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Figure 7.16 Polyakov loop on a 83 × 2 lattice (left panel) and on a 83 × 4 lattice (right panel).

shows the Polyakov loop on the small 83 × 2 lattice. At vanishing chemical potential the deconfinement

transition is seen. For very large values of the chemical potential µ̃/T̃ > 8, the phase transition in the

quenched theory is recovered. Below the phase transition temperature T̃c(µ = 0) ≈ 0.24, the Polyakov

loop shows (in µ-direction) qualitatively the same behaviour as in the case of vanishing temperature,

but the peak becomes broader. Above the phase transition, also a peak in the Polyakov loop is seen at

finite µ̃/T̃ ≈ 3.0. On the larger Nt = 4 lattice, the Polyakov loops shows almost the same behaviour.

The quark number density for both lattices is shown in Fig. 7.17. As in the case of zero temperature
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Figure 7.17 Quark number density on a 83 × 2 lattice (left panel) and on a 83 × 4 lattice (right panel).

a saturation is observed. The saturation value is the same as for zero temperature, nq,sat ≈ 4.12, i.e.

it does not depend on the temperature. For the smaller lattice the system saturates at approximately

µ̃/T̃ (Nt = 2) ≈ 4.0, compared to µ̃/T̃ (Nt = 4) ≈ 8.0 for the larger lattice. In the bare lattice parameter

µ, the saturation takes place at µ ≈ 2 for both lattices. Moreover, in Fig. 7.18 the chiral condensate is

shown. The chiral transition almost coincides with the transition observed in the Polyakov loop, at finite

temperature as well as at finite chemical potential. In contrast to the Polyakov loop, no saturation artifact
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Figure 7.18 Chiral condensate on a 83 × 2 lattice (left panel) and on a 83 × 4 lattice (right panel).

in the chiral condensate for large values of µ is observed, i.e. there is no transition back to the chiraly

broken phase. Finally, the data obtained on the 83 × 4 and the zero temperature results at β = 0.90 are

merged into a single phase diagram. Here a linear interpolation between the finite temperature and the

zero temperature regime is used. The plots for the quark number density, the Polyakov loop, the chiral

condensate and the plaquette variable are shown in Fig. 7.19. The only reliable information can be ob-

tained from values of µmuch smaller than the saturation threshold, best seen in the quark number density

(the green region corresponds to unphysical lattice artifacts). As observed before, in this physical regime

the obtained results depend, in physical units, only slightly on the lattice spacing. At small temperatures,

the onset of the deconfinement transition meets the zero temperature axes almost vertically and roughly

coincides with the chiral restoration. With increasing temperature the deconfinement transition shifts

to lower values of the chemical potential and finally meets the finite temperature axes almost vertically.

The reflection point is roughly given by (T̃ , µ̃)refl ≈ (0.14, 0.34), corresponding to physical values of

(T, µ)refl ≈ (142MeV, 348MeV). (7.57)

Compared to the results for the critical point in QCD in [193, 199], this reflection point is not far off.

The chiral transition seems to be much stronger for temperatures below the reflection point than for

temperatures above the reflection point. The renormalized plaquette variable is shown in the lower right

panel of Fig. 7.19. Mainly two peaks in the plaquette variable are observed. One at zero temperature,

coinciding with the chiral and deconfinement phase transition, and one in the vicinity of the reflection

point. The peak at finite temperature might be a lattice artifact due to the bulk transition. In contrast to

the Polyakov loop, the quark number density and the chiral condensate, the plaquette variable is very

sensitive to the condensation of monopoles. Unfortunately, at these small lattices and due to the bulk

phase, the shown phase diagram might change dramatically on larger and finer lattices. Also, the pion

mass and therefore the quark mass, is quite heavy compared to the QCD physical values. Consequently,

in the next section a larger lattice with a lower pion mass is investigated. The raw data for the investigated

small lattices are shown in the appendix D.
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Figure 7.19 The phase diagram of G2-QCD as obtained on small lattices 83 × 4 and 83 × 16. Shown are the

quark number density (upper left panel), the Polyakov loop (upper right panel), the chiral condensate (lower

left panel) and the (renormalized) plaquette variable (lower right panel).

7.3.6 The phase diagram on a larger lattice

To verify the results obtained on the small lattices, simulations on larger 163 × 6, 163 × 8 and 164

lattices at β = 0.85 . . . 1.1 and µ = 0 . . . 2 are performed. As for the small lattice, the finite temperature

phase transition for different hopping parameters κ is compared to the phase transition in the quenched

ensemble, as seen in Fig. 7.20. With increasing κ the phase transition shifts again to smaller values of

β, indicated by the Polyakov loop (left panel). For the chiral condensate (centre panel) and the plaquette

(right panel) almost no transition can be observed for κ = 0.147 and κ = 0.156, as expected for a

crossover. Probably the quark masses are very heavy or the residual Wilson mass is quite large, due to a

very coarse lattice far away from the continuum limit and scaling window. In this case it would be hard

to observe spontaneous chiral symmetry breaking. In Fig. 7.21 (left panel) the mass of the pion ground

state and first excited state are shown as a function of the inverse gauge coupling β for three different

values of κ. With increasing κ the pion becomes lighter. The smallest pion mass at κ = 0.156 and

β = 1.00 is (in lattice units) given bymπ = 0.33(1). For κ = 0.156 the point at which the pion becomes

massless (and therefore chiral symmetry can be restored exactly in the continuum limit) is between

β = 1.00 and β = 1.05. In Fig. 7.21 (right panel) the mass of the σ-meson is shown. Similar as on the
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Figure 7.21 Left panel: Ground state and first excited mass of the pion on a 164 lattice for different values

of κ. Right panel: Ground state and first excited mass of the sigma meson.

smaller lattice, for κ = 0.156 and β = 1.00, the sigma meson is approximately as heavy as the pion,

mσ = 0.35(2). In the following simulations, κ = 0.156 and β = 1.00 at zero temperature and β = 0.90

at finite temperature for slices in µ direction are chosen. A phase transition temperature Tc = 160 MeV

at βc = 0.94 corresponds to a pion mass ofmπ,phys ≈ 785 MeV. The lattice spacing is then ranging from

a(β = 0.90) ≈ 0.33 fm to a(β = 1.00) ≈ 0.082 fm, leading to a box size between V ≈ (1.32 fm)3

for the simulations at zero temperature and V ≈ (5.28 fm)3 in the finite temperature simulations. The

temperature on the smaller Nt = 6 lattice is then given by T ≈ 98 MeV, and on the (colder) Nt = 8

lattice by T ≈ 73 MeV. In the following only the raw data are presented, and in the end a combined

phase diagram in physical units is given. In Fig. 7.22 (left panel), the Polyakov loop at zero temperature

and finite temperature is shown as a function of the bare chemical potential. With increasing temperature

the peak in the Polyakov loop becomes broader and the onset of the deconfinement transition shifts to

smaller values of the chemical potential. For larger values of the chemical potential the Polyakov loop

drops to zero again. In the centre panel of Fig. 7.22, the renormalized chiral condensate is plotted.

The transition roughly coincides with the deconfinement transition. In the right panel the quark number
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Figure 7.22 Polyakov loop (left panel), renormalized chiral condensate (centre panel) and quark number

density (right panel) at zero temperature and at finite temperature as a function of the bare chemical potential.

density is shown. With decreasing temperature the onset shifts to larger values of the chemical potential.

The saturation value of nq,sat = 4.37(1) does again not depend on the temperature. It is only slightly

larger than on the smaller lattices used before. In Fig. 7.23 (left panel) the quark number density is

shown as a function of µ̃. At finite temperature the onset of the transition happens below µ̃ = 0.5.
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Figure 7.23 Quark number density as a function of physical chemical potential µ̃ (left panel) and eq,ren/nq

(centre panel) and the plaquette variable (right panel) as a function of the bare chemical potential µ.

Unfortunately, the silver blaze property at zero temperature can not be verified at this point due to the (in

lattice units) very small pion mass, and simulations with higher statistics and at different values of β are

necessary. In the centre panel of Fig. 7.23, the renormalized energy per quark eq,ren/nq is shown. Here,

the behaviour at zero temperature and finite temperature is different. At zero temperature it approaches

the saturation from below and a minimum is observed at µ ≈ 0.4. Finally, the right panel shows the

renormalized plaquette variable. Again, as on the small lattices, it indicates the transition at zero and

finite temperature nicely, in contrast to the finite temperature transition in Fig. 7.20 (right panel). This

may indicate that at these rather small temperatures a real phase transition from the confined to the

deconfined phase happens, while the transition is only a crossover at vanishing chemical potential. But

so far the results are not conclusive and have to be verified by further simulations.
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7.4 Conclusions

In the present chapter G2-QCD has been investigated in the continuum and on the lattice. It has been

shown that the fermion determinant is non-negative for real baryon chemical potential due to the reality

of the gauge group. Furthermore, it turned out that already one-flavour G2-QCD possesses a non-trivial

chiral symmetry, that can be seen as a flavour symmetry for the two Majorana flavours composing a

Dirac spinor. First simulations on different lattices have been performed and the obtained results are

summarized in a sketch of the G2-QCD phase diagram in Fig. 7.24.
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Figure 7.24 Sketch of the G2-QCD phase diagram as ob-

tained from the 83 × 16, 83 × 4 (solid) and 164, 163 × 8

and 163 × 6 (dotted) lattice. The red points correspond to

a transition in the Polyakov loop and the green points to a

transition in the chiral condensate. The blue point denotes

the reflection point of the transition line.

known from pureG2 Yang Mills theory has

been monitored as a function of chemical

potential. On the small lattices withNt = 2

and Nt = 4 it overshadows the deconfine-

ment transition, while the monopole den-

sity is almost zero for Nt ≥ 6 at the decon-

finement transition. Simulations on rather

small lattices at zero temperature indicate,

that G2-QCD shares an important feature

with QCD, namely the silver blaze prop-

erty. It has been shown that the onset tran-

sition from the vacuum to nuclear matter

happens at half of the mass of the light-

est bound state carrying baryon number, i.e.

the diquark. Above the onset transition the

diquarks form a Bose-Einstein condensate.

At larger values of the chemical potential,

a transition to the ‘ordinary’ nuclear mat-

ter phase of QCD is expected (the dominant

degrees of freedom are fermionic baryons), and at even larger values of µ the theory deconfines and chi-

ral symmetry is restored. For large values of the chemical potential, saturation in the quark number

density and again confinement has been observed and has been identified as a lattice artifact. The ob-

tained results at zero temperature, and especially the saturation at larger values of the chemical potential,

are indeed very similar to the result for the Polyakov loop and quark number density in two-colour QCD.

With increasing temperature, the deconfinement and chiral restoration transition shift to lower values

of the chemical potential and finally meet the finite temperature axis. Qualitatively, the results on the

smaller lattices have been verified at some points in the phase diagram on a larger lattice. So far, the

order of the deconfining and chiral phase transition and the question whether they coincide at zero and

finite temperature still remains an open problem and has to be addressed in further simulations and on

larger lattices. An outlook to future simulations is given in the summary.
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8 Supersymmetric lattice gauge theories

In the present chapter, supersymmetric Yang-Mills (SYM) theories in different spacetime dimensions

are investigated. For the N = 1 supersymmetric Yang-Mills theory in four dimensions, the low energy

effective actions are reviewed. Then a dimensional reduction to three and one spacetime dimension is

performed. To investigate these theories on the lattice, the Wilson formulation is used, where a fine-

tuning of the bare gluino mass is necessary in order to restore supersymmetry in the continuum limit on

the lattice. First simulation results for these theories with an emphasis on restoration of supersymmetry

on the lattice are presented.

8.1 N = 1 supersymmetric Yang-Mills theory in 4 dimensions

The on-shell action in four spacetime dimensions is given by [66, 68]

SSYM =

∫

d4x tr

{

−1

4
FµνF

µν +
i

2
λ̄γµD

µλ+mλ̄λ

}

, (8.1)

where Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] is the usual field strength tensor with dimensionless gauge

coupling constant g. The gauge field Aµ transforms under the adjoint action of the gauge group and

λ is a single Majorana spinor. In a supersymmetric theory the number of bosonic degrees of freedom

has to match the number of fermionic ones. The gauge bosons (gluons) transform under the adjoint

representation, and therefore the fermions (gluinos) have to transform under the adjoint representation,

too. The covariant derivative, acting on a Majorana spinor λ, is then given by

Dµλ = ∂µλ− ig [Aµ, λ ] . (8.2)

The action (8.1) is invariant under local gauge transformations and in the massless casem = 0 under the

supersymmetry transformations

δAµ = i ǭ γµλ , δλ = i ΣµνF
µνǫ and δλ̄ = −i ǭΣµνF

µν , (8.3)

where ǫ is an arbitrary constant Majorana spinor. The gluino mass term m introduces a soft breaking

of supersymmetry. In the following, only SU(2) gauge theory is studied as the simplest non-abelian

supersymmetric gauge theory. The action (8.1) is invariant under local gauge transformations as well as

under the chiral U(1)A transformation

λ 7→ eiαγ5 λ and λ̄ 7→ λ̄ eiαγ5 . (8.4)

This axial symmetry is equivalent to the R-symmetry in supersymmetric models. It is broken by the

chiral anomaly to the discrete subgroup Z(2Nc) = Z(4). A non-vanishing gluino condensate
〈

λ̄λ
〉

6= 0

breaks the discrete symmetry down to a Z(2) symmetry, leaving Nc inequivalent ground states of the
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theory related by transformations in the quotient group Z(2Nc)/Z(2). For Nc = 2, two degenerate

ground states exist, that can be distinguished by the sign of the gluino condensate. A gluino mass term

m then lifts this degeneracy such that

〈

λ̄λ
〉

> 0 for m > 0 and
〈

λ̄λ
〉

< 0 for m < 0. (8.5)

Considering the bare gluino mass as a free parameter, it is expected that the theory possesses a first

order phase transition at vanishing renormalized gluino mass, if the chiral symmetry is spontaneously

broken [221]. The chiral condensate serves as an order parameter, changing its sign at the phase transition

point. In [68], Veneziano and Yankielowicz argued, that the only supersymmetry breaking operator is

a non-vanishing gluino mass. Thus, beside the failure of the Leibniz rule, supersymmetry is broken

on the lattice if chiral symmetry is explicitly broken. In order to restore supersymmetry on the lattice,

it is therefore sufficient to fine-tune the theory to a massless gluino in the continuum limit. Due to

confinement, the gluino is not part of the physical spectrum, and it is not possible to measure its mass

directly. But chiral perturbation theory and the OZI rule (known from QCD) relate the renormalized

gluino mass to the pion mass [71],

mg ∝ m2
π, (8.6)

suggesting that the limit of a vanishing gluino mass is equivalent to the limit of a vanishing pion mass.

Very recently, N = 1 SYM theory in four dimensions has been investigated with much effort on the

lattice. Mainly two formulations are in use: The Wilson approach with adjoint fermions, introduced

by Curci and Veneziano in [70] and further employed in [71, 75, 222–228], and domain-wall fermions

in [73, 74, 229, 230]. But so far the obtained results for the mass spectrum are not conclusive. Here, the

Wilson approach is employed together with a fine-tuning of the gluino mass.

8.1.1 Low-energy effective actions

As in Yang-Mills theories, it is believed that in SYM theories only colourless asymptotic states exist and

a mass gap is dynamically generated. The gluons and gluinos must disappear from the spectrum and the

theory has to be described by new effective degrees of freedom. The classical action (8.1) is invariant un-

der chiral, scale and supersymmetry transformations. In the quantum theory these symmetries are broken

by the chiral and scale anomalies respectively. The composite operators that appear in the anomalies can

be thought of as component fields of a general chiral superfield. This colourless component fields are the

relevant degrees of freedom at low energies. Veneziano and Yankielowicz (VY) [68] proposed an effec-

tive Lagrangian (with the correct anomalies and symmetries), that leads to the particle spectrum shown

in Table 8.1. According to the QCD notation, the pseudoscalar boson is called a− η′, where a stands for

adjoint. The scalar boson is called a− f0. Additionally, the multiplet contains a fermionic gluino-gluon

bound state. If supersymmetry is unbroken, they all have the same mass and form a supermultiplet. In

the effective action of Veneziano and Yankielowicz colourless operators∝ F µνFµν and∝ F µνǫσρ
µνFσρ are

integrated out, so there are no gluon-gluon bound states. But these bound states, glueballs for example,

are not necessarily heavier than the bound states in the VY-multiplet. Similar as in QCD the 0+ glueball

could be the lightest bound state of the theory. Also glueballs can couple to the a− η′ and a− f0 bound
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multiplet particle operator spin mass SYM-name QCD-name

1 pseudoscalar boson λ̄γ5λ 0 m0−
g̃g̃ a− η′ η′

VY 1 scalar boson λ̄λ 0 m0+
g̃g̃ a− f0 f0

1 Majorana fermion FµνΣ
µνλ 1

2
mgg̃ gluino-glueball -

1 scalar boson F µνFµν 0 m0+
gg 0+ - glueball 0+ - glueball

FGS 1 pseudoscalar boson F µνǫσρ
µνFσρ 0 m0−

gg 0− - glueball 0− - glueball

1 Majorana fermion FµνΣ
µνλ 1

2
mgg̃ gluino - glueball -

Table 8.1 Particles of the Veneziano-Yankielowicz (VY) and Farrar-Gabadadze-Schwetz (FGS) multiplet.

states, leading to dynamical mass mixing between the glueball and the VY-multiplet.Therefore, Farrar,

Gabadadze and Schwetz (FGS) introduced a second chiral super multiplet with a different mass [231],

which has a particle content shown in Table 8.1. It also contains a scalar boson, the 0+ - glueball, a

pseudoscalar boson, the 0− - glueball, as well as a fermionic bound state, a gluino - glueball. Again, if

supersymmetry is unbroken, the masses inside one multiplet are degenerate. Because of mass mixing

the masses of the two multiplets are different. It is believed that the FGS-multiplet is lighter than the

VY-multiplet, but, depending on the couplings in the effective action, different solutions are possible. If

supersymmetry is broken by a gluinomass term, the masses inside one multiplet are no longer degenerate

and the 0+ glueball should be the lightest particle.

8.1.2 Dimensional reduction

In the following dimensional reduced versions in three and one spacetime dimensions are investigated.

Therefore, n spatial dimensions are compactified using Kaluza-Klein reduction. In the dimensional re-

duced action the fields no longer depend on the compactified dimensions and the derivative ∂αf = 0

vanishes for any field. Here α = 1 . . . n labels the compactified dimensions. This implies the dimen-

sional reduction rules

Dµλ = ∂µλ− ig [Aµ, λ ] →DIλ = ∂Iλ− ig [AI , λ ] and Dαλ = −ig [φα, λ ] ,

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] →







FIJ = ∂IAJ − ∂JAI − ig [AI , AJ ]

FIα = DIφα , Fαβ = −ig [φα, φβ ]
,

(8.7)

where the scalar field φα is the appropriate component of the gauge vector field in four dimensions. With

a rescaling of the fields as Aµ → g−1Aµ, φα → g−1φα and λ → g−1λ and Wick-rotation to Euclidean

time by γ0 → iγ0 and A0 → iA0, the Euclidean action corresponding to (8.1) is given by

SE =
α

2

∫

dDx tr

{

1

2
FIJFIJ + λ̄γEIDIλ+DIφαDIφα − λ̄γEα [φα, λ ] − 1

2
[φα, φβ ] [φα, φβ ]

}

(8.8)

with D = 4 − n and dimensionful coupling α = Vn

g2 . In the following, this theory is discussed in one

and three spacetime dimensions with an emphasis on the restoration of supersymmetry on the lattice.

The simulations are performed with the rHMC algorithm and a Monte-Carlo statistics of up to 500000

configurations for d = 1 and approximately 10000 configurations for d = 3.
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8.2 Supersymmetric quantum mechanics

The Euclidean action of supersymmetric quantum mechanics, i.e. one time dimension, is given by

SE = α

∫

dt tr

{

1

2
λ̄γE0D0λ+

1

2
D0φαD0φα − 1

2
λ̄γEα [φα, λ ] − 1

4
[φα, φβ ] [φα, φβ ]

}

. (8.9)

It has already been studied in [232, 233] with an emphasis on the large Nc limit and the AdS/CFT con-

jecture. Here, the dependence of the spectrum of the Dirac operator on fermion boundary conditions and

the supersymmetric continuum limit is investigated. Generalized boundary conditions for the fermionic

field λ are introduced by (only ϕ = 0 and ϕ = 1 are compatible with the Majorana constraint on λ)

λ(Nt) = ei π ϕ λ(0), (8.10)

such that ϕ = 0 corresponds to periodic (supersymmetric) and ϕ = 1 to antiperiodic (thermal) boundary

conditions. For antiperiodic boundary conditions, the path integral is the usual thermal partition function

with temperature T = 1/(aNt), while for periodic boundary conditions the path integral gives the Witten

index. For periodic boundary conditions, fermionic modes can be constant in time and hence N2
c − 1

fermionic zero modes exist. The distribution of the lowest eigenvalues of the fermion operator is shown

in Fig. 8.1, where the fermionic zero modes for ϕ = 0 are clearly visible. For generalized boundary
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Figure 8.1 Distribution of the lowest eigenvalues λ of the Dirac operator in the complex plane for different

fermion boundary conditions on a Nt = 64 lattice and α = 12.0.

conditions, the zero mode is lifted for 0 < ϕ < 2. In the case of periodic and antiperiodic boundary

conditions, the spectrum is symmetric w.r.t. the real axis. All eigenvalues are at least doubly degenerate

and therefore the Pfaffian is always positive [232]. In the case of thermal boundary conditions, super-

symmetry is broken due to finite temperature. In Fig. 8.2 (left panel) the distribution of lnφ2 is shown for

different boundary conditions. For ϕ = 0 the fluctuations of the scalar field into the flat directions of the

classical potential of (8.9) are suppressed due to the fermionic zero mode a. With increasing ϕ, the scalar

field distribution develops long tails towards larger values of the scalar field. In order to investigate the

restoration of supersymmetry on the lattice, the bosonic Ward identity (density of the bosonic action)

〈sB〉 =
(

(N2
c − 1)Ns − (N2

c − 1)
)

/2 = 9/2 = 4.5 (8.11)

aDue to cancelations in the effective potential between fermionic and bosonic contributions for intact supersymmetry [232].
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Figure 8.2 Left panel: Distribution of ln φ2 for different fermionic boundary conditions. Centre panel:

Bosonic Ward identity as a function of the boundary phase ϕ. Right panel: Scalar and gluino mass.

is studied together with the scalar field mass mφ and the gluino mass mg,0 and mg,1 obtained from the

Lorentz structure of the gluino correlation function, Cgg(t) =
〈

λ(0)U0→t
¯λ(t)
〉

= C0(t)1 + C1(t) γ
E
0 ,

where U0→t denotes the parallel transport necessary to obtain a gauge invariant correlator. In Fig. 8.2

(centre panel), the bosonic Ward identity is compared to its continuum value. It is very sensitive to the

boundary condition for ϕ ≈ 0, while it is almost constant for 0.4 < ϕ ≤ 1. In the right panel the

scalar and gluino mass are shown. For periodic boundary conditions, mφ and mg,0 almost coincide,

while for antiperiodic boundary conditions this is the case for mφ and mg,1. Finally, the continuum

limit is investigated. A ‘naive’ continuum limit (vanishing physical temporal extent), i.e. α → ∞ and

therefore a → 0, is given in Fig. 8.3 (left panel). For periodic boundary conditions the Ward identity
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Figure 8.3 Bosonic Ward identity as a function of α (left panel) and Bosonic Ward identity (centre panel)

and scalar and gluino mass (right panel) for two different values of α̃ = α/N3
t .

decreases towards its continuum value, while for antiperiodic boundary conditions also the temperature

increases with increasing α, leading to a violation of supersymmetry in this ‘naive’ continuum limit.

An ‘improved’ continuum limit is obtained by Nt → ∞ and fixed dimensionless coupling constant

α̃ = α/N3
t . In Fig. 8.3 the bosonic Ward identity (centre panel) and the gluino and scalar mass (right

panel) are shown as a function ofN−1
t for two different values of α̃. In this improved continuum limit the

bosonic action density is compatible with the supersymmetric continuum results of 9/2, and the scalar

and gluino mass vanish, indicating that supersymmetry is indeed restored in the continuum limit.
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8.3 N = 2 supersymmetric Yang-Mills theory in 3 dimensions

The action for N = 2 supersymmetric Yang-Mills theory in three dimensions is given by

SE =α

∫

d3x tr

{

1

4
FIJFIJ +

1

2
λ̄γEIDIλ+

1

2
DIφDIφ− 1

2
λ̄γE3 [φ, λ ] +mλ̄λ

}

. (8.12)

In the following, the theory is investigated on a 162 × 32 lattice in the Wilson formulation. For different

values of the overall gauge coupling α, the critical coupling κc,OZI(α) is determined such that the gluino

becomes massless. Therefore in Fig. 8.4 (left and center panel) the square of the pion mass (which is

proportional to the renormalized gluino mass) is shown for α = 2.2 and α = 2.6. A linear fit to the
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Figure 8.4 Gluino mass (square of the pion mass) on a 162 × 32 lattice for α = 2.2 (left panel) and α = 2.6

(centre panel). The black lines represent a linear fit to the limit of a vanishing gluino mass. The chiral

condensate is shown in the right panel.

gluino mass yields

κc,OZI(2.2) = 0.2092(1) and κc,OZI(2.6) = 0.20167(2). (8.13)

In the right panel of Fig. 8.4 the chiral condensate Σ(α, κ) is shown and a transition is observed in the

vicinity of the critical coupling obtained from the vanishing pion mass. Due to the residual Wilson mass

at a finite lattice spacing, the chiral condensate is also renormalized additively,

Σren(α, κ) = Z1 (Σ(α, κ) −mres) = Z1Σ(α, κ) − Z2κ− Z3, (8.14)

where it is assumed that the residual Wilson mass is a linear function in κ (as it is the gluino mass). The

renormalization constants Z1, Z2 and Z3 are fixed such that Σren(α, κ ≪ κc) = 1 = −Σren(α, κ ≫ κc).

The critical point obtained from the vanishing of the pion mass can be compared to the critical point

obtained from the transition in the chiral condensate. Therefore in the left and center panel of Fig. 8.5 the

chiral condensate and its susceptibility are shown as a function of κ, normalized to the critical κc,OZI(α)

obtained before. For both α = 2.2 and α = 2.6, the deviations in the critical couplings are less than 0.5

percent, i.e.

κc(2.2) = 0.2097(4) and κc(2.6) = 0.2023(2). (8.15)

Therefore, both methods are applicable in order to perform a supersymmetric continuum limit. In the

right panel of Fig. 8.5 the bosonic action is plotted. Both curves for α = 2.2 and α = 2.6 intersect each
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Figure 8.5 Renormalized chiral condensate (left panel), chiral susceptibility (center panel) and bosonic

action (right panel) for α = 2.2 and α = 2.6.

other almost exactly at the critical coupling obtained from the chiral condensate. The deviation from

the theoretical value for restoration of supersymmetry at the intersection point is also about 0.5 percent,

indicating that a restoration of supersymmetry on the lattice for this model is possible. As pointed out

before, the chiral condensate as a function of κ should undergo a first order phase transition at the point

where the gluino mass vanishes. Therefore, in Fig. 8.6 histograms of the chiral condensate for α = 2.6

are shown in the vicinity of the critical coupling. The double peak structure observed at α = 2.2 and
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Figure 8.6 Histograms of the renormalized chiral condensate for α = 2.2 (left panel) and α = 2.6 (right

panel) and different values of κ in the vicinity of the critical point.

α = 2.6 and the coexistence of both phases at the critical coupling clearly point to a first order phase

transition. This indicates that chiral symmetry is spontaneously broken in the theory and supersymmetry

can be restored in the continuum limit, i.e. the soft breaking of supersymmetry due to the Wilson

mass can be removed by fine-tuning the bare gluino mass. In order to determine the critical line in the

(α, κ)-plane, the above sketched analysis is performed for different values of the gauge coupling and on

different lattices. The results for two different lattices 83 × 16 and 163 × 32 are shown in Fig. 8.7 (left

panel). On this rather coarse grid in parameter space, the critical couplings for both lattices coincide.

The mass spectrum in three dimensions can be obtained by dimensional reduction of the particle
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line denotes the supersymmetric limit).

content of the multiplets, suggested from the low-energy effective action in four dimensions. Additional

particles are bound states between the gluino and the scalar field as well as between the gluon and the

scalar field. So far it was not possible to determine these masses (due to strongly fluctuating bosonic

fields), except for the a − η′ meson. In Fig. 8.7 (center panel) the correlation function of the a − η′

meson is compared to the pion correlation function for two different values of κ. The difference between

the pion and η′-correlation function is only the disconnected contribution. Indeed, for larger values of

κ the a − η′ receives its mass from the disconnected contribution, while for smaller κ both correlation

functions coincide. In the right panel of Fig. 8.7 both masses are shown as a function of κ. The results

may indicate that the η′ meson remains massive in the supersymmetric limit. But so far the results are

very preliminary and have to be verified in further simulations.

8.4 Conclusions

In the present chapter supersymmetric gauge theories in one and three spacetime dimensions have been

studied on the lattice. The models have been obtained from dimensional reduction of N = 1 supersym-

metric Yang-Mills theory in four spacetime dimensions. In one dimension the spectrum of the Dirac

operator has been investigated for different boundary conditions, and the lowest fermion and boson

masses have been calculated. It has been shown that a supersymmetric continuum limit without fine-

tuning is possible. In three dimensions the phase diagram as a function of the gauge coupling α and the

hopping parameter κ has been investigated, showing that a supersymmetric limit is possible if the bare

gluino mass is fine-tuned, such that the renormalized gluino mass vanishes. Additionally, it has been

shown that the supersymmetric limit coincides with a line of first order phase transition observed in the

chiral condensate. In future simulations the mass spectrum of this strongly coupled supersymmetric lat-

tice gauge theory will be calculated, to verify the proposed low energy effective actions and to improve

existing methods, in order to investigate the mass spectrum and chiral properties of N = 1 SYM theory

in four dimensions.
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9 Summary and outlook

In this work different strongly-coupled gauge theories with and without fundamental matter have been

studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at non-

vanishing net baryon density as well as on possible supersymmetric extensions of the standard model of

particle physics.

In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, con-

finement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order

parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the funda-

mental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons

and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsi-

ble for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without

centre symmetry.

In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the

exceptional Lie group G2, that has a trivial centre. To investigate G2 gauge theory on the lattice, a new

and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing

this algorithm, the proposed and already investigated first order phase transition from a confined to a de-

confined phase has been confirmed, showing that indeed a first order phase transition without symmetry

breaking or an order parameter is possible. In this context, also the deconfinement phase transition of

the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown

that both theories also possess a first order phase transition.

To understand confinement with exceptional Lie groups, for the gauge group G2 the dynamics of the

confining string, connecting a charge and an anti-charge, has been studied at zero temperature with a

slightly modified variant of the Lüscher-Weisz algorithm for exponential error reduction. Here Casimir

scaling has been verified to a high precision for the 8 lowest-dimensional representations of the gauge

group in three and four spacetime dimensions. The obtained results for a continuum extrapolation of

the string tension are compared to a Hamiltonian approach to Yang-Mills theories, showing quite good

agreement. Additionally, for the first time string breaking in the fundamental and adjoint representation

of G2 gauge theory has been observed, and the string breaking scale has been compared to the mass of

the glue-lumps, necessary to screen the colour charge in the corresponding representation. It has been

found that the string breaking scale coincides exactly with the mass of the glue-lumps, as expected. With

these investigations it has been shown that G2 gauge theory indeed behaves very similar to QCD, where

the centre symmetry is explicitly broken.

With a scalar field in the fundamental representation of G2, the gauge symmetry can be broken down

to SU(3) gauge theory through the Higgs mechanism. The phase diagram of this G2 gauge Higgs

model has been studied with Monte-Carlo simulations in four spacetime dimensions. With high-statistics

simulations it has been shown, that the former first order phase transition in pure G2 gluodynamics turns

into a crossover, once the scalar field mass is fine-tuned to a very small window in parameter space.
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Therefore, the confinement phase is analytically connected to the Higgs symmetric and Higgs broken

deconfinement phases. This exhibits an interesting analogy to QCD, where the first order phase transition

of the quenched theory turns into a crossover for physical quark masses. By increasing the mass of the

scalar field it has been verified, that pure SU(3) gauge theory is recovered in the limit of an infinitely

heavy scalar field.

Inspired by the obtained results, a QCD-like theory based on the exceptional Lie group G2 has been

proposed and investigated. It turns out that even at finite baryon chemical potential the fermion determi-

nant is non-negative, makingMonte-Carlo simulations feasible. Moreover, the theory contains fermionic

baryons and behaves in many aspects very similar to QCD. The chiral symmetry of the theory has been

examined and, compared to QCD, an enlarged symmetry group has been found. Even for a single Dirac

flavour, spontaneous chiral symmetry breaking of a continuous symmetry is possible. In contrast to

QCD, the corresponding Goldstone bosons are diquarks instead of mesons. With the help of a highly

parallelized rHMC algorithm, the phase diagram of this gauge theory with fermionic baryons and quarks

in the fundamental representation of the gauge group has been investigated with Monte-Carlo simula-

tions for the first time. At vanishing temperature, the phase diagram as a function of chemical potential

has been calculated on different lattices. It has been shown that the theory possesses the silver blaze

property, i.e. the partition function does not depend on the chemical potential until it reaches the en-

ergy of half of the mass of the lightest bound state carrying baryon number. Therefore the mass of the

pseudo-Goldstone boson of the chiral symmetry breaking, i.e. the diquark mass, has been calculated.

Perfect agreement with the onset transition, separating the vacuum from nuclear matter, has been found.

For intermediate values of the chemical potential a deconfining phase transition at zero temperature has

been observed, and for even larger values of the chemical potential the system saturates and a similar

behaviour to the quenched theory has been found. On a rather small lattice finite size effects have been

investigated, indicating that the saturation threshold is a lattice artifact. For small values of the lattice

spacing, plateaus in the quark number density and the Polyakov loop show up, that are almost indepen-

dent of the lattice spacing. This has been interpreted as a separation of scales due to different bound

states, i.e. diquarks, protons, etc. contributing to the total baryon number.

At finite temperature the phase diagram as a function of temperature and chemical potential has been

calculated on different lattices. For small lattices the bulk transition, known from pure G2 gauge theory,

has been investigated and it has been shown that it coincides with the condensation of monopoles. Un-

fortunately it completely overshadows the finite temperature deconfinement transition. On larger lattices

the bulk transition is absent and the calculations reveal reliable information about the phase diagram.

At low temperatures and densities, the system stays in a confined and chiraly broken phase. For larger

densities the system deconfines at a certain value of chemical potential. Here it is still unclear whether

the deconfinement transition coincides with a restoration of chiral symmetry. For even larger values of

the chemical potential the system saturates and the finite temperature phase transition of the quenched

theory is recovered. Finally, a preliminary sketch of the G2-QCD phase diagram has been presented.

These first investigations of G2-QCD are a proof of principle that Monte-Carlo simulations at finite

baryon density are feasible and that the obtained results may provide relevant input on the QCD phase

diagram. Indeed, the performed simulations have been shown that the phase diagram of G2-QCD is
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an interesting playground for future investigations. A few topics that should be addressed are: At zero

temperature the silver blaze property should be investigated at larger and finer lattices for different quark

masses, to determine the order of the onset transition. A related question is whether more plateaus in

the quark number density develop at finer and larger lattices. This also leads to the question whether

the observed saturation value will reach its maximum value of 14 in the continuum limit. Furthermore,

the masses of three-quark bound states and quark gluon hybrids have to be calculated and related to the

onset transitions observed in the quark number density. Another interesting question at zero temperature

is the order of the deconfinement transition and whether it coincides with chiral restoration. Here it

will be interesting to investigate also two-flavour G2-QCD, where the chiral symmetry group is SU(4)

instead of SU(2). At finite temperature the existence of a critical point has to be examined. Related

questions regard possible exotic phases, as for instance the existence of a quarkionic or crystalline phase

or colour superconductivity at asymptotic large values of net baryon density. Furthermore, the existence

of a connection to QCD should be investigated. In this work it has been shown that a naive coupling to a

fundamental scalar field leads to QCD with isospin chemical potential. Maybe a more involved breaking

mechanism can gradually switch on the sign problem, leading to SU(3)-QCD with baryon chemical

potential. In this case the deformation of the theory may provide relevant information to tackle the QCD

sign problem.

In the last chapter of this work strongly-coupled supersymmetric gauge theories, based on dimen-

sional reduction of four dimensional N = 1 supersymmetric Yang-Mills theory, have been studied on

the lattice. For the supersymmetric quantum mechanics the spectrum of the Dirac operator has been

investigated, in dependence of arbitrary fermion boundary conditions. A periodic structure has been

obtained, corresponding to a fermionic zero mode for periodic boundary conditions. The mass of the

gluino and the scalar supersymmetric partner particle have been determined in the continuum limit,

showing that supersymmetry can be restored. In addition it has been shown, that the bosonic Ward iden-

tity for periodic and antiperiodic boundary conditions approaches its continuum value, also indicating

that a supersymmetric continuum limit is possible. In first investigations in three spacetime dimensions

the critical value of the gluino mass has been determined, such that in the continuum limit supersym-

metry can be restored. This fine-tuning was done for different lattices and different values of the gauge

coupling. Furthermore, it has been shown that the theory possesses a first order phase transition as a

function of the renormalized gluino mass. The phase transition point coincides with a vanishing gluino

mass, and therefore chiral symmetry is spontaneously broken in the supersymmetric continuum limit. In

future simulations the mass spectrum of this supersymmetric theory will be investigated and compared

to predictions from low-energy effective actions.

Concluding, the phase diagrams of different strongly-coupled gauge theories have been studied, em-

ploying lattice Monte-Carlo methods. The obtained results shine light on confinement in exceptional

gauge theories as well as on the phase diagram of a QCD-like theory with fundamental quarks and

fermionic baryons. Future investigations, especially on the G2-QCD phase diagram, are on the way and

may provide relevant information about the phase diagram of ‘ordinary’ QCD and the phenomena of the

strong interaction, as observed in nature.
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Appendix A

Conventions

The metric in Minkowski space time is given by

ηµν = (1,−1,−1,−1) =
1

2
{ γµ, γν } , (A.1)

with Hermitian temporal gamma matrix γ0 = γ†0 and anti-Hermitian spatial gamma matrices γi = −γ†i .
Additionally, a fifth Hermitian gamma matrix is defined as γ5 = −iγ0γ1γ2γ3 = γ†5 with the property

γ2
5 = 1. The charge conjugation matrix C is defined by the relations

CγT
µC

−1 = η γµ = −γµ, C−1 = C†, and CT = −C. (A.2)

On a Dirac spinor, it acts as charge conjugation

ΨC = CΨ̄T = CγT
0 Ψ∗ and Ψ̄C = −ΨTC−1. (A.3)

A definition that is independent of the basis for the gamma matrices is given by

C = i γ2γ0. (A.4)

Left- and right-handed projection operators are defined by

PR =
1

2
(1 + γ5), PL =

1

2
(1 − γ5). (A.5)

Additionally, some useful relations are given

γT
5 =γ∗5 = C−1 γ5C, PT

R/L = P ∗
R/L = C−1 PR/LC,

Ψ̄CχC =χ̄Ψ and Ψ̄Cγµχ
C = −χ̄γµΨ.

(A.6)

The Euclidean gamma matrices are obtained by

γE
0 = γ0 and γE

i = iγi. (A.7)

They are Hermitian matrices, satisfying γE
µ = γE

µ
†
. The sigma matrices Σµν are defined as

Σµν =
i

4
[ γµ, γν ] . (A.8)
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Appendix B

Additional information about Lie groups

B.1 The exceptional Lie group G2

In the following, additional information on the explicit construction of the Lie group G2 are provided.

Two different representations for the generators, a complex and a real one, are given. The real and

complex representations for G2 are unitary equivalent to each other.

B.1.1 Complex representation

The 14 generators of a complex base for G2 are given [57] by

Ti =
1√
2







λi 0 0

0 −λ∗i 0

0 0 0






for i = 1 . . . 8, (B.1)

where λi are the usual Gell-Mann matrices, building a 7-dimensional reducible representation for the

su(3) subgroup of g2, and

T8+i =
1√
6







0 di ti

−d∗
i 0 t∗i

t†i tTi 0






for i = 1 . . . 6, (B.2)

with

d1 =







0 −1 0

1 0 0

0 0 0






d2 =







0 i 0

−i 0 0

0 0 0






d3 =







0 0 1

0 0 0

−1 0 0







d4 =







0 0 i

0 0 0

−i 0 0






d5 =







0 0 0

0 0 −1

0 1 0






d6 =







0 0 0

0 0 i

0 −i 0







and

t1 =
√

2







0

0

−1






t2 =

√
2







0

0

−i






t3 =

√
2







0

−1

0







t4 =
√

2







0

i

0






t5 =

√
2







−1

0

0






t6 =

√
2







−i
0

0







They are normalized according to tr(TaTb) = 2δab.
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B.1.2 Real representation

In a real representation, the 14 generators of the Lie group G2 are given by [87]

T1 =
1

2
√

2



























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 −1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0



























T2 =
1

2
√

2



























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 −1

0 0 0 −1 0 0 0

0 0 0 0 1 0 0



























T3 =
1

2
√

2



























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 1 0



























T4 =
1

2
√

2



























0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 −1 0 0 0 0 0



























T5 =
1

2
√

2



























0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 −1 0 0 0 0



























T6 =
1

2
√

2



























0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0

0 0 1 0 0 0 0

0 −1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



























T7 =
1

2
√

2



























0 0 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



























T8 =
1

2
√

6



























0 0 0 0 0 0 0

0 0 −2 0 0 0 0

0 2 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 1 0


























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T9 =
1

2
√

6



























0 −2 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −1 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0



























T10 =
1

2
√

6



























0 0 −2 0 0 0 0

0 0 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1

0 0 0 1 0 0 0

0 0 0 0 1 0 0



























T11 =
1

2
√

6



























0 0 0 −2 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 1 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 1 0 0 0 0 0



























T12 =
1

2
√

6



























0 0 0 0 −2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

2 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0



























T13 =
1

2
√

6



























0 0 0 0 0 −2 0

0 0 0 0 −1 0 0

0 0 0 −1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0



























T14 =
1

2
√

6



























0 0 0 0 0 0 −2

0 0 0 1 0 0 0

0 0 0 0 −1 0 0

0 −1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

2 0 0 0 0 0 0



























(B.3)

They are normalized according to tr(TaTb) = −1
2
δab.

B.2 The exceptional Lie groups F4 and E6

The exceptional Lie group F4 is the automorphism group of the exceptional Jordan algebra, whose

elements are 3×3 matrices with octonionic entries. All representations are real and it has a trivial centre.

The dimension of the corresponding algebra is 52 and the defining representation is 26-dimensional. It

is a maximal subgroup of the exceptional Lie group E6 with algebra dimension 78 and 27-dimensional

defining representation. The centre of E6 is Z(3). Details, regarding further properties and an explicit

construction, can be found in [234, 235].

Both groups are not orthogonal / unitary and therefore in the Monte-Carlo simulations, the inverse of

the gauge links has to be computed instead of the transpose / Hermitian conjugate.
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Appendix C

G2 Yang-Mills at zero temperature: tables

The tables provide additional data to the simulations ofG2 gluodynamics at zero temperature in chap. 5.

β, N 30, 283 35, 283 40, 283 30, 483 40,643 20, 323

γa 0.185(8) 0.160(4) 0.147(5) 0.197(1) 0.164(1) 0.252(1)

α 0.0881(7) 0.0752(3) 0.071(4) 0.098(1) 0.0887(1) 0.117(1)

σa2 0.046(1) 0.0340(8) 0.024(1) 0.0435(3) 0.0221(3) 0.1161(2)

Table C.1 Potential for charges in the (7) representation.

β N σ7a
2 g−2√σ7 R(c = 1.65) a µ

20 323 0.11807(19) 0.4908(4) 3.62 0.138 fm 490 MeV

25 403 0.06863(12) 0.4678(4) 4.76 0.105 fm 491 MeV

30 483 0.04481(28) 0.4536(14) 5.90 0.085 fm 490 MeV

35 563 0.03193(14) 0.4467(10) 7.00 0.071 fm 495 MeV

40 643 0.02219(33) 0.4256(32) 8.39 0.060 fm 489 MeV

Table C.2 String tension for the (7) representation on lattice sizes and couplings that are used for the

continuum extrapolation.

R 7 14 27 64 77 77′ 182 189

γRa 0.147(5) 0.29(1) 0.34(1) 0.51(1) 0.58(1) 0.74(2) 0.83(1) 0.77(2)

γRa/C′
R 0.147 0.145 0.146 0.146 0.145 0.148 0.138 0.144

γR/γ7 1 1.97 2.31 3.46 3.94 5.03 5.64 5.23

αR 0.071(4) 0.145(8) 0.16(1) 0.24(1) 0.27(1) 0.36(1) 0.37(1) 0.36(1)

αR/C′
R 0.071 0.0725 0.069 0.069 0.068 0.072 0.062 0.068

αR/α7 1 2.04 2.25 3.38 3.80 5.07 5.21 5.07

σRa
2 0.024(1) 0.048(2) 0.057(3) 0.086(4) 0.099(5) 0.120(6) 0.157(6) 0.132(6)

σRa
2/C′

R 0.024 0.024 0.024 0.025 0.025 0.024 0.026 0.025

σR/σ7 1 2.00 2.37 3.58 4.12 5.00 6.54 5.50

Table C.3 Fit-parameters of static potentials.
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R 7 14 27 64 77 77′ 182 189

σR(1/2)/σ7(1/2) 1 1.9996(3) 2.3327(5) 3.498(1) 3.997(2) 4.996(3) 5.991(5) 5.328(4)

σR(3/2)/σ7(3/2) 1 1.9989(7) 2.331(1) 3.495(5) 3.994(4) 4.989(7) 5.99(1) 5.321(9)

σR(5/2)/σ7(5/2) 1 1.996(1) 2.327(1) 3.484(5) 3.980(7) 4.96(1) 5.94(2) 5.29(1)

C′
R 1 2.0000 2.3333 3.5000 4.0000 5.0000 6.0000 5.3333

Table C.4 Scaled local string tension.

β = 9.7, N = 144 β = 10, N = 144 β = 9.7, N = 204

γ7a 0.83(8) 0.74(4) 0.68(9)

α7 0.40(7) 0.33(3) 0.28(8)

σ7a
2 0.07(2) 0.042(9) 0.11(1)

R(c = 1.65) 4.23 5.61 3.53

a 0.12 fm 0.089 fm 0.14 fm

µ 434 MeV 453 MeV 466 MeV

Table C.5 Parameters of the quark anti-quark potential in 4 dimensions for R = 7.

R 7 14 27

γRa 0.68(9) 1.39(4) 1.61(3)

γRa/C′
R 0.68 0.695 0.690

αR 0.28(8) 0.60(2) 0.69(2)

αR/C′
R 0.28 0.30 0.295

σRa
2 0.11(1) 0.21(1) 0.251(9)

σRa
2/C′

R 0.11 0.105 0.107

Table C.6 Fit-parameters of static potentials (204 lattice, β = 9.7).

R 7 14 27 64

σR(1/2)/σ7(1/2) 1 1.973(1) 2.294(1) 3.396(8)

σR(3/2)/σ7(3/2) 1 1.987(3) 2.303(4) 3.44(2)

σR(5/2)/σ7(5/2) 1 1.92(1) 2.28(3) —

C′
R 1 2.0000 2.3333 3.5000

Table C.7 Scaled local string tension (204 lattice, β = 9.7).
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Appendix D

Lattice results for G2-QCD: raw data

Here the raw data (without interpolation and scale setting) are shown as a function of the lattice gauge

coupling β and the bare chemical potential µ for the small lattices 83 × 16, 83 × 4 and 83 × 2.

D.1 Zero temperature
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Figure D.1 Polyakov loop (left panel), chiral condensate (centre panel) and quark number density (right

panel) on a 83 × 16 lattice.
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Figure D.2 Chiral condensate (left panel), quark number density (centre panel) and quark energy density

(right panel) on a 83 × 16 lattice.
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D.2 Finite temperature
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Figure D.3 Polyakov loop (top row), chiral condensate (middle row) and quark number density (bottom

row) on a 83 × 2 lattice (left panel) and on a 83 × 4 lattice (right panel).

108



Appendix E

Supersymmetric Yang-Mills theories on the

lattice

E.1 N = 2 SYM in three dimensions in the continuum

The action of N = 2 SYM in three dimensions in Minkowski spacetime is given by

S = L4

∫

d3x

{

−1

4
trFIJF

IJ +
i

2
tr λ̄γID

Iλ− 1

2
trDIφD

Iφ+
1

2
g tr λ̄γ3 [φ, λ ]

}

, (E.1)

where L4 is the size of the compactified fourth dimension. The supersymmetry transformations read

δAI =iǭγIλ

δλ =
(

F IJΣIJ + 2DIφΣI3

)

iǫ

δλ̄ = − iǭ
(

F IJΣIJ + 2DIφΣI3

)

δφ =iǭγ3λ

(E.2)

with arbitrary spinor ǫ. After rescaling the fields as

Aµ → g−1Aµ

φ→ g−1φ

λ→ g−1λ

(E.3)

and

Fµν → g−1Fµν = g−1 (∂µAν − ∂νAµ − i [Aµ, Aν ])

ig [Aµ, · ] → i [Aµ, · ]
(E.4)

the action takes the following form

S = L4

∫

d3x

{

− 1

4g2
trFIJF

IJ +
i

2g2
tr λ̄γID

Iλ− 1

2g2
trDIφD

Iφ+
1

2g2
tr λ̄γ3 [φ, λ ]

}

= α

∫

d3x tr

{

−1

4
FIJF

IJ +
i

2
λ̄γID

Iλ− 1

2
DIφD

Iφ+
1

2
λ̄γ3 [φ, λ ]

}

,

(E.5)

with dimensionfull coupling constant α = L4

g2 . The Wick rotation is achieved by the following rules

γ0 → iγ0 , A0 → iA0 , (E.6)

and then the Euclidean action reads

SE = α

∫

d3x tr

{

1

4
FIJFIJ +

1

2
λ̄γEIDIλ+

1

2
DIφDIφ− 1

2
λ̄γE3 [φ, λ ]

}

. (E.7)
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In 3 dimensions γI is a reducible representation and therefore it is possible to decompose it into a irre-

ducible representation of the Clifford algebra according to

γI =

(

ΓI 0

0 −ΓI

)

and γ3 = i

(

0 −11 0

)

(E.8)

where ΓI forms a 2-dimensional representation of the clifford algebra in 3 dimensions, [ ΓI ,ΓJ ] = 2ηIJ .

The Majorana spinor λ decomposes into two Majorana spinors in 3 dimensions,

λ =

(

η1

η2

)

and λ̄ =
(

η̄1 −η̄2

)

. (E.9)

Under this decomposition, different terms of the action transform as

λ̄Dλ = η̄1Dη1 − η̄2Dη2,

λ̄γ3Dλ = −i (η̄1Dη2 + η̄2Dη1) ,

λ̄γIDλ = η̄1ΓIDη1 + η̄2ΓIDη2,

(E.10)

where the operatorD acts trivial in spinor space. Then the Minkowski action is equivalent to the follow-

ing expression

S = L4

∫

d3x

{

−1

4
trFIJF

IJ +
i

2
tr η̄1ΓID

Iη1 +
i

2
tr η̄2ΓID

Iη2 −
1

2
trDIφD

Iφ

− i

2
g tr (η̄1 [φ, η2 ] + η̄2 [φ, η1 ])

}

.

(E.11)

E.2 N = 2 SYM in three dimensions on the lattice

For a Monte-Carlo simulation, the action with 4 dimensional spinor representation has the advantage that

it is possible to construct a Hermitian Dirac operator due to the existence of a γ5 matrix. On the lattice

also a SUSY-breaking mass term is added to fine-tune the theory into a SUSY invariant continuum limit,

SE = α

∫

d3x

(

tr

{

1

4
FIJFIJ +

1

2
DIφDIφ

}

+
1

2
λ̄a

{

γEID
ab
I +mδab + γE3 f

abcφc

}

λb

)

. (E.12)

The scalar part of the lattice action is given by

Sscalar =
∑

x,I

tr
(

φ2
x − φx+I UA

x,I φx

)

, (E.13)

where UA are link variables in the adjoint representation. The fermionic part of the action is given by

Sf = 1
2
λ̄Dλ with

Dxy =
(

m+ dr + γ3φ̂
)

δx,y −
1

2

∑

I

{

(r − γI)UA
x,Iδx+I,y + (r + γI)UA

x−I,I

T
δx−I,y

}

, (E.14)

where φ̂ab = fabcφ
c. The lattice operator D can also be written in even-odd block form

D =

(

Mee Deo

Doe Moo

)

. (E.15)
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The operator D is γ5-Hermitian, this means

γ5Dγ5 = D† −→ γ5D = (γ5D)† (E.16)

and implies the following relations

γ5Meeγ5 =M †
ee,

γ5Mooγ5 =M †
oo,

γ5Deoγ5 =D†
oe,

γ5Doeγ5 =D†
eo.

(E.17)

After integrating out the fermions one has to compute the determinant of D. This can be done in the

following way

det γ5D = det γ5Mee det
(

γ5Moo − γ5DoeM
−1
ee Deo

)

. (E.18)

With the definitions

D̃ =

(

Mee 0

0 Moo −DoeM
−1
ee Deo

)

, L =

( 1 0

DoeM
−1
ee 1) , U =

(1 M−1
ee Deo

0 1 )

L−1 =

( 1 0

−DoeM
−1
ee 1) , U−1 =

(1 −M−1
ee Deo

0 1 )

,

(E.19)

the LU decomposition of D can be written as

D = LD̃U , D−1 = U−1D̃−1L−1. (E.20)

The inverse of the MatrixM can be computed exactly (m̂ = m+ dr)

M =m̂1⊗ 1+ γ3 ⊗ φ̂,

M−1 =
1

m̂ (m̂2 + φ2)

(1⊗ (m̂21+ φφT) − m̂γ3 ⊗ φ̂
)

,

M †M =
(

m̂2 + φ2
)1⊗ 1− 1⊗ φφT.

(E.21)

In the HMC ‘force’ the derivative with respect to φ,

δφc
Mab = γ3fabcδφ

c (E.22)

is needed. The determinant of the Hermitian square of M is given by

detM †M = m̂8
(

m̂2 + φ2
)8
. (E.23)

These analytical expressions are used to speed up the simulations for N = 2 SYM theory on the lattice

in three dimensions.
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Zusammenfassung

Das Standardmodell der Elementarteilchen ist bis heute die erfolgreichste Theorie zur vereinheitlichten

Beschreibung der elektromagnetischen, der schwachen und der starken Wechselwirkung unterhalb einer

Energieskala von 1 TeV. Trotz seines großen Erfolgs in der Beschreibung der Natur der Elementar-

teilchen, in exzellenter Übereinstimmung mit Experimenten, beinhaltet es sowohl ungelöste Probleme in

seiner Anwendung, wie z.B. das Confinement-Problem oder die Erzeugung der Massen der Elementar-

teilchen, als auch fundamentalere Probleme wie die Vereinheitlichung mit der Gravitation oder die Ex-

istenz von dunkler Materie. Die Theorie der starken Wechselwirkung ist die Quantenchromodynamik

(QCD), die für eine Untersuchung auch nicht-störungstheoretische Methoden, wie z.B. Monte-Carlo

Simulationen auf diskreten Raumzeitgittern, unbedingt erfordert. Aufgrund des Vorzeichenproblems ist

diese Methode jedoch nicht bei großen Dichten und tiefen Temperaturen anwendbar. Aber gerade dieser

auch experimentell schwer zugängliche Bereich des QCD-Phasendiagrams hat interessante Auswirkun-

gen in vielen Bereichen der Physik, wie z.B. in den Eigenschaften nuklearer Materie in der Kernphysik

oder der Entstehung von Neutronensternen in der Astrophysik.

In der vorliegenden Arbeit wurde die Eichgruppe SU(3) der QCD durch die exzeptionelle Lie-Gruppe

G2 ersetzt. Es zeigt sich, dass SU(3) und G2 Yang-Mills Theorien viele Gemeinsamkeiten besitzen.

Unter anderem konnten in dieser Arbeit Casimir scaling und string breaking, wichtige Eigenschaften der

QCD in Bezug auf das Confinement-Problem, in verschiedenen Darstellungen der Eichgruppe mit hoher

Präzision nachgewiesen werden. Des Weiteren konnte gezeigt werden, dass G2-QCD kein Vorzeichen-

problem besitzt, und somit war es möglich, zum ersten Mal für eine Theorie mit fermionischen Baryonen

und fundamentalen Quarks das Phasendiagram auch für niedrige Temperaturen und hohe Dichten nicht-

störungstheoretisch zu untersuchen. Hierbei wurde auch die silver-blaze Eigenschaft, bekannt aus der

QCD, nachgewiesen. Die hier durchgeführten Simulationen eröffnen viele interessante Fragestellun-

gen in Hinblick auf die Zustandsgleichungen von kalter dichter fermionischer Materie und bilden die

Grundlage für weitere Untersuchungen des G2-QCD Phasendiagrams.

Es wird erwartet, dass das Standardmodell nur eine effektive Theorie ist, die auf höheren Energie-

skalen durch eine fundamentalere Theorie abgelöst wird. Ansätze für solche fundamentaleren Theorien,

wie z.B. die Stringtheorie oder das minimal supersymmetrische Standardmodell (MSSM), beinhalten oft

eine Verdopplung der Freiheitsgerade durch eine Erweiterung der Raumzeitsymmetrien um sogennannte

Supersymmetrien. In dieser Arbeit wurde die einfachste Erweiterung, die N = 1 Super-Yang-Mills

Theorie, dimensional reduziert in einer und drei Raumzeitdimensionen, mit Hilfe von Gitter-Monte-

Carlo Simulationen untersucht. Insbesondere konnte hier gezeigt werden, dass eine Wiederherstellung

der Supersymmetrie, die durch das diskrete Raumzeitgitter gebrochen wird, im Kontinuumslimesmit der

gewählten Gitterformulierung möglich ist. Dieses Ergebnis erlaubt weitere Untersuchungen bezüglich

des Teilchen- und Massenspektrums dieser Theorie.

Technische Aspekte dieser Arbeit beinhalteten eine Entwicklung von hocheffizienten und parallelisierten

Algorithmen zur Ausführung der beschriebenen Simulationen auf Supercomputern.
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